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ABSTRACT
Automatic machine learning (AML) is a family of techniques
to automate the process of training predictive models, aim-
ing to both improve performance and make machine learn-
ing more accessible. While many recent works have focused
on aspects of the machine learning pipeline like model se-
lection, hyperparameter tuning, and feature selection, rela-
tively few works have focused on automatic data augmen-
tation. Automatic data augmentation involves finding new
features relevant to the user’s predictive task with minimal
“human-in-the-loop” involvement.

We present ARDA, an end-to-end system that takes as
input a dataset and a data repository, and outputs an aug-
mented data set such that training a predictive model on this
augmented dataset results in improved performance. Our
system has two distinct components: (1) a framework to
search and join data with the input data, based on various
attributes of the input, and (2) an efficient feature selection
algorithm that prunes out noisy or irrelevant features from
the resulting join. We perform an extensive empirical eval-
uation of different system components and benchmark our
feature selection algorithm on real-world datasets.
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1. INTRODUCTION
Automatic machine learning (AML) aims to significantly

simplify the process of building predictive models. In its
simplest form, AML tools automatically try to find the best
machine learning algorithm and hyper-parameters for a given
prediction task [44,59,60,66]. With AML, the user only has
to (1) provide a dataset (usually a table) with features and a
predictive target (i.e., columns), and (2) specify their model
goal (e.g., build a classifier and maximize the F1 score).
More advanced AML tools go even further and not only
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try to find the best model and tune hyper-parameters, but
also perform automatic feature engineering. In their current
form, AML tools can outperform experts [36] and can help to
make ML more accessible to a broader range of users [28,41].

However, what if the original dataset provided by the user
does not contain enough signal (predictive features) to cre-
ate an accurate model? For instance, consider a user who
wants to use the publicly-available NYC taxi dataset [24] to
build a forecasting model for taxi ride durations. Suppose
the dataset contains trip information over the last five years,
including license plate numbers, pickup locations, destina-
tions, and pickup times. A model built only on this data
may not be very accurate because there are other major ex-
ternal factors that impact the duration of a taxi ride. For
example, weather obviously has a strong impact on the de-
mand of taxis in NYC, and large events like baseball games
can significantly alter traffic.

While it is relatively easy to find related datasets using
systems like Google Data Search [11] or standardized repos-
itory like Amazon’s data collections [54], trying to integrate
these datasets as part of the feature engineering process re-
mains a challenge. First, integrating related datasets re-
quires finding the right join key between different datasets.
Consider, for example, the hypothetical taxi dataset and a
related NYC weather dataset. While the taxi data is pro-
vided as a list of events (one row per taxi ride), the weather
data might be on the granularity of minutes, hours, or days,
and might also contain missing information. To join the taxi
dataset with the NYC weather dataset, one needs to define
an appropriate join key and potentially pre-aggregate and
interpolate the weather dataset, as well as deal with null val-
ues. Moreover, there might be hundreds of related tables,
creating a large amount of work for the user.

There exists a unique opportunity to explore this type of
data augmentation automatically as part of an automatic
machine learning pipeline. Automatically finding and join-
ing related tables is challenging [26]. Users often have a hard
time distinguishing a semantically meaningful join from an
meaningless join if they don’t know details about the join
itself; the relevance of a join depends on the semantics of the
table and there is no easy way to quantify semantics. How-
ever, in the context of automated machine learning, joining
is significantly simpler as a clear evaluation metric exists:
does the prediction performance (e.g., accuracy, F1 score)
after the join increase? This sidesteps the question of the
semantic connection between two tables (perhaps implicitly
measures it) while still increasing the metric the user cares
most about, the predictive model’s performance.



In this paper, we explore how we can extend existing auto-
matic machine learning tools to also perform automatic data
augmentation by joining related tables. A naive solution to
the problem would try to find common join keys between ta-
bles, then join all possible tables to create one giant “uber”-
table, and then use a feature selection method (which are
already part of many AML-tools) to select the right fea-
tures. Obviously, such an approach has several problems.
First, in some cases like the weather and taxi data, a di-
rect join-key might not exist, requiring a more fuzzy type
of join. Second, joining everything might create a giant ta-
ble, potentially with more features than rows. This can
be problematic even for the best existing feature selection
methods (i.e., it creates an underdetermined system). Even
with ideal feature selectors, the size of such an “uber”-table
may significantly slow down the AML process.

Thus, we developed ARDA, a first Automatic Relational
Data Augmentation system. From a base table provided by
a user and a foreign key mapping (provided by the user or
discovered with an external tool [26]), ARDA automatically
and efficiently discovers joins can help model performance,
and avoids joins that add little or no value (e.g., noise). At
a high level, ARDA works by first constructing a coreset, a
representative but small set of rows from the original sam-
ple table. This coreset is strategically joined with candidate
tables, and features are evaluated using a novel technique
we call random injection feature selection (RIFS). At a high
level, RIFS helps determine if the results of a join are help-
ful for a predictive model by comparing candidate features
against noise: if a candidate feature performs no better than
a feature consisting of random noise, that feature is unlikely
to be useful. ARDA handles joins between mismatched keys
that may not perfectly align (e.g., time) using several inter-
polation strategies. The final output of ARDA is an aug-
mented dataset, containing all of the user’s original dataset
as well as additional features that increase the performance
of a predictive model.

While there has been prior work on data mining, knowl-
edge discovery, data augmentation and feature selection, to
the best of our knowledge no system exists which automat-
ically explores related tables to improve the model perfor-
mance. Arguably most related to our system are Kumar
et. al. [42] and Shah et al. [58]. Given a set of joins, the
authors try to eliminate many-to-one (n-to-1) joins which
are not necessary (i.e., highly unlikely to improve a predic-
tive model) because the foreign key already contains all the
information from the external table. For example, consider
again the taxi dataset, but where the start address is mod-
eled as a FK-PK relationship to a street-table. In that case,
depending on the model, the join to the street-table might
not be necessary as the foreign-key acts as an embedding for
the street. In other words, the foreign key (street address)
already contains the street name, which is the only extra
piece of information that could be gained from joining with
the street-table.

However, the techniques in [42, 58] focus only on classifi-
cation tasks and err on the side of caution, only eliminating
joins that are statistically highly unlikely to improve the
final model. In other words, these techniques focus on ex-
cluding a narrow subset of tables that will not improve a
model: just because a table is not ruled out by the tech-
niques of [42,58] does not mean that this table will improve
model performance. In fact, the techniques of [42, 58] are

intentionally conservative. ARDA is designed to automati-
cally find feature sets that actually improve the predictive
power of the final model. Furthermore, they can only elim-
inate many-to-one joins and neither deal with one-to-many
joins, nor with fuzzy joins (e.g., the weather and taxi data
which must be joined on time). Thus, both [42] and [58]
are orthogonal to this work, as we are concerned with effec-
tively augmenting a base table to improve model accuracy
as opposed to determining which joins are potentially safe
to avoid. In our experimental study, we demonstrate that
Kumar et al.’s decision rules can be used as a prefiltering
technique for ARDA, slightly affecting model performance
(sometimes better, sometimes worse) but always improving
runtime.

In summary we make the following contributions:

• We introduce ARDA, a system for automatic relational
data augmentation which can discover joins that improve
the performance of predictive models,

• we propose simple methods for performing one-to-many
and “soft key” (e.g., time) joins useful for ML models,

• we introduce RIFS, a specific feature selection technique
custom-tailored to relational data augmentation,

• we experimentally demonstrate that effectiveness of our
prototype implementation of ARDA, showing that rela-
tional data augmentation can be performed automatically
in an end-to-end fashion.

2. PROBLEM OVERVIEW
In this section, we describe the setup and problem state-

ment we consider. Our system is given as input a base table
with labelled data (that is, a specified column contains the
target labels) and the goal is to perform inference on this
dataset (i.e., be able to predict the target label for a new row
of the table). We assume that the base table provided by
the user is one table in a (potentially large) data repository
(e.g. [2]). We assume the learning model is also specified and
is computationally expensive to train. For example, random
forest models with a large number of trees or SVM models
over large datasets can be time consuming to train. ARDA
is otherwise agnostic to the model training process, and can
use any type of model training, including simple models like
random forest as well as entire AML systems.

Our goal then is to augment our base table—to add fea-
tures such that we can obtain a non-trivial improvement on
the prediction task. To this end, we assume that an external
data discovery system (e.g. [26]) automatically determines a
collection of candidate joins: columns in the base table that
are potentially foreign keys into another table. Since data
discovery systems like [26] generally depend on a “human-in-
the-loop” to eliminate false positives, ARDA is designed to
handle a generated collection that is potentially very large
and highly noisy (i.e., that the majority of the joins are
semantically meaningless and will not improve a predictive
model).

ARDA considers candidate joins based on two types of
candidate foreign keys: hard keys, which are foreign keys in
the traditional sense of a database system and can be joined
with their corresponding table using traditional algorithms,
and soft keys, foreign keys that may not precisely match
the values in the corresponding table. For example, a data



discovery system may indicate that a column representing
time in the user’s base table is a potential foreign key into
another table storing weather data. If the user’s base ta-
ble has timestamps at a one-day level of granularity, but
the weather table has timestamps at a one-minute level of
granularity, joining the two tables together requires special
care. Simply using a traditional join algorithm may result
in many missing values (when granularity does not precisely
align), or semantically meaningless results (e.g., if one arbi-
trarily determines which weather entry to match with each
row of the user’s base table). To support joins of such soft
keys, ARDA provides the user with several options, includ-
ing nearest neighbor, linear interpolation, and resampling
techniques. We assume that the “hardness” or “softness”
of a join key is indicated by the data discovery system [26],
and we discuss the details of soft key joins in Section 4.

Example. Traditionally, a user has had to invest sig-
nificant effort in deciding what data can usefully augment
a classification problem. For example, suppose that given
a base table TAXI, the learning task is to predict the tar-
get column trips that gives the number of trips a given a
taxi made or will make for a given day. Traditionally, a
user might speculate that the weather might significantly
impact demand. Since weather data is available in the user’s
data repository, she can writing code to join the TAXI and
WEATHER datasets on columns date and time. After de-
termining a strategy to join together these soft keys, she
then evaluates whether or not the additional weather data
improved model accuracy. Afterwards, she can continue to
search for other potential augmentations, such as sporting
event schedules or traffic data.

The goal of this project is to automate this arduous pro-
cess with little to no user intervention from the user. In
Figure 2 we show an example schema representing foreign
keys discovered by a data discovery system on a (poten-
tially heterogeneous) data repository. In reality, this schema
would be much bigger, since it would contain a large quan-
tity of irrelevant datasets. Our task is to discover tables that
contain information that can improve a predictive model’s
performance, without requiring a human being to decide
which candidate joins are potentially relevant. The central
questions that arise here include how to effectively combine
information from multiple relations, how to efficiently de-
termine which other relations provide valuable information
and how to process a massive number of tables efficiently.

Once the relevant join is performed, we must contend with
the massive number of irrelevant features interspersed with
a small number of relevant features. We observed that after
many joins, the resulting dataset often results in predictive
models with worse performance than training a model with
no augmentation. This is because machine learning models
are can be misled by noise, and large numbers of features
provide more opportunity for such confusion. Therefore,
our implementation must efficiently select relevant features
in the presence of many irrelevant or noisy features. The
rest of this work is devoted to describing our system and
how it addresses the aforementioned challenges.

3. AUGMENTATION WORKFLOW
We begin with a high-level description of the workflow

that our system follows.

Input to ARDA. ARDA requires a reference to a database
and a collection of candidate joins from a data discovery

system: a description of the columns in the base table that
can be used as foreign keys into other tables. Often, data
discovery systems (e.g., [2, 26]) provide a ranking of the
candidate joins based on expected relevancy (usually deter-
mined by simple heuristics). While such an ordering may
not directly correspond to an importance of given a table to
downstream learning tasks, ARDA can optionally make use
of this information to prioritize its search.

Coreset construction. As a first part of ARDA’s joining
pipeline we construct a coreset, a representative sample of
rows from the base table. This sampling is done for com-
putational efficiency: if the base table is small enough, no
sampling is required. ARDA allows several types of core-
set construction, described in Section 3.1. If sample size is
specified, ARDA samples rows according to a customizable
procedure, the default being uniform sampling. ARDA al-
lows user to specify the desired coreset size, or ARDA can
automatically select a coreset size using simple heuristics.

Join plan. During the stage of a join plan ARDA decides in
which order tables should be considered for augmentation,
how many tables to join at a time, and what tables should
be grouped together for further feature selection. ARDA has
three available options for a join plan described in Section
4. By default, ARDA uses the budget strategy.

Join execution. After determining a join plan, ARDA be-
gins testing joins for viable augmentations. Performing each
join requires special care for (1) handling soft keys, (2) han-
dling missing values, and (3) handling one-to-many joins
which might duplicate certain training examples, biasing the
final model. We discuss join execution in Section 4.

Aggregation. This steps pre-aggregates foreign table rows
over the given set of join keys to reduce one-to-many or
many-to-many join cardinalities to one-to-one or many-to-
one. This step includes time-resampling technique (dis-
cussed in Section 4) for time series columns. Aggregation
and time-resampling is done by taking median value for nu-
merical data and random sample for categorical columns.

Feature Selection. When considering whether or not a
particular join represents a useful augmentation, ARDA uses
a feature selection process. ARDA considers various types of
feature selection algorithms that can be run simultaneously,
which we discuss in subsequent sections. These methods
include convex and non-linear models, such as Sparse Re-
gression and Random Forests. Unless explicitly specified,
ARDA uses a new feature selection algorithm method that
we introduce in Section 6. This algorithm, random injec-
tion feature selection (RIFS), is based on injecting random
noise into the dataset. We compare the running time and
accuracy for different methods Section 7.

Final estimate. Finally, after ARDA has processed the
entire join plan and selected a set of candidate joins to use
as augmentations, ARDA trains a machine learning model on
the newly collected features. ARDA is agnostic to the ML
training process, and in our experimental analysis we tested
both random forest models and advanced AML systems [1,
59] AutoML system as an optional estimator.

3.1 Coreset Constructions
In this subsection, we discuss various approaches used

by ARDA to sample rows of our input to reduce the time
we spend on joining, feature selection, model training, and
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Figure 1: We provide a visual description of the workflow of our system. We start with a database and a
base table as input to a join discovery framework that returns a large collection of tables which may contain
information relevant to our learning task. After appropriate pre-processing, ARDA joins the candidate tables
in batches.

Figure 2: Example Schema: Initially a user has a
base table TAXI and she finds a pool of joinable ta-
bles to see if some of them can help improve predic-
tion error for taxi demand for a specific date given
in target column trips.

score estimation. While we discuss generic approaches to
sampling rows, often the input data is structured and the
downstream tasks are known to the users. In such a set-
ting, the user can use specialized coreset constructions to
sample rows. We refer the reader to an overview of coreset
constructions in [55] and the references therein.

Coreset construction can be viewed as a technique to re-
place large data set with a smaller number of representative
points. This corresponds to reducing the number of rows
(training points) of our input data, which in turn allows us
to run feature selection more quickly, possibly at a cost in
accuracy. We consider two main techniques for coreset con-
struction: sampling and sketching. Sampling, as the name
suggests, selects a subset of the rows and re-weights them
to obtain a coreset. On the other hand, Sketching relies on
taking sparse linear combination of rows, which inherently
results in modified row values. This limits our use of sketch-
ing before we join tables since the sketched data may result
in joins that are vastly inconsistent with the original data.

Uniform Sampling. The simplest strategy to construct a
coreset is uniformly sampling the rows of our input tables.
This process is extremely efficient since it does not require
reading the input to create a coreset. However, uniform
sampling does not have any provable guarantees and is not
sensitive to the data. It is also agnostic to outliers, labels
and anomalies in the input. For instance, if our input tables
are labelled data for classification tasks, and one label ap-
pears way more often than others, a uniform sample might
completely miss sampling rows corresponding to certain la-
bels. Thus, the sample we obtain may not be diverse or

well-balanced, which can negatively impact learning.

Stratified Sampling. To address the shortcomings of uni-
form sampling, we consider stratified sampling. Stratifica-
tion is the process of dividing the input into homogeneous
subgroups before sampling, such that the subgroups form
a partition of the input. Then simple random sampling or
systematic sampling can be applied within each stratum.

The objective is to improve the precision of the sample by
reducing sampling error. It can produce a weighted mean
that has less variability than the arithmetic mean of a simple
random sample of the population. For classification tasks, if
we stratify based on labels and use uniform sampling within
each stratum, we obtain a diverse, well-balanced sub-sample,
and no label is overlooked.

Matrix Sketching. Finally, consider sketching algorithms
to sub-sample the rows of our input tables. Sketching has be-
come a useful algorithmic primitive in many big-data tasks
and we refer the reader to a recent survey [68], though is
only applicable to numerical data. We note that under an
appropriate setting of parameters, sketching the rows of the
input data approximately preserves the subspace spanned
by the columns.

An important primitive in the sketch-and-solve paradigm
is a subspace embedding [20, 53], where the goal is to con-
struct a concise describe of data matrix that preserves the
norms of vectors restricted to a small subspace. Construct-
ing subspace embeddings has the useful consequence that
accurate solutions to the sketched problem are approximate
accurately solutions to the original problem.

Definition 1 (Oblivious subsapce embedding.) Given ϵ, δ >
0 and a matrix A, a distribution D(ϵ, δ) over ℓ×n matrices Π
is an oblivious subspace embedding for the column space of A
if with probability at least 1−δ, for all x ∈ Rd, (1−ϵ)∥Ax∥2 ≤
∥ΠAx∥2 ≤ (1 + ϵ)∥Ax∥2.

We use OSNAP matrix for Π from [53], where each column
has only one non-zero entry. In this case, ΠA can be com-
puted in nnz(A) log(n) time, where nnz denotes the sparsity
(number of nonzero entries) of A.

Definition 2 (OSNAP Matrix.) Let Π ∈ Rℓ×n be a sparse
matrix such that for all i ∈ [n], we pick j ∈ [ℓ] uniformly
at random, such that Πi,j = ±1 uniformly at random and
repeat log(n) times.

For obtaining a subspace embedding for A, Π needs to
have ℓ = d log(n)/ϵ2 rows. We note that for tables where



the number of samples (rows) is much larger than the num-
ber of features(columns) the above algorithm can be used to
get an accurate representation of the feature space in nearly
linear time. However, here we note that Π takes linear com-
binations of rows of A and thus does not preserve numeric
values. While the above guarantees hold in the worst-case,
for real-world data, we can often use a lot fewer rows in our
sketch.

Since sketching methods apply linear combinations of rows
we cannot hope to sketch the base table before the join takes
place, without modifying it’s contents. Therefore, ARDA
sketches tables after the join is performed. Note that ARDA
binarizes categorical features into a set of numerical fea-
tures, which are amenable to sketching. For classification
tasks, ARDA sketch rows independently within each label,
analogous to stratified sampling.

4. JOINS
After selecting a coreset, ARDA needs to determine which

tables will produce valuable augmentations. ARDA provides
different strategies for performing joins, as discussed below.
The objective of the join is to incorporate information from
a foreign table in the optimal way. A key requirement from
our join procedure is to preserve all base table rows since we
do not want to artificially add or remove training examples.

Joins. There are four common join types between two ta-
bles INNER JOIN, FULL JOIN, RIGHT JOIN, and LEFT JOIN.
But for our application, the goal is to add information to
each row of the base table. Losing base table rows would
lose data, and creating rows that do not correspond to base
table rows would not be meaningful. Thus, only certain
joins are suitable.

LEFT JOIN selects all records from the left table (base ta-
ble), and the matched records from the right table (foreign
table). The result is NULL from the right side if there is no
match. This is the only join type that works for our aug-
mentation task since it both preserves every record of the
base table and brings only records from the foreign table
that match join key values in base table. LEFT JOIN se-
mantics also include leaving NULL when there is no match
and results in missing values in the resulting dataset. There
are many standard data imputation techniques in ML that
we can use to handle these missing values.

None of the other join types satisfy our requirements.
Consider for example the INNER JOIN which selects only
records that have matching values in both tables. This type
of join will drop training examples from the base table that
do not join—losing data. For example, assume relation TAXI
from Figure 2 performed an inner join with relation CAR on
car model attribute. Further assume there is only a single
car model in TAXI that is found in CAR. In this scenario, all
the rows with car models that do not exist in CAR would be
lost.

Key Matches. ARDA supports single key join, multiple
key join (composite keys), mixed key join (composite key
consists of soft and hard keys), and multiple-option key join
(table has different keys it can be joined on with base ta-
ble). The latter case implies different joining options with
the foreign table. In this scenario ARDA joins on each key
separately. An alternative option is to join on the key that
gives a larger intersection, but this strategy could fail if such
join happens to be useless for a target learning task.

In ARDA, we handle joining on hard keys, soft keys, and
a custom combinations of them. Joining on a hard key, like
Restaurant ID, implies joining rows of two tables where the
values in column-keys are an exact match. When we join
on a soft key we do not require an exact match between
keys. Instead, we join rows with the column corresponding
to the closest value. Examples of soft keys include time,
GPS location, cities, age etc.

We note that in the special case of ARDA receiving keys
from the time series data it automatically performs soft join.
ARDA has two settings for soft join:

1. Nearest Neighbour Join: This joins a base table row value
with the nearest value in the foreign table. The distance
to rows the foreign table is defined in terms of numerical
quantities based on the soft key. If tolerance threshold
is specified and nearest neighbour does not satisfy the
threshold then null values are filled instead.

2. Two-way nearest neighbour Join: For a given value of
(the join column) of a base table row, this method finds
the row largest foreign key less than the value and the row
with smallest key greater than the value. These two rows
from the foreign table are combined into one using linear
interpolation on numeric values. For instance, let x be the
numerical value for the base table key and ylow, yhigh be
the values of the foreign keys that matched corresponding
to rows rlow and rhigh. Then, x = λylow +(1−λ)yhigh for
some λ ∈ [0, 1]. We then join the row in the base table
with λrlow + (1 − λ)rhigh. This is used to account for
how distant the keys are from the base table key value.
If the values are categorical, they are selected uniformly
at random.

Time-Resampling. Consider a situation when the base ta-
ble has time series data specified in month/day/year format,
while foreign table has format month/day/year hr:min:sec. In
order to perform a join the time data needs to be “aligned”
between the two tables.

One option would be to resolve the base table format to
the midnight timestamp: month/day/year 00:00:00. How-
ever, for a hard join this might result in no matches with
a foreign table and for a soft Nearest Neighbour join this
would result in joining with only one row from a foreign ta-
ble that has closest time to a midnight for the same day.
This situation would result in information loss and there-
fore affect the quality of resulting features. ARDA identifies
differences in time granularity and aggregates data over the
span of time of a less precise key. In our scenario all rows
that correspond to the same day would be resampled (ag-
gregated) in foreign table before the join takes place.

Table grouping. ARDA supports grouping tables at three
levels of granularity for joining:

1. Table-join: One table at a time in the priority order spec-
ified by the input. Based on our experiments it is the
least desirable type of join since it adds significant time
overhead and does not capture co-predicting features par-
titioned across tables.

2. Budget-join: As many tables at a time as we can fit
within a predefined budget. The budget is a user de-
fined parameter, set to be the number of rows by default.
Size of budget trades off the number of co-predicting fea-
tures we might discover versus the amount of noise the



model can tolerate to distinguish between good and bad
features.

3. Full materialization join: All the tables prior to perform-
ing feature selection.

Table grouping is used by ARDA to create a join plan
that is iteratively executed until all tables are processed or
user-specified accuracy/error is achieved. By default, ARDA
uses provided scores by Join Discovery system, such as Au-
rum [26] (or NYU Auctus), or if missing, ARDA computes
intersection-score. The Tuple Ratio from [42] scoring can
be specified by the user on demand. Tables are grouped in
batches such that one batch does not exceed allowed budget.
In ARDA budget is defines as maximum number of features
we process at a time. By default, budget equals coreset size.
An exception to this rule happens when a single table has
more features than rows in a coreset, in this case ARDA ships
an entire table to a feature selection pipeline.

Join Cardinality. There are four types of join cardinality:
one-to-one, one-to-many, many-to-one, and many-to-many.
Both one-to-one and many-to-one preserve the initial dis-
tribution of the base table (training examples) by avoiding
changes in number of rows. However, for one-to-many and
many-to-many joins, we would need to match at least one
record from base table to multiple records from foreign ta-
ble. This would require repeating the base table records to
accommodate all the matches from a foreign table and in-
troduce redundancy. Since we cannot change the base table
distribution, such a join is infeasible. To address the issue
with one-to-many andmany-to-many joins we pre-aggregate
foreign tables on join keys, thereby effectively reducing to
the one-to-one and many-to-one cases.

Imputation. Since in data augmentation workflow we do
not assume anything about the input data, we work with
simple approaches that reduce the total running time of the
system. We implemented a simple imputation technique:
use the median value for numeric data and uniform random
sampling for categorical.

5. FEATURE SELECTION OVERVIEW
Feature selection algorithms can be broadly categorized

into filter models, wrapper models and embedded models.
The filter model separates feature selection from classifier
learning so that the bias of a learning algorithm does not
interact with the bias of a feature selection algorithm. Typ-
ically, these algorithms rely on general characteristics of the
training data such as distance, consistency, dependency, in-
formation, and correlation. Examples of such methods in-
clude Pearson correlation coefficient, Chi-squared test, mu-
tual information and numerous other statistical significance
tests [19]. We note that filter methods only look at the
input features and do not use any information about the
labels, and are thus sensitive to noise and corruption in the
features.
The wrapper model uses the predictive accuracy of the

learning algorithm to determine the quality of selected fea-
tures. Wrapper-type feature selection methods are tightly
coupled with a specific classifier, such as correlation-based
feature selection (CFS) [31] and support vector machine re-
cursive feature elimination (SVM-RFE) [35]. The trained
classifier is then used select a subset of features. Popular ap-
proaches to this include Forward Selection, Backward Elim-
ination and Recursive Feature Elimination (RFE), which it-

eratively add or remove features and compute performance
of these subsets on learning tasks. Such methods are likely
to get stuck in local minimax [35,37,71]. Further, forward se-
lection may ignore weakly correlated features and backward
elimination may erroneously remove relevant features due to
noise. They often have good performance, but their com-
putational cost is very expensive for large data and training
massive non-linear models [25, 46].

Given the shortcomings in the two models above, we focus
on the embedded model, which includes information about
labels, and incorporates the performance of the model on
holdout data. Typically, the first step is to obtain a ranking
of the features by optimizing a convex loss function [18,47].
Popular objective functions include quadratic loss, hinge loss
and logistic loss, combined with various regularizers, such as
ℓ1 and elastic net. The resulting solution is used to select
a subset of features and evaluate their performance. This
information is then used to pick a better subset of features.

One popular embedded feature selection algorithm is Re-
lief, which is considered to be effective and efficient in prac-
tice [39,57,63]. However, a crucial drawback of Relief is that
in the presence of noise, performance degrades severely [63].
Since Relief relies on finding nearest-neighbors in the origi-
nal feature space, having noisy features can change the ob-
jective function and converge to a solution arbitrarily far
from the optimal. While [63] offers an iterative algorithm to
fix Relief, this requires running Expectation-Maximization
(EM) at each step, which has no convergence guarantees.
Further, each step of EM takes time quadratic in the num-
ber of data points. Unfortunately, this algorithm quickly
becomes computationally infeasible on real-world data sets.

Given that all existing feature selection algorithms that
can tolerate noise are either computationally expensive, use
prohibitively large space or both, it’s not obvious if such
methods could be effective in data augmentation scenario
when we deal with massive number of spurious features.

6. RANDOM INJECTION BASED
FEATURE SELECTION

In this section, we describe our random injection based
feature selection algorithm, including the key algorithmic
ideas we introduce. Recall, we are given a dataset, where the
number of features are significantly larger than the number
of samples and most of the features are spurious. Our main
task is to find a subset of features that contain signal relevant
to our downstream learning task and prune out irrelevant
features.

This is a challenging task since bereft of assumptions on
the input, any filter based feature selection algorithm would
not work since it does not take prediction error of a sub-
set of features into account. For instance, consider a set of
spurious input features that have high Pearson Correlation
Coefficient or Chi-Squared test value. Selecting these fea-
tures would lead to poor generalization error in our learning
task but filter methods do not take this information into
account. To this end, we design a comparison-based fea-
ture selection algorithm that circumvents the requirement
of testing each subset of features. We do this by injecting
carefully constructed random features into our dataset. We
use the random features as a baseline to compare the input
features with.

We train an ensemble of random forests and linear model
to compute a joint ranking over the input and injected fea-



tures. Finally, we use a wrapper method on the resulting
ranking to determine a subset of input features contain sig-
nal. However, our wrapper method only requires training
the complex learning model a constant number of times.

6.1 Random Feature Injection
Given that we make no assumptions on the input data, our

implementation should capture the following extreme cases:
when most of the input features are relevant for the learning
task, we should not prune out too many features. On the
other hand, when the input features are mostly uncorrelated
with the labels and do not contain any signal, we should
aggressively prune out these features. We thus describe a
random feature injection strategy that interpolates smoothly
between these two corner cases.

Algorithm 1 : Feature Selection via Random
Injection

Input: An n × d data matrix A, a threshold τ and
fraction of random features to inject η, the number of
random experiments performed k.

1. Create t = ηd random feature vectors n1, n2, . . . nt

∈ Rn using Algorithm 2. Append the random
features to the input and let the resulting matrix
be A′ = [A | N ].

2. Run a feature selection algorithm (see discus-
sion below) on A′ to obtain a ranking vector
r ∈ [0, 1]d+t. Repeat k times.

3. Aggregate the number of times each feature ap-
pears in front of all the random features n1, . . . nt

according to the ranking r. Normalize each value
by k. Let r∗ ∈ [0, 1]d be the resulting vector.

Output: A subset S ⊆ [d] of features such that the
corresponding value in r∗ is at least τ .

We show that in the setting where a majority of the fea-
tures are good, injecting random features sampled from the
standard Normal, Bernoulli, Uniform or Poisson distribu-
tions suffices, since our ensemble ranking can easily distin-
guish between random noise and true features. The precise
choice of distribution depends on the input data.
The challenging setting is where the features constituting

the signal is a small fraction of the input. Here, we use a
more aggressive strategy with the goal of generating ran-
dom features that look a lot like our input. To this end,
we fit a statistical feature model that matches the empir-
ical moments of the input data. Statistical modelling has
been extremely successful in the context of modern machine
learning and moment matching is an efficient technique to
do so. We refer the reader to the surveys and references
therein [21,38,51,62].
We compute the empirical mean µ = 1

d

∑︁
i∈[d] A∗,i and

the empirical covariance Σ = 1
d

∑︁
i∈[d](A∗,i − µ)(A∗,i − µ)T

of the input features. Intuitively, we assume that the in-
put data was generated by some complicated probabilistic
process that cannot be succinctly describes and match the
empirical moments of this probabilistic process. An alterna-
tive way to think about our model is to consider µ to be a
typical feature vector with Σ capturing correlations between

the coordinates. We then fit a simple statistical model to
our observations, namely N (µ,Σ). Finally, we inject fea-
tures drawn i.i.d. from N (µ,Σ).

6.2 Ranking Ensembles
We use a combination of two ranking models, Random

Forests and regularized Sparse Regression. Random Forests
are models that have large capacity and can capture non-
linear relationships in the input. They also typically work
well on real world data and our experiments indicate that
the inherent randomness helps identifying signal on aver-
age. However, since Random Forests have large capacity,
as we increase the depth of the trees, the model may suf-
fer from over-fitting. Additionally, Random Forests do not
have provable guarantees on running time and accuracy. We
use an off-the-shelf implementation of Random Forests and
ARDA takes care of tuning the hyper-parameters.

Algorithm 2 : Random Feature Injection Sub-
routine

Input: An n× d data matrix A.

1. Compute the empirical mean of the feature vec-
tors by averaging the column vectors of A, i.e.
let µ = 1

d

∑︁
i∈[d] A∗,i.

2. Compute the empirical covariance Σ = 1
d

∑︁
i∈[d]

(A∗,i − µ)(A∗,i − µ)T .

3. We model the distribution of features as N (µ,Σ)
and generate ηd i.i.d. samples from this distri-
bution.

Output: A set of ηd random vectors that match the
empirical mean and covariance of the input dataset.

We use ℓ2,1-norm minimization as a convex relation of
sparsity. The ℓ2,1-norm of a matrix sums the absolute val-
ues of the ℓ2-norms of its rows. Intuitively, summing the
absolute values can be thought of as a convex relaxation of
minimizing sparsity. Such a relaxation appears in Sparse Re-
covery, Compressed Sensing and Matrix Completion prob-
lems [13–15,50] and references therein. The ℓ2,1-norm mini-
mization objective has been considered before in the context
of feature selection [45,48,56,61,69]. Formally, let X be our
input data matrix and Y is our label matrix. We consider
the following regularized loss function :

L(W ) = min
W∈Rc×d

||WX − Y ||2,1 + γ||WT ||2,1 (1)

While this loss function is convex (since it is a linear combi-
nation of norms), we note that both terms in the loss func-
tion are not smooth functions since ℓ1 norms are not differ-
entiable around 0. Apriori it is unclear how to minimize this
objective without using Ellipsoid methods, which are com-
putationally expensive (large polynomial running time). A
long line of work studies efficient algorithms to optimize the
above objective and use the state-of-the-art efficient gradi-
ent based solver from [56] to optimize the loss function in
Equation 1. However, this objective does not capture non-
linear relationships among the feature vectors. We show
that a combination of the two approaches works well on real
world datasets.



Additionally, for classification tasks we consider setting
where the labels of our dataset may also be corrupted. Here,
we use a modified objective from [56], where the labels are
included as variables in the loss function. The modified loss
function fits a consistent labelling that minimizes the ℓ2,1-
norm from Equation 1. We observe that on certain datasets,
the modified loss function discovers better features.

6.3 Aggregate Ranking
We use a straightforward re-weighting strategy to com-

bine the rankings obtained from Random Forests (RF) and
Sparse Regression (SR). Given the aforementionned rank-
ings, we compute an aggregate ranking parameterized by
ν ∈ [0, 1] such that we scale the RF rankings by ν and the SR
ranking by (1−ν). Given an aggregate ranking, one natural
way to do feature selection is exponential search. We choose
the final number of features using a modified exponential
search from [6]: we start with 2 features, and repeatedly
double the number of features we test until model accuracy
decreases. Suppose the model accuracy first decreases when
we test 2k features. Then, we perform a binary search be-
tween 2k−1 and 2k. We experimentally observe that even the
aggregate rankings are not monotone in prediction error. If
instead, we perform a linear search over the ranking, we end
up training our model n times, which may be prohibitively
expensive (this strategy is also known as forward selection).

Algorithm 3 : Wrapper Algorithm

Input: An n× d data matrix A, a set of thresholds T
For each τ ∈ T in increasing order:

1. For each group run Algorithm 1 with A and τ
as input. Let S ⊆ [d] denote the indices of the
features selected by Algorithm 1.

2. Train the learning model on AS , i.e. the subset
of features indexed by S and test accuracy on the
holdout set.

3. If the accuracy is monotone, proceed to the new
threshold. Else, output the previous subset.

Output: A subset of features indexed by set S.

We therefore inject random features into our dataset and
compute an aggregate ranking on the joint input. We repeat
this experiment t times, using fresh random features in each
iteration. We then compute how often each input feature
appears in front of all the injected random features in the
ordering obtained by the aggregate ranking. Intuitively, we
expect that features that contain signal are ranked ahead of
the random features on average. Further, input features that
are consistently ranked worse than the injected random fea-
tures are either very weakly correlated or systematic noise.

7. EXPERIMENTS
In this section, we describe our extensive experimental

evaluation. We begin by presenting our main experiment
that shows achieved augmentation on every dataset. Next,
we evaluate each component of our system, including various
coreset constructions, joining algorithms, feature selection
algorithms and quality of data augmentation on real-world
datasets. Our final experiment shows how well different
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Figure 3: Achieved Augmentation is measured as %
improvement over the baseline accuracy using our
default fixed estimator and time is measured in sec-
onds, on a log scale. All tables represents a score
achieved using our estimator without feature selec-
tion. For ARDA we used RIFS as a feature selection
method. TR rule is a table-filtering method from [42].
Azure AutoML (all) represents a score achieved on
fully materialized join using Azure AutoML over an
hour run. Azure AutoML (base) represents a baseline
score achieved by Azure AutoML over an hour run.

feature selectors filter out synthetic noise on micro bench-
marks. For evaluation of our experiments we used lightly
auto-optimized Random Forest model for classification and
regression tasks along with SVM with RBF kernel for clas-
sification only tasks, such that the best score achieved was
reported.

Recall, our feature selection algorithm consists of a learn-
ing model used to obtain a ranking and a subset selection
such as forward or backward selection. In our plots, we
use the following feature selection methods: Forward Selec-
tion, Backward Selection (Backward Elimination), Recursive
Feature Elimination (RFE), Random Forest, Sparse Regres-
sion, Mutual Information, Logistic Regression, Lasso, Re-
lief, Linear SVM, F-test, Tuple Rule, RIFS. We also include
experiments with two AutoML systems: Microsoft Azure
AutoML [28] and Alpine Meadow [59]. Note that AutoML
systems optimize the choice of final estimator while ARDA’s
final estimator is limited to random forest (classification and
regression) and SVM (classification only).

Methods such as Random Forest, Sparse Regression, Mu-
tual Information, Logistic Regression, Lasso, Relief, and
Linear SVM return ranking that we use to select features
using repetitive doubling and binary search algorithm. For-
ward Selection, Backward Selection, and Recursive Feature
elimination (RFE) use Random Forest ranker. We picked
Random Forest as the main ranker model for a lot of feature
selectors because it was showing consistently good perfor-
mance. For comparing ranking algorithms such as Random
Forest, Sparse Regression, Mutual Information, Logistic Re-
gression, Lasso, Relief, Linear SVM, F-test, we use exponen-
tial search described in Section 5, as this accurately captures



the monotonicity properties of the ranking and performed
the best on our data sets.

For our experiments with RIFS, we inject 20% random
features (µ = 0.2) drawn i.i.d from Algorithm 2. We repeat
this process t times (in our experiments t = 10) and in each
iteration we train a Random Forest model as well as a Sparse
Regression model to obtain two distinct rankings. For each
feature, we compute the fraction of times it appears in front
of all random features. We then discard all features less
than τ , for τ ∈ T. We only increase the threshold as long
as the performance of the resulting features on the holdout
set increases monotonically.

7.1 Real World Datasets
Real World datasets are such that given a base table you

search open sourced datasets for joinable tables using Join
Discovery systems such as Aurum or NYU Auctus. All of
our regression datasets are composed based on base tables
provided by the DARPA D3Mcompetition. We use the NYU
Auctus to search over new tables to augment. Our composed
real scenario datasets:
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Figure 4: Scores vs. time for real-world datasets,
where time along the x-axis is in log scale and rep-
resents the time spent on feature selection, and score
is the %-improvement over the base table accuracy.
Since all features and TR rule do not feature selection,
the corresponding time is 0. Our feature selection
algorithm, RIFS, consistently performs better aug-
mentation on all datasets.

1. Taxi, Pickup and Poverty: These are regression datasets
contains information about vehicle collision in NYC, taxi
demand, and socio-economic indicators of poverty respec-
tively. The base table is available through NYC Open
Data, which can be retrieved using the Socrata API. In
addition to base table we collected 29 joinable tables.
Pickup contains hourly passenger pickup numbers from
LGA airport by Yellow cabs between Jan 2018 to June

2018. The target prediction is the number of passenger
pickups for a given hour. In addition to base table we
collected 23 joinable tables. Poverty consists of socio-
economic features like poverty rates, population change,
unemployment rates, and education levels vary geograph-
ically across U.S. States and counties. In addition to base
table we collected 39 joinable tables.

2. School (S,L): This is a classification dataset from the
DataMart API using exact match as the join operation.
The target prediction is the performance of each school
on a standardized test based on student attributes. In
addition to base table, School (S) collected 16 joinable
tables whereas School (L) collected 350 joinable tables.

We note that joinable tables that we obtain using NYU
Auctus are treated as “black-box” since they are not anno-
tated and we cannot select features or reason about their
relevance based on semantic properties.

7.2 Micro Benchmarks
We construct synthetic data to test the performance of

feature selection algorithms. These experiments are done
since we do not know the ground truth information about
the features for a real world datasets that were constructed
in a standard augmentation workflow. Since we do not know
ground truth information about the features for a real world
datasets we constructed two synthetic datasets to evaluate
how well different methods perform in terms of noise filter-
ing.

1. Kraken: A classification dataset consisting of anonymized
sensors and usage statistics from the Kraken supercom-
puter. The target represents machine failure within a 24-
hour window. The labels are binary, with 568 samples
being 0 and 432 being 1.

2. Digits: A standard multi-label classification data set with
roughly 180 samples for each digit between 0 and 9. It
ships with Sklearn.

The synthetic features we append are random, uncorre-
lated noise vectors sampled from standard distributions such
as uniform, Gaussian, and Bernoulli with randomly initial-
ized parameters for these distributions. Since we work in
the extreme noise regime, the number of noise features we
append is 10× more than the number of original features.
We note that not all base table features are relevant and
thus may be filtered as well.

We compared performance of RIFS with various feature
selection methods described in Section 5. Figure 4 presents
percentage of improvement over accuracy achieved on the
base table for a given algorithm on a given dataset. As we
can see RIFS outperforms all of it’s competitors and also
performs well in terms of running time.

Additionally, as we observe, picking all features for the
Taxi dataset can even decrease accuracy below that achieved
by the base table. The forward selection algorithm is often a
close second behind RIFS in terms of accuracy but is at least
an order of magnitude slower. The Random Forest ranker
with our noise injection rule also achieves augmentation of
all datasets and it marginally faster than RIFS.



Table 1: Results on real world datasets on multiple feature selectors. Error is given as scaled Mean Absolute
Error, Time represents feature selection and evaluation time in seconds.

Taxi Pickup Poverty School (S) School (L)
Method error

x105
time

error
x104

time
error
x106

time accuracy time accuracy time

baseline (our) 5658 45 2088 42 8116 43 69.05% 33 71.11% 35
all features (our) 572 102 1623 61 2271 121 76.79% 65 88.61% 278

all features
(Alpine Meadow)

5874 3600 1761 3600 2684 3600 82.25% 3600 99.73% 3600

baseline
(Azure AutoML)

5584 3600 2112 3600 7841 3600 81.42% 3600 91.74% 3600

all features
(Azure AutoML)

5572 3600 1586 3600 1742 3600 73.55% 3600 73.93% 3600

TR rule 5676 81 2213 51 2318 43 77.17% 259 82.54% 259
RIFS 5168 553 1559 168 2121 575 83.13% 258 98.15% 1761

backward selection 5874 6277 1621 7181 2286 5399 77.03% 8052 88.22% 64627
forward selection 5291 3881 1619 4412 2128 7974 80.67% 3221 95.16% 47491

RFE 5745 1438 1730 7799 2216 2054 78.37% 6205 91.88% 31611
sparse regression 5452 302 1624 578 2209 298 77.01% 594 85.32% 1151
random forest 5386 152 1630 428 2136 351 82.58% 152 95.29% 856

f-test 5301 243 1710 232 2384 281 81.26% 169 94.85% 824
lasso 5573 187 1624 322 2263 104 n/a

mutual info 5627 242 1625 286 2226 389 82.10% 179 93.83% 1173
relief 5512 297 1619 184 2263 361 79.42% 381 90.12% 828

linear svc n/a 80.25% 191 75.87% 201
logistic reg n/a 79.12% 263 75.87% 243

Table 2: Coreset construction sampling strategies for classification datasets: stratified sampling and sketching
techniques (subspace embedding) described in 3.1. This table shows accuracy change of a given technique
over uniform sampling.

School (S) Digits Kraken
Method

Stratified Sketch Stratified Sketch Stratified Sketch
f-test -1.29% -1.86% 0.82% -3.06% 0.54% -4.72%

mutual info -3.83% -3.35% 0.28% -3.69% -0.66% -0.56%
random forest -2.84% -4.05% 1.05% -4.09% 7.06% 5.84%

sparse regression -5.65% 2.85% -0.15% 0.04% -2.74% 1.02%
all features 0.58% -0.97% 0.33% -0.51% 0.10% 1.19%

RIFS -2.70% 0.56% 0.13% 1.83% -1.70% 2.45%
forward selection -0.13% 1.55% -1.06% -0.68% 6.70% 0.62%

linear svc 0.56% -0.82% -0.04% -0.48% -4.72% -4.65%
relief -0.01% 0.21% 0.29% -0.14% -0.27% 0.31%

Table 3: Benchmarking sketching performance for
various feature selection methods. The entries in
the table indicate %-change over uniform sampling.

Method Taxi Pickup Poverty
RIFS -0.37% 0.77% 0.01%

sparse regression 1.37% 0.03% 3.60%
f-test -3.42% 4.61% 0.00%
lasso 1.23% -0.50% -0.15%

mutual info 1.86% 0.13% -0.91%
relief -0.37% -4.21% -5.46%

all features 2.16% -0.08% -0.53%
random forest -2.25% -0.14% -6.21%

forward selection -2.06% -7.56% -3.07%

7.3 Feature selectors
Coreset Construction. Next, we compare the perfor-
mance of constructing coresets via Uniform sampling, Strat-
ified sampling and Subspace Embedding. Recall, discussion
for these sampling techniques can be found in Subsection
3.1. Results of the experiments are given in Table 3 and 2.

The sketching algorithm (count-sketch) we use provably
obtains a subspace embedding for the optimization objec-
tive in RIFS and Sparse Regression, given that the num-
ber of rows sampled are larger than the number of columns.

While provable guarantees don’t hold for our datasets (since
columns are much larger) we expect sketching algorithms to
perform well even with fewer rows.

We observe there is no one approach that always performs
best, and the coreset performance is data and model de-
pendent. ARDA uses uniform sampling as default sampling
method, but allows users specify and explore other sampling
strategies.

Soft Joins on Time-Series. We then experiment with soft
join techniques that we described in Section 4. In Figure
5 we compare 4 different techniques for joining on a time
series data: simple (hard) join on unmodified keys, Two-way
Nearest Neighbour soft join, Nearest Neighbour soft join,
and Time-Resampling technique for a simple (hard) join.
Every Two-Way Nearest Neighbour and Nearest Neighbour
joins also include time-resampling technique.

We can see that in most cases Two-Way Nearest Neigh-
bour soft join beats Nearest Neighbour and both outper-
form simple hard join. We address rounding for hard join
in the Taxi dataset by identifying a target time-granularity
and aggregate rows of a foreign table that correspond to
same days. We observe that Taxi dataset time-resampling
technique performed much better combined with hard join.
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Figure 5: Performance of different techniques for a
time series join on multiple feature selectors. Pickup
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Figure 6: This figure shows the number of features
selected by each feature selection method as well
as fraction of original features to the total selected
features. The difference is planted synthetic noise.
X-axis represents the number of features in log scale.

Table 4: Performance of ARDA with RIFS and Tuple
Rule as a table filtering step for real world datasets.
Hyperparameter τ was optimized for each dataset.

Dataset
Score
change

Speed
(x faster)

Tables
removed

τ

Taxi -0.04% 3.18 10 24
Pickup -15.35% 3.50 17 17
Poverty -1.19% 5.87 36 15

School (S) -1% 1.14 2 15
School (L) -5% 1.32 39 17

Tuple Ratio Test. Kumar et al. [42] propose several deci-
sion rules to safely eliminate tables before feature selection
takes place. Here, we evaluate the most conservative rule
proposed, the Tuple Ratio rule. The Tuple Ratio is defined
as nS

nR
, where nS is the number of training examples in a base

table and nR is a size of a foreign-key domain. Based on an
analysis of VC dimensions in binary classification problems,
the decision rule suggests that a foreign table cannot help a

predictive model if nS
nR

larger than a threshold.

We note that this decision rule is intended only as a fil-
tering technique (i.e., a small tuple ratio does not imply
that a model will improve from the resulting join). We ex-
perimented with Tuple Ratio as a stand-alone method for
feature augmentation and as a pre-filtering step. During
the pre-filtering step we eliminate tables that are above op-
timized τ and therefore avoid feature selection. Kumar et
al. suggest that τ only needs to be tuned per model, not per
dataset. However, we found slight improvements from op-
timizing the threshold per dataset: we report the threshold
used for each dataset in Table 4.

Tables 1 show that Tuple Ratio (shown as TR rule) does
not perform well as a stand-alone selection solution. Ta-
ble 4 shows experiments that use Tuple Ratio as a filtering
tool to eliminate tables before feature selection takes place.
We observed that filtering with the TR decision rule caused
small to moderate decreases in model accuracy and medium
to significant improvements in training time.

The change in model accuracy is most pronounced on the
Pickup dataset, which is not surprising given that the TR
decision rule was designed for (binary) classification prob-
lems and the Pickup dataset represents a regression task.
Overall, we conclude that the TR decision rule is a useful fil-
tering technique for ARDA when training time is paramount
and some model accuracy can be sacrificed.

Table grouping. Here we evaluate our three table group-
ing methods described in Section 4: table-join, budget-join,
and full materialization join. Table 5 compares the per-
formance of table-join and full materialization join against
budget-join for various feature selectors. The fact that table-
join almost always performs worse than budget-join is evi-
dence that these datasets contain co-predictors: some fea-
tures are only useful when combined with other features
from different tables. The presence of co-predictors also
help explain why full materialization occasionally outper-
forms budget-join. However, with RIFS, full materializa-
tion never outperforms budget-join by a significant margin,
and often degrades performance since full materialization
results in many noise features which tend to interfere with
the model’s ability to learn. Since budget-join is not signifi-
cantly outperformed, we believe that it represents a reason-
able compromise between full materialization and table-join
in terms of finding co-predictors (since budget-join still con-
siders multiple tables at once) and creating noise features.

Filtering Synthetic Noise. Using our micro benchmark
datasets we compute the number of true and noisy features
recovered by different feature selectors. We plot the result-
ing experiment in Figure 6.

From Figure 6 we can conclude that the amount of noise
that is being selected depends both on a feature selection
method as well as on a data itself. While not perfect, RIFS
shows best selectivity that filters out a lot of noise and re-
dundant features from the original pool, while maintaining
the top accuracy (see Table 6).

8. RELATED WORK
There has been extensive prior work on data mining, data

augmentation, knowledge discovery, and feature selection.
We provide a brief overview of this literature. Perhaps the
most pertinent work is Kumar et. al. [42] and Shah et
al. [58], which study when joining tables to the base table is
unnecessary (i.e., is highly unlikely to improve a predictive



Table 5: We compare change in final accuracy among several feature selectors with budget-join being the
baseline. Table-join joins a single table at a time with feature selection being performed after each join. Full
materialization joins all tables before feature selection is performed.

Taxi Pickup Poverty School(S)
Method

Table Fullmat Table Fullmat Table Fullmat Table Fullmat
RIFS -4.10% 0.97% -25.75% 0.87% -0.40% -2.88% -2.11% -1.45%

forward selection -3.92% 1.11% -6.60% -7.53% -8.66% -0.50% -1.00% -0.14%
random forest -3.55% 2.86% -22.01% 0.04% -7.92% -3.20% -1.85% 0.12%

sparse regression -5.35% -3.27% -25.30% -12.67% -2.51% 0.92% 0.44% -0.29%

Table 6: Results on micro benchmark datasets on
multiple feature selectors. acc. represents accuracy
metric.

Kraken Digits
Method

acc. time acc. time
baseline (our) 56.80% 7 39.77% 8

all features (our) 57.16% 29 90.97% 37
all features

(Alpine Meadow)
52.72% 3600 81.56% 3600

all features
(Azure AutoML)

79.63% 3600 92.14% 3600

baseline
(Azure AutoML)

62.77% 3600 45.11% 3600

RIFS 71.44% 466 95.00% 172
backward selection 57.04% 4446 90.92% 1883
forward selection 64.54% 1527 94.24% 1118

RFE 57.18% 1059 94.07% 2174
sparse regression 62.76% 255 91.12% 397
random forest 65.42% 301 94.47% 147

f-test 74.20% 258 93.85% 213
linear svc 63.66% 188 91.08% 522
logistic reg 62.80% 156 91.38% 460
mutual info 57.46% 258 94.27% 227

relief 57.70% 302 91.29% 256

model). The proposed decision rules (which come with the-
oretical bounds) allow practitioners to rule out joining with
specific tables entirely. Both [42] and [58] are orthogonal to
this work, as we are concerned with effectively augmenting
a base table to improve model accuracy as opposed to de-
termining which joins are potentially safe to avoid. In our
experimental study, we demonstrate that Kumar et al.’s de-
cision rules can be used as a prefiltering technique for Arda.

Data discovery. Data discovery systems deal with shar-
ing datasets, searching new datasets, and discovering rela-
tionships within heterogeneous data pools [7–9,12,17,29,30,
32–34, 65, 65]. For example, Aurum [26] helps users auto-
matically identify joins between tables representing similar
entities. While these systems help users discover new data
and explore relationships between datasets, they do not au-
tomatically determine whether or not such new information
is useful for a predictive model. ARDA uses data discovery
systems as an input, combining new datasets and discovered
relationships into more powerful predictive models.

Data augmentation. In general, data augmentation in-
volves combining a dataset with additional information (de-
rived or otherwise) in order to improve the accuracy of a
predictive model. For example, learned embedding tech-
niques [22,43] like Word2Vec [52] use a large corpus of unla-
beled data to learn an embedding that can then be used to
semantically represent new pieces of information. Other sys-
tems, like Octopus and InfoGather [70] automatically search
the web for information relevant to a user’s data (e.g., dis-
cover the ZIP codes and populations of a list of cities).

Feature selection. A natural approach to our prob-
lem would be to join all compatible tables and rely of the
learning algorithm to ignore irrelevant features. The num-
ber of irrelevant features may be much greater than the
number of relevant features, especially in large data lakes
with high data diversity. Unfortunately, almost all ML al-
gorithms are highly sensitive to noise, especially when the
noise overwhelms the relevant features [3, 16,49,64,67].

The negative impact of noise on model performance is
well-studied [10, 23], resulting in several works on feature
selection. For an overview, see [40].

AML. Recently, Automatic Machine Learning (AML) has
emerged as independent area of research seeking methods to
automate the process of finding the best machine learning
pipelines for a given learning task. AML systems often han-
dle ML tasks like feature selection, model selection, and hy-
perparameter tuning. Examples of AML tools include Auto-
sklearn [27], Alpine Meadow [59], Microsoft Azure AutoML
, Google Cloud AutoML , Neural Architecture Search [4,5],
and others. However, these systems generally rely exclu-
sively on the data supplied by the user and expect input
in single-table form. While Arda can use any AML system
to construct a final model from the features Arda discovers,
many techniques presented here could also be integrated into
an AML system.

9. CONCLUSION & FUTURE WORK
We built a system that automates the data augmenta-

tion workflow and integrates it with the ML model selection
process. We demonstrated the effectiveness and versatility
of our system through a vast set of experiments that bench-
mark different available approaches for coreset construction,
joining, feature selection etc. We addressed methods for
joining on date-time keys, albeit location-based joins remain
unexplored. Given the modular nature of our system, it
would be interesting to evaluate sophisticated methods for
data imputation and aggregation, neural networks as learn-
ing models, and statistical significance tests for augmented
features. While our work concentrated around achieving
augmentation for a single base table, we hope future work
can address transitive joins. Another important direction is
to build a large corpus of tables with column annotations to
allow reasoning about selected features beyond their effect
on prediction score and statistical significance.
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