
4748 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Binarizing Weights Wisely for Edge Intelligence:
Guide for Partial Binarization of
Deconvolution-Based Generators

Jinglan Liu , Jiaxin Zhang, Yukun Ding, Xiaowei Xu , Member, IEEE, Meng Jiang ,
and Yiyu Shi, Senior Member, IEEE

Abstract—This article explores the weight binarization of
the deconvolution-based generator in a generative adversar-
ial network (GAN) for memory saving and speedup of image
construction on the edge. This article suggests that different
from convolutional neural networks (including the discrimina-
tor) where all layers can be binarized, only some of the layers in
the generator can be binarized without significant performance
loss. Supported by theoretical analysis and verified by experi-
ments, a direct metric based on the dimension of deconvolution
operations is established, which can be used to quickly decide
which layers in a generator can be binarized. Our results also
indicate that both the generator and the discriminator should
be binarized simultaneously for balanced competition and bet-
ter performance during training. The experimental results on
CelebA dataset with DCGAN and original loss functions suggest
that directly applying state-of-the-art binarization techniques to
all the layers of the generator will lead to 2.83× performance loss
measured by sliced Wasserstein distance compared with the orig-
inal generator, while applying them to selected layers only can
yield up to 25.81× saving in memory consumption, and 1.96×
and 1.32× speedup in inference and training, respectively, with
little performance loss. Similar conclusions can also be drawn on
other loss functions for different GANs.

Index Terms—Binarization, compact model, compression,
deconvolution, generative adversarial network (GAN).

I. INTRODUCTION

GENERATIVE adversarial networks (GANs), which
are spin-offs from conventional convolutional neural

networks (CNNs), have attracted much attention in the fields of
reinforcement learning, unsupervised learning and also semi-
supervised learning [1]–[3]. A GAN is composed of two parts:

Manuscript received September 22, 2019; revised January 19, 2020;
accepted March 4, 2020. Date of publication March 26, 2020; date of current
version November 20, 2020. This work was supported in part by the National
Science Foundation under Grant CCF-1919167 and Grant CNS-1822099. This
article was recommended by Associate Editor H. Li. (Corresponding author:
Yiyu Shi.)

Jinglan Liu, Yukun Ding, Meng Jiang, and Yiyu Shi are with the
Department of Computer Science and Engineering, University of Notre
Dame, Notre Dame, IN 46556 USA (e-mail: jliu16@nd.edu; yding5@nd.edu;
mjiang2@nd.edu; yshi4@nd.edu).

Jiaxin Zhang was with the University of Science and Technology of China,
Hefei 230026, China. He is now with Horizon Robotics, Beijing 100190,
China.

Xiaowei Xu is with the Guangdong Cardiovascular Institute, Guangdong
Provincial Key Laboratory of South China Structural Heart Disease,
Guangdong Provincial People’s Hospital, Guangdong Academy of Medical
Sciences, Guangzhou 510080, China.

Digital Object Identifier 10.1109/TCAD.2020.2983370

Fig. 1. Low resolution broadcast based on GAN.

1) a discriminator and 2) a generator. Usually, discriminators
are implemented by CNNs, while generators are implemented
by deconvolutional neural networks. More details about GANs
will be presented in Section II-B.

Some promising applications based on GANs include
images reconstruction with super-resolution, art creation, and
image-to-image translation [4], many of which can run on
mobile devices (edge computing). For example, one poten-
tial application of GANs allow videos to be broadcast in low
resolution and then reconstructed to ultrahigh resolution by
end users [5] as shown in Fig. 1.

However, the resources required by GANs to perform
computations in real-time may not be easily accommodated
by mobile devices. For example, constructing an image of
64× 64 resolution with deep convolutional generative adver-
sarial network (DCGAN) [6] requires 86.6 MB of memory,
most of which is used for the generator. The memory goes
up to 620.8 MB for 1024×1024 resolution [7], and up to
about 800 MB for the popular 4K video with resolution
of 3840×2160. On the other hand, one of the state-of-the-
art mobile processors, A12 Bionic in the newest iPhone XS
Max [8], provides only 4 GB RAM, most of which must be
occupied by the operating system and its peripheries. As a
result, developers must restrict neural network models to just
a few megabytes to avoid crash [9]. The memory budget gets
even tighter when it comes to mobile devices of smaller form
factor such as Apple Watch series 3, which only has 768 MB
RAM.

The same problem has been well known for conventional
CNNs, and various solutions have been proposed via redesign-
ing the algorithms and/or computation structures [10]–[13].
Among them, quantization until the binary is one of the most
popular techniques as it fits the hardware implementation well
with high efficiency [9], [14], [15]. However, quantization can

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5699-0870
https://orcid.org/0000-0002-1046-6379
https://orcid.org/0000-0002-3009-519X

LIU et al.: BINARIZING WEIGHTS WISELY FOR EDGE INTELLIGENCE: GUIDE FOR PARTIAL BINARIZATION OF DECONVOLUTION-BASED GENERATORS 4749

reduce the expressive power of the neural networks signifi-
cantly and the discrete parameters make the optimization much
more difficult. Naive quantization usually leads to total fail-
ure, especially, for binarization. Significant effort has been
devoted to develop better quantization and binarization meth-
ods, as well as the hardware accelerator [14], [16]–[19]. Its
success on CNNs has been demonstrated by multiple works,
where memory consumption is deeply compressed although
sometimes the performance cannot be preserved [20]–[23].

Compression techniques can be readily applied to dis-
criminator networks in GANs, which are nothing different
from conventional CNNs. It may be alluring to also apply
the quantization techniques to binarize generators, especially,
the deconvolution-based [24] ones as the computation the
process looks similar. However, instead of distilling local
information from a global map as in convolution operations,
deconvolution attempts to construct the global map by local
information. This difference can lead to significantly differ-
ent binarization results, as will be discussed in Section III.
Accordingly, a scheme tailored to deconvolution-based gener-
ators is warranted.

In this article, we show through theoretical analysis that
under certain conditions, binarizing a deconvolution layer may
cause significant performance loss, which also happens in com-
pression of CNNs per empirical findings so far. Since there is
no explanation for this phenomenon to the best of the authors’
knowledge, an intuitive guess is that not all layers can be bina-
rized together while preserving performance. Thus, some layers
need to stay in the format of floating point for performance,
while others can be binarized without affecting performance.
To quickly decide whether a layer can be binarized, supported
by theoretical analysis and verified by experiments, a simple
yet effective metric based on the dimension of deconvolu-
tion operations is established. Based on this metric, we can
make use of existing compression techniques to binarize the
generator of GANs with little performance loss. We then pro-
pose the scheme of partial binarization of deconvolution-based
generators (PBGen) under the guide of the metric.

Furthermore, we find that only binarizing the generator and
leaving discriminator network unchanged will introduce unbal-
anced competition and performance degradation. Thus, both
networks should be binarized at the same time. The experi-
mental results based on CelebA suggest that directly applying
state-of-the-art binarization techniques to all the layers of the
generator will lead to 2.83× performance loss measured by
sliced Wasserstein distance (SWD) compared with the orig-
inal generator, while applying them to selected layers only
can yield up to 25.81× saving in memory consumption, and
1.96× and 1.32× speedup in inference and training, respec-
tively, with little performance loss. The conclusions will stay
the same even though different loss functions are utilized.

The remainder of this article is organized as follows.
Section II discusses related work and background for com-
pression techniques for CNN, as well as GANs. Section III
exhibits the theoretical analysis on the power of representa-
tion in deconvolution/convolution layers and the algorithm for
model binarization based on it. Experiments for verification
and performance are displayed in Section IV. This article is
concluded in Section V.

II. RELATED WORK AND BACKGROUND

A. CNN Compression

Compression techniques for CNNs mainly consist of prun-
ing, quantization, restructure, and other approximations based
on mathematical matrix manipulations [10], [25], [26]. The
main idea of the pruning method in [21] is to “prune” con-
nections with smaller weights out so that both synapses
and neurons are possible to be removed from the original
structure. This can work well with traditional CNNs and
reduce the number of parameters of AlexNet by a factor of
nine [21]. Restructure methods modify network structures for
compression, such as changing functions or block order in
layers [20], [26].

In this article, we focus on the quantization technique.
Quantization aims to use fewer bits to present values of
weights or even inputs. It has been used to accelerate CNNs in
various works at different levels [27]–[29], including ternary
quantization [16], [30] and iterative quantization [31], with
small loss. Han et al. [10] proposed to determine weight shar-
ing after a network is fully trained, so that the shared weights
approximate the original network. From a fully trained model,
weights are clustered and replaced by the centroids of clus-
ters. During retraining, the summation of the gradients in the
same groups are used for the fine-tuning of the centroids.
Through such quantization, it is reported to be able to com-
press AlexNet up by around 8% before significant accuracy
loss occurs. If the compression rate goes beyond that, the
accuracy will deteriorate rapidly.

Numerous recent work [14], [20], [23], [32]–[35] pushed it
further by using binarization to compress CNNs, where only a
single bit is used to represent values. Training networks with
weights and activations constrained to ±1 was first proposed
in [33]. Through transforming 32-bit floating point weight val-
ues to binary representation, CNNs with binary weights and
activations are about 32× smaller. In addition, when weight
values are binary, convolutions can be estimated by only addi-
tion and subtraction without multiplication, which can achieve
around 2.0× speedup. However, the method introduces signifi-
cant performance loss. To alleviate the problem, [20] proposed
binary-weight-network (BWN), where all weight values are
binarized with an additional continuous scaling factor for each
output channel. We will base our discussion on this weight
binarization afterward, which is one of the state-of-the-art
binarization methods.

Most recently, hybrid quantization has attracted more and
more attention, because it enables better tradeoff between
compression and performance [36]–[38]. As for partial bina-
rization, a subarea of hybrid quantization, on which we are
focused, both training methods [39] and the correspond-
ing hardware accelerators [19], [40] are also investigated
extensively. The actual performance after compression heav-
ily depends on the configuration of the partial binarization,
i.e., which layers are binarized while others are not. Given
the fact that the search space is too large to do exhaus-
tive search, finding the optimal or near-optimal configura-
tion becomes a foremost challenge. Chakraborty et al. [41]
showed that adding full precision residual connections helps
to reduce the loss of classification accuracy while getting

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

4750 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

excellent memory compression. One potential drawback of
this method is that it introduces additional memory over-
head. Zhuang et al. [39] presented flexible network binariza-
tion with layer-wise priority, which is defined by the inverse
of layer depth empirically. Prabhu et al. [42] proposed to use
the binarization error of each layer as the indication of its
importance to the final performance. They empirically show
that partial binarization leads to significant improvement over
fully binarized models. Very recently, Chakraborty et al. [43]
also utilized principal component analysis (PCA) to iden-
tify significant layers in CNNs and uses higher precision on
important layers. However, this method depends on pretrained
models, and PCA contains a large amount of computation
naturally.

All things considered, none of the existing work explored
the compression of generators in GANs, where deconvolu-
tion replaces convolution as the major operation. Note that
while there is a recent work that uses the term of “binary
generative adversarial networks” [44], it is not about the bina-
rization of GANs. In that work, only the inputs of the generator
are restricted to binary code to meet the specific applica-
tion requirement. All parameters inside the networks and the
training images are not quantized.

B. GAN

GAN was developed by [45] as a framework to train a
generative model by an adversarial process. In a GAN, a
discriminative network (discriminator) learns to distinguish
whether a given instance is real or fake, and a generative
network (generator) learns to generate realistic instances to
confuse the discriminator.

Originally, the discriminator and the generator of a GAN
are both multilayer perceptrons. Researchers have since
proposed many variants of it. For example, DCGAN trans-
formed multilayer perceptrons to deep convolutional networks
for better performance. Specifically, the generator is com-
posed by four deconvolutional layers. GANs with such a
convolutional/deconvolutional the structure have also been
successfully used to synthesize plausible visual interpre-
tations of given text [46] and to learn interpretable and
disentangled representation from images in an unsuper-
vised way [47]. Wasserstein generative adversarial networks
(WGANs) [48] and least-squares generative adversarial
networks (LSGANs) [49] have been proposed with different
loss functions to achieve more stable performance, yet they
both employed the deconvolution operations too. To verify
the robustness of our analysis, both DCGAN and LSGAN are
tested in our experiments.

III. ANALYSIS ON POWER OF REPRESENTATION

In this section, to decide whether a layer can be binarized,
we analyze the power of a deconvolution layer to represent
any given the mapping between the input and the output, and
how such power will affect the performance after binarization.
We will show that the performance loss of a layer is related
to the dimension of the deconvolution, and develop a metric
called the degree of redundancy to indicate the loss. Finally,

based on the analysis, several inferences are deduced at the
end of this section, which should lead to effective and efficient
binarization.

In the discussion below, we ignore batch normalization as
well as activation operations and focus on the deconvolution
operation in a layer, as only the weights in that operation
are binarized. The deconvolution process can be transformed
to equivalent matrix multiplication. Let DI (∈ Rci×hi×wi ,
where ci, hi, and wi are number of channels, height, and
width of the input, respectively) be the input matrix, and
DO (∈ Rco×ho×wo , where co, ho, and wo are the number
of channels, height and width of the output, respectively)
be the output matrix. Denote K (∈ Rci×co×hk×wk , where hk

and wk are the height and width of a kernel in the weight
matrix) as the weight matrix to be deconvoluted with DI .
Padding is ignored in the discussion, since it will not effect
the results.

For the deconvolution operation, the local regions in the
output can be stretched out into columns, by which we can cast
DO to DOd ∈ Rsi×ro , where si = hiwi, ro = cohkwk. Similarly,
DId ∈ Rsi×ci can be restructured from DI , and Kd ∈ Rci×ro

can be restructured from K, where si = hiwi, ro = cohkwk.
Please refer to [50] for details about the transform. Then, the
deconvolution operation can be compactly written as

DOd = DId ∗Kd (1)

where ∗ denotes matrix multiplication. DId and DOd are the
matrices containing pixels for an image or an intermediate fea-
ture map. During the training process, we adjust the values of
Kd to construct a desired the mapping between DId and DOd.

We use (·)j to denote the jth column of a matrix. Then (1)
can be decomposed column-wise as

DOd
j = DId ∗Kd

j , 1 ≤ j ≤ ro (2)

where Kd
j ∈ Rci and DOd

j ∈ Rsi .
Now, we analyze a mapping between an arbitrary input DId

and an arbitrary output DOd
j . From (2), when the weights are

continuously selected, all vectors that can be expressed by the
right-hand expression is a subspace � spanned by the columns
of DId, the dimension of which is ci. Here, we have assumed
without loss of generality that DId has full column rank. When
ci < si, which is the dimension of the output space � where
DOd

j lies, � is of lower dimension than �, and accordingly,
DOd

j can either be uniquely expressed as a linear combination
of the columns in DId if it lies in � (i.e., a unique Kd

j exists),
or cannot be expressed if it is not (i.e., no such Kd

j exists).
When ci = si, � and � are equivalent, and any DOd can be
uniquely expressed as a linear combination of the columns
in DId. When ci > si, � and � are still equivalent, but any
DOd can be expressed as an infinite number of different linear
combinations of the columns in DId. In fact, the coefficients Kd

j
of these combinations lie in a (ci−si)-dimensional subspace �.

The binarization imposes a constraint on the possible val-
ues of the elements in Kd

j . Only finite number of combinations
are possible. If ci ≤ si, then at least one of these combina-
tions has to be proportional to the unique Kd

j that yields the
desired DOd

j to preserve performance. If ci > si, then one of

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: BINARIZING WEIGHTS WISELY FOR EDGE INTELLIGENCE: GUIDE FOR PARTIAL BINARIZATION OF DECONVOLUTION-BASED GENERATORS 4751

Fig. 2. Binarization error versus degree of redundancy for a deconvolution
layer.

these combinations needs to lie in the subspace � to preserve
performance. Apparently, the larger the dimension of � is, the
more likely this will happen, and the less the performance loss
is. A detailed math analysis is straightforward to illustrate this,
and is omitted here in the interest of space. Accordingly, we
define the dimension of �, ci−si, as the degree of redundancy
in the rest of this article. Note that when this metric is nega-
tive, it reflects that � is of lower dimension than � and thus
this deconvolution the layer is more vulnerable to binarization
errors. In general, a higher degree of redundancy should give
lower binarization error.

We will use a small numerical example to partially vali-
date the above discussion. We construct a deconvolution layer
and vary its degree of redundancy by adjusting the ci in it,
where si = 20. For each degree of redundancy we calculate
the minimum average Euclidean distance between the original
output and the output produced by binarized weights, which
reflects the error introduced through the binarization process,
referred to as binarization error throughout this article. The
binarization error is obtained by enumerating all the possible
combinations of those binary weights. The results are depicted
in Fig. 2. From the figure we can see that the error decreases
with the increase of the degree of redundancy, which matches
our conjecture.

For generators in most state-of-the-art GAN mod-
els [6], [49], we find that the degree of redundancy reduces
with the increase in depth, eventually dropping below zero.
Such a decrease reflects the fact that more details are gener-
ated at the output of a layer as its depth grows, as can also be
seen in Fig. 3. These details are highly correlated, and reduce
the subspace needed to cover then.

Based on our analysis, several inferences can be deduced
to guide the binarization.

1) With the degree of redundancy, taking advantage of
existing binarization methods becomes reasonable and
feasible. Binarizing layers with higher degree of redun-
dancy will lead to lower performance loss after bina-
rization, while layers with negative degree of redun-
dancy should be kept un-binarized to avoid excessive
performance loss.

Fig. 3. Degree of redundancy versus layer number for DCGAN. The
intermediate feature maps at the output of each layer as well as the final
output are also presented.

2) According to the chain rule of probability in directed
graphs, the output of every layer is only dependent on its
direct input. Therefore, the binarizability of each layer
can be superposed. If a layer can be binarized alone, it
can be binarized with other such layers.

3) When binarizing several deconvolution layers together,
the layer with the least degree of redundancy may be
the bottleneck of the generator’s performance.

As a result, only shallower layer(s) of a generator can be
binarized together to preserve its performance, because of the
degree of redundancy trend in it. This leads to PBGen. Besides,
such analysis may also explain why binarization can be applied
in almost all convolution layers: distilling local information
from a global map leads to positive degree of redundancy.

Under the guide of such inferences, the algorithm for
wise binarization on Deconv/Conv networks can be imple-
mented by calculating the degree of redundancy for every
Deconv/Conv layer at first; then all these layers can be sorted
by their degree of redundancy from high to low; in this order,
every layer will be binarized singly to observe the difference
in performance from the original full-precision version and
whether to continue or not will be decided by the tradeoff
between performance and efficiency; finally, selected layers
will be binarized together to serve as the ultimate strategy
for network binarization. This algorithm can be described as
Algorithm 1. We attempt to preserve the original full-precision
performance in our experiments.

In addition, following the same derivation process for
deconvolution in this article, the degree of redundancy of a
convolution layer can be defined as wk × hk × ci− co, instead
of ci − si for deconvolution. Usually in a convolution layer,
co = 2 × ci, wk = hk, and wk = 3 or 5. As a result, the
degree of redundancy is usually positive, and convolution is
more readily binarizable compared to deconvolution as well.
This also explains why using 1×1 kernels will help compress
networks while not hurting the networks’ performance [51].

IV. EXPERIMENTS

A. DCGAN and Different Settings

DCGAN will serve as a vehicle to verify the inferences
deducted from the theoretical analysis in Section III. Except

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

4752 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Algorithm 1 Wise Binarization on Deconv/Conv Networks
L← number of Deconv/Conv layers
T ← performance degradation threshold
for l = 1 : L do

Compute the degree of redundancy of each layer Rl

end for
R← sorted R1 · · · , RL from high to low
i← 1
while i ≤ L do

Binarize the i-th layer
if performance degradation exceeds T then

break
end if
i← i+ 1

end while
return i
The network binarization strategy is to binarize the first i−1
layers according to R together

Fig. 4. Structure of the generators in DCGAN with dimension of each layer
labeled. Deconvolutional layers are denoted as “CONV” (figure credit: [6]).

TABLE I
DEGREE OF REDUNDANCY IN EACH DECONVOLUTION

LAYER OF THE GENERATOR IN DCGAN

for the original adversarial loss function for DCGAN, least-
square loss function proposed in LSGAN is also tested in our
experiments. The least-square loss is one of the most popular
loss functions for GANs, because it has been proved to be
efficient for different GANs training.

We will explore how to best binarize it with preserved
performance. Specifically, we use the TensorFlow [52] imple-
mentation of DCGAN on GitHub [53]. The structure of its
generator is illustrated in Fig. 4. The computed degree of
redundancy in each layer in the generator is shown in Fig. 3
and qualitatively summarized in Table I. The degree of redun-
dancy in the last layer drops to −960. According to the
inferences before, we can expect that since the degree of
redundancy decreases as the depth increases, binarizing shal-
lower layers and keeping the deeper layers in the format of
floating point will help preserve the performance. For the
readers’ information, the degrees of redundancy of the four
convolution layers in the discriminator are 11, 1472, 2944,
and 5888, respectively.

TABLE II
SETTINGS OF DIFFERENT PARTIAL BINARIZATION

OF GENERATOR IN DCGAN

The binarization method used in BWNs proposed in [20] is
adopted to binarize layers no matter in a generator network or
in a discriminator network. In BWN, all the weight values are
approximated with binary values. Through keeping floating-
point gradients while training, BWN is able to trained from
scratch without pretrain.

There are four deconvolution layers in total in the generator,
and each layer can be either binarized or not. For verifica-
tion, we have conducted experiments on all 24 = 16 different
settings, but only the eight representative ones are discussed
for clarity and space, and others will lead us to the same
conclusion. Those eight different representative settings are
summarized in Table II for clearness. In this table, the “set-
ting” column labels each setting. “layer(s) binarized” indicates
which layer(s) are binarized in the generator. The “discrim-
inator binarized” column tells whether the discriminator is
binarized or not. “Y” means yes, while “N” means no. This
column is introduced to verify an observation in our experi-
ments to be discussed later. Although settings in experiments
include unbinarized discriminator and binarized discriminator,
whether the discriminator is binarized or not will not affect
the generated images significantly. That is, if the generator
cannot generate recognizable faces with the unbinarized dis-
criminator, it still cannot generate any recognizable faces with
a binarized discriminator; and vice versa.

Setting G will serve as the baseline model for performance
after binarization, because it adopts the compression tech-
niques based on CNNs directly without considering the degree
of redundancy. On the other hand, Setting A serves as the base-
line model when considering the memory saving, speedup, as
well as performance difference before and after binarization,
because it represents the original DCGAN in floating point
representation. It is considered as one common GAN structure
providing good performance.

B. Dataset and Metrics

CelebA [54] is used as the dataset for our experiments,
because it is a popular and verified dataset for different GAN
structures. DCGAN, WGAN, LSGAN, and many other GAN
structures are tested on it [55]. As every image in CelebA
contains only one face, it is much easier to tell the quality of
the generated images.

Traditionally the quality of the generated images is iden-
tified by observation. However, qualitatively evaluation is
always a hard problem. According to the in-depth analysis

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: BINARIZING WEIGHTS WISELY FOR EDGE INTELLIGENCE: GUIDE FOR PARTIAL BINARIZATION OF DECONVOLUTION-BASED GENERATORS 4753

Fig. 5. Images generated under different settings. (a) Setting A. (b) Setting B. (c) Setting C. (d) Setting D. (e) Setting E. (f) Setting F. (g) Setting G.
(h) Setting H.

of commonly used criteria in [56], good performance in a sin-
gle or extrapolated metric from average log-likelihood, Parzen
window estimates, and visual fidelity of samples does not
directly translate to good performance of a GAN. On the other
hand, the log-likelihood score proposed in [57] only estimates
a lower bound instead of the actual performance.

Very recently, Karras et al. [7] proposed an efficient metric,
which we will use in our experiments, and showed that it is
superior to MS-SSIM [58], which is a commonly used met-
ric. It calculates the SWD between the training samples and
the generated images under different resolutions. In particular,
the SWD from the lower resolution patches indicates similar-
ity in holistic image structures, while the finer-level patches
encode information about pixel-level attributes. In this article,
the max resolution is 64× 64. Thus, according to [7], we will
use three different resolutions to evaluate the performance:
16× 16, 32 × 32, and 64 × 64. For all different resolutions,
small SWD indicates that the distributions of the patches are
similar, which means that a generator with smaller SWD is
expected to produce images more similar to the images from
the training samples in both appearance and variation.

C. Experimental Results

In this section, we will present experimental results that ver-
ify our inferences in Section III, along with some additional
observations about the competition between the generator and
the discriminator. The images generated by the original GAN
(Setting A), in which all weights of each deconvolution layer
are in the form of floating point, are displayed in Fig. 5(a).
The images generated by the binarized DCGAN without con-
sidering the degree of redundancy are displayed in Fig. 5(g).
These are our two baseline models.

1) Qualitative Comparison of Single-Layer Binarization:
We start our experiments by comparing the images gener-
ated by binarizing a single layer in the generator of DCGAN.
The results are shown in Fig. 5(b)–(e), which are generated
by PBGen’s under Setting B–Setting E, respectively. In other
words, those PBGen’s utilize binary weights to the first, the
second, the third, and the last deconvolution layer, respectively.
The degree of redundancy of each layer is shown in Fig. 3.
From the generated figures we can then see that Fig. 5(b) gen-
erates the highest quality of images, similar to the original ones
in Fig. 5(a). Images in Fig. 5(c) are slightly inferior to those
in Fig. 5(b), but better than those in Fig. 5(d). Fig. 5(e) has
no meaningful images at all. These observations are in accor-
dance with our inferences in Section III: the performance loss
when binarizing a layer is decided by its degree of redundancy,
and a layer with negative degree of redundancy should not be
binarized.

To address the concern that low performance of Setting E is
caused by the low degree of redundancy instead of the position
of the layer (the last layer), more experiments are conducted
under Setting E. As analysed in Section III, degree of redun-
dancy is defined by ci− si, thus changing ci of one layer will
only change the degree of redundancy of that layer, and will
not have an effect on other layers’ degree of redundancy. Thus,
experiments with different number of input channels for the
CONV4 layer, c4, under Setting E. The generated images of
faces in these experiments are shown in Fig. 6. The original
c4 is 64, and experiments are also conducted with 128, 256,
512, and 1024, respectively. According to Table I, the degree
of redundancy of CONV4 is zero when c4 = 1024. As shown
in Fig. 6, the generated images get clearer with more details
along with the increased number of input channels and higher
degree of redundancy.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

4754 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Fig. 6. Generated images of faces under Setting E with different number of
input channels for the CONV4 layer. The number of the CONV4 layer for
each experiments is (a) 64, (b) 128, (c) 256, (d) 512, and (e) 1024, respectively.
With the increased number of input channels in the CONV4 layer, the degree
of redundancy of this layer increases while other layers’ degree of redundancy
stays the same. This validates the degree of redundancy as an indication of
the capability for a layer.

Fig. 7. Generated images of faces after binarizing the CONV4 layer. The
layer with increased DOR for each experiment is (a) none, (b) CONV1,
(c) CONV2, (d) CONV3, and (e) CONV4, respectively. The DOR is increased
by 960 for each experiment except for (a). We can see that increasing the DOR
of other layers cannot solve the bottleneck problem introduced by CONV4,
but increasing the DOR of CONV4 can.

Fig. 8. SWD versus degree of redundancy of the binarized layer in different
settings.

In addition, we also conducted the experiments that vary
the DOR of the first three layers when binarizing the fourth
layer to validate that every layer binarization is relatively inde-
pendent. In fact, none of these experiments could achieve the
same performance improvement as that when increasing the
DOR of the fourth layer by a same number. Generated images
are shown in Fig. 7.

2) Quantitative Comparison of Single-Layer Binarization:
We further quantitatively compute the SWD values with
16 × 16, 32 × 32, and 64 × 64 resolutions for Setting B,
Setting C, Setting D, and Setting E. Their relationship with
the degree of redundancy of the binarized layer is plotted in
Fig. 8. From the figure, two things are clear: first, regardless of
resolution, a negative degree of redundancy (Setting E) results
in a more than 5× increase in SWD compared with other
settings with non-negative degree of redundancy (Setting B,
Setting C, and Setting D). Second, for all the three resolutions,
SWD decreases almost linearly with the increase of the degree
of redundancy when it is non-negative. This confirms that our
degree of redundancy can capture the impact of binarization
not only on the holistic structure but also on the pixel-level

Fig. 9. SWD versus resolution for SWD score calculation under Setting A
and Setting B.

TABLE III
AVERAGE SWD UNDER DIFFERENT SETTINGS

fine details, and as such, is indeed a good indicator to quickly
judge whether a layer can be binarized.

We also report the SWD averaged over different resolutions
(16× 16, 32× 32, 64× 64) in Table III, where the result for
the original GAN (Setting A) is also reported. From the table
we can draw similar conclusions, that binarizing second layer
(Setting C) increases the average SWD by 2.3% compared
with the original GAN (Setting A), while binarizing third and
fourth layer (Setting D and Setting E) further increases it by
52.3% and 913.6%, respectively.

It is interesting to note that the average SWD achieved by
binarizing the first layer (Setting B) is 13.6% smaller than
that from the original DCGAN (Setting A). To further check
this, we plot the SWD versus resolution for these two settings
in Fig. 9. From the figure we can see that the SWD from
Setting B is always smaller than that from Setting A across all
three resolutions. This shows that Setting B can achieve better
similarity, as well as detailed attributes. Such an improvement
is probably due to the regularization effect, and similar effect
has been observed in the compression of CNNs [32].

3) Validation of Superposition of Binarizability: We now
explore experiments to verify our inference that all layers that
can be binarized alone can be binarized together. The images
generated by Setting F in Fig. 5(f), where the first three lay-
ers in the generator are binarized together, show no significant
difference from those in Fig. 5(a)–(d). Binarizing any two lay-
ers from the first three layers (not shown here) will lead to
the same result. On the other hand, Setting G does not gener-
ate any meaningful output [Fig. 5(g)], as the last layer, which
cannot be binarized alone, is binarized together with the first
three layers. Binarizing any of the first three layers, as well
as the last layer (not shown here) will produce meaningless
results too. Setting G follows the state-of-the-art binarization
for CNNs directly without considering the degree of redun-
dancy. That is, with the assistance of the degree of redundancy,
we can figure out that at most the first three deconvolu-
tion layers can be binarized with small loss on performance
in the generator (Setting F). Nevertheless, directly adopting

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: BINARIZING WEIGHTS WISELY FOR EDGE INTELLIGENCE: GUIDE FOR PARTIAL BINARIZATION OF DECONVOLUTION-BASED GENERATORS 4755

Fig. 10. Images generated under different settings using the least-square loss. (a) Setting A. (b) Setting B. (c) Setting C. (d) Setting D. (e) Setting E.
(f) Setting F. (g) Setting G. (h) Setting H.

Fig. 11. SWD versus resolutions under Setting D and Setting F.

the existing binarization method will lead to excess degrada-
tion in performance and cannot provide any hint to improve
(Setting G).

Moreover, the average SWD for Setting F is 0.067, the same
as Setting D. Further looking at the SWD values under dif-
ferent resolutions for the two different settings as shown in
Fig. 11, it is clear that the two curves are very close. This
validates our last inference, that when multiple layers are bina-
rized together, the layer with least degree of redundancy is
the bottleneck, which decides the overall performance of the
network.

4) Experimental Results Using the Least-Square Loss:
The experiments using the least-square loss resulted are in
accord with our previous experimental results, as well as
conclusions.

For each layer, the performance after binarization decreases
along with the layer’s redundancy. The images generated
by binarizing a single layer in the generator after training
using the least-square loss are shown in Fig. 10. Same as in

Fig. 5, Fig. 10(a) displays the original results using the least-
square loss. Fig. 10(b)–(e) are generated by PBGen’s under
Setting B—Setting E, respectively, using the least-square loss.
As mentioned before, the degree of redundancy of each layer is
shown in Fig. 3, which decreases along each layer. As a result,
the quality of the generated images also decreases along bina-
rizing each layer under Setting B, Setting C, Setting D, and
Setting E. This is the same as that observed in the experiments
based on the original loss function in DCGAN.

The superposition of binarizability also holds in the experi-
ments based on the least-square loss. The images generated by
Setting F in Fig. 10(f), where the first three layers in the gen-
erator are binarized together, show no significant difference
from those in Fig. 10(a)–(d). Binarizing any two layers from
the first three layers (not shown here) will lead to a similar
result. On the other hand, Setting G does not generate any
meaningful output [Fig. 10(g)], as the last layer, which cannot
be binarized alone, is binarized together with the first three lay-
ers. Binarizing any of the first three layers, as well as the last
layer (not shown here) will produce meaningless results too.
Setting G follows the state-of-the-art binarization for CNNs
directly without considering the degree of redundancy based
on the least-square loss. That is, with the assistance of the
degree of redundancy, we can figure out that at most the first
three deconvolution layers can be binarized with small loss
on performance in the generator (Setting F) even based on the
least-square loss in DCGAN. Nevertheless, directly adopting
the existing binarization method will lead to excessive degra-
dation in performance and cannot provide any hint to improve
(Setting G), even if a better loss function, the least-square loss,
is used.

5) Compression Saving: We also investigate the com-
putation saving during training and inference and memory

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

4756 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

TABLE IV
TRAINING AND INFERENCE SPEEDUP, AS WELL

AS MEMORY REDUCTION FOR PBGEN

reduction of partially binarized deconvolution-based genera-
tors in hardware designs. Since BWN in [20] is adopted to
binarize layers, the same estimation on computation saving
and memory cost as BWN is also utilized.

Note that each binarized weight is 32× small over its sin-
gle precision presentation. Assume that out of a total of N
weights, K are binarized. Then the new memory cost can be
computed as

(K + 32× (N − K))/(32× N). (3)

On the other hand, Rastegari et al. [20] mentioned the com-
putation saving is ∼2× after binarization for a standard
convolution operation, because multiplication is replaced by
only addition and subtraction. This is also the situation when
weights are binarized in a deconvolution operation, so the
computation saving is adopted for a standard deconvolution
operation. That is, the new computation cost can also be cal-
culated using (3) by replacing weights with deconvolution
operations, and using 2 instead of 32.

Table IV summarizes the computation saving during train-
ing and inference, as well as the memory reduction for PBGen
compared with the original generator in DCGAN, which is
the baseline model when considering the computation sav-
ing and the memory saving. PBGen under Setting F can
achieve 25.81× memory saving, as well as 1.96× and 1.32×
speedup during inference and training, respectively, with little
performance loss. For both the original generator and PBGen,
during the training process the floating point representation
of all weights need to be used for backward propagation and
update [20]. As such, the speedup mainly comes from faster
forward propagation with binarized weights.

The relationship between the memory saving and the input
channel number of the fourth deconvolution layer (CONV4)
on the generator is also investigated. Note that increasing
the input channel number of the fourth convolution layer
(CONV4) will increase its DOR and at the same time the
memory cost. On the other hand, eventually a high enough
DOR (above 1024) will enable the layer to be binarized,
leading to memory reduction. This can be seen in Fig. 12,
where x-axis is the input channel number of CONV4 and
the y-axis is the total memory cost of the generator nor-
malized to the original generator without any binarization.
Before the input channel number of CONV4 reaches 1024,
only the first three deconvolution layers can be binarized, so
increasing DOR will result in the quick growth of memory
cost. However, when the input channel number of CONV4 is
1024, all the four deconvolution layers can be binarized, which

Fig. 12. Memory cost (normalized to the original model without binarization)
versus input channel number of CONV4. Before the input channel number
of CONV4 reaches 1024, only the first three deconvolution layers can be
binarized without significant performance loss, and when the input channel
number of CONV4 is 1024, all the four deconvolution layers can be binarized
without significant loss.

introduces extra memory saving to alleviate the memory cost
increment.

6) Unbalanced Competition: So far, our discussion has
focused on the binarization of the generator in a GAN only, as
the discriminator takes the same form as conventional CNNs.
However, since competition between generator and discrimi-
nator is the key of GANs, would a binarized generator still
compete well with a full discriminator?

The loss values for the discriminator network and PBGen
under Setting F are depicted in Fig. 13, where x-axis indi-
cates the number of epochs and y-axis is the loss value. The
images generated from different number of epochs are also
exhibited aside. From the figure we can see that during the
initial stage, distorted faces are generated. As the competi-
tion is initiated, image quality improves. But very quickly, the
competition vanishes, and the generated images stop improv-
ing. However, when we binarize the discriminator at the same
time (Setting H), the competition continues to improve image
quality, as can be seen in Fig. 14.

We further plot the loss values of the discriminator and
the generator of the original DCGAN (Setting A), and the
results are shown in Fig. 15. It is very similar to Fig. 14,
except that the competition is initiated earlier, which is due
to the stronger representation power of both the generator and
the discriminator before binarization. These figures confirm
that the quick disappearance of competition is mainly due to
the unbalanced generator and discriminator, which should be
avoided.

We now explore the quality of the images generated from
balanced competition using Setting H. The images generated
are shown in Figs. 5(h) and 10(h), the quality of which is
apparently better than the rest in Figs. 5 and 10, respectively.
To further confirm this quantitatively, we compute the aver-
age SWD values of those images, which is 0.034 in average.
This is even smaller than any average SWD values listed in
Table III, which shows that the images are of better quality,
even compared with the original DCGAN.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: BINARIZING WEIGHTS WISELY FOR EDGE INTELLIGENCE: GUIDE FOR PARTIAL BINARIZATION OF DECONVOLUTION-BASED GENERATORS 4757

Fig. 13. Loss values of the original discriminator and PBGen under Setting F along epochs.

Fig. 14. Loss values of binarized discriminator and PBGen under Setting H along epochs.

Fig. 15. Loss values of the discriminator and the generator in original DCGAN under Setting A along epochs.

7) Summary: To summarize the discussion and compar-
isons in this section, we plot the SWD versus resolution curves
for all the eight settings in Fig. 16. It allows a complete view
of how these different settings compare in terms of similarity
as a whole and fine details. From the figure we can see that
Setting H gives the best similarity as a whole, while Setting C
yields the finest detailed attributes.

Consequently, utilizing the degree of redundancy as a tool,
we can efficiently find out eligible layers that can be binarized
and based on their superposition, a final binarization strategy
can be decided. It cannot guarantee an optimal result but does
decrease the search space for the final solution from O(2n)

to O(n) or less, where n is the number of layers, because
testing on all combinations of binarization strategy is not nec-
essary and we only need to binarize every single layer with
high degree of redundancy to decide the final strategy. Since

Fig. 16. SWD versus resolutions under all different settings.

our theoretical analysis and experiments are based on decon-
volutional layers, we believe this method can work for other
deconvolution-based generators beyond DCGAN.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

4758 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

V. CONCLUSION

Compression techniques have been widely studied for
CNNs, but directly adopting them to all layers will
fail deconvolution-based generator in generative adversarial
networks based on our observation. We propose and validate
that the performance of deconvolution-based generator can be
preserved when applying binarization to carefully selected lay-
ers (PBGen). To accelerate the process deciding whether a
layer can be binarized or not, the degree of redundancy is
proposed based on theoretical analysis and further verified
by experiments. Under the guide of this metric, search space
for optimal binarization strategy is decreased from O(2n) to
O(n) where n is the number of layers in the generator. PBGen
for DCGAN can yield up to 25.81× saving in memory con-
sumption with 1.96× and 1.32× speedup in inference and
training, respectively, with little performance loss measured
by SWD score. Besides, we also demonstrate that both gen-
erator and discriminator should be binarized at the same time
for a balanced competition and better performance.

REFERENCES

[1] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for physi-
cal interaction through video prediction,” in Proc. Int. Conf. Adv. Neural
Inf. Process. Syst., 2016, pp. 64–72.

[2] D. Pfau and O. Vinyals, “Connecting generative adversarial networks
and actor-critic methods,” 2016. [Online]. Available: arXiv:1610.01945.

[3] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proc. Int. Conf.
Adv. Neural Inf. Process. Syst., 2016, pp. 2234–2242.

[4] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
2016. [Online]. Available: arXiv:1701.00160.

[5] C. Ledig et al., “Photo-realistic single image super-resolution
using a generative adversarial network,” 2016. [Online]. Available:
arXiv:1609.04802.

[6] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2015.
[Online]. Available: arXiv:1511.06434.

[7] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” 2017. [Online].
Available: arXiv:1710.10196.

[8] (2017). Apple Inc. [Online]. Available: https://www.apple.com
[9] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen,

“Compressing neural networks with the hashing trick,” in Proc. Int.
Conf. Mach. Learn., 2015, pp. 2285–2294.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2015. [Online]. Available: arXiv:1510.00149.

[11] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitect.
(MICRO). Taipei, Taiwan, 2016, pp. 1–12.

[12] K. Guo et al., “Angel-Eye: A complete design flow for mapping CNN
onto embedded FPGA,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 1, pp. 35–47, Jan. 2018.

[13] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU:
A scalable deep learning accelerator unit on FPGA,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 3, pp. 513–517,
Mar. 2017.

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” 2016. [Online]. Available:
arXiv:1609.07061.

[15] A. Al Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and L. Benini,
“XNORBIN: A 95 TOp/s/W hardware accelerator for binary convolu-
tional neural networks,” in Proc. IEEE Symp. Low Power High Speed
Chips (COOL CHIPS), Yokohama, Japan, 2018, pp. 1–3.

[16] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016. [Online].
Available: arXiv:1605.04711.

[17] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 373–390.

[18] F. Conti, P. D. Schiavone, and L. Benini, “XNOR neural engine: A
hardware accelerator IP for 21.6-fJ/op binary neural network inference,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2940–2951, Nov. 2018.

[19] Y. Ling et al., “TaiJiNet: Towards partial binarized convolutional neural
network for embedded systems,” in Proc. IEEE Comput. Soc. Annu.
Symp. VLSI (ISVLSI), Hong Kong, China, 2018, pp. 136–141.

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet classification using binary convolutional neural networks,”
in Computer Vision—ECCV, Cham, Switzerland: Springer, Oct. 2016,
pp. 525–542.

[21] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Int. Conf. Adv. Neural
Inf. Process. Syst., 2015, pp. 1135–1143.

[22] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” 2017. [Online]. Available: arXiv:1704.04760.

[23] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” 2016. [Online]. Available: arXiv:1606.06160.

[24] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus,
“Deconvolutional networks,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit. (CVPR), San Francisco, CA, USA, 2010,
pp. 2528–2535.

[25] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” 2014. [Online]. Available:
arXiv:1405.3866.

[26] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013. [Online].
Available: arXiv:1312.4400.

[27] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchitect. (MICRO), Taipei, Taiwan, 2016,
pp. 1–12.

[28] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” 2016. [Online].
Available: arXiv:1603.01025.

[29] X. Xu et al., “Quantization of fully convolutional networks for accu-
rate biomedical image segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Salt Lake City, UT, USA, 2018, pp. 8300–8308.

[30] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
2016. [Online]. Available: arXiv:1612.01064.

[31] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” 2017.
[Online]. Available: arXiv:1702.03044.

[32] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low
precision by half-wave gaussian quantization,” 2017. [Online]. Available:
arXiv:1702.00953.

[33] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Int. Conf. Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[34] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or −1,” 2016. [Online]. Available:
arXiv:1602.02830.

[35] Y. Ding, J. Liu, J. Xiong, and Y. Shi, “On the universal approximabil-
ity and complexity bounds of quantized ReLU neural networks,” 2018.
[Online]. Available: arXiv:1802.03646.

[36] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design
flow of accelerating hybrid extremely low bit-width neural network in
embedded FPGA,” in Proc. 28th Int. Conf. Field Program. Logic Appl.
(FPL), Dublin, Ireland, 2018, pp. 163–1636.

[37] X. Zhu, W. Zhou, and H. Li, “Adaptive layerwise quantization for deep
neural network compression,” in Proc. IEEE Int. Conf. Multimedia Expo
(ICME), San Diego, CA, USA, 2018, pp. 1–6.

[38] S. Yin et al., “A high throughput acceleration for hybrid neural
networks with efficient resource management on FPGA,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 4, pp. 678–691,
Apr. 2019.

[39] L. Zhuang, Y. Xu, B. Ni, and H. Xu, “Flexible network binarization
with layer-wise priority,” 2017. [Online]. Available: arXiv:1709.04344.

[40] X. Xu et al., “Efficient hardware implementation of cellular neural
networks with incremental quantization and early exit,” ACM J. Emerg.
Technol. Comput. Syst. (JETC), vol. 14, no. 4, p. 48, 2018.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: BINARIZING WEIGHTS WISELY FOR EDGE INTELLIGENCE: GUIDE FOR PARTIAL BINARIZATION OF DECONVOLUTION-BASED GENERATORS 4759

[41] I. Chakraborty, D. Roy, A. Ankit, and K. Roy, “Efficient hybrid
network architectures for extremely quantized neural networks enabling
intelligence at the edge,” 2019. [Online]. Available: arXiv:1902.00460.

[42] A. Prabhu, V. Batchu, R. Gajawada, S. A. Munagala, and A. Namboodiri,
“Hybrid binary networks: Optimizing for accuracy, efficiency and
memory,” in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Lake Tahoe, NV, USA, 2018, pp. 821–829.

[43] I. Chakraborty, D. Roy, I. Garg, A. Ankit, and K. Roy, “PCA-driven
hybrid network design for enabling intelligence at the edge,” 2019.
[Online]. Available: arXiv:1906.01493.

[44] J. Song, “Binary generative adversarial networks for image retrieval,”
2017. [Online]. Available: arXiv:1708.04150.

[45] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Int. Conf.
Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[46] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” 2016. [Online].
Available: arXiv:1605.05396.

[47] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,
and P. Abbeel, “InfoGAN: Interpretable representation learning by
information maximizing generative adversarial nets,” in Proc. 30th Int.
Conf. Adv. Neural Inf. Process. Syst., 2016, pp. 2180–2188.

[48] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[49] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least
squares generative adversarial networks,” 2016. [Online]. Available:
ArXiv:1611.04076.

[50] CS231n Course Materials. (2017). Implementation as Matrix
Multiplication. [Online]. Available: http://cs231n.github.io/
convolutional-networks/#layers

[51] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: Alexnet-level accuracy with 50× fewer
parameters and <0.5MB model size,” 2016. [Online]. Available:
arXiv:1602.07360.

[52] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous distributed systems,” 2016. [Online]. Available:
arXiv:1603.04467.

[53] T. Kim. (2017). DCGAN-Tensorflow. [Online]. Available:
https://github.com/carpedm20/DCGAN-tensorflow

[54] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proc. Int. Conf. Comput. Vis. (ICCV), Santiago, Chile,
2015, pp. 3730–3738.

[55] J. Cha. (2017). TF.Gans-Comparision. [Online]. Available:
https://github.com/qingshan412/tf.gans-comparison

[56] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation of
generative models,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016,
pp. 1–10.

[57] Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse, “On the quantitative
analysis of decoder-based generative models,” 2016. [Online]. Available:
arXiv:1611.04273.

[58] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier GANs,” 2016. [Online]. Available: arXiv:1610.09585.

Jinglan Liu received the B.S. degree in communica-
tion engineering from the Beijing University of Posts
and Telecommunications, Beijing, China, in 2014.
She is currently pursuing the Ph.D. degree with the
University of Notre Dame, Notre Dame, IN, USA.

Her current research interests include the appli-
cations and acceleration on generative adversarial
networks.

Jiaxin Zhang received the B.S. degree in applied
physics from the University of Science and
Technology of China, Hefei, China, in 2018, and
the M.S. degree in electrical and computer engineer-
ing from Boston University, Boston, MA, USA, in
2020.

He is currently a Software Engineer with Horizon
Robotics, Beijing, China, focusing on computer
vision.

Yukun Ding received the B.S. degree in automa-
tion and the M.S. degree in mechanical engi-
neering from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2014 and
2017, respectively. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, University of Notre Dame,
Notre Dame, IN, USA.

His current research interests include the appli-
cation, acceleration, and trustworthiness of deep
learning.

Xiaowei Xu (Member, IEEE) received the B.S.
and Ph.D. degrees in electronic science and tech-
nology from the Huazhong University of Science
and Technology, Wuhan, China, in 2011 and 2016,
respectively.

He is currently an AI Researcher with Guangdong
Provincial People’s Hospital, Guangzhou, China.
He worked as a Postdoctoral Researcher with the
University of Notre Dame, Notre Dame, IN, USA,
from 2016 to 2019. His research interests include
deep learning, and medical image segmentation.

Dr. Xu was a recipient of the DAC System Design Contest Special Service
Recognition Reward in 2018, and the Outstanding Contribution in Reviewing,
Integration, the VLSI Journal in 2017. He has served as a TPC members in
ICCD, ICCAD, ISVLSI, and ISQED.

Meng Jiang received the B.E. and Ph.D. degrees
from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China, in
2010 and 2015, respectively.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN, USA.
He was a Postdoctoral Research Associate with
the University of Illinois at Urbana–Champaign,
Urbana, IL, USA, from 2015 to 2017. He has
published over 50 papers in top conferences and

journals, such as IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, ACM SIGKDD, AAAI, ACM CIKM, and IEEE ICDM. He
has delivered six tutorials in major conferences. His research interests are data
mining, knowledge discovery, and machine learning.

Dr. Jiang was a recipient of the Notre Dame Global Gateway Faculty Award.
He got the Best Paper Finalist in ACM SIGKDD 2014.

Yiyu Shi (Senior Member, IEEE) received the
B.S. degree in electronic engineering from Tsinghua
University, Beijing, China, in 2005, and the M.S.
and Ph.D. degrees in electrical engineering from
the University of California at Los Angeles,
Los Angeles, CA, USA, in 2007 and 2009, respec-
tively.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN, USA,
where he is the Site Director of the NSF I/UCRC

Alternative and Sustainable Intelligent Computing and the Director of the
Sustainable Computing Laboratory. His current research interests focus on
hardware intelligence and biomedical applications. In recognition of his
research, many of his papers have been nominated for the Best Paper Awards
in top conferences.

Dr. Shi was also a recipient of NSF CAREER Award, IEEE Region Five
Outstanding Individual Achievement Award, and the IEEE TCVLSI Mid-
Career Research Award. He is an associate editor of various IEEE/ACM
journals. He is the Education Chair of ACM SIGDA and the Deputy
Editor-in-Chief of IEEE VLSI CAS Newsletter.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 03,2021 at 01:06:12 UTC from IEEE Xplore. Restrictions apply.

