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Abstract

Recent theoretical works have characterized the dynamics of wide shallow neural networks
trained via gradient descent in an asymptotic mean-field limit when the width tends towards
infinity. At initialization, the random sampling of the parameters leads to deviations from
the mean-field limit dictated by the classical Central Limit Theorem (CLT). However, since
gradient descent induces correlations among the parameters, it is of interest to analyze how
these fluctuations evolve. Here, we use a dynamical CLT to prove that the asymptotic fluctuations
around the mean limit remain bounded in mean square throughout training. The upper bound
is given by a Monte-Carlo resampling error, with a variance that that depends on the 2-norm of
the underlying measure, which also controls the generalization error. This motivates the use of
this 2-norm as a regularization term during training. Furthermore, if the mean-field dynamics
converges to a measure that interpolates the training data, we prove that the asymptotic deviation
eventually vanishes in the CLT scaling. We also complement these results with numerical
experiments.

1 Introduction

Theoretical analyses of neural networks aim to understand their computational and statistical
advantages seen in practice. On the computation side, the training of neural networks often succeed
despite being a non-convex optimization problem known to be hard in certain settings [20, 31, 41].
On the statistics side, neural networks often generalize well despite having large numbers of
parameters [8, 70]. In this context, the notion of over-parametrization has been useful, by providing
insights into the optimization and generalization properties as the network widths tend to infinity
[2,4,21,36,38,63,67]. In particular, under appropriate scaling, one can view shallow (a.k.a. single-
hidden-layer or two-layer) networks as interacting particle systems that admit a mean-field limit.
Their training dynamics can then be studied as Wasserstein Gradient Flows [12, 47, 51, 58], leading
to global convergence guarantees in the mean-field limit under certain assumptions. On the statistics
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side, such an approach lead to powerful generalization guarantees for learning high-dimensional
functions with hidden low-dimensional structures, as compared to learning in Reproducing Kernel
Hilbert Spaces (RKHS) [5, 30]. However, since ultimately we are concerned with neural networks of
finite width, it is key to study the deviation of finite-width networks from their infinite-width limits,
and how it scales with the width m. At the random initial state, neurons do not interact and therefore
a standard Monte-Carlo (MC) argument shows that the fluctuations in the underlying measure
scale as m /2, which we refer to as the Central Limit Theorem (CLT) scaling. As optimization
introduces complex dependencies among the parameters, the key question is to understand how the
fluctuation evolves during training. To make this investigation tractable, we aim to obtain insight
on an asymptotic scale as the width grows, and focus on the evolution in time. An application of
Gronwall’s inequality shows that this asymptotic deviation remains bounded at all finite time [46],
but the dependence on time is exponential, making it difficult to assess the long-time behavior.

The main focus of this paper is to investigate this question in-depth, by analyzing the interplay
between the deviations from the mean-field limit and the gradient flow dynamics. First, we prove a
dynamical CLT to capture how the fluctuations away from the mean-field limit evolve as a function
of training time to show that the fluctuations remain on the initial 7 ~'/2-scale for all finite times.
Next, we examine the long-time behavior of the fluctuations, proving that, in several scenarios, the
long-time fluctuations are controlled by the error of Monte-Carlo resampling from the limiting
measure. We focus on two main setups relevant for supervised learning and scientific computing:
the unregularized case with global convergence of mean-field gradient flows to minimizers that
interpolate the data, and the regularized case where the limiting measure has atomic support
and is nondegenerate. In the former setup, we prove particularly that the fluctuations eventually
vanish in the CLT scaling. These asymptotic predictions are complemented by empirical results in a
teacher-student model.

Related Works: This paper continues the line of work initiated in [12, 47, 51, 58] that studies
optimization of over-parameterized shallow neural networks under the mean-field scaling. Global
convergence for the unregularized setting is discussed in [46, 47, 51, 58]. In the regularized setting,
[12] establishes global convergence in the mean-field limit under specific homogeneity conditions
on the neuron activation. Other works that study asymptotic properties of wide neural networks
include [1, 6, 23, 28, 29, 34, 35, 43, 69], notably investigating the transition between the so-called lazy
and active regimes [14], corresponding respectively to linear versus nonlinear learning. Our focus
is on the dynamics under the mean-field scaling, which encompasses the active, nonlinear regime.

A relevant work concerning the sparse optimization of measures is [ 11], where under a different
metric for gradient flow and additional assumptions on the nature of the minimizer, it can be
established that fluctuations vanish for sufficiently large m. Our results are only asymptotic in
m but apply to broader settings in the context of shallow neural networks. Concerning the next-
order deviations of finite neural networks from their mean-field limit, [51] show that the scale
of fluctuations is below that of MC resampling for unregularized problems using non-rigorous
arguments. [60] provides a CLT for the fluctuations at finite time under stochastic gradient descent
(SGD) and proves that the fluctuations decay in time in the case where there is a single critical point
in the parameter space. Our focus is on the long-time behavior of the fluctuations in more general
settings. Another relevant topic is the propagation of chaos in McKean-Vlasov systems, which study
the deviations of randomly-forced interacting particle systems from their infinite-particle limits
[7,10, 65, 66]. In particular, a line of work provides uniform-in-time bounds to the fluctuations
in various settings [16, 19, 22, 55, 56], but the conditions are not applicable to shallow neural
networks. Concurrently to our work, [17] studies quantitative propagation of chaos of shallow



neural networks trained by SGD, but the bound grows exponentially in time, and therefore cannot
address the long-time behavior of the fluctuations.

Learning with neural networks exhibits the phenomenon that generalization error can decrease
with the level of overparameterization [8, 64]. [48] proposes a bias-variance decomposition that
contains a variance term initialization in optimization. They show in experiments that this term
decreases as the width of the network increases, and justifies this theoretically under the strong as-
sumption that model parameters remain Gaussian-distributed in the components that are irrelevant
for the task, which does not hold in the scenario we consider, for example. [27] provides scaling
arguments for the dependence of this term on the width of the network. Our work provides a more
rigorous analysis of the dependence of this term on the width of the network and training time.

2 Background

2.1 Shallow Neural Networks and the Integral Representation

On a data space Q2 C R?, we consider parameterized models of the following form

@) =3 e(0:,), M
=1

where xz € Q, {6;}", C D is the set of model parameters, and ¢ : D x 2 — R is the activation
function. Of particular interest are shallow neural network models, which admit a more specific
form:

Assumption 2.1 (Shallow neural networks setting). D = R x D,0 = (c,z) € D, and (0, x) =
cp(z, ) with  : D x Q@ — R. Thus, (1) can be rewritten as ™ (x) = LS ez, ).

As many of our results hold for general models of the form (1), we will invoke Assumption 2.1 only
when needed. We shall also assume the following:

Assumption 2.2. €2 is compact; D is a Euclidean space (or a subset thereof); p(0, x) is twice differentiable
in 0; VoVep(0,x) is Lipschitz in 0, uniformly in x.

The regularity assumptions are standard in the literature [10, 11, 37]. We note that they are not
satisfied by ReLU units (i.e., $(z,x) = max{0, (a,z) + b}, where z = (a,b)T, with @ € R? and
b € R), though prior work [12, 13] has considered differentiable approximations of these models.

As observed in [12,24, 47,51, 58], a model of the form (1) can be expressed in integral form in
terms of a probability measure over D as f (m) — f [u(m)], where we define

flnl@) = [ o(6.2)u(d0). @)
and ;™) is the empirical measure of the parameters {6;}7,:
m 1 %
) (d8) = 3 59,(d6) . (3)
i=1

Suppose we are given a dataset {(x;, ;) };_;, which can be represented by an empirical data
measure 7 = 1 31" | 0, and y; = f.(x;) are generated by an target function f, that we wish to



estimate using least-squares regression. A canonical approach to this regression task is to consider
an Empirical Risk Minimization (ERM) problem of the form

min £n) with £G0:= 31 = 213+ [ r@)utae) 4)

REP(D)

where P(D) is the space of probability measures on D, || f — f.[|3 := [, | f(®) — fu(2)|*D(dx) denotes
the Ly function reconstruction error averaged over the data, and X [, 7(8).(d@) is some optional
regularization term. While we can allow r to be a general convex function, in Section 3.3 we will
motivate a choice of r in the shallow neural networks setting that is related to the variation norm
[5] or Barron norm [44] of functions.

2.2 Approximation and Optimization with a Finite Number of Neurons

Integral representations with a probability measure such as those defined in (2) are amenable to
efficient approximation in high dimensions via Monte-Carlo sampling. Namely, if the parameters 6;
in f(™) are drawn i.i.d. from an underlying measure ;, on D, then by the Law of Large Numbers
(LLN), the resulting empirical measure x(™ converges y almost surely, and moreover,

E o | F11)] — Flull% = (/ (0. ) 121(d6) - |fw||%), (5)

Such a Monte-Carlo estimator showcases the benefit of normalized integral representations for
high-dimensional approximation, as the ambient dimension appears in the rate of approximation
only through the term [}, [[¢(6,-)||21(d6). In the case of shallow neural networks, this is connected
to the variation norm or Barron norm of the function we wish to approximate [5, 44] (see Section
3.3 for details).

While the Monte-Carlo sampling strategy above can be seen as a “static” approximation of a
function representable as (2), it also gives rise to an efficient algorithm to optimize (4). Indeed,
in terms of the empirical distribution (™), the loss £(1™) becomes a function of the parameters
{6;}" |, which we can seek to minimize by adjusting the parameters:

LB, 0m) = IF™ — LI+ 2D () (6)

=1

In the shallow neural network setting, with suitable choices of the function r, the regularization
term corresponds to weight decay over the parameters.

2.3 From Particle to Wasserstein Gradient Flows

Expanding (6), we get
1
L(6y.....0m) = Cp, = — > F(O:) + 55 > K(6:.6)), (7)

where we have defined C; = | f||2, and

- / fo(@)p(8, 2)0(dx) — \r(0),  K(6,6') = / 0(0,2)p(0 2)i(dz) . (8)
Q Q



Performing GD on L amounts to discretizing in time the following ODE system that governs the
evolution of for {6;}" ;:

. 1 & m
6; = —mp,L(61...0,,) =VF(0;) — — > VK(6;,6;) = —VV(0;, ™). 9)
j=1

where we defined the potential

V(0,p) = —F(0) + /D K(0,0")(d) . (10)

Heuristically, the “particles’ §; perform GD according to the potential V' (8, ugm)) which itself evolves,

depending on the particles positions through their empirical measure. Such dynamics can also be
expressed in terms of the empirical measure via the continuity equation:

o™ =V - (VV (0, ™) ™) (11)

This equation should be understood in the weak sense by testing it against continuous functions
X : D — R, and it can be interpreted as the gradient flow on the loss defined in (4) under the
2-Wasserstein metric [12, 47, 51, 58]. This insight provides powerful analytical tools to understand
convergence properties, by considering the mean-field limit when m — oo.

2.4 Law of Large Numbers and Mean-Field Gradient Flow

From now on, we assume that the particle gradient flow is initialized in the following way:

Assumption 2.3. The ODE (9) is solved for the initial condition 6;(0) = 67, with 6 drawn i.i.d. from a
compactly supported measure o € P(D) foreachi =1,...,m. Hence, u(()m) (d0) = LS 5g0(dB).

We use PPy to denote the probability measure associated with the set {6 };cy with each 69 drawn

iid. from pg, and use E to denote the expectation under Py. The Law of Large Numbers (LLN)

indicates that Pp-almost surely, ugm) — ¢ as m — oo, where yi; satisfies the mean-field gradient

flow [12, 47,52, 61]:
Oy =V - (VV(97 ut)ut) , Ht=0 = HO - (12)

The solution to this equation can be understood via the representation formula

/ \(0)114(d6) = / X (©4(6))10(d8) . (13)
D D

where x is a continuous test function x : D — Rand ©, : D — D is the characteristic flow associated
with (11), which in direct analogy with (9) solves

©:(0) = —VV(©:(6), 1),  ©o(6)=6. (14)
Using expression (10) for V as well as (13), this equation can be written in closed form explicitly as

6,(0) = VF(©,()) - /D VE(©,(8),0,(0)uo(de),  ©(6) =6 (15)

It is easy to see that this equation is itself a gradient flow since it is the continuous-time limit of a
proximal scheme (mirror descent), which we state as:
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Proposition 2.4. Given ©(0) = 6 and 7 > 0, for p € N let ©,,; be specified via

0, < arguin (510 - O,1 [+ £(©). ) (16)
where we defined
013 = [ 1©(®)F(d0) a7)
and
£(©) = - [ FOO)nn(a®) + 5 [ K(©(6), 0O )m(d)ua(d8). (18)
Then )
lig% Oi/r)r = O po-almost surely (19)

where Oy solves (15).

2.5 Long-Time Properties of the Mean-Field Gradient Flow

In the shallow neural networks setting, a series of earlier works [12, 47, 51, 58] has established that
under certain assumptions y; will converge to a global minimizer of the loss functional £. In partic-
ular, [12] studies global convergence for the regularized loss £ under homogeneity assumptions on
¢, and [50] considers modified dynamics using double-lifting. Here, to study the long time behavior
of the fluctuations, we will often work with the following weaker assumptions:

Assumption 2.5. The solution to (15) exists for all time, and has a limit:

O, — O po-almost surely as t — oo. (20)
Assumption 2.6. The limiting ® is a local minimizer of (18).
With these assumptions, we have

Proposition 2.7. Under Assumptions 2.3 and 2.5, we have

Ur>0 supp pir = Up>0{®+(0) : 6 € supp uo} is compact, (21)
and iy — pieo weakly as t — oo, with i satisfying
| x(Oc(d6) = | x(©x(®)pun(co). (22)
for all continuous test function x : D — R. Additionally, if Assumption 2.6 also holds, then
VVV (O (0), iieo) is positive semidefinite for po-almost all @ (23)

We prove this proposition in Appendix B. Here, VVV (©(0), i) denotes
VYV (@ne(8), fine) = ~VVF(© / VUK (O (6), 0u(0))iio(d0),  (24)

which will become useful in Section 3.2 when we analyze the long time properties of the fluctuations
around the mean-field limit.

Remark 2.8. Assumptions 2.5 and 2.6 impose conditions on the initial measure po [12, 47, 51]. While
the convergence of gradient flows in finite-dimensional Euclidean space to local minimizers is guaranteed
under mild assumptions [39, 62], its infinite-dimensional counterpart, Assumption 2.6, may require further
technical assumptions, left for future study. Also, while Assumption 2.5 implies that p is a stationary point
of (12), Assumption 2.6 does not imply that p., minimizes L.
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3 Fluctuations from Mean-Field Gradient Flow

The main goal of this section is to characterize the deviations of finite-particle shallow networks

from their mean-field evolution, by first deriving an estimate for ft(m) — fi for t > 0 (Section 3.1),
and then analyzing its long-time properties (Section 3.2). In Section 3.3, we then motivate a choice
of the regularization term in (4) that controls the bound on the long-time fluctuations derived in
Section 3.2, and which is also connected to generalization via the variation norm [5] or Barron norm
[44] of functions.

3.1 A Dynamical Central Limit Theorem

Let us start by defining
g™ = m! (1"~ 1) (25)

By the static Central Limit Theorem (CLT) we know that, if we draw the initial values of the

parameters 6; independently from i as specified in Assumption 2.3, g[()m) has a limit as m — oo,

leading to estimates similar to (5) with x(™ and u replaced by the initial ,u,(om) and 11, respectively.

For t > 0, however, this estimate is not preserved by the gradient flow: the static CLT no longer
applies and needs to be replaced by a dynamical variant [10, 60, 65, 66]. Next, we derive this
dynamical CLT in the context of neural network optimization.

To this end let us define the discrepancy measure w,gm) such that

[ x®l 0y =t [ x(6) (" d8) ~ (o)) (26)

for any continuous test function x : D — R. We can then represent gt(m) in terms of wt(m) as

o™ = /D 20, )™ (d6) . (27)

Hence, we will first establish how the limit of wf”) as m — oo evolves over time. This can be done

by noting that the representation formula (13) implies that
[ x®i o) =m' [ (x(©f )4 (06) ~ x(@1(6))0(a0) (28)

where @,ﬁm) solves (15) with p replaced by M(()m). Defining
T, (0) = m'/* (€™ (6) — ©,(0)) . (29)

we can write (28) as

/ X(0){™ (d6) = / X(©4(6))w™ (d6)
D D (30)

1
4 / / Vx(©4(6) + m~ Y2 T™ (6)) - T™ (0)u™ (d6)diy .
0 D

As shown in Appendix C.1, we can take the limit m — oo of this formula to obtain:



Proposition 3.1 (Dynamical CLT - I). Under Assumptions 2.2 and 2.3, Vt > 0, as m — oo we have
(m)

w; . — wy weakly in law with respect to Py, where wy is such that given a test function x : D — R,

| x(@)1(00) = [ x(@1(6))n(d0) + [ Ix(@1(6))-Ti()na(ab) (31)
Here wy is the Gaussian measure with mean zero and covariance
Eo [wo(d8)wo(d6')] = 110(d0)de(dO") — 110(d0)po(d8") (32)
where B denotes expectation over Py, and Ty = lim,, o, m*/ 2(@§m) — ©) is the flow solution to

T1(6) = — VVV(©,(6), u)T1(6) — /D VV'K(©,(6), ©,(8)T3(6')o(d6)

(33)
- / VK (©,(8),©,(6'))wo(d0')
D
with initial condition Ty = 0 and where O solves (14) and VVV (©4(8), j1;) is a shorthand for
VVV(0(8), ) = —VVF(0(0)) + / VVE(©:(6),0:(8'))10(de’) - (34)
D

A direct consequence of this proposition and formula (27) is:
Corollary 3.2. Under Assumptions 2.2 and 2.3, Vt > 0, as m — oo we have gt(m) — g¢ pointwise in law
with respect to Py, where g, is given in terms of the limiting measure w; or the flow T; as

gt = /DSO(H, Jwi(dO) = /DSO(@t(H),-)wo(dB) +/Dv30(@t(0)a‘)'Tt(9)uo(d0). (35)

It is interesting to comment on the origin of both terms at the right hand side of (31) and, con-

sequently, (35). The first term captures the deviations induced by fluctuations of Mém) around

o assuming that the flow G)Em) is unaffected by these fluctuations, and remains equal to ©;. In

particular, this term is the one we would obtain if we were to resample ,ugm) from p; atevery t > 0,
ie use il™ =m= 13" dg; with {6}}7 | sampled i.i.d. from p, so that O™ is identical to ©; in
(28). In this case, the limiting discrepancy measure w; would simply be given by

/ X(0)@n(d6) = / X (©4(6))wo(d6) (36)
D

D
while the associated deviation in the represented function would read

G = /D (0, )@,(d6) = /D £(©,(6), ) (d6) . (37)

The second term at right hand side of (31) and (35) captures the deviations to the flow ®; in (15)

induced by the perturbation of i, i.e. how much @Em) differs from ©; in (28). In the limit as
m — oo, these deviations are captured by the solution T; to (33), as is apparent from (30).

The difference between g; and g: can also be quantified via the following Volterra equation,
which can be derived from Proposition 3.1 and relates the evolution of g; to that of g;.



Corollary 3.3 (Dynamical CLT - II). Under Assumptions 2.2 and 2.3, ¥t > 0, pointwise on (2, we have

g§m) — g¢ in law with respect to Py as m — oo, where g, solves the Volterra equation

gt() +/0 /QFtvs(m,m')gs(m')ﬁ(dm')ds = gi(x) . (38)

Here g, is given in (37) and we defined

Ty o, a') = /D (Vow(©4(0)). J1.+(6)Vorr(©4(8))) o (d6) (39)

where Jy s is the solution to

d

%ths(a) = —VVV(Qt(G),,U,t)Jt’S(O), JS,S(O) = Id . (40)
This corollary is proven in Appendix C.2. In a nutshell, (38) can be established using Duhamel’s
principle on (33) by considering all terms at the right hand side except the first as the source term

(hence the role of J; ;) and inserting the result in (35).

3.2 Long-Time Behavior of the Fluctuations

Next, we study the long-time behavior of ¢; and, in particular, evaluate
lim Eollg||2 = lim lim mEo|f™ — f||2. (41)
t—ro0 t—00 m—o0

This limit quantifies the asymptotic approximation error of ft(m) around its mean field limit f; after
gradient flow, i.e. if we take m — oo first, then ¢ — oo — taking these limits in the opposite order
is of interest too but is beyond the scope of the present paper. Our main result is to show that,
under certain assumptions to be specified below, the limit in (41) is not only finite but necessarily
upper-bounded by lim;_, E||g¢ ||,2/ with g; given in (37). That is, the approximation error at the end
of training is always no higher than than that obtained by resampling the mean-field measure /i
defined in Proposition 2.7.

It is useful to start by considering an idealized case, namely when the initial conditions are
sampled as in Assumption 2.3 with p9 = poo. In that case, there is no evolution at mean field level,
ie. ©4(0) = Oux(0) =0, jiy = i, and f; = foo = [} Poo(0, ) 1o (dO), but the CLT fluctuations still
evolve. In particular, it is easy to see that the Volterra equation in (38) for g: becomes

ge(z) + /0 /Q P52 (@, 2)ga(2)0(de'Vds = goole) (42)

Here I'¢°  (x, ') is the Volterra kernel obtained by solving (40) with VVV (©,(8), u;) replaced by
VVV (0, 1) and inserting the result in (39) with ©;(0) = 0 and 19 = ftoo,

% (a,a) = /D (Voo(0, ), e~ 1= IVIVOn2) G050, 2)) 1 (d6) (43)

and g is the Gaussian field with variance

Eolgoo 2 = /D 1008, ) 21100 (d6) — | ol (44)



From (23) in Proposition 2.7 we know that VVV (6, ;1) is positive semidefinite for fic-almost all
0. As a result, we prove in D.1 that the Volterra kernel (43) viewed as an operator on functions
defined on Q x [0, 7] is positive semidefinite. Therefore, we have

T
/ lg:
0

T T pt

s [Calpaes [ [ [ g@re e @) dsi
0 0 0 JOxQ
T

T 1/2
= [ Balagude < T gl (/0 ||gt||%dt)

Together with (44), this implies that

(45)

Theorem 3.4. Under Assumptions 2.2,2.3,2.5 and 2.6, with 1y = i and ji~ as specified in Proposition 2.7,
we have .

Jim o [ Eolladr < [ 166, Busc(a0) ~ 1 £l (46)

—00 0 D

This theorem indicates that, if we knew i and could sample initial conditions for the parameters
from it, it would still be favorable to train these parameters as this would reduce the approximation
error. Of course, in practice we have no a priori access to ji~, and so the relevant question is whether
(46) also holds if we sample initial conditions from any (g such that Proposition 2.7 holds.

In light of (35), one way to address this question is to study the long-time behavior of T;. In the
setup without regularization (A = 0), we can do so by leveraging existing results that, under certain
assumptions, the mean-field gradient flow converges to a global minimizer which interpolates the
training data points exactly [12, 47, 52, 60]. In this case, the following theorem shows that we can
actually obtain stronger controls on the fluctuations than (46), which we prove in Appendix D.2.

Theorem 3.5 (Long-time fluctuations in the unregularized case). Consider the ERM setting with
A = 0 and under Assumptions 2.2, 2.3 and 2.5. Suppose that as t — oo, j1; converges to a global minimizer
Lo that interpolates the data, i.e. the function foo = [, (8, -) oo (d0) satisfies

Ve €supp? : foo(z) = ful®) , (47)
and, furthermore, the convergence satisfies

/ooo |L(pe) 2 dt < 00 (48)

Then (46) holds. Additionally,

1. if Assumption 2.1 also holds, i.e., in the shallow neural network setting, we further have

1T 2
Jim 7 [ Eallglar = o (49)

2. if 1o = poo, then || gt||» decreases monotonically in t.

Hence, in the shallow neural networks setting and under these assumptions, the fluctuations will
eventually vanish in the O(m~'/2) scale of CLT. Note that for (48) to hold, it is sufficient that £(y;)
decays at an asymptotic rate of O(t~%) with o > 2. We leave the search for weaker sufficient
conditions for future work.

When the limiting measure p., does not necessarily interpolate the training data, such as when
regularization is added, we can proceed with the analysis of the long-time behavior of T; under the
following assumption on the long-time behavior of the curvature:
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Theorem 3.6 (Long-time fluctuations under assumptions on the curvature). Let A;(0) denote the
smallest eigenvalue of the tensor VVV (©4(0), uit) defined in (34) and assume that for a constant C' (to be
specified in Appendix D.3) such that

- / min{A,(6), 0}1o(d0) = O(c=CY)  as t — oo, (50)
D

Then (46) holds.

This theorem is proven in Appendix D.3. To intuitively understand (50), note that we know from
(23) in Proposition 2.7 that A;(@) — 0 pp-almost surely as ¢ — oco. Condition (50) can therefore be
satisfied by having A;(0) converge to zero sufficiently fast in the regions of D where it is negative,
or having the measure of these regions with respect to 1o converge to zero sufficiently fast, or both.

Alternatively, in the regularized (A > 0) ERM setting, we can obtain the following result when
the support of /i is atomic, as expected on general grounds [5, 9, 18, 26, 71]:

Theorem 3.7 (Long-time fluctuations in the regularized case). Consider the ERM setting under
Assumptions 2.2, 2.3 and 2.5. Suppose further that as t — oo, pi; converges to ji~ satisfying

Jdo >0 s.t. VO € supp oo : VVV (0, o) = old , and (51)
©, admits an asymptotic uniform convergence rate of O(t™ ) with o > 3/2. (52)

Then (46) holds with the “lim" replaced by “limsup" on its LHS.

Theorem 3.7 is proven in Appendix D.4 by analyzing directly the Volterra equation (38) and
establishing that its solution coincides with that of (42) in the limit as ¢ — oo, a property that we
also expect to hold more generally than under the assumptions of Theorem 3.7. In fact, we prove in
Appendix D.4 that (52) can be replaced by a weaker condition, (237). We also discuss the relation
between Theorem 3.7 and the work of [11] in Appendix D.4.3.

3.3 The Monte-Carlo Bound and Regularization

The bound (46) on the long-time fluctuations motivates us to control the term [}, [|¢(8, -)||% 100 (d6)
using a suitable choice of regularization in (4). In the following, we restrict our attention to the
shallow neural networks setting, and further assume that

Assumption 3.8. D is compact.

Under this assumption, there is

2 = z)|%0(dx A c2
/D 108, )121(d6) = /D /Q 0(6, ) 20 (dz)u(d0) < Ky /D u(do) (53)

1.2

where K; = max ep l18(2,)||2. Thus, we consider regularization with r(6) = 3¢, in which case

€D
(4) becomes

Jmin L) with  £(n) =417l — £} + 5 /D P pu(d6) . (54)

Interestingly, this choice of regularization leads to learning in the function space F; [5] (or alterna-
tively, the Barron space [44]) associated with ¢, which is equipped with the variation norm (or the
Barron norm) defined as

(£l = inf {[plcliu(d); f(x) = [Hep(z @)u(dd) } = Im(f)|?,  q>1. (55)
weP(D)
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We call [, |c|?0(d@) the g-norm of . One can verify [44, Proposition 1] that indeed, using any ¢ > 1
above yields the same norm because i, the object defining the integral representation (2), is in fact
a lifted version of a more ‘fundamental’ object v = [, cuu(de, -) € M(D), the space of signed Radon
measures over D. They are related via the projection

/ x(@)y(dz) = / ex(2)u(d6) (56)
D

D

for all continuous test functions y : D — R. One can also verify [11] thaty; (f) = inf{||y||rv; f(z) =
[ ¢(z,x)v(dz)}, where ||v| v is the total variation of ~ [5].

The space F; contains any RKHS whose kernel is generated as an expectation over features
k(z,x') = [5¢(z,2)@(z,2')n(dz) with a base measure fig € P(D), but it provides crucial ap-
proximation advantages over such RKHS at approximating certain non-smooth, high-dimensional
functions with hidden low-dimensional structure, giving rise to powerful generalization guarantees
[5]. This also motivates the study of overparametrized shallow networks with the scaling as in (1),
as opposed to the NTK scaling of m~'/2 [36].

To learn in 77, a canonical approach is to consider the ERM problem

min §11f = £} + $n (). (57)

By (55), this is indeed equivalent to (54). In Appendix E, we prove the following proposition,
which shows that the measure obtained from (54) indeed has its 2-norm controlled:

Proposition 3.9. Under Assumptions 2.1, 2.2, and 3.8, L has no local minima and its global minimum
value can only be attained at measures py € P(D) such that both fx = [, (0, )ur(dO) and ¢y =

[ lelua(d0) = ([, e*ur(d0))"* < 51(f.) are unique, and
NeaPKot < I = 2, I = el + Mea? < Mm(f)% (58)

where Ky = max,_p, [|4(z, )2

4 Numerical Experiments

4.1 Student-Teacher Setting

We first perform numerical experiments in a student-teacher setting, using a shallow teacher network
as the target function to be learned by shallow student networks with different widths m of the
hidden layer. Both D and Q) are taken to be the unit sphere of d = 16 dimensions, and we take
&(z,x) = max(0, (z,x)). The teacher network has two neurons, (c1, z1) and (cg, 22), in the hidden
layer, with ¢; = ¢ = 1 and 27 and 2z, sampled i.i.d. from the uniform distribution on D and
then fixed across the experiments. We vary the width of the student network in the range of
m = 128,256, 512,1024 and 2048, with their initial z;’s sampled i.i.d. from the uniform distribution
on D. We consider two ways for initializing the ¢;’s of the student networks: 1) Gaussian-initialization,
where the ¢;’s are sampled i.i.d. from N (0, 1); and 2) zero-initialization, where each c; is set to be 0.

We train the student networks in two ways: using the population loss or the empirical loss. For
the former scenario, the data distribution v is chosen to be uniform on 2, which allows an analytical
formula for the loss as well as its gradient. The student networks are trained by gradient descent
under Lj loss. Moreover, we rescale both the squared loss and the gradient by d in order to adjust
to the J factor resulting from spherical integrals, and set the learning rate (which is the step size for
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discretizing (9)) to be 1. The models are trained for 20000 epochs. For each choice of m, we run the

experiment x = 20 times with different random initializations of the student network. The average

fluctuation of the population loss is defined as £ Y5, || fkm) — £ 12 for the population loss, with

fom =15 fém) being the averaged model, similar to the approach in [28]. The other plotted
quantities — loss, TV-norm and 2-norm — are averaged across the x number of runs. The TV-norm
(i.e., I-norm) and 2-norm are defined as in Appendix 3.3.
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Figure 1: Results of the experiments in the student-teacher setting and where the student networks are trained
by gradient descent on the population loss. Each row corresponds to one setup. Row 1: Using unregularized
loss and non-zero-initialization; Row 2: Using regularized loss with A = 0.01 and non-zero-initialization;
Row 3: Using unregularized loss and zero-initialization. In each row, Column 1 plots the trajectory of the
neurons, 8, = (¢;, z;), of a student network of width 128 during its training, with z-coordinate being the
angle between z; and that of a chosen teacher’s neuron and y-coordinate being ¢;. The yellow dots, blue dots
and cyan curves mark their initial values, terminal values, and trajectory during training. Columns 2-5 plot
the average fluctuations (scaled by m), average loss, average TV norm, and average 2-norm during training,
respectively, computed across x = 20 runs with different random initializations of the student network for
each choice of m. In Column 2, the solid curves give the average fluctuation of the population loss and the
black horizontal dashed line gives an approximate value of the asymptotic Monte-Carlo bound in (46) for
this setting computed in Appendix F. In Column 3, the solid curves indicate the total population loss, and the
dotted curves indicate the unregularized population loss (for the regularized case only). In Columns 4 and 5,
the horizontal dashed line gives the relevant norm of the teacher network.

The results for the scenario of training under the population loss are presented in Figures 1.
As seen from Column 3 the average loss values remain similar over time for different choices of m,
justifying the approximation by a mean-field dynamics. In the unregularized case with non-zero
initialization, the fluctuation of the population loss (shown in Column 2) remains close to a 1/m
scaling in roughly the first 10% epochs, after which it decays faster for smaller m. Interestingly, this
coincides with the tendency for the student neurons with z not aligned with the teacher neurons to
slowly have their |c| decrease to zero due to a finite-m effect, which is also reflected in the decrease in
TV-norm. Aside from this phenomenon, the fluctuations decay at similar rates for different choices
of m, which is consistent with our theory, since their dynamics are governed by the same dynamical
CLT. Also, when regularization is added, each student neuron becomes aligned with one of the
teacher neurons in both 2z and c after training; without regularization but using zero-initialization,
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after training, each student neuron either becomes aligned with one of the teacher neurons in z or
has c close to zero. Both of these choices result in lower TV-norms and 2-norms compared to using
non-zero initialization and without regularization.

Next, we consider the empirical loss scenario (ERM setting), using n = 32 random vectors
sampled i.i.d. from the uniform distribution v on (2 as the training dataset, which then define the
empirical data measure 2(dz) = 1 371" | 65, (dx). We use the full training dataset for computing the

gradientat every iteration. The other training setups are the same as when the population loss is used.

We additionally plot the average fluctuation of the training loss, defined as £ >°F%_, || fkm) — fm))2,
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Figure 2: Results of the experiments in the student-teacher setting and where the student networks are trained
by gradient descent on the empirical loss. In Column 2, the solid curves indicate the average fluctuation in the
training loss, the dashed curves indicate the average fluctuation in the population loss computed analytically
via spherical integrals, and the black horizontal dashed line indicates an approximate value of the asymptotic
Monte-Carlo bound in (46) for this setting computed in Appendix F. In Column 3, the solid curves indicate
the total training loss, the dotted curves the unregularized training loss (for the regularized case only), and
the dashed curves the unregularized population loss. All the other plot settings are identical to Figure 1.

The results for the scenario of training under the empirical loss is presented in Figures 2. Com-
pared to the scenario of training under the population loss, we wee that in the unregularized cases,
both the average training loss and the average fluctuation of the training loss decay to below 1078
within 10? iterations, and the latter observation is consistent with (49). In the regularized case,
neither of them vanishes, but the average fluctuation of the training loss indeed remains below the
asymptotic Monte-Carlo bound given in (46), whose analytical expression and numerical value in
this setup (under the approximation of replacing /i, foo and © by the target measure, the target
function and v, respectively) are given in Appendix F. Regularization and zero-initialization have a
weaker effect in aligning the student neurons with the teacher neurons after training compared to
the scenario of training under the population loss, but they still result in lower TV-norm and 2-norm,
and moreover, lower average fluctuation and (slightly) lower average value of the population loss.
This demonstrates their positive effects on both approximation and generalization.
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4.2 Non-planted Case

We also conducted experiments in which the target function is not given by a teacher network but
rather by f.(x) = [5 ¢(z, x)ji(dz), where ji, is the uniform measure on the 1-dimensional great
circle in the first 2 dimensions, i.e., {(cos#,sin0),0,...,0 : @ € [0,27)} C S¢, and where D,Q, o as
well as the widths of the student networks remain the same as in the previous experiments. The
student networks are trained using gradient descent under the population loss where the data
distribution v is uniform on (2, which allows an analytical formula for the gradient using spherical
integrals.

The results are shown in Figure 3. We observe that the behaviors of the fluctuation are qualita-
tively similar to those found in Figure 1.
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Figure 3: Results of the experiments with a non-planted target using the exact population loss, as described
in Section 4.2. Row 1: Using unregularized loss and non-zero-initialization; Row 2: Using regularized loss
with A = 0.01 and non-zero-initialization; Row 3: Using unregularized loss and zero-initialization. In each
row, Column 1 plots the projection in the first two dimensions of the z;’s in the student network. The other
columns show the same quantities as in Figure 1.

5 Conclusions

Here we studied the deviations of shallow neural networks from their infinite-width limit, and how
these deviations evolve during training by gradient flow. In the ERM setting, we established that
under different sets of conditions, the long-term deviation under the Central Limit Theorem (CLT)
scaling is controlled by a Monte Carlo (MC) resampling error, giving width-asymptotic guarantees
that do not depend on the data dimension explicitly. The MC resampling bound motivates a choice
of regularization that is also connected to generalization via the variation-norm function spaces.
Our results thus seem to paint a favorable picture for high-dimensional learning, in which the
optimization and generalization guarantees for the idealized mean-field limit could be transferred
to their finite-width counterparts. However, we stress that these results are asymptotic, in that
we take limits both in the width and time. In the face of negative results for the computational
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efficiency of training shallow networks [20, 31, 41, 45, 54], an important challenge is to leverage
additional structure in the problem (such as the empirical data distribution [32], or the structure of
the minimizers [18]) to provide nonasymptotic versions of our results, along the lines of [11] or
[40]. Finally, another clear direction for future research is to extend our techniques to deep neural
architectures, in light of recent works that consider deep or residual models [3, 25, 42, 49, 59, 68].
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A Notations

We will use Vg (0, x) and VV (0, x) to denote Vg (6, x) and VgVep(0, x), respectively. We will
use VK (6,60') to denote VoK (0,0'), VVK (0,0’) to denote VoV K (0,6), V'VK(0,0') to denote
Ve VgK (0,6, and V'V'K(0,60") to denote Vo Vo K(0,0"). We will write V;(-) for V (-, u¢) and
Voo (+) for V (-, oo )-

Let D' = Uy~ supp ¢ Under Assumption 2.5 and Proposition 2.7, D’ is bounded, and we denote its
diameter by |D’|. We will use C,, Cy, and Cyv,, to denote the supremum of |¢(0, )|, |V (0, x)|
and [VVp(0,x)| over @ € D' and « € supp 7, which are all finite under Assumptions 2.2 and the
boundedness of D’. We will use Lyv,, to denote the (uniform-in-z) Lipschitz constant of VV (6, x)
in @, which is also finite under Assumption 2.2.

The following notations will be used in Appendix D.2: Assuming that D is Euclidean (under

Assumption 2.2), let V(D) denote the space of random vector fields on D. It becomes a Hilbert
space once equipped with the inner product

(€1.6), = Eo /D £1(6) - £(0)10(d9), (59)

where &1, §» denotes two random vector fields in V(D). This inner product gives rise to the norm
I€3 = Eo | 1€(0)Puoldp) (60)
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For each ¢, we define b; € V(D) as
:/ VK(©(0),0,0"))w(dd’) (61)
D

which depends on the random measure wy. We define two linear operators, AgK) and Agv) onV(D),
as

(A%Sg)( / VIVK(©,(0), ©,(6')€0 ) 10(d6) (62)
/ V(©1(6).)( | Vio(®1(6).2)7E(6) (a0 )ili). (63)
(A €)(8) =VVV(©,(6), 1)E(6) (64)

for £ € V(D). Under Assumption 2.5, we also define b, AL and ALY similarly by replacing
O, (-) with O (+).

Let W,,(©2) denote the space of random functions on €2. It becomes a Hilbert space once equipped
with the inner product

(momso = Eo | m@m@)(de) = B0 Y m(@mle) (65)
Q =1

which gives rise to the norm
0120 = (n,m)5,0 = Eollnll? - (66)

With an abuse of notation, we will consider elements in W,,({2) equivalently as random vectors on
RL. Next, we can define B; to be the operator that maps n € W,,(f2) into the vector field

(Bin) (0 / V(04 (6), x)i(z)o(dx) (67)

in V(D). Its transpose is

(B¢)(x / Vo(©:(8), 2)&(0)1(d6), (68)

which maps a vector field £ € V(D) back into W, ().

B Long-Time Properties of the Mean-Field Gradient Flow

Proof of Proposition 2.7: The compactness of U;>q supp ¢ follows from (20) and the compactness of
supp fo assumed in Assumption 2.3. 1 — i follows from (13) and (20).

Under Assumption 2.5, ® is a local minimizer of the energy £ defined in (18). Consider a
local perturbation e® A to ©. The energy value after the perturbation is

E(Ou +€Op) =— /D F(©4(0) + e®A(0))10(d6)
(69)
+ % /D /DK(@OO(B) + EGA(O), G)oo(el) + GGA(B/))MO(dOI)Mo(dO,) .
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Under Assumptions 2.2, using Taylor expansion, we have
F(©x(0) +€Oa(0)) =F(Ox(0)) + e VF(O(0)) - ©Oa(0)

2(Oa(0),VVF(0(0))0a(0)) + O(e) (70)

K(©,(0) +eOA(0),0,(0") +cOA(0))
:K(eoo(o)a 900(0/)) + GVK(G)OO(O)v @OO(OI))@)A(O)
+ EV/K(QOO(O)7 @oo(al))@A(el) + %62<@A(6)7 VVK(©(0), Gm(el))GA(e» (71)
(OA(8), V'V'K (O (6),0(8)0a(6))
2(OA(0), V'VK (04 (0),0,(0))0OA(8)) +O(e?) .

Hence, there is

E(Ou + €Op) — £(On

— [ (~vree / VK(® <e'>>uo<de'>) ©(8)10(d6)
b 2( / (©4(0), (WF / VVEK(© @oo<e’>>yo<de'>) ©a(0))0(d0) 72

/ / (©a(0), V'VE(Os <0>,@oo<e’>>@A<e'>>uo<de>uo<de'>>+0<e3>.

Since @4 is arbitrary can € can be taken arbitrarily small, we see that for @, to be a local minimizer,
the first-order condition is, VO € supp o,

_VF(® / VK (O (8), ©Ons(6))110(d0') = 0., (73)
or
VV(@OO(H)MUOO) =0 ) (74)
and the second-order condition is, VO,
| @) <WF 0)+ | YVK(©(0). 0. (9'))uo(d9’)) ©4(6))10(d6)
(75)
/ / ©a(0), V'VK (O (6), ©.(8)O(6))110(d0)10(d0') > 0,
or
[ 184(6). VYV (©1:(6).11) 0 6) o(a6)
P (76)

+ / / (©4(8), V'K (O (0), ©sc(8))@(6))110(d0)10(d6') > 0.
D JD

Suppose for contradiction that 3D~ C D with po(D~) > 0 such that VVV (© (), i) is not
positive semidefinite. Define A (0) to be the least eigenvalue of VVV (©(0), jios). Then there
is A () < 0 on D™. In addition, 3¢ > 0, 3D; C D~ with po(Dy ) > 0 such that A(0) < —C.
For 8 € D, let ®a ((0) be a normalized eigenvector to VVV (@ (), 1o ) associated with its least
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eigenvalue. Moreover, for J € N* that is large enough, we can select any subset D; C Dj such that
po(D7) = % < po(Dy ). Then, define

eA,J(O) = J1/2]106D; ®A,0(0) 3 (77)

Then, there is

/D /D (©a(8), V'VE (O (8), ©mc(8))Oa (6)) 10(d6) o (d6)

-,
-,

<Cg,J.

2
v(dx)

/D V(O (8), 2)O a a0 d6)

(78)

J1/2 V(O (6), 2)Oa op10(d6)
Dy

v(dx)

On the other hand
/ (©a.1(0), VIV (Ono(8), j100)© 5.1(8))10(d0)
D

= [ T@20(6), YTV (O (6). 1) @10 (6) 1o (d6) (79)

<—c.

Therefore, for J large enough, we will have

| [ 104(6). V'V K(©..(6). 0w (6)@(6")puo(d8)o(a6)
D JD (80)

+ /D (©an(8), VIV (O (6), 120)O.1 (8))10(d8) < 0.

which contradicts (76). Hence, we can conclude that jip-almost surely, VVV (@ (0), 1) is positive
semidefinite.

C Derivations of the Dynamical Central Limit Theorem

C.1 Proof of Proposition 3.1 (Dynamical CLT - I)

The following derivation is an adaptation of the approach in [10] for Vlasov interacting particle

systems to our scenario. To start, ®; and @Em are governed by the following equations, respectively:

&:(8) = —VV(©,(6), 1), ®(6) =

N (m m m m (81)
0! (0) = —vv(e!™(0), i), ei™e) =6
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Taking the difference between the two equations in (81) and using the mean value theorem, we get
7" (0)
—m/? ((;)gm)(a) - @t(e))
=—m!2(VV(©[(0), 1) — VV(©u(8), )
== m!2(VV (O (0), ) = VV(©u(0), 1)) = m"2(VV (O, u™) — YV (©4(0). )
—m!2[(VV(©{™(8), u™) ~ YV (©(8), ™)) ~ (VV (O™, 1) = VV(©(8), 1) )|
=~ VYV (O (0).1)T(6) ~ [ VE(©4(6).6)" (a6)
D
w2 ([ VKB 6).0)u" 48T 0).
(82)

where (:)Erln) (8) and (':)y;) (6) denote points that lie on the line segment between ©;(6) and (_)gm) (9).

Using (30), we can substitute w,gm) in the second term at the right hand side, for which we get

| VE(©1(6).8)w( (@0") = [ VI (©1(6).0,(6)u" (08
+ [ VVK(©(6). 63 0T O )o(a) (83)
w2 [ VK(©4(0). 63 0T 0 (08
Therefore, under Assumption 2.2, we have
7™ (0) = ~VVV(O[), u)T™ (0)
- [ OVE(©1(6).6(3 (€)1 (0)ld8) -

~ [ VE(©1(6). 0,6 (d8) + O(m™ ).
D

Now, we consider the limit as m — oo. By the standard CLT, we have that w(()m)(de) — wp(dB)
weakly with respect to Py, where w((d@) is the Gaussian measure with mean zero and covariance

defined in (32). On the other hand, by finite-time LLN, we have @Em) (0) — ©,(0) pointwise, Py-
almost surely, and as a consequence (:)ET) (9), (:)gg) (0) — ©(0) as well. Therefore, Tt(m) (0) — T,(0)
pointwise, Pp-almost surely, where the limiting 7;(8) solves the equation obtained by taking the
limit m — oo on both sides of (84), which becomes (33). (33) should be solved with initial condition
Ty(6) = 0 since T,™(6) = m/2(©[™(6) — ©y(6)) = 0.

Finally, taking the limit m — oo on both sides of the equation (30), we deduce that wgm) (dg) —
wt(dO@) weakly, in law with respect to Py, where the limiting w;(d@) satisfies

/ \(0)wr(d8) — / 1 (©4(6))wo(d8) + / VX(©4(6)) - T1(8)10(d6) - (85)
D D D

This ends the proof of Proposition 3.1. O
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C.2 Proof of Proposition 3.3 (Dynamical CLT - II)
Recall from (33) that

1,(6) = ~VVV(©,(6). 10)Ti(0) — | V'V (©4(6),0:(6)Ti(6') ()
- | VK (©1(6).0,(6)uu () (56)
= —VVV((")t /Jt 1—;3 / VK @t )wt(de') .
Since T(0) = 0, we can use Duhamel’s principle to deduce that
T,(0) = —/0 J,;S(O)/DVK(GS(B),B’)wS(dB’)ds
—/0 /QJt,S(O)Vgo(G)S(O),m) /Dgo(e’,a:)ws(d()’)ﬁ(dm)ds (87)
—/ / Ji.s(0)V(©4(0),z)gs(x)v(dx)ds,
0 Ja

where the tensor J; (0) is the Jacobian defined in Proposition 3.3. As a result
(@) = | ¢l0.w)ei(d0)
= [ #(@u(6).2)n(d6) + [ V(©4(6). ) Ti(6)na(a0)
= | e(@i(6).z)n(a0)

(88)
/ / / Vo(04(0), ), Ji.s(0)Vp(O4(0), ') gs ()0 (da ) dspio(d6)
= gt / / / VSD @t Jt S(G)V(‘O(@S(e)’wl»ﬂo(de)gs(a:/)ﬁ(dm’)dg
N / / Ty s(x, x')gs(x') o (dx')ds,
0 /0
with g¢(x) and I'; s(x, ") defined in (37) and (39), respectively. This is (38). 0

D Long-Time Behavior of the Fluctuations

D.1 Proof of Theorem 3.4 (g = ji case)

With the argument outlined in Section 3.2, what remains to be shown is that I'{°, is positive-
semidefinite as a Volterra kernel, according to the definition in [33]. We will utilize the following
known result:

Proposition D.1 (Gripenberg et al. [33]). Let k : [0,00) — R"*"™ be a convolution-type kernel for a
linear Volterra equation in R™ . If Vn € R™, the function t — (n, k(t)n) is a nonnegative, nonincreasing and
convex function on (0, 00), then k is nonnegative, meaning that V¢ : [0, 00) — R™ with compact support,

there is
/ / kE(t —s)p(s))dsdt > 0. (89)
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Thus, to take advantage of this proposition, we need to verify that Vi € R", (n,I'°n) is
(1) nonnegative:

(n,Tgn)

/Q By / V(O (6), @), TV OOV o(@(8). @)l )n(a o (dO)0 (dx)(da') g

_ /D <b(0),e’tvvvm(@w(e))b(f))>u0(d0)20,

where

/ Vo (Ou (6), @) () (de) (91)

because by assumption, V8 € D, VV V(@ (0)) is positive semidefinite, and hence e ~*VV Vs (@ (9))
is a positive semidefinite operator;
(2) nonincreasing: Taking derivative with respect to time,

T == [ (b(6). VIV (©(0)e VOO0 hus(ir) <0, ()

because again, VVV, (@ (0)) is positive semidefinite;
(3) convex: Taking one more derivative with respect to time,

d2

G TEn = [ (60).(TOV(@ ()2 O Db(6) yo(ae) 20, (93)

Therefore, we can apply Proposition D.1 to conclude that I';° is PSD as a Volterra kernel, and so
ST JE (g0 T3 gy)dsdt > 0.

D.2 Proof of Theorem 3.5 (Unregularized case)
Recall that

i, mEoll £~ fil}t = B} =Eo | | [ p(6.2hwr(a0)|5(de)
(94)
=Ko K(Ov gl)wt(de)wt(dgl) ’
DxD
where, with a slight abuse of notation, in this equation Ej also denotes expectation over the ran-
domness of the Gaussian distribution wg defined in Proposition 3.1. From (31) in Proposition 3.1,
this can be further expanded into

EO b K(G, 0')wt (dO)wt (del)

_ E, / (T,(0), VV'K(©4(8), ©,(8)Ty(6')) o (d6) o (d6)
DxD (95)

| 28, /D  VK(©4(6).04(6)T;(0)1o(d0)0(d6)

+ Ko K(©4(8), ©4(6))wo(d0)wo(d6) .
DxD
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The last term at the RHS is equal to Eo||g:||? with g; defined in (37). Using (32), it can be explicitly
computed as

Eol|:7 =Eo /DxD K(©4(8),©(8"))wo(d6)wo(d6')

— [ K(©4(6),04(6") (110(d6)56(d6") — j10(d6)110(d6))
DxD (96)

— [ K@.0pm(do) ~ [ K(6.0)ud8)u(as)
D DxD

_ / K (0,0):(d0) — || £:]12
D

Thus,
. _ 2 _ 2
Jim Bolal = im | K(6.0)u(a0) ~ 12
97
_ /D K(8,0)1100(d6) — | fox |2 ®7)
—Fo|gool 12
and so
T
Jim ][ Eollge12dt = Eollgocl2 , (98)
T—o0 0

where here and below we denote fg [dt =1 fg [-] dt. Asaresult, to prove (46) or (49) in Theorem 3.5,
it suffices to establish that

T
lim D.dt <0, (99)
T—o00 0
or
T
lim f Dyt < —Eollgeo]? . (100)
T—00 0
respectively, where we defined
©t = EO K(O, 0')wt (dO)wt (dO’) — EO K(@t(a), @t(B’))wo (dO)wo (d0’)
DxD DxD
— 5y [ {T(6). VV'K(©1(6),0:(6)T:(6)o(d6)o( 6 (101)
DxD
+ 2K, VK (©(0),0:(6')T:(0)10(d0)wo(d6") .

DxD

To this end, we examine (33) as an infinite-dimensional ODE. With the Hilbert space V(D) defined

in Appendix A and by, AIEK) and A§V) defined by (61), (63) and (64), respectively, we can rewrite
(33) as the following ODE on V(D):

T, = —(A" + AT~ b, (102)
We can also rewrite (101) as

D, = (T;, AT + 2(T7, by)o . (103)
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From (102), we can deduce that

1d

5 I THE = (T A T — (T, AT — (T2, b, (104)

or equivalently
1d

(T A T)o + (T4, bio = —5 T — (T, A To (105)

Therefore, we can rewrite (101) as
=2 (T, A To + (T, bi)o) — (T, A T
=2 (5 TG — (T A To) - (12 AT (106
=~ ST 20T AT — (T, AT,

and as a result, since Ty = 0,
! Lipi2 o f i 4™ Lo 4
][ Dudt = | T} - 2][ (T, AV T dt — ][ (1, AT odt (107)
0 0 0
Note that for all ¢, AEK) is a positive semidefinite (PSD) operator on V(D), as V&€ € V(D),

(ASg £)0 = Eq / (£(8), YV (©4(8), ©,(8)£(6')) 110(d8) 10(d6)
DxD (108)

2
/
Q

| vel®:(6)) - €@)un(de)| iz > 0.
D
This implies that fOT (T, AgK)I})odt > 0. Hence, to establish (99), it is sufficient to show that

T
lim £ (T, AT odt = 0. (109)
T—o0 0

To this end, we need two lemmas that are proved below in Appendices D.2.1 and D.2.2, respectively:

Lemma D.2. Assuming (47) and (48) together with Assumptions 2.2, 2.3 and 2.5, we have

/ 1A [lodt <oo (110)
0
1A = At <o (111)
0
/ 11 — boo lodt <00 (112)
0

Lemma D.3. Assuming (47) and (48) together with Assumptions 2.2, 2.3 and 2.5, we have

sup [T} < oo (113)
<oo
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With these two lemmas, we can show that
L W) LW
A T < [ 1A ol e
0 0

T 114
< ( / |A§V>Hodt> sup | T3 2 (114)
0 t<oo

<00,

and therefore (109) is satisfied. This finishes the proof of (46) under (47) and (48) together with
Assumptions 2.2, 2.3 and 2.5.

Next, we show (49) under the additional condition of Assumption 2.1. Thanks to (107) and
(109), it is sufficient to establish that

T
lim f (T3, A Ty)odt = Eolgeol? - (115)

T—oo 0

Heuristically, if T := lim;—, T} exists, then from (102), it has to satisfy

as AY) =0 (because VVV (0, jiog) = [ (0, %) (foo() — fu(x))D(dx) = 0 under the assumption
of (47)). This equation implies that

.|_
()l = — (AD) b, (117)
.I.
where (Ty) I denotes the component of T, in the range of Agf ), and (Agf )) denotes the Moore-
Penrose pseudoinverse of AL As a result,
(Too, AL Toc)o =((Too) !, ALY (Toe) o
T T
~(= (AE)) boo, —AL) (AL) boc)o (118)
T

Rigorously, without assuming the existence of Tt,,, we can establish that

Lemma D.4. Assuming (47) and (48) together with Assumptions 2.2, 2.3 and 2.5, we have

t
T
lim <T87~AgK)T5>Od5 > <bo<>7 (Agf)> boo>0 . (119)
t—o0 0
AS a COHSE[]MET’ICE,
t
T
lim f Eolgs 124t < Eolgecll? — (boe, (AL) bocho (120)
t—o0 0

This lemma is proved in D.2.3. It implies that we only need to show that
T
(oo (AL)) boc)o = Eollgcl . (121)
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This requires us to further exploit the relationship among Agj ), bs and go.. With the Hilbert space
Wr(Q) defined in Appendix A and B; defined by (67), we can rewrite (63) as

A®) _ 5T (122)
Further, recall that
gt = / ©(0, - )wi(dB) = / ©(©¢(8), - )wo(dB) +/ Vp(©4(0), ) - Ti(0) po(d6) (123)
D D D
5= [ £(6.)3:(d6) = [ p(©4(6). wold6) (124)
D D
Therefore, we can write
9t = gt + BTy, (125)
and
by = B, (126)

Similar formulas hold when we replace ¢ by oo. With these relations, we see that

<boo, (Ag?)* boo>

= (Buciioe, (BooBL) Bacgic )

:EOH (BOO)]L Boogoo ”129 )

0 (127)

because (lS’OOBCIO)Jr = (BL)(Boo)!. Since (Boo )" Bo is the projection operator (matrix) onto the range
of B, in R, it is then sufficient to prove that

Lemma D.5. Under Assumptions 2.1, 2.2, 2.3 and 2.5, Po-almost surely, g, € Ran(BL,).

Lemma D.5 is proven in Appendix D.2.4 and it concludes the proof of (49) in Theorem 3.5.

To show that ||¢;||; decreases monotonically when jip = jioo, note that in this case jiy = pioo,
Vvt > 0, and so A§V) = ASX) =0, AEK) = Agf) and b; = by, Vt > 0. Thus, (102) becomes

T, = —APT, - b, (128)

As will be shown in Lemma D.6, by is in the range of .A(()é( ), Therefore, defining

Uoo = (AU b (129)
and
2z =T + U, (130)
there is
2 =-Alz%, (131)

whose solution can be written analytically as

(K) (K)
Zi = e*tA;’( zo = e*tAoé( Us - (132)
Thus,
(K)
Ti=2z—us=—(I — e tA% ) Uoo (133)
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Therefore, as by, = Boo oo, there is

=G0 — BL(I — oA ))uoo (134)
oo — BL(I — %)) (AU B g .
Hence,
|Goo|® =|Gool® — 2() + (xx) , (135)
where
() = (Booioo)T (I — 7457 ) (AN 1B g (136)
—bT (I — =4 ) (AE) b,
and
(5%) =(Boofioo >T<Aé§>>’fu = e A B BT (T — e A ) (ALK B g )

BT (I — e M )BUBL (1 — 4% )b, .

In the ERM setting, AL is PSD with a finite number of nonzero eigenspaces. Consider a set
of its orthonormal eigenfunctions that span those nonzero eigenspaces, v1, ..., vy, corresponding

to eigenvalues Ay, ..., \p > 0, respectively. As by is in the range of Aéff ) by Lemma D.6, we can
decompose it as

k
boo = Y Citi (138)
=1

for some real numbers ¢;’s. Thus, we can write

k T k
= (Z cm) (I — A7) (A (Z cw)
i=1 J=1

k T /[ k
= (Z civi> (Z cj)\j—l(l — e/\Jt)vj) (139)

T k
(AU (1 — e\ B BT (I — =A%) (AU))T (Z w)

=1

(140)

= (i Civi>T (Agf))T(I _ e_tAg))_A(of)(I —tA(K) A(K) (Z C]UJ)

T (zk: A (1 oy t) cjvj)
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Therefore,

k

k
ool =ml? =235 (1= et B (1)

i=1 i=1

k
=‘§o<>|2 + ZA;l (1 — e_)‘jt> (—1 — e_’\jt) C?
i=1
k
a3 (1) &
i=1

which is decreasing in time. This completes the proof of Theorem 3.5.

D.2.1 Proof of Lemma D.2
Proof of (110): [ || AN [lodt < oo

2
2
C;

(141)

By the definition of the operator norm induced by || - ||o on V(D), ||.A§V) |lo is the smallest number

C; such that V¢, there is
V) ‘ (€ Ag‘/)s)‘)’
A o= sup
eev(D)ligloro  lI€IIG

In the unregularized case, a straightforward bound of ‘(5, Agv)é >0‘ is

(€ A€o =

e [ <s<9>,vvv<@t<e>,ut>5<9>>uo<de>]

<Eq /D /Q Cove [€0) fi(x) — fo()] (dz)uo(d6)

—Cuv, €2 /Q fil@) — fol@)| o(d)
<209y, || €121 fr — fills
2Oy, ]2 (L)) 2 .

Thus, we have y
IAS o < 02 Cov,lI€]Z (£(u)) Y .

By the assumption (48), we thus have

| 1A ode < 02, [ (L) bt < oo
0

0

which gives us the desired bound.

Proofof (111): [ ALY — AP lgdt < oo.
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Eo /D /Q (£(6), VV0(©4(8), )E(0)) (fi(x) — f.())

(142)

(dx) po(d6)

(143)

(144)

(145)



We have

(€, (A — A<K>>s>

—E, / / V(046 0)110(d0)) / Ve(© £O)o(d))” ) i(d)

B [ ([ (Ve(@1(6).2) + V(@ (6).2) - 5(9)uo(d9))
< ([ (96(@1(6).2) - V(@ (6).)) - £(O)n(d0) ) ()
Hence, the absolute value of the expression above is upper-bounded by
o [ 196(81(6).2) + V(@(6). )l I€(6)]10(a)
< [ 196(81(6). )~ V(O (6), ) I(6)]0(a0))
12

<205, Cov, |€16( | 1016) - ©n(®)po(a0))

Thus, by the assumption (48), we have

00 1/2
/ AL — AP odt <20v,Crv, / < / |©4(6 !uo(d0)> dt
0
1/2
SQCWCVW/ (L(pe)) '~ dt
0

<o

Proof of (112): 5 [1br — boollodt < oc.
There is

bt(e) - boo(e)
= [ (VE(©1(6).0.(6") ~ V(0 (6). 0008

/ / V(©4(8), 2) - Vo (©4(8'), )T — Vip(@ (6), ) - Vip (O (6), ) Ti(d ) (1)
/ / V(©,(6),2) - Vo(@1(8'),2)T — Vp(@,(6), z) - Vo @ (6'), 2)T5(d )iy (d6))
/ / Vp(©4(0), 7) - Vip(Ouo(6), 2)T — Vp(Ons(6), ) - Vip(Os (6, ) Te0p(d6))
- [ veteno ( / (Ve(©1(0'),2) - Vi (0n(6'), ) wo<d9’>)Tﬁ<dw>
+/Q(Vg0(@t(0), x) — (/ V(O x)wo d0')> v(dz) .
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(146)

(147)

(148)
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Thus,
Eo [b:(6)

<Eo

+ Eo

/ ‘VSO @t

+ /Q Vo(©(8). ) -

<C%, /

+ vago |©:(6

—bos(6)*

/ (Vo(©(6).z) -

z))* Eo

O [ B

By the property of wy, there is

Eo

2

/ 2 (6)w0(d6)
D

z)|* Eo

/ w«mwm-( / (w«atw'),m)—w<@oo<e'>,w>)wo<de’>) (d)
Q D

(/ Ve(© o(d6 ))Tﬁ(dm)

/ (Vo(O4(8'), ) — Vo(@nu(8)). 2)) wp(d6')

E, /D (Ve(©1(6).2) — V(@ (6'). ) wo(d8)|

fivse.

N CE /D 2 (O)i0(d6)

2

2

2

v(dx)
2
/ch x)wo(dO")| v(dx)
v(d)
2
wo(d6)| P(d) .

2
f10(d6)

< /D X(0) 110(d6)

for a test function x on D. Thus,

Eo |b:(0) —

Therefore,

Since

by — bocl|2 =Eo / B(6) —
D

| 1eu0)-

+ CVVSO ’@t

gc%@céw /D |©(0") —

+ C%VQOC%QO ’@t(0> - @OO(G)‘Q :

boo(0)? SC%@// IVo(©4(8'), &) — Vp(O(8'),2) | 110(d6")

o) / / IV o(@ncl), ) ? 110(d6')5(dx)

oo 0, } ,MO da,)

boo(0)[” 10(d)

<202, C2, /D 1©4(0) — O (0)[? p10(dB) -

0)|? 110(d6)

ds,uo (d@)

- / / VV(©4(6), 1) dspio(dB)

_ /too %E(us)ds
=L(p) — L(ptoo)
=L(p1e)

(150)

(151)

(152)

(153)

(154)



we can conclude that

/ 1B — boollodt < / 1L (pe)| Y dt < o0 . (155)
0 0

D.2.2 Proof of Lemma D.3

Our goal is to show that ||T;||o remains bounded for all time. First note that, for all ¢, AEK) isa
positive semidefinite (PSD) operator on V(D) since

(AB)e €)= Eq / (£(0), VV'K(©4(0),©,(0)&(6))110(d0) 1o (dE")
DxD (156)

:EO/
Q

Second, by Assumption 2.5, for yip-almost-every 8 € D, O (0) = lim;_,, ©+(0) exists, which allows
us to define by, AL, and AY similarly to (61), (63) and (64) by replacing ©;(-) with ©(-).
Since we assume that

/D Vo (©4(8)) - £(0)o(d6)| b(dax) > 0.

Var € suppd ¢ fool@n) = /D (0, 21) 100 (d6) = f. () (157)

we have
VoD : VVV(0, )= /QVVgo(O,m)(foo(ac) — fu(x))dx =0. (158)

This implies that AY) is the zero operator on V(D).
Third, we have the following observation:

Lemma D.6. Under Assumptions 2.2, 2.3 and 2.5, b, € Ran(AgK))for all t, and by, € Ran(Agf)).
Specifically, It € V(D) such that ||us|o < oo and AB g = b

Proof of Lemma D.6: Recall from (126) that boo = BooGoo. Define tioo = B (B&JZS’OO)Jr Joo- We claim
that Agf )1100 = b, because

Ao = (BooBL) Boo (BL,Boo) ' G
=B, (Bso (B)') (BL)' g

:Boogoo
:boo 5

where the third equality is because B (Boo)T is the projection operator onto Ran(B,) = Nult(BL,),
and the fourth equality is because B, (BL)" is the projection operator onto Ran(B%,) = Nul'’*(Bs,).
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It remains to establish that ||@i||0 < co. To show this, we see that
|l (@) po(ae)
D

— [ [ (ve©u®).2) (M) @)

D JQOxQ

(V@ (8),2) (Meo) o) (&) ) #(de)(dt o (06

= [ ] M@, o) (Micgoc) (@) (M) (@) ()

oJa

— [ (M) @) g (@)ilde)

mm/|gOO |2 d$

where Ay, is the least nonzero eigenvalue of the matrix M, (and hence )\mm is the largest eigenvalue
of M, ). Since

Bolgoe(2)* = Bo| | 0(©c(6),)un(dt)|

-/ (go((aoo(e),:c)f | e(@().@)uald8)) (o) (161)

< /D |0(©nc(6), )| 10(dB) |

o2 < Eq / e (60) 2110(d6)
<AL / / 2)) 210 (d0)v (da) (162)

<A C? <,

min ¢

(160)

there is

(End of the proof of Lemma D.6) [

Coming back to the prof of Lemma D.3, we have shown that, as t — oo, (102) approaches the
asymptotic dynamics
AT b, (163)

with Agf ) positive semidefinite and b, in the range of .Agf ). This is a stable system. Hence, the rest
of the task is to examine what happens at finite time. To do so, we perform a change-of-variable
with

=T} + too, (164)

with
Uoo = Boo (B Boo) oo (165)

as is defined in the proof of Lemma D.6. The dynamics of z; is governed by
=T =— (A" + AT, — b

(166)
== Az — AV 2 — (b — (AT + AV
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Thus, in integral form,
t
z = 11(t,0)z0 + / 1(t,s)( — AV z, — (bs — (AP + A)ia))ds, (167)
0

where I1(t, s) is the fundamental solution (a.k.a. Green'’s function) associated with the time-variant
homogeneous system

275 = —AEK)Zt . (168)

Since AgK) is positive semidefinite for all ¢, there is ||II(¢, s)||o < 1 for ¢ > s, where with a slight
abuse of notation we also use || - ||o for the operator norm. Hence,

t
z¢llo <[ITI(%,0)[[ol|z0ll0 +/0 Hﬂ(tS)HO(HAgv)HonsHo + [1bs — (A + Agv))ﬁooHo>d8

. (169)
<llzollo + / (LA oz lo + 1B — (AL + AN it o) ds
By Gronwall’s inequality, we thus have
t :
2l < (oo + [ 1162 = (AU 4+ AL o el 14 s (170)
0
Therefore, ||z:||o remains bounded for all time if we can show that
| = (A + A yclot <. [ AT ot < oo (71)
Since
180 = (A + A acllo < llbr = boollo + (A"~ AL Yoo o + AL oo (172)
we see that (171) is guaranteed by Lemmas D.2 and D.6.
This completes the proof of Lemma D.3. O
D.2.3 Proof of Lemma D.4
From D.3, we have that
t . 1
lim ‘ ][ T.ds|| = lim H(Tt—TO) ds|| =0. (173)
t—oo || Jo o 1o t 0
By (102), we then obtain that
t t
lim ][ (AgK)TS + bs> ds + ][ AT ds|| =0. (174)
t—o0 0 0 0
By (110) in Lemma D.2 as well as Lemma D.3, we know that
t
lim ’][ AT ds|| =0, (175)
t—o00 0 0
Therefore, .
Tim ‘ ][ (A§K>TS + bs) ds| =o0. (176)
t—00 0 0
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Next, by (111) and (112) in Lemma D.2 as well as Lemma D.3, we know that

t t
lim ‘ ][ (AgK)TS + bs) ds ][ (Agff)Ts + boo) ds| =0. (177)
t—o00 0 0 0
Therefore,
t
; (K) —
tliglo‘fo (Aoo Ts+boo) ds| =0 (178)
With u., defined in (165), as b, = A(K)uoo, there is
t
lim HA@ <][ T,ds — uoo> =0. (179)
t—o0 0 0

Let ¢ denote the component of a vector field £ € V(D) that is in the range of AL In the ERM
setting, AL has a least nonzero eigenvalue that is positive, and hence the above implies that

t Il
lim <][ Tsds—ﬂoo> =0 (180)
t—o00 0

0
or

t I
lim <][ Tsds> —Us|| =0 (181)
t—o00 0 0

and therefore, as Nul(A%)) = Nul(B.BL) = Nul(BL), it follows that

t
lim ‘ Bl <][ Tsds> — Bl oo
t—o0 0

Similar to (111), it can be shown that [° ||B; — Bsollodt < oc. Therefore, we have

=0. (182)
0

t
lim ‘(][ B}Tsds> — Bgoﬁoo‘ =0. (183)
t—o0 0 0
Now,
t t
][ (T, AF)T,) gds = ][ (BIT,, BIT.) s ods
0
; t ¢ (184)
> <<][ B;Tsds> , <][ BlTsds>> )
0 0 2,0
Hence,

t
lim 4 (Ty, AT, ods > hm <<][ BIT; ds> <][ Bl Tds>>
t—oo [

= (Bl too, BY, uoo> 0

< "boe, BL (A% )>Tbooﬁoo>ﬁ,0 (185)
:< (489 b, (42 (AL ))Tboo>
(e °°>0-
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D.2.4 Proof of Lemma D.5

Since
Goo(@) = /D (0, )0 (d6) (186)

we know that when viewed as a L-dimensional random vector, g, has the distribution
Joo ~ N(O, OOO) ) (187)
where

(éw)ij = [Joo (%) Joo (w])]

(188)
— [ e(O.2)0(60.211cld6) ~ [ (0. 211ld6) [ 0(6 5 pnc(a0))
D D D
by the covariance of wy, (32). Thus, we decompose Cy, as Coo = ~D _ @ with
(), = [ ol0.2)0(0.2ps(d0). (189)
(09), = [ o.@nncld0) [ o0 2, unc(c6'). (190)
ij Jp D

Since C., is PSD, its square root (C) /2 is well-defined. By the property of multivariate Gaussian,
we can write
Joo 4 (éoo)l/Qw ) (191)

where < denotes equality in distribution, and w € R" follows the distribution
w ~ N(0,1d,) . (192)

This means that almost surely, g, € Ran ( (Cx) 1 2) , and which would imply that g € Ran (Cw).
This means that almost surely, we can write

Goo = CHw® — CPyy? (193)
for some pair of w(!),w(?) € R™. Our goal is then to show that both CWw® and P w® belong to

Ran(BL,). Here, under Assumption 2.1, since (0, x) = cp(z, ) when 6 = [¢ 2] T there is

Vo(0,z) = [cVi(; (’Z)a:)] . (194)

Therefore, first, we have
(CWu®) _/ (0, 2:) (§ :w(@,mj)w§1)) 1100 (16)
i D -
Jj=1

" ) 195
- /D V(6. z,)T [C(e) (S w02’ >] 100 (d6) o

0
=BLe
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with

£0)Y = [C(a) (T w6,z ](1))] : (196)

This means that (C_'éé)w(l)> € Ran(BL).
Second, there is

(C@w(z))i - </D ©(0, ;) f1oo dO) (Zw / CA m])ﬂw(d(;/))

/ V(0. [(0) (Zer 10" mj)uoo(dg/))] oo (d6) e
0

with
/
&‘(9)(2) — [C(0> (Z] 1w f%()p 0 w])uoo(de ))] (198)
This means that (Cg)w(2)> € Ran(BX). Hence the lemma is proved. O

D.3 Proof of Theorem 3.6 (Under assumptions on the curvature in the long-time)

When the limiting measure jio, does not necessarily interpolate the training data, such as in the
regularized case, we have the following condition on 7; which guarantees that (46) holds:

Lemma D.7. If

T
lim B / / (T1(8), VYV (©4(8), 111)T4(8)) 10 (d0)dt > 0 , (199)
0 D

T— o0
(including when this limit is +00) then (46) holds.
Proof of Lemma D.7: With ©; defined in (101), for (46) to hold, it is sufficient to show that

T
lim + D.dt<0. (200)
T—o0 0
Recall from (107) that
! N () Y 40
][ Dudt = | T - 2][ (T, AT odt — ][ (1, AT odt (201)
0 0 0
Since Tp = 0 and AﬁK) is PSD, we see that the assumption (199) is sufficient. O

Note that condition (199) is natural since we know from Proposition 2.7 that lim;_,., VVV (©¢(8),
VVV (0 (0), 11so) exists and is positive semidefinite jip-almost surely. This lemma then allows us

to prove Theorem 3.6: Proof of Theorem 3.6: Our goal is to verify (199) in order to apply Lemma D.7.
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We first see that
Eo /D (T}(6), VYV (©4(6), 1)) Ti(8) 1o (d6)
>Eq /D Dmin(VVV(©4(8), 110))|Ti(8) [2110(d6)

>Eq /D min Dnin (VVV(©4(6), 1)), 0} [To(6)[2110(d6)

. ) (202)
= [ min (rnia (TTV(©1(60). 1), 0} (BalT:(0)) o d6)
> / min{Amin<vvv<@t<e>,m>>,0}( sup E0|E(9)!2> 110(d6)
D Ocsupp po
> IT2, ( [ i i (V9 (©4(60) 1)), 0} uo(d9)> ,
where we define, for € € V(D),
€l = sup (Bole(@)?)”. (203)

O€supp uo

which is a norm on V(D).
Hence, if we assume that ‘ i) pmin {Amin(VVV(0, 1)), 0} ,uo(dO)‘ is small asymptotically, then
what remains is to upper-bound ||T}||sup. Recall from (102) that the dynamics of T} is governed by

T; = — (A" + AT, — by, (204)

Thus, in the || - ||sup norm defined above, we have

d (K) | 4(V)
_ <l — _
gl Tellsup <[ = (A + A )T = bellsup (205)

K Vv
<A sup + AN T lsup + 1Bl s -

We then want to bound the growth of ||T}||sup by upper-bounding the RHS. Note that for £ € V(D),

LA g )12, = sup Eo|(AM€)(0) 2
0cD

=sup Eo|VVV(©,(0), 11)€(0) |
6cD

< sup [VVV(©,(6), 10)|*Eol£(6)[? (206)
S
<(CyveCy + N)? sup Eol€(0) |
0cD

=(CyveCop + N2 1I€]Iup -
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LA €2, = sup Eo| (A €)(0)[?
0cD

=supEg| | V'VK(O(0),0.(0'))&(6')10(d6)|?

6cD D
< sup Eq / [V'VE(©4(8),0:(0))[£(8))*110(d6)
ocD  Jp (207)
< sup(Ciy)! / Eol&(6') 21 (d6")
6cD D
<(Cvy)? sup Eol£(6')[?
:(CVgD) ||£||sup
Thus,
AT sup + ALY Tllsup < (G2, + CoveCo + N | Tillsup - (208)
To bound ||b||sup, we recall that
/ VK(©4(8),©:(68'))wo(d6')
(209)
/ Vp(040),x)g(x)v(dx) ,
with
(@) = [ o(©1(6),2)e0(d8) (210)
D
This implies that V@ € supp po,
1 n
B1(8)] < —Cvp Y le(1)] (211)

=1
and so

n 2
1
Eo|by(6)[* <C%,Eo (nZ’gt (z1)] )
=1
1 n
<C% K (n > g ) (212)
=1

SC%VJE ;E0|§lt($l)2 -
On the other hand, similar to (161), we have
Eolg (@) = o] [ ¢(©1(6) z)un(a)]
= [ (#(©u0).2) - [ o(01(8).2)0(d8)) po(a0)

< /D 0(©4(8), ) |*10(d8)

(213)

)
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Thus, there is VO € supp py,

Eolb:(0)[* < (Cvy)*(Cy)? (214)
and so
1b/[sup < CvipClp - (215)
Therefore, based on (205), we have
d
a”Ttnsup S ((CVQD)2 + CVVL)DCW + A)HEHsup + CV(,DC(,D . (216)

Since Ty = 0, we thus have
t
[Tilup <C,Cy [ O 1CowaCoNt=gs
0

t
:vaowe((CV¢)2+CVV¢Cw+)\)t / 6_((CVAP)2+CVV¢C¢+>\)5dS (217)
0

CV‘PCQO (CV¢)2+CVV¢C¢+)\)1§

S 2
(Cvgﬂ + C’vWL‘@ + A

el
Now, using (202), we see that in order for (199) to hold, it is sufficient to have

lim e((Cve)*+CvveCot)t ( / min {Amin(VVV(8, 111)), 0} uo(de)) =0 (218)
D

t—00

and therefore sufficient to have
. / min {Amin(VVV (0, 1)), 0} 110(d6) ~ O (f“ow)zwvwcw“)t) (219)
D

U

To intuitively understand (50), note that we know from (23) in Proposition 2.7 that A¢(8) — 0

po-almost surely as ¢ — oco. Condition (50) can therefore be satisfied by having A.(8) converge to

zero sufficiently fast in the regions of D where it is negative, or having the measure of these regions
with respect to iy converge to zero sufficiently fast, or both.

D.4 Proof of Theorem 3.7 (Regularized case)

Recall from Proposition 3.3 that the dynamics of g; is governed by

al@) + /0 /Q Py oo, ') ga ()0 ds = i) | (220)

with
Tps(z, 2') = /D<Vs0(@t(0)aw)v J1,5(0)Vp(©5(8), ') 10(d0) (221)

with J; ; being the Jacobian of the flow ©;.

In the ERM setting, supp © is singular, thus we have 7(dz) = n=' >"|. 65, (dz), where n is the
total number of training data points. We define W, (2) together with the inner product (-, -); o and
the norm || - |0 as in Appendix A. We will also continue to consider g; and g; equivalently as
n-dimensional vectors,

(ge(x) - a(@))",  (@(@1) - Gilan) (222)
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respectively. Thus, I'; ; can also be represented by the n x n matrix

Ft,s(mlaml) e Ft,s(mlaxn)
: (223)
Ft,s(mnv :171) T Ft,s(ccn’ zn)
Under such an abuse of notations, we can simplify (220) into
t
g+ [ Tiagads=g.. (224)
0
Thus, the goal is to prove that
t
i sup  Eolli2dt < Eollgc 3 (225)
t—00 0
As in (43), we also define
(@, a') = / (Ve(0, @), e IV OV 00, 2) ) 1oc (d6) (226)
D

where for simplicity, we write V;(-) for V' (-, ) and Vo (+) for V (-, pteo ). Then the heuristic argument
outlined in Section 3.2 before Theorem 3.4 amounts to rewriting (224) as

t t
Gt +/ 'Y .9sds = gt + / (T2 — Ty s)gsds (227)
0 0

and then arguing that 1) I'*® is a nonnegative convolution-type Volterra kernel, and 2) the second
term on the RHS is small. Rigorously, we need to introduce an extra level of complication: for every
to > 0, we can rewrite (224) into

t to
gt = gt — / Ft,sgsds - / Ft,sgsds
to 0

' . to (228)
g~ [ s+ [ (0, - Tuguds = [ Tiguds.
to to 0
Then, for any T" > to, by multiplying g; and integrating from ¢ to 7', we get
T T
[ alat+ [ [ (i g s
p oo (229)

T T t T to
< / (g0, G1)oddt + / (g, / (5, — Ty )gsds) ot + / (o, / Togsds)odt
0 to to to 0

t

Then firstly, the second term on the LHS is nonnegative because of the nonnegativity of I'y° as a
convolution-type Volterra kernel, as proven in Appendix D.1.
Hence, we have

T T T t
/ lgill2dt < / (g0, G0)odlt + / (g, / (T3, — Ty.0)gsds) ot
to to

to to

T to
+/ <gt,/ Ft,sgsds> dt .
to 0 U
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By Cauchy-Schwartz,

T T 3 T 3
/ <gt,gt>adt<(/ Hgtn%dt) (/ rgtu,%dt) , (231)
to to to

T t
/ <gt,/ (Fﬁs_Ft,s)gsd3> dt

to to 17

T % T t 2 %
s( / ugtr%dt> ( [ i - rigas dt) (232)
to to to 17
1
2

T T rt
([ otz ([ [ - rdgasa)”
to to to

T to
/ <gt7/ Ft,sgsd5> dt
to 0 )
1 1
T 2 T to 2 2
< (/ ’gt”l%dt> (/ / Ft,sgsds dt)
to to 0 D
, ) (233)
T 2 T to tO 3
< ([ aza)” ([ ([ ireatgas) ([ odzas)a)
to to 0 0

T 5\ 2 to ) 3 T o , 3
s(/ |gt||pdt> (/ ||gtuﬁdt> (/ / ||rt,s||ﬁdsdt) .
to 0 to JO

Therefore, putting everything together, we have

T 3 T 1
(f o) < ([ taizar)
to to
T 3 T rt 1
([ naza)” ([ [ i ez (234)
to to to
to ) 3 T pto ) i
+(/ IIgtHﬁdt> (/ / ||rt,s\|ﬁdsdt> ,
0 to JO
and hence, using ff - dt to denote the averaged integral ﬁ f; - dt,
1 1
T 2 T 5
<][ ”gtH%dt) S(][ !gt||§dt>
to to
T 3 T pt 1
+<][ Igtll,%dt> </ ||Fg’is—rt,s||§dsdt> (235)
to to to
tO % T to %
+</ gt ,%dt> (f / Hrt,sugdsdt) ,
0 to 0

and
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or

T ot 1 T i
1—[/ ||r;°is—rt,su,%dsdt] (][ ugtn%dt)
to Jto to
1 1 1
T ) 2 to ) 2 T rto ) 2
<(f i)+ ([Tragza) (F [ iz
to 0 to 0

Lemma D.8. Under all assumptions in Theorem 3.7 except for (52) being replaced by a weaker condition,

(236)

| ] (106) — ©uu(6)] + [U1(6) )t PO Ty ()it < . (237)
0 D
we have -
lim 752, — Dysl|2dsdt = 0 (238)
to—o0 to to ’
and Vtg > 0,
T to
lim |T¢.s|%dsdt =0 . (239)
T—00 to 0 ’

We will prove in Appendix D.4.2 that (52) indeed implies (237).

The lemma will be proved in Appendix D.4.1, and let us first proceed with the proof of the
theorem assuming this lemma. Suppose for contradiction that (225) does not hold, meaning that

T 1
fim sup (£ lrlde) = [lgcls + ¢ (240)
T—0c0 0

for some € > 0. We will select a pair of ¢y and 7" for which the inequality (236) cannot be satisfied.
Firstly, by the convergence of g; to goo, Jt, > 0 such that Vi1, ¢y > 1,

1
t2 2
(o Mlzan) " < gl + e (41)
t1
Secondly, by our assumption (240) and the first part of Lemma D.8, 3ty > t, such that both
to 3
(o "olian) " < gl + 26 (2)
and o
T2, — Tyl 2dsdt < — 243
[ s < (243)
are satisfied. In particular, (242) implies
to % 1
([ toPae)” <t gl + 20 (44
0
Let
2
€
§ = ( T ) >0. (245)
625 - ([1Gocllo + 2€)
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By the second part of Lemma D.8, 3t; > to such that VT" > ¢,

T to
][ / ITs||2dsdt < & (246)
to 0

so that the last term in (236) satisfies

to % T rto %
(/ ||gt||§dt) (][ / ||rt,s||2dsdt) <1 (247)
0 to 0

By our assumption (240), we can choose a T' > t;, such that

T 1
( ]ﬁ l9el2d)% > [lgool + Ze (248)
Since

( o2 dt) < lguolls + 26, (249)

we can assume without loss of generality that %

T
(f Nalzae)* = g
to

Thus, back to the inequality (236), the LHS is strictly lower-bounded by

is large enough so that

ol

o+ Le. (250)

_ 1 € - 1
wollo +5€) (1 — m=——75) =|l0lls + 36,
(llgoslls + 3€) ( 6ng“§+36) [P (251)
whereas the RHS is strictly upper-bounded by
1Goolls + g€ + € = [lgoolls + g€ - (252)
This gives contradiction and we are done with the proof of Theorem 3.7. OJ

D.4.1 Proof of Lemma D.8

It remains to prove Lemma D.8. To do so we will need an auxiliary result, that we state and prove
first:

Lemma D.9. Let AT’y 5 := I'y s — I'{°,. If VVV is uniformly positive definite with eigenvalues lower-
bounded by A, then there exists constants C and C' whose values depend on |D'|, C,, Cyv,, Cyv,, and
Ly, such that

AT s < O [ (1A0UO) + (1A0.(6)] + U (6)) O 7)) uo(dp)  (253)
D

where AO(0) = ©4(0) — O (0).

Proof of Lemma D.9: To bound ||AT' 4|5, we bound || AT 41| for n € R™. Note that AT'; ;n can
be obtained in the following way. Consider the two systems

%w) = —VVVi(©4(6))¢:(6)

(254)
- /Q Vi (©.(6), ') (da')
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%g;(e) = —VVVae(Ouc(0))(6)

(255)
— /Q V(0 (8), 2/ () (da)
Then there is
(Tr,sm)( / V(O (0)po(dO)
(256)
(52 )z / Vi(® £1(0)10(d0)
and hence
(ATyun) (@ / Vo (©,(6), 2)&,(0)10(d6) — /D V(O (0), 2)EL(8) 10(d6)
/ Vi (©,(0 (8) — £/(8)) 0(d8) (257)

+ [ (Vo(0u(0). )~ V(0 (6).2)) - (6)udb)
We will first try to bound &;(6) — £€;(0) as a function of 7. Define A&,(0) = &:(0) — £,(0). Then

LA, (6) =~ (VIV(O1(6)) ~ TVVac(©uc(0)))8: — TV Vac (O (6)) A6, (6)
= = VVVio (O (6))AE,(6) (258)
— (VVV(©,(8)) — VVVi(Ou(0)))€)
— (VVVi(©,(8)) — VVVa(Ou(8))) AL,
Thus
A&y (0) = ¢~ (TIVVI=(O=O)Ag, (6)
. /t e (TNIVVVee (O (0) (T VV,(0,(0)) — VVVi(O(0)))EL(8)dr (259)
+ / DTV (0 (0) (VVV,(0,(0)) — VV Vi (O (8))) AE,(0)dr
Since VV V(O (0)) — A4 is positive semidefinite, we first have
€.(0)] < e |€L(0))] (260)
as well as
|A&(0)] <e MY |AL(0)]
+ [ IVV(©,(6) ~ VYV (O (0)) €1 0)]ar
+ [ NIVIV(©,(6) ~ VYV (O 0))]1A¢ 6) dr
s (261)

<eNIIAE ()]

~+

., / D) [TVVA(O, (68)) — VIV (O (6))]IEL(6) dr

~+

+ / e M|V (©,(8)) — VVVio (O () | AL, (6)dr .
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To prepare for an application of Gronwall’s inequality, we introduce a change-of-variable by defining,

f st
orrc [S ] E’r(a) — e)\(t*S)Ag‘r(a) .

Then we can rewrite the equation above as
RE,(6)] =) AE(0)
<186@)1+ [ IVVV.(0,(6) - VYV (@) €@ i
+ [ QU IIT(©.(0) - V(@ (0) 126 @)l
SISO+ [ IV9V(0,(6)) - VTV @ 6)[€) (@)
+ [ IVTVi(01(0)) - TV V(0 (0) 3, (0)1
Thus, by Gronwall’s inequality,

5&(60)| < (BE,(0)] + [ IVVV(0,(68)) - TIVu(@n @) IEL(O)]ar)

" ej: [VVV,(0,(0)—VV Ve (O (0))||dr

)

or, back in the original variable that we are interested in,

86(6)| < (18&(0) + [ [VTV.(©,(6) ~ VWV (Ox(0))]I€,(0)]ar)

e At=8)+[L VYV (©r(8)) =V Voo (Occ (0))|dr

Now, we have
| AFt,sn(x) ‘

<| /D Vio(©,(6). )T - A& (8)110(d6) 5
1 /D (Ve(©4(0), %) — V(@ (60), ) €L(0)10(d0)
<Cv, /D A&(6)]j10(d6) + O, /D 1A8,(6)][£,(0)|110(d6)

<O [ (18€6)1+ [ I99V(81(0)) ~ TV (@ 0))[I€,(0)1r)

eJ2 IV TV (©1(8) VT Vac (Osc 0) dr 0 (79
4 Cogye ) /D 1A6,(0)][€.(8) 1o (d6) .
Note that we have,

~ 1
165(0)] = / V(oo (8), 2 )n(x")o(dz')| < Cvyp sup [n(wmp)| < P2Cvy,nlls,
Q 1<p<P
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(263)

(264)

(265)

(266)
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|AL:(0)| Z\/Q(VW(GS(G)@) = V(0(0), z))n(z)o(da'))|

< /Q Vo(©.(8),2) — Vip(@o(8), ') In(a)|(da) (268)
<7 Cyy,|AB,(0)[||n]ls
an(d,)s)inz:e V)VVT(O) = [ VV@(8,2)(fr(x)— fi(x))D(de) and VV Ve (0) = [, VV@(0,2)(foo(x) —
f«(x))D(dx),

IVVV,(0,(0)) = VV Vi (0 (0))|
<|[[VVV(©,(0)) — VVV,(0u(0))]
F[[VVVi(05(8)) = VV Voo (O (0))]
<LVV<PC \A@T(Gﬂ +CVV90HAJCT”V 009

(269)

where we use || f]|5,o to denote sup,equpp s |f ()| and we defined Af; = f — foo.
As a result, we have

|AT o
<|Inll; AT snlls

t
< Cv<pe—)\(t—8) / (CVV@|A®S(0)| —|—/ (LVV¢C¢|AG')T(0)| + CVVQD||AfT|’l77OO)CV§0d’I“) (270)
D S
y ef; LVV¢C¢|A@r(9)HCVVw”Afr”o,oodT’luo(dg)

+ Cggye =9 /D Co | AG,(8)[110(d6) .

Therefore, using Cy, C1, etc. to represent constants that depend on C,, Cv,, Cvv,, Cvv, and
Lyv,, we have

IAT sl

t
< Coe =) / A0, (6)]10(d8) + / A0, (6)]c )= 18€ ORI ety (af) (271)
D D

t t
+/D (/ 1AB,(0)] + || fr — foollpoodr) et /s \A&«(e)|+\\Afw||ﬁ,mdruo(d9)) '
Note that ||A f,||5,00 can be further upper-bounded by C,, [, |A®,(0)|uo(dP). Furthermore, defining
56: = [ 1204(6)]u(d6) (272)
D

we can write the bound above as

. .

J AT 4lls < Coe =9 ( / |A©,(8)|110(d6) + / 2O, (6)[cC J: 180 ON+2E 1 (dp)
D D

. ) (273)

+ /D ( / |A®,(8)] + AO,dr)e I: |A97‘<9>‘+A@r%0(de)).

Finally, let .
U®) = [ 15@ue)dr (274)
t

51



and -
Ut:/DUt(O)uo(dG):/t AO.dt . (275)

Then there is

IAT |5 < Coe =) / (1404(8)| + (1A04(8)] + U,(8) + T) e UO1+02) ) 1y (do)
D
i (276)
<2Cpe M=) / (1484(8)| + (140,(6)| + U, (6)) e 14T 1 (d) .
D

(End of the proof of Lemma D.9.) O
Proof of Lemma D.8: Lemma D.9 entails that, 3C, C" > 0 such that

2
|AT, 4|2 < Cem A=) ( / (metwﬂ + (1a0,(0)] + Us<0>)ec’<Us<9>+Us>> uo(d9)>
D
§4Ce—2>\(t—s)/ |A®t(0)|2 + (|A®s(0)’2 + US(O)Q)620’(U5(9)+Us)uo(d0) (277)
D
< 40| D' |2 / 120,(0)] + (120,(0)] + Ux(6)°) V=)0 ().
D

where for the last inequality, we assume that |[D’| > 1 (or, to accommodate the more general case,
just replace | D’| by max{|D’|,1}).
To prove Lemma D.8, the first goal is to show

to—00

[e%¢] t
lim / |AT 4||2dsdt =0 . (278)
to to
There is

) t
| [ v asa
to

to

o7} t _
<401D/| / / / e—%(t—S)(yA@t(e)H(\A@s(a)\+Usw)?)e?@’(Us(@HUs))dsdwo(de)
D Jty Jto

[e%s) t
<40|D/| / ( / ( / e—W—S)ds)met(o)\dt
D to 0

t,

+ / (/ e—QA(t—s)dt) <|A@s(9)| + US(9)2>620’(U5(9)+Us)d8> 1o (d@)

to s

(279)

<20|D/|A / ( / 1A, (6)|dt + / (120.(0)] + U,(0)?) 2" V@0 ) 1y (d0)
D

to to
§4C|D/|>\_l/ / <|A®s(0)| + Us(0)2> e2C’(Us(9)+Us)dSIuO(d0) .
D Jtg
By our assumption, the RHS is finite for ¢y > 0. Hence, by taking ¢, large enough, the value of

ftzo j:; | ATt 5||2dsdt can be made arbitrarily close to zero.
The second goal is to show that ¥ty > 0,

T to
Iim][ / |Ts.s]|2dsdt =0 . (280)
T—00 to 0
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As a first step, we show that

T to
lim ][ / 752, ||2dsdt = 0
T—00 to 0

because Vi € Wr,(2), there is
[0, T3 sl = / (b(8), e~V TV=(O< @) ) ) g (d6)
D

<N / 1b(8) P 10(d6)
D

<N Mg [ 1112

where
b(6) = /Q V(@ (8), 2)(x)i(de).
and M is defined as M, := BL, B, or concretely, for n € Wi (w),
(Man)(@) = [ ([ Vo(Ou(8).2)Vio(Oun(6). /) o(a0)))n(a)o ()
- / M(@, @', poo)n(a)9(da’) |
Q

where
M@ o) = [ Vo(®u(0).2)- V(@ ()2 d8).

In the ERM setting, M is effectively an L x L matrix. Thus,

T to T to
f / lfi’isllﬁdsdté][ / ¢~ | Mo | 2disdlt
to 0 to 0

T
§|Moo||3][ e 2\ t=to) gp as T — oo
to

Hence, it is sufficient to show that

T to
lim ][ / |AT s||?dsdt = 0.
T—o0 to 0
We have

T to
/ / | AT || ?dsdt
to 0
T to
<40|D/| / ( / ( / e N5 | 2,(0) i
D to 0

to T , _
+ / (/ e_ZA(t_S)dt> <\A®s(0)\ + US(H)Q) e*¢ (U5(9)+U5)ds> po(d)
0

to
T
<20|D/]A" / < / ¢~ 2\t=10) | A @, (6)|dt
D to
to , _
+ /0 672)\(15073) (|A®s(0)| + US(H)Q) 620 (US(B)JrUs)dS) Mo(dg)

§4C|D’\)\1// (]A@S(O)\+U8(0)2)ezC’(US(OHUS)dSMO(dG)
D Jo

<0
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(283)

(284)

(285)

(286)

(287)
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by assumption (237). Therefore,

T to 1 T to
][ / |AT |7 dsdt = / / |AT |Zdsdt —— 0. (289)
to 0 T - t[) to 0 T—o0
This concludes the proof of Lemma D.8. O

D.4.2 Interpretation of the Assumption (237)

Below, we will illustrate the assumption (237)

Q= / / (1A04(6)] + U3(8)2) O+ d1y10(dB) < ox, (290)

in Theorem 3.7 by giving examples that satisfy this condition.
First, consider an example where 3« > 0, > 1 such that VO € supp p1p and V¢ > 0,

IA@,(8)] < K(t+1)", (291)

that is, all characteristic flows share a uniform asymptotic convergence rate on the order of t=.
Then V6@ € supp o,

U,(0) = /t " 126, (B))ds < (¢ 1)~ (292)

and thus

U < —=(t+ 1)~ (293)

o —

Therefore,

Q</ / (1A©:(8)] + U(6)?) e (Lo@)+10) g1, d0)

i} o (294)
S/O ( (E+1)""+ (=) (t+1)*2(a*1>)eﬁdt,
which is finite as long as « > 2. Thus,
Proposition D.10. If 3k > 0, > % such that V0 € supp po and Vt > 0,
|A0;(0)] = |0:(6) — O () < K(t+1)77, (295)

then the condition (237) is satisfied.

Moreover, the assumption allows flexibility in having non-uniform convergence rate for different
characteristic flows, ®;(0). Suppose that 3« : supp 10 — R4 and o > % such that V6 € supp po,

1A0,(8)] < K(0)(t +1)° . (296)
Then -
U,(6) = / A6, (6)|ds < (¢ 1)~ (297)

t
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and so

(|AG(8)] + Uy(0)%) 2 (0@ dty14(d)

QO
IA
S

2C1k(9)

(K(G)(t+1)_a+(O,j(_0>1)2(t—|—1)_2(a_1)>e a1t (298)

J
s

IA
S—

2C1k(0)

§C'2/D(/-€(0)+/£(0)2)6 o= f10(d@) .

Therefore,

Proposition D.11. Suppose 3o > 3 and a function r : supp pig — Ry, which satisfies

/ (5(60) + £(0)? ) %5 po(d0) < o, (299)
D
such that V0 € supp uo,

1A©,(6)] = |©,(8) — Oue(8)] < K(O)(t+1) . (300)

Then the condition (237) is satisfied.

D.4.3 Relationship between Theorem 3.7 and [11]

As a comparison to our result, Chizat [11, Theorem 3.8] shows that under assumptions includ-
ing (51) as well as the uniqueness and sparseness of the global minimizer, an alternative type
of particle gradient descent (with a different homogeneity degree in the loss function and un-
der the conic metric, which give rise to gradient flow in Wasserstein-Fisher-Rao metric instead of
Wasserstein metric) converges to the global minimizer for large enough n (depending exponen-

tially on d) with a uniform rate. This implies that in that setting, lim;_,oc lim,,_,o0c n|| f; ) _ It H?j =

limy, o0 limy—y00 n”ft(n) - ft

2 = 0, Pp-almost surely.

E Properties of the Minimizers of the Regularized Loss

First, under Assumption 2.1, i.e. in the shallow neural networks setting, define

Pz) = /Q L(@)plz p)p(dz),  K(z2) = /Q oz, 2)p(2, x)(d) (301)

and

A ~

Viz,p) = —F(2) + / dK(z, 2 )p(dd,dz2") . (302)
D
We prove Proposition 3.9, which we extend into:

Proposition E.1. Under Assumptions 2.1, 2.2, and 3.8, the minimizers of the loss L(y1) defined in (4) are
all in the form
pia(de, dz) = 8oy (de)fic (d2) + 0-cy (de)ji (d2) (303)
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where ¢y > 0 and [i+ € P(D) satisfy

Vz esuppjiio : —F(z)+ey /f) K(z,2') (fir(d2) — i—(d2")) = Aey,
Vz esuppfiy : — F(z)+cy /D K(z,2') (14 (d2') — i_(d2)) = —Xex, (304)
Vze D : ’ —F(2)+ cA/DIA((z,z’) (A4 (dz") — p_(d2")) ‘ < Aey.

In addition, the constant cy is unique and positive if F'(z) is not identically zero on D, the closure of the
supports of i+ are disjoint (i.e. supp fi+ Nsupp fi— = 0), and the function

fa= [ otz mtdendz) = o [ oz (isldz) = - (@2) (305)
is the same for all minimizers and satisfies
WalKy <lfo= Ao 1= A+ Nal < AP (306)
where Ky = max,_p, [|¢(2,)|7 = max__p K(z, 2).

Remark E.2. Note that the proposition automatically implies that v, (f)) < v1(f«) < oo. It also implies
that

/D (e, dz) = [exl? = nlty < n(f)l? Vg e Ry (307)

where yy = [ cpua(de, ). Finally note that the proposition holds if we replace the empirical loss by the
population loss.

Proof: The fact that this loss can only be minimized by minimizers follows from the compactness
of the sets {u € P(D) : L(p) < u,u € R}. The minimizers of £(x) must satisfy the following
Euler-Lagrange equations [57]:

V(c,z) €D : —cF(z)+ c/ CK(z,2)u(dd,dz") + I\[c> = cV(z) + N> >V, (308)
D

with equality on the support of ;1 and where V is the expectation of the left hand side with respect
to p(de, dz). Minimizing the left hand side of (308) over c at fixed z, we deduce that

Vz€D : min (cV(z) + %MC\?) >V, (309)

with equality for z in the support of i = [ pu(de,-). This means that for any z € supp /i, there
can only be one ¢ = ¢(z) in supp p, with ¢(z) satisfying the Euler-Lagrange equation associated
with (309) X )
V(z)+Ac(z) =0 < V(z)=—-Ac(2) (310)
If we insert this equality back in c(2)V (z) + $)|c(2)]? = V, we deduce that |¢(2)| = ¢, with the
constant ¢y related to V as .
- 5)\\0)\\2 =V, (311)

and furthermore, Vz € supp i,

(312)



These considerations imply that the minimizer must be of the form (303), and if we combine (309)
and (311) and evaluate the minimum on c explicitly we deduce that ji+ and c) must satisfy the
equations in (304). It is also clear from (304) that we must have supp i+ Nsupp fi— = 0: indeed if
there was a point z € supp fi4+ N supp fi—, then at that point V(z) would be discontinuous, which
is not possible since this function is continuously differentiable for any x by our assumptions on
¢. Finally, to show that we must have that ¢, > 0 if F'(z) is not identically zero on D, note that if
cx = 0, (308) reduces to

V(e,z)eD : —cF(z)+ > >0 (313)

which can only be satisfied if F'(z) = 0.
To show that cy and the function in (305) are unique, let ;1) and 1\ be two different minimizers
and consider

fi= [ cplzmdeds) and = [ oz (dedz) (314)
D D
Let us evaluate the loss on apy + (1 — a)py € P(D) with a € [0, 1]. By convexity of £, we have
Llapy + (1 - a)pih) < al(n) + (1 — a)L(A) = L) = L(1}) (315)

Since apy + (1 — a) ), cannot have a lower loss than this minimum, we must have equality in (315),
which reduces to )

1 = afx = (L= Q) £i][; + aXleal” + (1 = a)Al4?

= [Ifx = £ll5 + Aleal? (316)

2

= [l = S35 + Nl
where ¢, and ¢ are associated with 1, and p, respectively. Clearly these equations can only be
fulfilled for all a € [0, 1] if ¢y = ¢} and f\ = f} 7-a.e. on Q.

To establish (306), notice that if 1) is a minimizer and f is given by (305), then we can derive

from (312) that

- | B@)f. @)+ LA+ Al =0, (317)
This gives, using Cauchy-Schwartz,
Neal? = /Q hr@)(ful@) = fr(@)o(dz) < Al £~ Flls - (318)
Now notice that
I£3II7 = <3 /D P K(z,2) (i (dz) — i-(d2)) (i1 (d2) — o (d2)) < 43Ky - (319)

Using (319) in (318) and reorganizing gives the first inequality in (306). To establish the second,
let 11, € M, (D) be the measure that minimizes [, |c¢[u(dc, dz) under the constraint that f, =
Jp co(z, )« (de, dz), so that [, |c|u.(de,dz) = v1(f.)—the measure i, exists since we assumed
that f, € F1. Evaluated on p., the loss is

L(ke) = A (fo)*- (320)

Any minimizer p) of £(4) must do at least as well, i.e we must have
£ = £ll5 + A /D el ua(de, dz) = | f. = fally + Aleal < Ay(£). (321)
This establishes the second inequality in (306). O
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F Analytical Calculations of the Resampling Error

Derivations similar to the one presen’Eed here can be found in [5, 15, 53]. In the setting of ReLU
without bias on unit sphere, we take D = = S C R¥!, $(z, x) = max((z, ), 0), and v is equal
to the uniform measure on S%. In this case,

K(z,2') = /Qcﬁ(z, z)p(2, x)v(dx) = 2(d_fl_l)ﬁ(sinoz + (m — o) cosa), (322)

with « being the angle between z and z’, and

. 1 1
[ etz @)t = 5 [ (@) = 5o (323)

Thus, taking p. to be the measure representing the teacher network, p, = m% ot 04, (dz)d1(de),
we have

212 — z)|%v(dz "
/D 198, )1211.(d6) /D /Q 0(6, ) [2u(da) 1. (d6)

62
_ /D S 1)) (324)

1
S 2(d+1)

On the other hand,
2
1812 = [ | | o(e.ap.(do)] vida)
Q D
_ /f( / . . /
[ [ et @0y ia0) (325)
1 &
:W Z K(Zi, Zj)
t =1
In the experiments described in the main text, we take m; = 2, and z; and 25 are initialized with a

fixed random seed such that their angle, a2, equal to 1.766. Thus,

1
I £4l12 = 1 0+ 7)+ (sinaqg + (7 — a2) cos aga) =~ 0.012 (326)

1
(d+1)m 4(d+1)m

Together, we get a numerical value of the RHS of (46) if we replace jioo, foo and © by 1, fx and v,
respectively.
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