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Abstract—Data collected from real-world environments often
contain multiple objects, scenes, and activities. In comparison
to single-label problems, where each data sample only defines
one concept, multi-label problems allow the co-existence of
multiple concepts. To exploit the rich semantic information
in real-world data, multi-label classification has seen many
applications in a variety of domains. The traditional ap-
proaches to multi-label problems tend to have the side effects of
increased memory usage, slow model inference speed, and most
importantly the under-utilization of the dependency across
concepts. In this paper, we adopt multi-task learning to address
these challenges. Multi-task learning treats the learning of each
concept as a separate job, while at the same time leverages
the shared representations among all tasks. We also propose
a dynamic task balancing method to automatically adjust the
task weight distribution by taking both sample-level and task-
level learning complexities into consideration. Our framework
is evaluated on a disaster video dataset and the performance is
compared with several state-of-the-art multi-label and multi-
task learning techniques. The results demonstrate the effective-
ness and supremacy of our approach.

Keywords-multi-label classification; multi-task learning; dis-
aster video

I. INTRODUCTION

In a real-world scenario, visual data often carry rich
information describing a specific environment that contains
multiple objects and their interactions [1]. The classic single-
label classification deep neural networks are designed to
detect the existence of a single object or action. Therefore,
in order to model the rich semantic information in visual
data, the deep neural networks should be adapted to model
multiple objects. The specific task that aims to accomplish
this goal is named multi-label classification. One important
property that distinguishes multi-label classification from the
common multi-class classification is that the labels in multi-
label classification are not mutually exclusive. Recently,
multi-label classification has attracted attention on a wide
variety of domains [2][3].

Cost functions such as ranking loss, cross-entropy, and
mean-squared error loss that are commonly used in single-
label classification tasks cannot be directly applied to the
multi-label classification problems. A widely adopted ap-
proach is to transform the problem into single-label classifi-
cation. A classic method is one-vs-rest or one-vs-all. One-vs-
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rest splits the multi-label classification problem into several
binary classification subproblems. Each subproblem has its
classifier that is trained on one of the single labels. Then,
the final prediction result is the ensemble of the output from
all classifiers [4]. However, one major disadvantage of the
native one-vs-rest method is the total disregard of inter-label
dependency. It is well-studied that strong co-occurrence ex-
ists in a majority of the multi-label classification tasks [S][6].
A most prevalent case can be observed in natural disaster
images, where victims and building debris frequently ap-
pear together. Many recent studies focus on learning the
underlying correlation among labels so that the inter-label
dependency could be retrieved [7][8]. Furthermore, in order
to infer the joint label probability from the latent space,
the final loss functions should be able to assess the optimal
confidence thresholds for separating each label [9]. How-
ever, such approaches require precisely formulated modeling
of the co-occurrence dependencies between labels, which
can vary extensively among tasks and input sources [10].
Moreover, certain trade-off still needs to be made between
the model complexity and the training time, since the pair-
wise correlation strategy adopted in these studies inevitably
creates a large number of parameters [11].

Typical machine learning/deep learning models focus on
solving a single task and have seen much success across
many domains [12] [13]. However, the potential of exploit-
ing multiple objectives simultaneously within a single model
is quite attractive, since it not only reduces the memory con-
sumption but also speeds up the inference process by making
multiple inferences in a single pass. This type of approach
is called multi-task learning. The most significant advantage
of multi-task learning is its capability of utilizing the shared
representations between related tasks. This is achieved by
sharing network weights across multiple tasks. It helps the
model to learn a better generalization of the problem and
consequently reduce the risk of overfitting [14]. Multi-task
learning has been applied in many fields, such as computer
vision [15] [16], natural language processing [17] [18] and
disaster management [19] [20] [21]. The common approach
to optimize multiple tasks is to use the linear weighted sum
on the loss of each task. Traditional methods of selecting the
task weights are either using uniform weights or manually
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assigning the weights. If equal weights are used, it is highly
likely for an easier task to deteriorate the overall model
performance, since the very small loss will diminish the
gradient of the aggregated loss during backpropagation.
On the other hand, manually tuning the weights requires
significant effort in searching for optimal weighting and is
often time prohibited.

In this paper, we propose a novel multi-label multi-task
attention network (MTMLAN) that utilizes the temporal and
spatial information from the input data for video information
retrieval tasks. Attention mechanism is applied to facilitate
the training process by putting more weights on a specific
segment of the input sequence. To address the challenge of
the task weighting problem, we applied a novel dynamic
weighting method that can automatically adjust the task
weights based on both sample-level and task-level learning
complexity. We evaluated our framework on a multi-label
natural disaster video dataset, but it can also be expanded to
almost any domain. The dynamic weighting method can be
applied to all deep neural networks, which greatly expands
its usability.

The key contributions of this paper are:

° A novel deep learning framework MTMLAN that
utilizes multi-task learning to solve multi-label
video information retrieval tasks.

° A novel dynamic task balancing method for multi-
task learning problems that is based on the sample-
level and task-level learning complexities.

The remainder of this paper is organized as follows.
In Section II, the literature in multi-label and muti-task
learning is briefly discussed. Section III presents a detailed
description of the proposed MTMLAN framework and the
dynamic task balancing method. Section IV illustrates the
experimental results and discussions. Finally, in Section V
we conclude the paper by discussing the main contributions
and potential future research directions.

II. RELATED WORK
A. Multi-label classification

Multi-label classification problems are more complicated
than the traditional single-label problems due to the non-
exclusive label in the input samples and their inherent gener-
ality nature [22]. Most network structures and loss functions
in single-label classification problems cannot be directly
applied to multi-label problems since they only function
based on the binary concept assumption. Current state-of-
the-art multi-label classification methods can be categorized
into two groups: 1) problem transformation, and 2) algorithm
adaptation.

Problem transformation methods aim to convert the multi-
label problems into common single-label ones. Therefore, all
existing approaches that are suited for single-label problems
can be applied. One native method is the one-vs-all, where

for each concept, a classifier is trained, with the samples
from that concept treated as positive and the rest of the
samples as negative [4]. The main drawback of this approach
is the complete oversight of the correlation between con-
cepts. To address the inter concept dependency relationship,
label power set method creates multiple classifiers for each
combination of the concepts [23]. However, as the concepts
increase, the number of classifiers can grow exponentially,
which leads to very few instances for each combination.

Algorithm adaptation methods tackle the problem by
augmenting the existing single-label network structure to fit
multi-label purposes. Wang et al. uses embedding layers to
learn the joint label-image embedding which retains the co-
occurrence label dependency and relevance [2]. In [24], the
model optimization objective function is capable of approx-
imating the multi-label neighborhood mutual information so
that the input feature quality could be effectively measured.
Such measurement is based on the mutual information it
shares with a set of concepts. This feature selection tech-
nique helps the model learn the shared representation across
labels.

B. Multi-task learning

Multi-task learning exploits the shared semantic infor-
mation across tasks by training multiple tasks in the same
model. Related tasks can complement each other so that the
model can be more generalized. This leads to better training
and inference efficiency, as well as stronger model perfor-
mance. The most prevalent multi-task learning approaches
can be categorized into 1) network architectures engineering,
and 2) feature and task relation learning.

Existing deep neural network architectures can be tweaked
to handle multi-task learning problems. The cross-stitch
network [25] uses the cross-stitch units to combine multiple
networks where each one of them is trained for a specific
task. This helps the model to learn the optimal combination
of shared and task-specific features. UberNet [26] builds the
task-shared layer using a pyramid structure based on the
VGG-NET [27]. It feeds a series of down-sampled images
of different resolutions into the task-shared layer, which is
constructed on top of the task-specific layers.

Exploiting the underlying relationship between feature
and tasks can facilitate information sharing in multi-task
learning. Lu ef al. uses a dynamic branching approach
to automatically construct a tree-like network structure. It
places certain concepts in the same branch by considering
the task correlation and complexity [28]. Also, the use
of weight uncertainty [29] models the task-dependent ho-
moscedastic uncertainty to weigh different tasks. In another
work by Chen et al., the gradient norms of each task-
specific layer are used to dynamically change the learning
progress [30]. Other measurements can also be used to
balance the task weights. Dynamic task prioritization [31]
uses the key performance indicator, such as accuracy or
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Figure 1: An overview of the proposed framework. The lower part of the diagram shows the anatomy of the task-specific

network

average precision, as the learning progress signal to adjust
the task weight distribution.

I1I.

In this section, the proposed multi-task multi-label atten-
tion network (MTMLAN) will be introduced. While this
architecture could be applied to any deep neural network
(DNNs) and problem domain, we use recurrent neural net-
works (RNNs) based DNN for the purpose of demonstration.

METHODOLOGY

A. Architecture Design

The main architecture of MTMLAN follows the hard
parameter sharing schema [32]. It consists of two main com-
ponents: the shared network and the task-specific network.
Figure 1 shows the overview of our proposed framework.
The shared network learns the shared feature representation
of all tasks, which can greatly reduce the risk of overfitting.
In this paper, we construct the shared network based on the
Inception V3 [33] model. The network consists of multiple
small convolutional filters (3x3) and a batch normalized
fully connected layer of the auxiliary classifier. More specif-
ically, the original Inception V3 is truncated after the last
average pooling layer to generate the spatial features.

The outputs of the shared network are then fed into
each of the task-specific networks. The task-specific network
contains two bidirectional Gated Recurrent Unit (BiGRU)
and an attention module. The BiGRUs extract the temporal
information from the sequential video frames. The attention
module enables task-specific networks to learn task-specific
features. In other work, it functions as a feature selection
mechanism by helping the model focus on the most relevant
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part of the input sequence. In this paper, the attention module
is implemented based on self-attention [34], a special variant
of the attention mechanism. While in regular attention, the
model looks at multiple sequence inputs at adjacent time
steps to determine the weight to put on each location [35],
self-attention helps the model to focus at different locations
of the current input sequence to get a more in-depth repre-
sentation of the subject matter.

We denote the input sequence as [ and the number of
features in / as n, then the input vector can be described as:
ey

I = (w1, wa,...,wy)

where [ is the output of the shared network and wj is the i,
feature for an n-dimensional input vector. Then, the BiGRUs
takes the input sequence I and generates the hidden state h,,
for feature m:

oy = GRU (i, o 1) @
o = GRU (e, ) 3)

The vectorized hidden state H is a constituent of each
feature-level hidden state h;, which is the concatenation of
the feature-level hidden states from the two unidirectional
GRUs:

H = (hy, ha, ..

i) “)

Then, the attention weight matrix M is calculated by using
the hidden state vector H:

M = softmax(Weatanh(Ws H)) ®)
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where Wy and W,y are two trainable weight matrices,
tanh() represents the hyperbolic tangent function. The soft-
max function ensures the sum of the weight matrix to be
1.

The attention weight matrix helps the model to focus
on a specific location on the input sequence by assigning
corresponding weights to each feature. To get the final
weighted output A, we apply the attention weight matrix
to the hidden state vector. Here the matrix multiplication
operation is used:

A=MH (6)

The weighted output is then fed into the last step of the task-
specific network, which is the final fully connected layer.

B. Dynamic task balancing

Multi-task learning requires carefully balancing the train-
ing process between each task. The proposed dynamic task
balancing method is comprised of two components: sample-
level dynamic balancing and task-level dynamic balancing

1) Sample-level dynamic balancing: The traditional so-
lution for the class imbalance problem is to assign a penalty
factor to the majority class in the loss function. While
effective, this method only considers the problem on a class
level. The truth is, sample difficulty also has a substantial
impact on the learning process. For instance, the cross-
entropy (CE) loss function for binary classification tasks can
be described as:

CE(pk) = —log(pk) (7)
where y )
_ D, vy —
CE(pr) = {1 —p, otherwise ®)

where y € {—1,1} is the ground-truth label, p € [0,1]
represents the probability that the target class has label y =
1. Based on [36], we define the sample-level loss function
SL() as:

SL(pr) = —(1 — px)” log(pr)

where o is [ is the sample level focusing parameter.

As the sample is misclassified and py, is small, (1 — py)”?
is very close to 1. Therefore, the loss is not affected. In
comparison, as pj gradually turns to 1, the impact on loss
will increase, which means the weight for correctly classified
samples decreases. [ controls the magnitude of how the
weight of the easy samples decreases. As a result, the
sample-level dynamic balancing method effectively helps the
model to adjust the resources to difficult samples.

2) Task-level dynamic balancing: One of the most promi-
nent issues with multi-task learning is to find suitable
weights for each task so the weighted linear sum of all
losses could be optimized. Inspired by [30], we propose a
novel task-level dynamic balancing (TDB) method that is
capable of handling the task imbalance problem. TDB uses
the loss ratio between tasks as the metric to measure the

(C))
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task imbalances. The weight gradient from the first layer
of the task-specific network is used to evaluate the current
learning magnitudes. Therefore, the goal of the task-level
loss function T'L(t) is to minimize the difference between
the weighted gradient of each task and the average gradient
weighted by the training rate. The task-level losses TL(t)
at training step t is defined as:

N : _

TL(t) = ; - ‘Gg)(t) —Cw () x [r;(t)’] |1 (10)
where N is the total number of training instances, n; is
the number instances in task j. nﬂ is the inverted class/task
distribution, which serves as a pejnalty term to suppress the
majority class/task. W contains weight parameters from the
last layer of the shared-network, « is a hyperparameter that
governs how rapidly the training rate will be restored to the
average scale, G (v{/) (t) represents the Lo norm of the gradient
of the weighted single-task loss w;(¢)L;(t) for task j with
respect to the chosen weights W

GO = IVwwy (OL 1) b

Gw (t) defines the average gradient norm among all tasks
T at time step t:

Gw(t) = Br [GR(1)] (12)
The relative inverse training rate of task j r;(t) is defined
as: .
L;(t
() = — (13)
Er {Lj (t)}
where L;(t) is the loss ratio for task j at time step t to time
step O:
: L (1)
Li(t)=-+
’ L;(0)

After upgrading the weight parameters in training step, the
task losses are normalized so that the gradient will not be
affected by the global training rate. The task weight for the
next training set is then defined as:

(14)

wj(t+1) = At)w;(t +1) (15)

where
T

Zj 'LUj(t + 1)

The steps to implement TDB for each training step can
be described as: 1) Perform forward pass at the beginning
of each training step, 2) extract the gradients of the first
layer in each one of the task-specific networks GY;,, and
their corresponding Lo norms are calculated, 3) calculates
the average gradient Gy (t), 4) calculate the relative loss #
for each task, 5) calculate the relative inverse training rates
r;(t) for each task, 6) calculate the Gy (t) x [r;(t)?] in
equation 10, 7) calculate the gradient loss T L(t), 8) update

At+1) = (16)
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(b) emergency response

(e) damage

(f) victim

(c) flood and storm (d) human relief

(g) briefing

Figure 2: Sample images of all concepts in the disaster video dataset

the task loss weights from w;(t) — w;(t + 1), 9) update
the model weights W (t) — W (t+ 1), 10) re-normalize the
task loss weights w;(t + 1)

IV. EXPERIMENTS
A. Dataset

In this work, we used a natural disaster video dataset [3]
collected from YouTube. It contains 1,540 video clips and
seven concepts (shown in Figure 2) that are related to
2017 hurricane Harvey and Irma. Following our previous
work [37], each video clip is sub-sampled to 40 frames.

Table I: The statistical summary of the disaster video dataset

Concepts Number of Instances | P/N Ratio
Demonstration 150 0.047
Emergency Response 338 0.105
Flood/Storm 971 0.301
Human Relief 273 0.085
Damage 371 0.115
Victim 311 0.096
Speak/Briefing/Interview | 811 0.251
Total 3,225

B. Experimental setup

The dataset is randomly split into 60% for training, 20%
for validation, and 20% for testing. All hyperparameters are
tuned on the validation set. The Inception V3 based shared-
network is pre-trained on ImageNet [38] and the output of
the last average pooling layer is used as the input for the
task-specific networks. The proposed sample-level balancing
loss function is used for each task-specific network, and
the task-level balancing loss function is used on the final
aggregated loss. Based on our empirical study, setting the
hyperparameter « in the task-level loss function to 1 returns
the best results. During the training, a batch size of 20 is
used for the input. The learning rate is set to 0.001 and
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Adam [39] is used as the optimizer during the training. We
report the results in Micro Averaged F-measure (MicroF1),
Hamming Loss (HL), and Mean Average Precision (MAP).

C. Experimental Results

To demonstrate the effectiveness of our approach, several
baseline methods are also tested on the disaster video
dataset: 1) A common multi-label classification model
(CMLC). It has similar network structure as the proposed
MTMLAN before the task-specific networks. The task-
specific networks are replaced with a single 2 layer Bidirec-
tional GRU in this baseline model. The sigmoid activation
function is applied on the last fully connected layer and
cross-entropy is used as the loss function, 2) A equal weight
multi-task classification model (EWMTC). It has the same
network structure as MTMLAN without the sample-level
and task-level dynamic balancing mechanism. Therefore,
the final loss is simply the equal weight linear sum of all
task losses, 3) GradNorm [30] is applied on MTMLAN to
replace the proposed sample-level and task-level dynamic
balancing mechanism, 4) Weight Uncertainty (WU) [29]
method. The sample-level and task-level dynamic balancing
mechanism in MTMLAN are replaced by the homoscedas-
tic uncertainty approach, 5) MTMLAN without sample-
level dynamic balancing (MTMLAN w/o SL Balancing), 6)
MTMLAN without task imbalance penalty term (MTMLAN
w/o TIP).

Table IIT shows the detailed performance results of the
baselines and the proposed MTMLAN method. The “weight
balancing” column shows which type of task weight bal-
ancing the corresponding method applies. It can be seen
from the table that the common multi-label classification
(CMLC) method has the worst performance regarding all
three metrics. In comparison, the equal weight multi-task
classification (EWMTC) method has better performance.
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Table III: Performance evaluation results on the disaster
video dataset

Approach Weight Balancing | MicroF1 HL MAP
CMLC N/A 0.7267 0.1277 | 0.6848
EWMTC Equal task weight 0.8015 0.1129 | 0.7341
GradNorm Task-level 0.8569 0.0788 | 0.7822
WU Task-level 0.8441 0.0793 | 0.7463
MTMLAN w/o Task-level 0.8740 | 0.0661 | 0.8233
SL Balancing
MTMLAN w/o Sample-level &
TIP task-lovel 0.8889 0.0634 | 0.8245
MTMLAN Sample-level & | g 9135 | 0.0512 | 0.8559
task-level

This illustrates the effectiveness of multi-task learning in
solving multi-label problems.

The results of the two state-of-the-art multi-task learning
techniques, namely Weight Uncertainty (WU) and Grad-
Norm, demonstrate further improved performance compared
to the vanilla EWMTC approach, with GradNorm having a
slight edge over WU. It should be noted that both meth-
ods only focus on optimizing task level weight balance.
Next, we compare the performance of the 3 variants of
the proposed MTMLAN method. It can be seen from the
table that both one of them outperformed GradNorm and
WU. When purposely excluding the sample-level balancing
function or the task imbalance penalty term in the task-level
balancing function, the model performance did suffer. This
demonstrates the effectiveness of the two components.

Table II shows the detailed classification accuracy for each
task/concept of the baselines and the proposed MTMLAN
method. It can be seen from the table that the trend for task-
level classification accuracy performance is quite consistent
with the overall performance of each method. The com-
mon multi-label classification (CMLC) method shows the
worst performance among all 7 tasks/concepts, especially
on tasks/concepts that have fewer samples. From Table I
it can be observed that the P/N ratio of flood/storm and
speak/briefing/interview concepts are significantly higher
than the rest of the concepts in the dataset. This partly
explains the worse performance on the minority concepts.
In comparison, the equal weight multi-task classification
(EWMTC) method has better performance, which again
proves that by learning the shared-representation across

all tasks, the model could generalize better on the whole
problem domain. The same outcome applies to GradNorm
and Weight Uncertainty, which further improve the ac-
curacy across all tasks/concepts. However, none of these
approaches shows a noticeable improvement in narrowing
the performance gap between the minority and majority
tasks/concepts.

In contrast, components in MTMLAN such as the sample-
level balancing function and the task imbalance penalty term
force the model to allocate more resources on difficult sam-
ples and minority tasks/concepts while training. As a result,
minority tasks/concepts observed much higher performance
gain compared to their majority counterparts. For instance,
when using the results of CMLC as a benchmark, the ac-
curacy of demonstration, damage, and victim concepts have
improved by 14.74%, 21.79% and 18.53% respectively. This
is significantly higher than the improvements on majority
concepts such as flood/storm and briefing, which account
for 10.22% and 7.55%.

—\Neight Uncertainty
e MTMNAN

0.9

Losses

0.7 GradNorm
0.5

0.3

[

11 31

Epoch

41 51 61

Figure 3: Training loss comparison among Weight Uncer-
tainty, GradNorm, and the proposed MTMNAN methods

We further demonstrate the effectiveness of the proposed
method in Figure 3, which shows the training loss history
of MTMNAN against the other two state-of-the-art methods.
It can be seen from the figure that MTMNAN constantly
produces lower losses compares to the other two methods.

Table II: The per-concept accuracy results on the disaster video dataset

Approach Demonstration | Emergency Response | Flood/Storm | Human Relief | Damage | Victim | Briefing
CMLC 0.8136 0.8066 0.8466 0.8123 0.7566 0.7452 | 0.8574
EWMTC 0.8249 0.8516 0.8779 0.8346 0.8010 0.7947 | 0.8552
GradNorm 0.8469 0.8711 0.9024 0.8753 0.8719 0.8540 | 0.8807
WU 0.8441 0.8597 0.9108 0.8776 0.8697 0.8600 | 0.8791
MIMLAN w/o 0.8740 0.9124 09137 | 09145 0.8913 | 0.8654 | 0.8985

SL Balancing
MTMI,E;},N wlo 0.8948 0.9116 0.9194 0.9159 0.9083 0.8712 | 0.9001
MTMLAN 0.9335 0.9487 0.9331 0.9410 0.9215 0.8833 | 0.9221
250
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V. CONCLUSION

This paper presents a novel multi-label multi-task deep
learning framework for disaster video classification. The
proposed MTMNAN model utilizes the shared-network to
learn general information that can be shared across all tasks.
On the other hand, the task-specific networks help the model
learn patterns that are related to each task. The proposed
dynamic task balancing approach automatically adjusts the
training progress on both sample-level and task-level. The
sample-level dynamic balancing function focuses on difficult
instances by allocating more resources. At the same time,
the task-level dynamic balancing mechanism adjusts weight
distribution by attending to the training rate of each task.
In addition, extra cautions are paid to the task imbalance
problem by introducing the task penalty term to the task-
level balancing function. In conclusion, we showed that the
proposed MTMNAN is capable of achieving superior perfor-
mance when compared to other state-of-the-art techniques.
In the future, the proposed framework will be extended
to accommodate multimodal data inputs. The interaction
between different modalities could have a positive impact
on the model performance and how to address the task
balancing challenge across modality is worth investigating.
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