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Abstract

We found a startling correlation (Pearson p > 0.97) between a single event in daily sea sur-
face temperatures each spring, and peak fish egg abundance measurements the following
summer, in 7 years of approximately weekly fish egg abundance data collected at Scripps
Pierin La Jolla California. Even more surprising was that this event-based result persisted
despite the large and variable number of fish species involved (up to 46), and the large and
variable time interval between trigger and response (up to ~3 months). To mitigate potential
over-fitting, we made an out-of-sample prediction beyond the publication process for the
peak summer egg abundance observed at Scripps Pier in 2020 (available on bioRxiv). Dur-
ing peer-review, the prediction failed, and while it would be tempting to explain this away as
a result of the record-breaking toxic algal bloom that occurred during the spring (9x higher
concentration of dinoflagellates than ever previously recorded), a re-examination of our
methodology revealed a potential source of over-fitting that had not been evaluated for
robustness. This cautionary tale highlights the importance of testable true out-of-sample
predictions of future values that cannot (even accidentally) be used in model fitting, and that
can therefore catch model assumptions that may otherwise escape notice. We believe that
this example can benefit the current push towards ecology as a predictive science and sup-
port the notion that predictions should live and die in the public domain, along with the mod-
els that made them.

Introduction

To comprehend the population dynamics underpinning biodiversity and essential ecosystem
services, a heavy emphasis is placed on driving mechanisms, both biotic and abiotic. In marine
environments, where fish stocks are of substantial ecological and economic interest, drivers
need to be untangled to inform effective, practical, and sustainable environmental policy.
Temperature is a particularly important (and sometimes controversial [1-3]) driver for fish
and other marine ectotherm populations. Here we focus on the well-studied relationship
between temperature and fish reproduction [4-6].

At the seasonal timescale, trends between water temperature and spawning activity have
been observed in many fish species [7-16]. Huber and Bengtson [11] found that the gonads of
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inland silversides (Menidia beryllina), a summer spawning species, did not mature to a repro-
ductive level in the absence of increasing water temperatures. In yellow perch (Perca flaven-
scens) both decreasing autumn temperatures and low winter temperatures have been deemed
critical in order for gonadal maturation to occur [12, 13]. Additionally, these fish have been
manipulated to spawn earlier in the year by increasing the rate of water temperature change
[13]. Kayes and Calbert [14] found that for the same yellow perch species, increasing tempera-
ture heightened egg production, but even in the absence of a temperature cue endogenous fac-
tors could induce spawning. In cyprinid fishes, the initiation of gametogenesis requires low
temperatures, but the completion of the process requires increasing temperatures [7]. Other
notable studies use degree days, a measure of time based on temperature, to track gonad devel-
opment from the initiation of vitellogenesis to the onset of spawning [17, 18]. A study done by
Henderson et al. [19] demonstrates that the timing of spring transitions and the duration of
summer, defined by a temperature threshold, is related to shifts in the center of biomass for
multiple species during their seasonal migration to spawning grounds, however, the shifts
observed differ by species. These and other varying and apparently complicated specific effects
suggest that more general quantitative relationships covering diverse species may be hard to
come by.

Despite this, recently a strong quantitative predictive relationship was detected between
average winter temperature and average spring-summer egg abundance for a suite of near-
shore-spawning species off the coast of southern California [15], which was subsequently sup-
ported by out-of-sample data acquired the following year [16]. This relationship is largely
explained by colder waters being indicative of large scale upwelling; a process known to supply
nutrients to shallower waters [20].

Building on this encouraging result, we re-examined the data of [15] and [16], but now
including the additional 2019 and 2020 data that have since become available, and found a
true out-of-sample confirmation of that relationship (Fig 1C). To emphasize, that means the
original relationship of Ref. [15] which was based on just five years of available data, has rea-
sonably predicted the subsequent three years of egg abundance. The data underlying this rela-
tionship, which consist of approximately weekly-sampled, species-identified egg counts of 46
near-shore-spawning species from Scripps Pier since 2013 (see Methods) also contain substan-
tial, and possibly important, fine-timescale information that was not considered in the seasonal
relationship described in [15]. Though the statistical seasonal association is compelling, it
emerges only in large-scale averages. By coupling the full-resolution fish egg abundance time
series (Fig 1A) with daily-averaged sea-surface temperatures (Fig 1B) from the Southern Cali-
fornian Coastal Observational Ocean Monitoring System (SCCOOS) dataset, we asked
whether finer-timescale temperature dynamics provide information about finer-timescale fish
egg abundance dynamics.

Results

The high time-resolution data (Fig 1A and 1B) did not show a linear cross-correlation between
the daily spring temperature and lagged daily egg abundance, with only weak relationships
across all delays at this fine daily timescale (Fig 1D). However, in accordance with previous
work [23-26], the S-Map test for nonlinearity [21] revealed that the egg abundance is driven
by nonlinear processes (forecasts improve as the nonlinear parameter, 0, is increased, Fig 1E).
Further, convergent cross-mapping, a tool for detecting nonlinear coupling in dynamical sys-
tems [22] suggested that temperature has a nonlinear effect on egg abundance (converges to p
=0.58, n = 295, Fig 1F). Thus, we expected that a daily timescale relationship may be detect-
able, just not with linear correlation.
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Fig 1. Is there a fine-time-scale relationship between temperature and eggs? A) The total egg abundance in each
collection (see Methods) shows substantial variability from year to year in both mean and peak levels. Each fish egg
collection was made from the Scripps Institution of Oceanography (SIO) Pier. B) The daily averaged sea surface
temperature (SST) in “C at the SIO Pier from data taken every 5-10 minutes from the SCCOOS monitoring station. C)
Seasonal averaging reveals the strong negative correlation between the average winter (December—February) SST and the
average spring and summer (March-August) egg abundance, identified by [15], with additional points for 2018 [16], and
now 2019 and 2020. D) The seasonal correlation breaks down at the daily level; there is no similarly strong correlation
between daily winter temperatures and daily egg abundances with time delays ranging from 0 to 180 days. E) The S-Map
[21] test for nonlinearity shows that forecasts of egg abundance improve (correlation between predictions and
observations) as the nonlinearity parameter (0) is increased, indicating that egg abundance shows nonlinear behavior. F)
Convergent cross-mapping (CCM, [22]), shows that when using the egg abundance time series to map onto the
temperature time series, predictions improve as library size increases, indicating there is a dynamic causal effect of daily-
averaged temperature on egg abundance.

https://doi.org/10.1371/journal.pone.0236541.9001
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One type of event that stands out in the egg abundance time series (Fig 1A) is the peak in
summer egg abundance. Both the magnitude and timing of the peak egg abundance varies
from year to year with no obvious pattern. Previous studies indicate that increasing water
temperature may provide a cue for spring and summer spawning species [19, 27-29]. To
ascertain whether a relationship exists between spring temperature increase and peak sum-
mer egg abundance, we defined a generic spring temperature trigger (STT). Our STT is the
maximum of all temperature increases detected within a moving window of length L, as that
window moves over the spring season (Fig 2A, see Methods). This returns a single scalar
value for the season, corresponding to a single event with an interpretable characteristic time-
scale (L). We restricted our analysis of temperature to the spring season (i.e. the season pre-
ceding the summer peak) following roughly the causal timescale examined in [15]. By
examining a range of possible window lengths, we found a robust relationship around the 1
month timescale, between STT and peak summer egg abundance (L between 3 and 5 weeks, p
> 0.95, Fig 2B). This relationship was so remarkably strong (p up to 0.98; Fig 2C), and appar-
ently robust (Fig 2B) that we felt compelled to share this observation, despite the small num-
ber of data points involved (n = 7). To mitigate potential overfitting, we offered a prediction
for the 2020 peak summer egg abundance that at the time of writing had not yet been mea-
sured (Fig 2C) [30]. To examine whether this relationship was caused by a general spring
warming trend, we repeated the analysis on increasingly smoothed (time averaged) tempera-
ture data. We found that the predictive relationship from STT to peak summer egg abun-
dance decreased markedly as temperature data became increasingly smoothed (Fig 3), which
suggested to us that the information was indeed contained in the daily-resolution tempera-
ture information, and not in the trend.

The failure of our published out-of-sample prediction for 2020 [30] naturally led us to ask
whether an exogenous change in conditions had come into play. Indeed, 2020 has been an
anomalous year in many ways, and for marine life at Scripps Pier it was most notably seen in a
toxic algal bloom (red tide) that was record-breaking both in terms of density of dinoflagellates
(9x higher than ever previously recorded) and duration (over a month from early April until
mid-May compared to typical 1-2 week blooms see https://sccoos.org/california-hab-bulletin/
red-tide). This led not only to extraordinary fish kills (including within experimental and edu-
cational aquaria associated with Scripps that became contaminated by seawater intake) but
also modified other physical (e.g. optical) and chemical properties of the near-shore marine
environment, with a broad impact across that ecosystem. In many respects, it would have been
surprising if fish spawning in 2020 was unaffected by this red tide. Moreover, the direction of
the error in our prediction was consistent with these changes. The increased absorption of
incident light due to the red, visibly opaque water occurred during our STT, and may have
enhanced the STT magnitude, leading to an inflated temperature trigger and peak eggs predic-
tion. The summer fish eggs, on the other hand, would be expected to be substantially reduced
by the spring fish kills caused by the red tide.

Despite this potential source of error external to our model, any failure of an out-of-sample
prediction deserves careful attention (indeed, the prediction from Ref. [15] still holds in 2020).
The fact that the peak observed fish egg count in 2020 actually did not occur during the sum-
mer (with a substantially larger peak in the spring which again may be related to the red tide;
Fig 4A), prompted us to question whether the peak eggs should be defined as a summer event,
or as an annual event. Relaxing this timing definition, and instead looking for an annual peak
in eggs with a triggering event that occurs at any time before, completely disrupts the tempera-
ture trigger to peak eggs relationship, and not just for the 2020 data (Fig 4B; see Methods).
This suggests the possibility of overfitting in the base definitions, that is confirmed by allowing
the date defining the boundary between spring and summer to vary (Fig 4C). We find that
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Fig 2. An apparently robust temperature trigger for peak summer egg abundance that ultimately failed in true
out-of-sample prediction. A) We defined the spring temperature trigger (STT) as the largest temperature increase
(denoted in red) detected within a monthly sliding window (gray area) as it moves in daily increments over the spring
season (dashed lines; see Methods). B) The relationship between STT and peak summer eggs was robust to the width of
the sliding window (widths that produce a p > 0.95 for the data up to and including 2019 are indicated in green). C)
The peak correlation between STT and peak summer eggs (June-August) for 2013-2019 (black dots) and predicted
value of 801 eggs for 2020 based on the linear regression (red dot), which differs dramatically from the eventually
observed peak summer eggs (blue dot).

https://doi.org/10.1371/journal.pone.0236541.g002

only small variations in the boundary date between spring and summer can substantially
reduce the observed correlation (Fig 4C) which strongly suggests that the original observed
relationship may have been a case of over-fitting.
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temperature data, not in the trend. A) The relationship between spring temperature trigger (STT defined over 27 days) and maximum summer fish egg abundance
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(orange) sea-surface temperature in 2017. Note how the magnitude of the STT (red bars) declines with averaging. Note that this figure does not include 2020 data.

https://doi.org/10.1371/journal.pone.0236541.g003

Discussion

Many ecological models and relationships are based on a large number of parameters, which
renders the task of assessing model robustness in that high-dimensional parameter space gen-
erally difficult. However, even more difficult to assess is the robustness of assumptions that
underlie the construction of the model itself, from which the model parameters arise. These
assumptions may be non-quantitative (e.g. categorical), such as the choice of functional form
or the inclusion or exclusion of model elements. Devising appropriate all-encompassing tests
across this full space of possible hypotheses is neither feasible nor advisable, and so this source
of uncertainty is often overlooked. Often, however, some assessment of the structural stability
of models is both possible and highly enlightening (e.g. [31]) and should be encouraged. In the
case of the STT to peak summer eggs relationship discussed here, the underlying definition of
the spring and summer intervals was quantitative, and so was particularly easy to assess, but it
is often the case with assumptions that they seem so obvious as to become invisible.

The process of making true out-of-sample predictions can account for both the difficulty of
seeing potential sources of overfitting, and the difficulty of assessing them. Furthermore,
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https://doi.org/10.1371/journal.pone.0236541.9004
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publishing predictions before it is possible to assess their accuracy places in clear view any sub-
sequent revisions of the model or relationship to account for new data. This may seem to go
against natural intuition: if a model prediction can be tested, should it not be tested before
publication, to improve confidence in the model? Certainly, a confidence threshold must be
reached in order to justify publication (as it was here, where because of the nearly perfect fit
any subsample with 3 or more points would reasonably produce successful out-of-sample pre-
dictions). However, we suggest that once that confidence threshold has been reached, leaving a
true out-of-sample validation avenue open to future investigation is a valuable standard to
aspire to, and we support the push towards quantitative prediction of truly out-of-sample nat-
ural data as a validation standard for ecological and earth systems science.

Materials and methods
Convergent cross mapping

Convergent cross mapping was performed using the block_Inlp() function in rEDM v0.7.3
[32]. The embedding was made with the raw egg abundance data and the daily-averaged
SCCOOS temperature time series.

When performing CCM, the variable being predicted is the one being tested as a causal
driver. As such, we used the egg abundance time series to predict temperature (thus measuring
temperature’s effect on egg abundance). Although temperature data existed for every day, eggs
were collected at inconsistent intervals, typically ranging from one collection every 2-5 days.
Thus, in order to make a proper embedding, we filtered both temperature and egg abundance
time series to only include temperature values for which a collection occurred on a given day,
6-8 days prior, and 13-15 days prior as well. This gave us a 3-dimensional embedding for fish
eggs, with time lags of about 1 week, with accompanying temperature values.

Because both egg abundance and temperature are strongly seasonally driven, we needed to
make sure we were not identifying shared information in the two variables driven by seasonal-
ity. To account for this, nearest neighbor selection only considered time points that were
within 90 calendar days for our target prediction. Without doing this, increased library size
will only increase the amount of seasonal information resolved in the embedding rather than
actual causal inference.

Libraries of potential neighbors (points within 90 calendar days of the date of the target)
were generated at random for each predicted point. Library sizes ranged from 10-80 points
(increasing by increments of 5). Once the library was randomly generated, the nearest 4 neigh-
bors (E+1, see (22)) in state space were selected and used to make a prediction. After a predic-
tion was made on each temperature value, Pearson’s correlation was calculated between
observed and predicted values. This process was repeated 50 times for each library size.

STT calculation

As described in the text and illustrated in Fig 2, STT was calculated by allowing the last day of
the sliding window to move over the spring interval defined as April 1st to June 18th.

Sensitivity test

The annual peak in egg abundance was identified as the maximum egg abundance occurring
between January 1% and December 31° within each year. The trigger-like value was found
using the sliding window analysis described in the text and illustrated in Fig 2, however the
last day of the sliding window was allowed to move from January 28" to the day immediately
preceding the annual peak in eggs.
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Sample collection

California Department of Fish and Wildlife permit (#4564) was used for the collection of
plankton from the MPA’s. Vertical plankton tows (approximately weekly) were conducted off
of the Scripps Pier (32.8328° N, -117.2713° W) from 2013 to 2019. A 1-meter diameter net
with 505 micron mesh and a bottle attached to the cod end was lowered to the seafloor,
approximately 5 meters, and out of the water 4 times, sampling a total of ~16 cubic meters of
seawater. The net was then rinsed by lowering it into the water until the top of the net touched
the surface and then raised back out. It is worth noting that this method only samples eggs sus-
pended in the water column and does not effectively collect demersal eggs. There is some vari-
ation in the volume of water being sampled (e.g., water depth changes with tide), but since all
collections went from seafloor to surface we do not expect any significant effect of egg depth
profiles to have any significant effect on our measurement peak summer egg abundance. Cur-
rents could also affect sample volume but are rarely strong in the summer [33] and are there-
fore less likely to skew the value of peak eggs. The eggs captured at the pier all originated 0-3
days before the collection occurred since in Southern California water temperatures, most
eggs for the fish species found there hatch within 72 hours [34] hence any eggs from a spawn-
ing event preceding the collection by up to 3 days could still be represented in our sample,
depending on precise spawning location and currents. Using real-time current velocities, ret-
rospective modeling found that most eggs collected at the Pier site likely originated within a
few kilometers of the collection site [34]. The contents of the cod end were concentrated
through a 330 micron mesh screen and then sorted under a microscope at 10X. The fish eggs
were counted, placed in 1.5 mL tubes containing 95% ethanol, and stored at -20°C for at least
24 hours until further processing. At this step, the morphologically distinct eggs of the North-
ern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax) are counted and stored
separately because they do not require molecular methods for identification. The remaining
eggs are identified through DNA barcoding. Comprehensive species lists are found in S2 and
S3 Tables.

Supporting information

S1 Fig. Correlation between multiple variables studied. The strongest correlation we found
was between STT and peak egg abundance (maximum correlation of 0.98). However, as found
by [15], a strong, negative correlation exists between average winter temperatures and average
summer egg abundance. Not surprisingly, there is also a strong correlation between peak egg
abundance and average egg abundance for a given summer (A). Due to transitivity, there is
also a strong correlation between average summer eggs and spring temperature triggers (B).
Weaker correlations also exist between average winter temperatures and the finer scale tem-
perature triggers (C) and peak summer egg abundance (D), however these are much weaker
relationships (p> 0.1).

(TIF)

$2 Fig. Inconclusive evidence of between-species synchrony in peak summer egg abun-
dance. Shannon diversity (base e) appears to be higher for peaks with lower abundance.
(TIF)

S1 Table. Species composition of the peak summer egg abundance samples. The propor-
tional contribution that each of the identified species contributes to the annual peak summer
egg abundance. The peak samples in each year are dominated by the eggs of a few species, with
the dominant species varying from year-to-year.

(DOCX)
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$2 Table. Scripps pier species abundance 2013-2019. A list of all 46 species identified in the
samples from Scripps Pier from 2013-2019 and the number of eggs identified as each of those
species within each year. The sampling effort by year is as follows: 2013 = 161, 2014 = 84,
2015 =51, 2016 = 52,2017 = 48, 2018 = 75, 2019 = 65.

(DOCX)

S3 Table. Scripps pier species frequency 2013-2019. A list of all 46 species identified in the
samples from Scripps Pier from 2013-2019 and the proportion of samples they were present in
within each year. The sampling effort by year is as follows: 2013 = 161, 2014 = 84, 2015 =51,
2016 = 52,2017 = 48,2018 = 75, 2019 = 65.

(DOCX)
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