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1. Introduction
1.1. The problem

Let D be a bounded, strongly pseudoconvex domain in C™ with sufficiently smooth
(say C*, with k > 2) boundary, and let bD denote the boundary of D. Thus, there is
a real-valued, C*, and strictly plurisubharmonic defining function p such that D = {z :
p(z) < 0} and Vp # 0 on bD. Recall that the Bergman projection is the orthogonal
projection B : L?(D) — A?(D), where A%(D) is the Bergman space, which is the space
consisting of those holomorphic functions on D which are square-integrable. Similarly,
we recall that the Cauchy-Szegd (or simply Szegd) projection S : L?(bD) — H?(bD)
is the orthogonal projection of L?(bD) onto the holomorphic Hardy space H?(bD). We
define H?(bD) to be the following closure in L?(bD):

H?*(bD) :={f € L2(bD) : f = F|yp,F € Hol(D) and F € C9(D)}.

It is of interest to determine when the Bergman and Szegd projections extend to
bounded operators on LP. In the simpler case that D has smooth (C'*°) boundary, it has
been known for decades that B and S extend to bounded operators on L? if 1 < p < oo
because direct estimates can be obtained on the Bergman and Szegd kernels in both
cases (see [19]). If the domain is less regular, a more indirect approach is needed because
it is hard to obtain direct estimates on the kernels. Kerzman and Stein around the same
time developed a powerful idea that allowed them to relate the Szegé projection S to
a “Cauchy” integral operator C via an operator equation (see [8,9] for the one variable
and several variable cases, respectively). The essential idea, exploited in [8,9] as well as
numerous other papers in the literature, involves constructing an auxiliary operator C
that also produces and reproduces holomorphic functions inside D from boundary data,
and defining C to be a restriction of C to the boundary in an appropriate sense, so that
C is a singular integral operator. This operator C is given as a sum, C; + Cs, where
C, is constructed using the theory of Cauchy-Fantappié integrals and C, is a correction
term obtained by solving a & problem on a strongly pseudoconvex, smoothly bounded
domain that contains D (see, for example, [9,12,20]). Importantly, C; has a completely
explicit kernel. The operator C* — C then roughly measures the “error” introduced by
considering C instead of S.% A similar trick can be employed for the Bergman projection.

Since (Levi) pseudoconvexity is formulated in terms of second derivatives, if we are to
restrict our attention to strongly pseudoconvex domains (which are the domains on which
the above auxiliary operators can be constructed), we must at minimum assume that the
boundary of our domain D is C? for these questions to make sense. By passing through
these auxiliary operators, which have “non-canonical” kernels and are constructed using

3 Throughout this paper, we use the symbol * to denote the adjoint of an operator on L2(bD). Importantly,
the adjoint is taken on the unweighted Lebesgue space.
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the theory of holomorphic integral representations, it is possible to obtain boundedness
properties for the operators B and § without relying on explicit bounds for the Bergman
or Szegd kernels. This indirect approach was employed by Lanzani and Stein in [12,13]
to study these problems in the case that D has C? boundary. These results are the best
possible on strongly pseudoconvex domains.

In harmonic analysis, it is very common to consider the boundedness of integral opera-
tors on weighted spaces. The consideration of these problems goes back to the formulation
of the AP condition for the Hilbert transform by Hunt, Muckenhoupt, and Wheeden, see
[5]. In the context of the Szegé and Bergman projections, there seems to be two dis-
tinct questions that one could ask. One could consider the weighted Szegé (respectively
Bergman) projection, which is the projection from LZ(bD) to HZ(bD), where o is a
weight, and try to determine for which weights this projection is bounded on L?(bD) or
L2(bD). Alternately, one could consider the ordinary Szegd (Bergman) projection acting
as an operator on weighted spaces LP(bD). It is the latter question we address in this
paper.

The main results in the literature pertaining to the boundedness of the Bergman
projection on weighted spaces are due to Békolle and Bonami and consider the underlying
domain to be the unit ball B,, [1,2]. The correct condition for the weights, which turns
out to be both necessary and sufficient for boundedness on L2(B,,), is referred to as the
Békolle-Bonami, or B, condition. This weight class is defined using a Muckenhoupt-type
condition, but it is slightly altered to reflect the fact that the behavior of the weight away
from the boundary is not important. The correct generalization of their condition for an
arbitrary domain D is as follows: we say that a weight o belongs to the class B, if

p—1
sup - / cav || -1 / o~ V=1 gy
B(w,R);R>d(w,bD) V(B(w? R)) V(B(’LU, R))
B(w,R) B(w,R)
< 0.

Here V refers to Euclidean volume measure. The balls B(w, R) are taken in a quasi-metric
that is defined in the interior of the domain D that reflects the boundary geometry.

Considering the Szeg6 projection, there appear to be few weighted results that appear
explicitly in the literature. However, from a heuristic point of view, since the Szegd
projection involves integration on the boundary and is a true singular integral, the correct
class of weights should be an adaptation of the A, Muckenhoupt class in Euclidean
harmonic analysis. Therefore, the correct weight condition for the Szeg6 projection to
be bounded on L2 (bD) should be for ¢ to belong to an A, class on the boundary, where
the non-isotropic boundary “balls” reflect the geometry of the domain. In other words,
we consider weights o where the following quantity is finite:
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p—1

1 / 1 / -1
sup | ——=< | odu —— [ o T du < 00.
Bcbp \ 1(B) 2 n(B) e

The measure p in the definition is defined to be Lebesgue surface measure on bD. Here
B is used to denote a ball in an appropriate quasi-metric that reflects the boundary
geometry. In the case that D = D, the “balls” on the boundary are simply intervals on
the circle T, and the A, condition is the classical one for the boundedness of the Hilbert
transform on the circle (see, for example, [18]). We remark that analogous weighted
results for the ball are likely known to the experts.

1.2. Statement of main results

The main results of this paper are sufficient conditions on the weights o for the
L? boundedness of the Szegé and Bergman projections on domains with near-minimal
smoothness. This condition on the weights is precisely the A, condition (B, condi-
tion, respectively) in the setting of spaces of homogeneous type with the appropriate
quasi-metric on bD (respectively D). We will precisely define these metric quantities in
Sections 2.1 and 4.1. We are able to obtain the result for the Szeg6 projection in the
minimal smoothness (C?) case. In the Bergman case, because of a technical obstruction,
we must assume that our domain possesses a C* boundary. Our two principal results are
as follows:

Theorem 1.1. Let D be strongly pseudoconver with C? boundary. Then for 1 < p < oo
and o € A, the Szegd projection S extends to a bounded operator on LL(bD).

Theorem 1.2. Let D be strongly pseudoconvex with C* boundary. Then for 1 < p < oo
and o € B, the Bergman projection B extends to a bounded operator on LP(D).

We remark that in the case that D has C® boundary, our results for the Szegé projec-
tion can be considerably sharpened. In fact, in this case it is possible to explicitly relate
the extension of the Szegd projection on the weighted space to the auxiliary operator
C using an operator equation. See Theorem 2.1 in the beginning of Section 2 for more
details. See also Theorem 4.1 in the beginning of Section 4 for a more detailed version
of Theorem 1.2.

Note that these theorems only give sufficient conditions, not necessary conditions.
Notably, our methods are only suited to proving the sufficiency of the A,/B, condition,
not the necessity. To obtain any results concerning the necessity of the A,/B,, condition,
it seems likely one would instead have to study the operator S or B directly and obtain
novel estimates on the kernel function.
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1.8. An outline of the proof

For the remainder of the introduction, we provide a broad strokes outline of the
method of proof so the reader has an idea of how the various pieces will fit together.
Recall that via an idea of Kerzman and Stein, the Szego projection S can be related to a
“Cauchy integral” C. It can be shown that the operator C is a (non-orthogonal) projection
from L2(bD) to H?(bD). Thus, we obtain the following two operator identities relating
S and C on L?(bD):

SC=C, CS=S.

Taking adjoints of the second identity, subtracting from the first and some further
manipulation yields the following operator identity:

S(I—(C*-C)=C. (1)

We will subsequently refer to (1) as the Kerzman-Stein equation. Note that if (I —
(C* —C)) is invertible on L?(bD) (this is true in the case D is C*°, see [9]), we arrive at
an explicit formula for S in terms of C:

S=cI-(c —¢c) .

At this point, it should be noted that a completely analogous approach can be em-
ployed for the Bergman projection in which the Cauchy-Fantappié integral, which we
denote by T, is taken over the solid domain rather than the boundary (this approach
was used to prove certain regularity properties of the Bergman projection; see for exam-
ple [14,15]). Now perhaps the reader can see the utility of such an approach in proving
L? estimates. To prove that the Szegd (or Bergman) projection extends to a bounded
operator on LP, one must prove the following two facts concerning C (respectively T ):

1. The operator C is bounded on L?;
2. The operator (I — (C* —C)) is invertible on LP.

The regularity of the domain is crucial in assessing whether the operator (I —(C*—C))
is invertible on LP. If this operator is to be invertible, the “error” C* — C must be small
in some appropriate sense (for example, compact, smoothing, and/or with norm less
than 1). In particular, for the Szeg6 projection, we will require the domain to be C? (for
this method of inversion), while for the Bergman projection we will require the domain
to be C*.

As mentioned previously, in [12,13], Lanzani and Stein considered the situation of min-
imal regularity and proved that the Cauchy-Szegé and Bergman projections are bounded
on LP for 1 < p < oco. In the case of the Szeg6 projection they transfer the question of
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boundedness to real-variable singular integral theory via the theory of spaces of homoge-
neous type. Recall that a space of homogeneous type is a triple (X, d, 1) where X is a set,
d is a quasi-metric on X, and p is a measure on X that is doubling on the balls induced
by the quasi-metric. Lanzani and Stein show that the kernel of the operator C satisfies
the appropriate size and smoothness estimates with respect to this quasi-metric (more
precisely, they consider the kernel of the “main part” of the operator, C?; there is an
error term they also must handle). The celebrated T'(1) Theorem in harmonic analysis is
then invoked to establish that the operator C is bounded on L?(bD). This result together
with the kernel estimates of course implies that C is bounded on LP(bD) for 1 < p < oc.
With appropriate control on the “error term” C* — C, Lanzani and Stein establish that
S is bounded on LP(bD) for 1 < p < oco. The approach to the Bergman projection is
similar insofar as it uses the Kerzman-Stein operator equation, but it is simpler because
singular integral theory is not required. Instead, Schur’s test for positive operators is a
major ingredient in the proof.

We follow the general program of Lanzani and Stein in the weighted setting in the
next section. In particular, we use the same construction of the auxiliary operator that
goes back to Kerzman, Stein, and Ligocka in [8,9,15], and we obtain the Kerzman-Stein
equation. In the case of the Szegé projection, we obtain weighted LP bounds on the
auxiliary operator C using the same real-variable singular integral approach in [12]. The
weights belong to an A, class induced by the quasi-metric on the boundary of D.

In the case of the Bergman projection, Schur’s Test is ill-equipped to deal with weights
other than radial weights, so a new approach is needed. In particular, to prove the
operator T is boudned on L2 (D), we must use a modified singular integral theory and
view the Bergman projection as a kind of Calderén-Zygmund operator with respect to
an appropriate quasi-metric. This idea was precisely the one used by Békolle and Bonami
when they obtained weighted LP estimates for the Bergman projection on the ball when
the weight belongs to the B, class (see [1,2]). Notably, we use key ideas developed by
McNeal in [16,17] and other papers that show the Bergman projection can be viewed
as a singular integral operator for several important classes of pseudoconvex domains.
Combining ideas from these papers, we define a B,, class of weights adapted to our domain
and prove that the auxiliary operator 7 is bounded on weighted LP. The authors recently
took a similar approach when studying the Bergman projection directly in the case when
D has smooth boundary, see [6,7]. In particular, our results for the Bergman projection
in this paper constitute a generalization of the result in [6], because the quasi-metric is
the same as the one in that paper.

In both cases, to show that the operator (I — (C* —C)) (or I — (T* —T)) is invertible
on L2 when o € A, (or B,), we prove that C*—C (respectively 7*—7T) is compact on L%
for o € A, (respectively B,) and also “improves” LP spaces. Using the Kerzman-Stein
equation, this grants the boundedness of S (respectively B) on LZ.

Because Lanzani and Stein assume less regularity, our approach entails an application
of their arguments in a simpler setting, so some technical obstructions in their paper
can be ignored. In particular, Lanzani and Stein consider an entire family of Cauchy-
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Fantappié type operators C. with parameter e, while we only need to consider a single
auxiliary operator C (this can be viewed as a special case of the operators in [12] with
¢ =0). A major technical obstruction in their papers is that the operator (I — (C} —C;))
is no longer invertible on LP, so they must split it appropriately.

As mentioned previously, we are actually able to obtain the same result for the Szegé
projection in the case of minimal (C?) smoothness. Here we follow the approach in [13]
of “partially inverting” (I — (C¥ — C.)) by writing

C;k*cs:-As +Dsy

where A, has small norm for sufficiently small e so I — A, is invertible on L2(bD)
using a Neumann series. We only focus on p = 2; the general result may be obtained
via extrapolation (see [21]; extrapolation still holds in spaces of homogeneous type).
The result can also be obtained directly without extrapolation, but no new significant
information is obtained. The operator D, may in general be unbounded in norm as & — 0,
but it does map L2(bD) to L>(bD), which turns out to be enough. The reverse Hélder
property of A, weights is the only key property we use in the proof. However, because
B,, weights do not satisfy a reverse Holder inequality (see [3]), we are unable to obtain
the same minimal regularity result for the Bergman projection.

This paper is organized as follows. Sections 2 and 3 are devoted to the Szegd projection
while Section 4 focuses on the Bergman projection. Section 2 focuses on the case where
D is C? and sharper results can be obtained, while Section 3 focuses on the minimal
smoothness case and proves the full strength of Theorem 1.1. At the beginning of each
section, the first subsection introduces the background material and the construction of
the relevant integral operators. The latter subsections deal with the proofs.

2. The Szegd projection on C23 domains

In this section, we assume that D is a strongly pseudoconvex domain of class C3. We
aim to prove the following theorem, which corresponds to a special case of Theorem 1.1
but also provides more detailed information about the connection between the main and
auxiliary operators that is unavailable in the minimal smoothness case.

Theorem 2.1. Let D be strongly pseudoconver with C® boundary. Then for 1 < p < 0o
and o € A, the following hold:

1. The operator C* — C is compact on LE(bD).

2. The operator I — (C* — C) is invertible on LE(bD).
3. The Szegd projection S extends to a bounded operator on LE(bD) and satisfies

S=c(I—(C -0c)
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2.1. Background and setup for C® domains

The first step, following the approach of Lanzani and Stein as well as many other
authors, is to construct an integral operator that reproduces and produces holomorphic
functions from integration of their boundary values. To begin with, define the Levi
polynomial at w € bD:

=S 0 e ey LS o,
P,(z) .—;awj(w)(z] wj)—i—zj;lawjawk(w)(zj wj) (2K — wg).

Using the strict pseudoconvexity of D, it is possible to choose a C*° cutoff function y
and a constant ¢ so that x = 1 when |z — w| < ¢/2 and x = 0 when |z — w| > ¢ so that
the function

g(w, ) = x(=Pu(2)) + (1 = x)|w — 2

satisfies

Re(g(w, 2)) 2 —p(2) + Jw — 2| (2)

for z € D (see [13]).

Recall that a generating form n(w, z) is a form of type (1,0) in w with C! coefficient
functions such that (n(w,z),w —z) = 1 for all z € D and w in a neighborhood of bD
[10]. Here (-,-) denotes the action of a 1-form on a vector in C™. The importance of
generating forms lies in the construction of Cauchy-Fantappié integrals. The upshot of
(2) is that we can construct a generating form as follows: define the following (1,0) form
inw

e w; 2 k=1 8w]8wk
+(1-x) Z(EJ z;) dw;
j=1
Then define for w € bD, z € D
G(w, z) G(w, z)

n(w, z) = (G(w, 2),w — z) N g(w,z)

Then it is immediate that 1 is a generating form. As in [12,20], define the associated
Cauchy-Fantappié integral operator
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CUNE) = e [ 1WA @) 2)
webD
- flw G A (OG)" Y (w, 2))
— (27i)n / (g(w, 2))™ ’
webD

where j : bD — C™ is the inclusion map. The point is that this operator reproduces
holomorphic functions that are continuous up the boundary, as made precise in the
following proposition (see [12]):

Proposition 2.2. Let F' be holomorphic on D and continuous on D, and let f = F|yq.
Then there holds for z € D

The problem now is that C; does not necessarily produce holomorphic functions, as
the form 7 is not necessarily holomorphic in z. This difficulty can be overcome by solving
a 0 problem on a strongly pseudoconvex, smooth domain  that contains D (see [12],
or for more details [20]). One has the following:

Proposition 2.3. There exists an (n,n — 1) form (in w) Co(w, z) that is C* in w and
depends smoothly on the parameter z € D so that the following hold for the operator
C=C; +Cy:

(i) C(f)(z) = F(z) for F holomorphic on D and continuous on D, where f = F|pq;
(ii) C(f)(z) is holomorphic for f € L*(bD).

Here,

Note that importantly

sup |Ce(w, 2)| < oo. (3)
2€D,webD

Thus, C is an operator that produces and reproduces holomorphic functions from
boundary data.

Next, we proceed to define the relevant quasi-metric on the boundary of D for our
analysis. Let d(w,z) = |g(w, 2)|*/2. Then d(w, z) satisfies all the properties of a quasi-
metric or quasi-distance. In particular, one has the following, as in [12]:

Proposition 2.4. Let d(w, z) = |g(w, 2)|'/2. Then the following hold for w,z,¢ € bD:
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(i) d(w,z) >0 and d(w,z) =0 iff w = z;
(i) d(w, 2) = d(zw);
(iit) d(w,z) S d(w, () +d(C, 2)-

By considering the equivalent metric d(w, z) + d(z,w), we might as well assume prop-
erty (ii) holds with equality (and we make this assumption henceforth). Denote a ball in
bD in the quasi-metric with center z and radius § by B(z,¢). It is a fact that

1(B(z,0)) ~ 8", (4)

where p denotes induced Lebesgue surface measure on bD.
We also have the important estimates in [12]:

lw—z| < d(w,z) S |Jw— 2|2 (5)
We now introduce the Leray-Levi measure A on bD. This measure is defined
d\(w) = j*(9p A (00p)" 1)/ (2mi)".

The use of this measure is crucial in Lanzani and Stein’s paper in the computation of
an adjoint operator (they do not have apriori boundedness so the existence of the adjoint
is not clear), but it turns out to be equivalent to Lebesgue measure in a certain strong
sense. In particular, we have

dA(w) = Aw) dp(w), (6)

where A(w) is a function bounded above and below for all w € bD. More explicitly, the
function A is given by

A(w) = (n = 1)!(4m) "] det p(w)||V p(w)

where det(p(w)) is the determinant of the (n — 1) x (n — 1) matrix of second derivatives:

62p n—1
{8zj82k (w)}j,k_l

and z = (21, 22, ..., 2,) is computed in a special coordinate system (see [12] for details).
Crucially, note that A is Lipschitz, since p is of class C3. The importance of this fact will

become clear in the proof of Lemma 2.13.
An important result, also in [12], is as follows:

Proposition 2.5. The triple (bD,d,d)\) forms a space of homogeneous type (in the sense
of the theory of singular integrals).
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Note we could replace the Leray-Levi measure by induced Lebesgue measure and
the above result would still be true, since the function A(w) is bounded above and
below uniformly. Below, for a measurable set S C bD, when we write u(S), we refer to
its Lebesgue surface measure, but in every case we could replace it by the Leray-Levi
measure and the result would still be true.

We now want to essentially consider the restriction of the operator C to the boundary
bD and obtain a singular integral operator C that maps LP(bD) to LP(bD). Explicitly,
Lanzani and Stein define

C(N)(=) = C(f)(2)lbn

when f satisfies a type of Holder continuity, namely

|f(w1) = flw2)] S d(wr, w2)*

for some a with 0 < a < 1. In this case one can show C(f) extends to a continuous
function on D, so the above definition makes sense. The operator C, while initially defined
only on certain functions, actually extends to a bounded linear operator on LP(bD) (this
is proven in [12] using the T'(1) theorem).

Now, it is useful to break the operator C into a main term and an error term as
follows:

C=C'+R,

where

and R absorbs the error from replacing the numerator of the Cauchy-Fantappié integral
with the Leray-Levi measure as well as the error from the operator Cs, which in fact
has a bounded kernel by (2). If we let R(w, z) denote the kernel of the operator R, we
can obtain the crucial estimate (see [12] again):

[R(w, 2)| € d(w,2) 72", (7)

Note that it is immediately obvious that the kernel of C* is bounded above by a

multiple of d(w, z)™2"

, so we see that the operator R is “less singular” in a sense than
the operator C*.
As before, for functions that satisfy the Holder continuity condition as above, we can

define

C¥(f) = C*(f)lop
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and thus obtain the decomposition for the operator C
C=C'+R.

Finally, we define the so-called A,, classes of weights on 0D for 1 < p < co with respect
to the quasi-metric:

Definition 2.6. A function o € L' (bD) that is positive almost everywhere is said to belong
to the class A, if the following quantity is finite:

p—1

olp:= sup | —= [ odu —— [ or-1du
= 50 \ B w(B)

B

where B is a ball in the quasi-metric d.

Additionally, we can define a suitable maximal function with respect to this quasi-
metric on bD:

Definition 2.7. The Hardy-Littlewood Maximal Function is defined, for f € L*(bD)
M) = sup s [ 1) diw)
B>z W(B) %

where as before B is a ball in the quasi-metric d.
We also define A; weights with respect to the same quasi-metric:

Definition 2.8. A function o € L!(bD) that is positive almost everywhere is said to belong
to the class A; if the following estimate holds for all z € bD:

M(o)(z) S o(2).
We have now set up all the machinery we need to prove Theorem 2.1.
2.2. The main term

We proceed to analyze the “main term” C*. It should be noted in what follows that in
the C? case considered in [12], certain implicit constants depend on € and can even blow
up as € — 0. This is not the case in the C? case, as there is only one &, namely ¢ = 0,
for which there is no analog in the C? case. We have the following size and smoothness
estimates for the kernel of C* given in [12]:
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Proposition 2.9. Let K(z,w) = g(w,2)™" denote the kernel of C* with respect to the
Leray-Levi measure. Then there holds:

(i) |K(zw)| S d(w,z)7*";

.. ’ d(w,w’) .
) - 9 ~ on+1 ) = ) ’

(i) |K(z,w) — K(z,w")| < T for d(w, z) > ed(w,w")

(iii) |K(z,w) — K(z,w)| < d(f,(,ii’fz/n% for d(w, z) > ed(z,2'),
where ¢ is some appropriately large constant.

Lanzani and Stein also prove the following result by invoking the 7T'(1) theorem:
Theorem 2.10. The operator C* is bounded on L*(bD).

Theorem 2.10 and Proposition 2.9 demonstrate that the operator C* is Calderén-
Zygmund in the sense of spaces of homogeneous type, and consequently the weighted
theory of real-variable harmonic analysis applies to this case. Thus, we have the following
result:

Theorem 2.11. Let 0 € A,, where A, is defined as above. The operator Ct is bounded
from LP(bD) to LE(bD), 1 < p < oo.

Proof. This is an easy consequence of classical singular integral theory on spaces of
homogeneous type. The only remark that needs to be made is that the equivalence of
the Leray-Levi measure and Lebesgue measure in (6) must be invoked because the kernel
above is with respect to Leray-Levi measure, not Lebesgue measure. In particular, if
o € A, as we have defined it, then o is in A, with respect to the Leray-Levi measure. By
Calderén-Zygmund theory on spaces of homogeneous type, the operator C? is bounded on
LP(bD, o d\), and hence bounded on L?(bD, o dys) by the equivalence of the measures. 0O

2.8. The error terms

Let C* denote the adjoint of C with respect to Lebesgue measure. We now proceed to
deal with the error terms R as well as C* — C. Both of these terms will play a role in the
proof of the main theorem in the subsequent section. We know from (7) that the kernel
of the “remainder operator” R is “less singular” than the main operator C*. We proceed
to show that this is also true for the kernel of the “difference operator” C* — C. First we
need a preliminary proposition, which is similar to an argument that can be found in
[20]:

Proposition 2.12. The following estimate holds for w,z € bD:

lg(w, 2) — g(z,w)| < [w — 2.



14 N.A. Wagner, B.D. Wick / Advances in Mathematics 384 (2021) 107745

Proof. Tt suffices to prove the estimate when |w — z| < ¢/2, so we can assume g(w, z) =

—P,(z) and g(z,w) = —P,(w). To avoid cumbersome notation, we use the shorthand
2
65;’; (w) = pj(w) and W( w) = p;x(w). Recall the Levi polynomial at w is defined as

z) :ij(w)(zj Z Pike(w)(zj — w;)(2k — w).

]kl

We also define the Levi form

Z awj@wk zj — w;)(Zk — W)

The Taylor expansion (in w) of p;(w) about w = z is

i(w) = pj(2) + k() (Wi — 21) + +O0(lw— 2
po(0) = p3(2) 4 3 (2w = ) Z%M ) + Ol — )
while the Taylor expansion of p; ;(w) gives

pik(w) = pjr(2) + O(lw — z|).

Substituting these Taylor expansions into P,(z), we obtain

Pu®) =Y 0y — )~ 13 pra(2) (s — ) — )

Jj=1 j,k=1

On the other hand, we have

n
:E _Zj

— %) (Wk — Z)-

l\DlH

A computation shows
P.(w) — Py(2) = 2ReP.(w) + L. (w) + O(lw — z|*).
Then just use the well-known fact that
plw) = p(2) + 2ReP.(w) + L. (w) + O(|lw — z|3),

together with the fact that p(z) = p(w) =0 as w,z € bD. O
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This proposition will allow us to prove the following lemma. Again, the argument is
essentially from [20].

Lemma 2.13. Let K (z,w) denote the kernel of (C*)* —C* with respect to Lebesque measure
dp. Then the following estimate holds:

K (z,w)| S d(w,2) 72"

Proof. Here we need to come to grips with the distinction between the Leray-Levi mea-
sure d\ and the Lebesgue measure dyu. Note that if (C*)T denotes the adjoint of C* taken
with respect to the Leray-Levi measure, then we have the relation (C*)T = A(C*)*A~! (see
[12]). Let K (w,z) denote the kernel, with respect to d), of the operator (C*)T — C*. It

is immediate that K, (w,z) = g(z,w) - g(w, z)~™. Compute to see

Kz 0)| = [AE) g w) " A@)IA @) = glw, 2) " Aw)

- ‘A(z)g(z,w)’" — g(w,2) 7" A(w)

< JA(2) = Aw)llg(z, w)[ 7" + [A(w) || KL (w, 2)]
< |z —wld(w, 2) ™" + | K1 (w, 2)]

< d(w, 2)7" 4 K (w, 2)].

Here we use the fact that A is Lipschitz. Then, compute to see:

—n

K (z,w)| = [g(z,w) " — g(w, 2)

n

g(w,2)" — g(z,0)
g(w, 2)g(z,w) "

S d(w, z) 720
where in the last estimation we used Proposition 2.12. O

One can show using a special coordinate system that

sup /d(w,z)f%ﬂ dp(w) < oo (8)
zEbDbD
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(see [12] or [20]). This result can also be obtained by integrating over dyadic “annuli” as
we will later see. Thus, we see that R and (C*)* — C* have integrable kernels, while C*
does not.

Now we show the these kernel estimates are not only enough to guarantee boundedness
on weighted LP spaces; they are actually enough to guarantee compactness which is
much better. The following proposition allows for good control of the integration of an
A; weight o against a kernel K(z,w) which satisfies the size estimate above.

Proposition 2.14. Let K(z,w) be a kernel measurable on bD x bD that satisfies the size
estimate |K (z,w)| < d(w,2)72" "1, and let 0 € Ay. Then the following estimates hold
for all z,w € bD:

[ 1K Gwlotw) dutw) S do(z)
B(z,8)

(K (z,w)|o(2) du(z) S do(w).

B(w,d)

Proof. Break the region of integration up into dyadic annuli and estimate the integral

as follows:
|K (2, w)|o(w) dp(w)
B(z,6)
s [ dws) o) dutw)
B(z,9)
= d(w, z)"*" o (w) dp(w)
=0 B(2,2-16)\B(z,2-(i+15)
< Z / 2(—(i+1)(—2n+1))5(—2n+1)0_(,w) d,u(w)
i=0

B(2,2-16)\B(2,2- (i+1)§)

1

< 2(—(i+1)(—2n+1))5(—2n+1) B(z2.927%)—0—
<2 HBE2 ) B )

=0

| owintw

B(z.2-15)
< Z 221975 M () (2)
i=0
< 0M(0)(2)
< do(z).
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Note all implicit equivalences are independent of w and z. The proof of the other
statement is completely analogous. 0O

Note if K(z,w) is the kernel of an integral operator satisfying the size estimate of the
previous proposition, then K is “integrable” in the sense that

= g K (2 w)| dp(w) < oo, (9)

and obviously (9) still holds if the roles of z and w are interchanged. This can be seen
by taking ¢ = 1 and ¢ sufficiently large in Proposition 2.14. But in fact, we can say
something slightly better. The proof of the following proposition is essentially a reprise
of Proposition 2.14 taking ¢ = 1 with obvious modifications.

Proposition 2.15. Let K(z,w) be a kernel measurable on bD x bD that satisfies the size

estimate |K (z,w)| < d(w, 2)"?"*1, and let € € [0, ). Then the following hold:

sup [ ()| dufu) < o0
zEbDbD

sup /|K(z,w)|1+5 du(z) < 0.
waDbD

As a consequence of this proposition, we can prove that an integral operator K that
has a kernel with the above size estimate “improves” L? spaces. This was noted before
in [9] using a slightly different approach.

Proposition 2.16. Let K be an integral operator on LP(bD) with a kernel K(z,w) that
satisfies the size estimate |K(z,w)| < d(w,z)~2" L. Then K maps LP(bD) to LPT¢(bD)
boundedly for p>1 and e € [0, 5.1).

Proof. We first demonstrate the result for p = 1 and then show how this implies the
result for p > 1. Take f € L*(bD) and ¢ € [0, ﬁ) Then compute, using Minkowski’s
integral inequality and Proposition 2.15:

1
14-¢ 1+e

] [KGwswduw)|

bD [bD

14-¢ 1+e

< / / K ()| (w) du(w) | dia(z)

bD bD
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< / / K)o du(z) | 1) du(w)
bD bD
<11l wp).

To obtain the result for p > 1, proceed as follows, using Hoélder’s inequality with
exponents p and ¢:

pte e
[ K wiw )| duz)
bD | bD
pte ﬁ
< ( K (2, )| VP | K (2, 0) V) f(w) | dp(w) | dp(z)
< ( K (2, w)| du(w) [IKGwlf@P dute) | dutz)
bD
< ( Kz o)l f@)P du(w) | du(z)
_ //IszIIf( WP du(w) | du(z)
bD
< / K ()5 du(z) | |F )P duw)
bD bD
S fllzewpy-

In the penultimate line, notice we apply Minkowski’s integral inequality with exponent

p% =1+ 7 and with respect to measures |f(w)[? du(w) and du(z). O

Thus, we obtain the following important corollary:

Corollary 2.17. The operators R, R*, and (C*)* —C* map LP(bD) to LP*=(bD) forp > 1
and € € [0, 3-15).

We now turn to a proof of the major lemma concerning the error terms. This lemma
adapts an argument that can be found in [20] to the weighted setting. It also should be
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noted that components of this proof are analogous to a “weighted Schur test,” which
appears to be well known, see, for example, [22].

Lemma 2.18. Let K (z,w) be a measurable function on bD x bD satisfying the following
for all z,w € bD and all weights o € A;:

(1) Jpeas) K (z,w)|o(w) du(w) S C(6)o(2);
(1)) [0 K (2,w)l0(2) du(z) S C(6)o(w);
(iii) For any fized 6 > 0, the kernel K(z,w) is bounded on

bD x bD\ {(z,w) : d(z,w) < §}
(with a bound that depends on 0).

Furthermore 0(6) tends to 0 as § — 0. Then the operator K defined by K(f)(z) =
Jop K (w) du(w) is compact on L2(bD) for o € Ap.

Proof. First, consider the case when K is bounded on bD x bD, say ||K||p@up) < M.
Let o € A,. Then note that the kernel of the operator K with respect to the weighted
measure do = o du is K(z,w) = K(z,w)o~ (w). To prove compactness on L?(bD), it
suffices to show the following double-norm is finite (it is well-known the finiteness of this
double-norm implies compactness, for example see [4]):

p/q

/\f((z,w)\qda(w) do(z),

bD bD

where g denotes the Holder exponent conjugate to p. Then we have

r/q r/q

[ [ikGwraw) o= [ [igEome s dw ) o

bD bD bD bD
<MPHU||L1(bD HU" ||L1(bD)
< o0

since o, o1 are integrable on bD. Thus the theorem holds in this case.
To pass to the case where K is unbounded, let §; = % and

Let K; be the integral operator with kernel K. Then, by hypothesis K; is bounded
on bD x bD and by the argument above, IC; is compact on L (bD). Since the compact
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operators are a closed subspace of the Banach space of bounded linear operators on
L?(bD), if we can show that the operators K; approach K in operator norm, we will be
done.

To this end, let f € LL(bD) with ||f||1zp) < 1. Note that as o € A, we can write

where 01,02 € Ay by the factorization of A, weights in the setting of spaces of homo-
geneous type (see, for example, [21] for a proof of this well-known fact). By Holder’s
Inequality applied to the functions |K(z,w) — K;(z,w)|"909(w)*/? and |K(z,w) —

K.

i(2,0)[YPay(w) 9| f(w)| and then applying Proposition 2.14, we obtain the estimate:

(K = K)(N)2)] < / K (2, w) = K (z,w)|| f(w)] dp(w)
bD

1/q
- /\Mawmmmmm
B(z,65)
1/p
x / K (2, w)|(02(w)) | f (w) [ dpu(uo)
B(z,65)

1/p

S0 oo | [ K wl(e2w) I w)P da(w)

B(z,6;)

Thus, we obtain, applying the proceeding estimate, Fubini, and Proposition 2.14 again:

10 =K g < [ CONfa(a)f K (2, w)] (02(w)) P | (w)|P dps(aw)
bD B(2,5;)
;EQTW@
%/'/ 02 ()P | () P dpu(w) 04 (2) dp(2)
bD B(z,5;)

—c)t [| ] IKGwn ) )

bD \ B(w.s))

x| f(w)[P (o2 (w))' 7 dpu(w)
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<O,y / o1 ()] (@) P (02(w)) P dp(w)

bD
= CE) I o)
< C(5;)".

Letting j — oo, we have §; — 0 and C(d;) — 0. Thus, it immediately follows that
the operators /C; approach K in operator norm and hence K is compact. O

The preceding lemma admits the following, very useful corollary:
Corollary 2.19. The operators R, R*, and (C*)* —C* are compact on L2 (bD) for o € A,.

We need one more crucial lemma to conclude our analysis of the error terms and allow
us to present the proof of Theorem 2.1 in the next section.

Lemma 2.20. Let K be an integral operator on LP(bD) with a kernel K (z,w) that satisfies
the size estimate |K(z,w)| < d(w,z)™2" L. Further suppose that iK is self-adjoint on
L2(bD). Then 1 is not in the spectrum of K considered as an operator on LP(bD), where
o is an A, weight.

Proof. First, note that 1 is not an eigenvalue of K considered as an operator on
(unweighted) L2(bD). So suppose to the contrary that there exists an eigenfunction
f € LE(bD) such that Kf = f. We assert f € L*(bD). To see this, note by Hélder

[ 17l dutw) = [ 1#@)otw)7ow) "/ dutw)
bD bD

__1 1
< HfHLﬁ(bD)HO' p71|‘L/1q(bD)

< 0.

Then, by Corollary 2.17, f € L'*¢(bD). In particular, we have

||f||L1+5(bD) = H]CfHLl"'E(bD)
S llzrep)

< Q.

But since Kf = f, we can repeat this argument to obtain f € L'*2¢. In fact, we can
iterate this argument arbitrarily many times to obtain that f € LP(bD) for all p > 1!
In particular, f € L?(bD). This contradicts the fact that 1 is not an eigenvalue of K
on L2(bD). Since K is compact on L2(bD) by Corollary 2.19 (or rather the arguments
leading to this corollary), this implies 1 is not in the spectrum of K on L2(bD), as
required. O
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2.4. Proof of Theorem 2.1

Equipped with these definitions and results, we are in a position to prove Theorem 2.1.
As discussed, the essential ideas in this proof have been around for a long time and can
be found, for example, in [8,9].

Proof of Theorem 2.1. First, note that both S and C essentially produce and reproduce
boundary values of holomorphic functions: they are projections onto H?(bD) (this is
proven precisely in [11]). Consequently, we obtain the following two operator identities
on L?(bD): SC = C and CS = S. Taking adjoints of the second identity and using the
fact that the Szeg6 projection is self-adjoint, we get SC* = S, and further manipulation
yields S(C* —C) = S — C, or S(I — A) = C where I denotes the identity operator and
A = C* — C. By Theorem 2.11 and Corollary 2.19 and, we know that C = C* 4+ R is
bounded on L2 (bD) for o € A,.
Next, we assert that the operator A is compact on L2 (bD). To see this, write

A=(CH* —CP+(C*—C) + (C* = (CH*) = ((CH* = C) =R+ R*

and appeal to Corollary 2.19. Next, an easy computation shows that iA4 is self-adjoint
on L?(bD). It follows from Lemma 2.20 that 1 is not in the spectrum of A considered as
an operator on LP(bD) and hence the operator (I — .A) is invertible on L2 (bD). Thus,
we may write

S=C(I-A)"

and conclude that S extends to a bounded operator on L2 (bD) since both C and (I—.4)~!
are bounded on L2 (bD). Thus, we have established all parts of Theorem 2.1. O

3. The Szegd projection on C? domains
3.1. Background for C? case

We now consider what modifications are necessary to prove Theorem 1.1, as in [12].
From now on we assume D has boundary of class C?, but all the other assumptions
about D and p from before remain in force. We shall be brief, as basically the same
setup applies with one crucial change. This involves uniformly approximating the second
derivatives of p by differentiable functions. In particular, since that boundary is of class
C?, we must replace the second derivatives éhi%w by an n x n matrix of {75, } of Ct
functions satisfying

ap - )
—r — 76 < 1<j5,k<n.
jélbp u, o0 (w) =75 p(w)| <e 1<j,k<n



N.A. Wagner, B.D. Wick / Advances in Mathematics 384 (2021) 107745 23

Now we define the analogs of g(w, z), G(w, z) and n(w, z) In particular, define

~ O

dw; Tiw(w)(w; = 25) (wy — 2)

ge(w, 2) :== x (w)(wj — zj) —

1
, 2

n
Jj=1 J,k=1

+ (1= x)|w — 2

where y is the same C°° cutoff function as in the C? case. If ¢ is taken sufficiently small,
we have the analogous estimate

Re(ge(w=z)) 2 —p(Z) + |w - Z‘Zu

where the implicit constant is independent of ¢.
In the same way, we define the (1,0) form in w G¢(w, z) as follows:

G.(w,2) :=x Z a—j(w)dwj ~5 Z 75 (W) (wy — 2x)dw; | +(1-x) Z(wj—zj)dwj.
g=1""7

k=1 j=1

As before, we define for w € bD, 2z € D:

Then of course 7. is again a generating form. Therefore, we can construct the associ-
ated Cauchy-Fantappié integral operator C! in exactly the same way as we constructed
C,, with 7. playing the role of 7. In particular, the analog of Proposition 2.2 holds for
cl.

The issue, again, is that C. reproduces but does not produce holomorphic functions.
Again, we can introduce a correction operator C2 and consider the operator C = C. +
C2. Proposition 2.3 will hold in this case; the operator C. will reproduce and produce
holomorphic functions.

The rest of the setup follows basically identically. The definition of the Leray-Levi
measure d\ does not change, except now A will merely be a continuous rather than
Lipschitz map. The quasi-metric d will be defined in the same way, namely

d(w, z) = |ge(w, 2)['/?

and will satisfy the same properties, including (bD, d, 1) being a space of homogeneous

type.
We can again consider the operator
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and this definition makes sense when the function f is Holder continuous with respect
to d as before. We also can obtain the decomposition

C.=C!+R.
where
cie) = [ s ixw)

bD
and the kernel R.(w, z) of the operator R, satisfies
|R(w, 2)| < ced(w, z) 2T,

Here c. denotes a constant that can depend on e.
Restricting this decomposition to the boundary, it is possible to obtain the following
operator equation, acting on an appropriate class of functions:

C. =Cl + R..

The class of A, weights and the maximal function are defined in the exact same
manner as before.

This concludes our reiteration of the preliminaries for the C? case. The reader is
invited to consult [12] for more details.

3.2. Weighted estimates in the C? case

We now demonstrate how weighted LP bounds can be obtained in the C? case.
Throughout we closely follow the arguments in [12]. First, note that we can still ob-
tain the Kerzman-Stein equation in the same way as before. Thus, we have on L?(bD):

S - (€~ C.)) =C.. (10)

In this case, we will be unable to invert the operator (I — (C — C.)). It suffices to
prove that S is bounded on L2 (bD) for all o € Ay; then we can appeal to extrapolation.
To begin with, we have:

Lemma 3.1. For o € Ay the operator C. extends to a bounded operator on L2(bD) and
in particular satisfies

ICefllz2 D) < ceollfllz2 D)

where c. , 15 a constant that depends on € and the weight o.
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Proof. First, the operator C! is Calderén-Zygmund (see the proof of [12, Theorem 7]);
however, the constants in its smoothness estimates do depend on &. The bound on the ker-
nel of R. in fact implies that it is compact on L2(bD) by the arguments in Lemma 2.18.
This finishes the proof. O

The dependence of the constant on € turns out not to be an issue because ultimately
in the course of the proof we will fix ¢ sufficiently small and do not need to take a limit
as e — 0.

Next, we need to break up the operator C; — C.. Roughly, we break the kernel of C,
into pieces supported on and off the diagonal w = z. Let s = s(¢) be a parameter chosen
depending on €. We write

Cc=C.+R:
where

C2(f) = Ce(fxs)

and ys(w, z) is a symmetrized smooth cutoff function that is 1 when d(z,w) < ¢s and 0
when d(z,w) > s (see [12] for details). Thus,

C: —C.=[(C2) -+ [(R)” —Re] == A + De.

It is immediate from previous discussions that for fixed ¢, s, the kernel of R? is
bounded. It is then an entirely straightforward exercise using Holder’s inequality and
the integrability of o that RS boundedly maps L2(bD) to L>(bD).

We now need to deal with the other term. First, we state a lemma ([12, Lemma 24])
that we will later need. It is a decomposition lemma that partitions C® = R?" into cubes
at various levels. In particular, let Q} denote the unit cube centered at the origin in C",
and for k € Z" let Q,1C = k + Q} be its integer translates. For v > 0, let L= YQ4
Note that for a given cube @], there are at most N = 32" cubes that touch it; i.e. whose
closures have non-empty intersection.

Lemma 3.2. Fiz v > 0. Suppose T is a bounded operator on L2(bD) that satisfies:

1. 1;T1y, = 0 if the cubes Q] and Q) do not touch.
2. ||[1;T1g|[zz < A otherwise.

Then T satisfies
7)1z < AN.

Proof. The proof is identical to the one given in [12]. The underlying measure is now
o du as opposed to just Lebesgue measure, but the argument is the same. O
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We have the following lemma:
Lemma 3.3. Given € > 0, there exists an s = s(¢) so the following holds:
€)™ = Cellrzppy < /°M,
where the constant M, depends on the weight o but not €.

Proof. Here the distinction between the Leray-Levi measure and Lebesgue measure be-
comes important. As before, let t denote the adjoint of an operator taken with respect
to Leray-Levi measure, and write

€ —C.=[(C) —C]+1(c) = (€)].
We will first show
1(CHT = C2l| 2oy < V2 M,.

Note as before we decomposed C., we can write C5 = CH* + RE*, where C5* is the
corresponding truncation of the operator Cg. Write

(€2)F = €. = [(CE*)1 — CB%] + [(RE*)T — RE“] = A2 + B,

—2n+1

Recall that the kernel of R, is majorized by c.d(w, z) . Using basically the ar-

guments of Proposition 2.14, we have, for any ¢’ € A;:

RE*(0")(2) S s0'(2)

g

and
(RE*)* () (2) S s0(2)

where the implicit constants depend on the weight ¢’ and €. Then, by writing o € As
as a quotient of A; weights and applying the reasoning in the proof of Lemma 2.18, it
is straightforward to show that ||R%*|[12 ,p) < ¢z o5. Choosing s appropriately small in
terms of £, we obtain the estimate

||R§7S||L§(bD) <My,

as desired. The same estimate is easily seen to hold for (RQ*S)T, proving the estimate for
B:.

We now turn to A2. It is proven in [12] that the operators e /2. A% satisfy size/smooth-
ness and cancellation conditions that are uniform in €. Lanzani and Stein apply the T'(1)
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theorem to show that ||A%||rspy < €'/2M,, where M, is independent of e. But the
same Calderén-Zygmund theory shows that

A2 2 o0y < €Y%M.,

as we sought to show. We have thus demonstrated the result for (C2)T — CZ.

We now turn to the operator (C2)* — (C2)'. Estimating the norm of this operator
turns out to involve estimating the norm of a commutator. In particular, (C2)* — (C2)T =
(C2)* — A(C5)*A~t, where d\ = Adp and A is a continuous function that is bounded

above and below. Thus, the L2 norm of this operator is controlled by

|Al| Lo (vD) || [A_la (€2

|Lg(bD) J

where [A, B = AB — BA.
Notice by a simple computation,
([A7h(C)])" =CiA™t —ATies = [es, A7,
so by duality it suffices to estimate the norm of a commutator [CS, ¢] on L2(bD) for any

o € As, where ¢ is an arbitrary continuous map bD — C. In particular, we claim for
fixed ¢:

€281l 22 5y < Mo

This is exactly proven in [12], but for unweighted LP. A key ingredient in the proof
is contained in [12, Proposition 19], which states that we can get a uniform bound
I[C2l|rspy < M) for € and s chosen sufficiently small. This is proven using the 7(1)
theorem with estimates uniform in e, but then of course the same proof implies

IIC2 M2 by < Mo

Now we provide a short sketch of how Lemma 3.2 leads to the desired conclusion again
following the arguments from [12]. In particular, we apply the lemma to the operator
[C2, 6] with € and s chosen appropriately. The first condition of Lemma 3.2 basically
follows because C? has a kernel that is supported in a small neighborhood of the diagonal
(in particular, we take v = cs).

The second condition follows from the (uniform) continuity of ¢. For a cube @7,
denote its center by zx. If s is chosen sufficiently small, then by continuity, if z € Q;ﬁ
where Q7 touches Qy, we have

0(2) — ¢(2k)| <e.
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Now write ¢ = ¢ + Vi, where ¢i(2) = ¢(z) — ¢(2x) and ¥r(z) = 2. Obviously,
[Cs, 0] = [C2, r] +[CE, k], but [CZ, k] = 0 as ¢y, is constant. Therefore, we have for any
cube Q7 that touches Q):

I115(CE, o1kl 2 vy = [1151CZ, r] Lkl |L2 bD)
<|1;C2hxLkllL2 5Dy + |10kCE Lkl L2 (D)
< 2¢||C: || L2 (bD)
< 2eM,.

This completes the proof. 0O

The following proposition is an immediate consequence of the well-known reverse
Holder property of A, weights.

Proposition 3.4. Let 1 < p < oo and suppose 0 € A,. Then there exists a 6 > 0 so
o't e LY(bD).

We are now finally ready to prove the main theorem.

Proof of Theorem 1.1. As noted before, it suffices to prove the result for p = 2. Recall
A, = (C2)* = C: and D, = (R2)* — RE. Thus, the Kerzman-Stein equation takes the
form

S(I— A.)— SD, =C..

By Lemma 3.3, if € and s are chosen sufficiently small, then ||Ac|[z2 p) < 1. Inverting
A. using a Neumann series yields:

S=C(I-A) ' +8D.(I - A)™ .

By Lemma 3.1, the operator Cc(I — A.)~! maps L2(bD) to itself. Now, by discussions
above D.(I — A.)~! maps L2(bD) to L*(bD), and hence maps L2(bD) to LP(bD)
boundedly for any p, 1 < p < oo. Additionally, by the principle result in [12], S extends
to a bounded operator on LP. So in particular SD.(I — A.)~! maps L2(bD) to LP for
all p, 1 < p < co. We claim that if p is chosen sufficiently large (depending on o), then
ll9l|zz w0y S [l9llz» D) for all measurable functions g. Then

ISD(I — A ()22 o0y S ISP(I — Ac(f))lILr o)

for all measurable f, which will then establish the result.

To prove the claim, we use Proposition 3.4. In particular, we have, using Hoélder’s

inequality with exponents § and r = (g)/:
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lollzz o) = [ loPo d
bD

2
< /Iglpdu /ordu
bD

bD

r

S ||g||%P(bD)

provided p is chosen so r < 1 + §. This completes the proof. O
4. The Bergman projection

In this section, we will study the Bergman projection on weighted spaces under the as-
sumption that D is a C* domain. Our main goal is to prove the following theorem, which
is a more detailed version of Theorem 1.2. Here 7 is the auxiliary operator corresponding
to the Bergman projection that we discussed in subsection 1.3.

Theorem 4.1. Let D be strongly pseudoconver with C* boundary. Then for 1 < p < oo
and o € By, the following hold:

1. The operator T* — T is compact on LE(D).
2. The operator I — (T* —T) is invertible on LE(D).
3. The Bergman projection B extends to a bounded operator on LP(D) and satisfies

B=TI—-(T*-T))".
4.1. Background and setup

Now we let D be a strongly pseudoconvex domain with C* defining function p. As in
Lanzani-Stein [13], we can construct an integral operator 7 = 71 + Tz that integrates over
the interior of the domain D, where 77 is constructed using Cauchy-Fantappié theory
and 75 is obtained by solving a @ problem. The operator 7 has the property that it
produces and reproduces holomorphic functions.

We now make several definitions that are analogous to our treatment above of the
Szegd projection. We will slightly abuse notation by reusing certain letters to represent
analogous objects in the Bergman case. Define

g(w, ) = —p(w) = x(Pu(2)) + (1 = x)lw — 2

where P, (z) denotes the Levi polynomial at w and x is an appropriately chosen C*°
cutoff function. In particular, using the strict pseudoconvexity of D, x can be chosen so

Re g(w, 2) 2 —p(w) — p(2) + clw — 2"
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Now, as before define the (1,0) form in w

Note that G has the property that if we let

G(w,2)

H(w,2) = m,

then
<77(’LU,Z),U} - Z> =1

for all z € D and w in neighborhood of bD. Note that (11) indicates 7} is a generating
form. However, we instead define the (1,0) form in w:

_ G(w,2)
Tl(w» Z) - g(w7 Z)
and associated integral operator
TN = Gy [ @) (w211 (w)
D

where (9,m)™ denotes the wedge product taken n times. We have the following proposi-
tion (see [13, Proposition 3.1]):

Proposition 4.2. Suppose f is holomorphic on D and belongs to L'(D). Then for all
z € D, one has

A computation shows the operator 77 has kernel

N(w,z)

Falw,2) = Gtw, 2y

(12)

where N(w,z) is an (n,n) form of class C! (in w) with coefficients smooth in z. In
particular, we have (see [13]):
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N(w,z) == ((On)" "' A duwg A+ g(On)") . (13)

We write N (w, z) = N (w, z)dV (w), where dV denotes the Euclidean volume form. Notice
the fact that N'(w, z) is of class C! in w is a direct consequence of the fact that D has
C* boundary.

Proposition 4.2 guarantees that 7; reproduces holomorphic functions, but as in the
Szegd case we need to add a correction operator to ensure that it produces holomorphic
functions. The details can be found in [13], and again involve solving a d problem on
a strongly pseudoconvex domain that contains D. We have the following proposition
concerning T2 and the operator T = T; + T3 (see [13, Proposition 3.2]):

Proposition 4.3. There is an integral operator T defined
/ Ky(z,w) f(w) dV (w)

with

sup |K(z,w)| < o0
(z,w)eDxD

that satisfies:

1. If f € LY(D), then T(f) is holomorphic on D.
2. If, in addition, f is holomorphic on D, then T (f)(z) = f(z) for z € D.

We now introduce an appropriate quasi-metric which gives rise to a space of homo-
geneous type on D. This metric can be defined using polydiscs introduced by McNeal
(see [17]) and is defined locally at first on a neighborhood U of a point p € bD. Fix a
point w € U. First, we may by a unitary rotation (plus a normalization) and translation
assume dp(w) = dz; and w = 0. Then, define holomorphic coordinates ¢ = (1, ..., ()
as follows:

2+ = Zaz]azk Vzk), G =2,0=2,...n

Note if @ : U — ®(U) denotes this coordinate map, ® is a biholomorphism if U is chosen
small enough.
Consider the polydisc:

P(w,8) = {z: |z <6, |z] < Y22 <j<n},

where again z; denotes the special holomorphic coordinates centered at w.
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These polydiscs satisfy certain types of doubling properties (see [16]). We include a
proof for completeness.

Proposition 4.4. There exist independent constants C1,C5y so the following hold for the
polydiscs:

1. If P(q1,0) N P(q2,8) # 0, then P(q1,8) C C1P(g2,9d) and P(gs2,6) C C1P(q1,9).
2. There holds P(q1,20) C CoP(q1,9).

Proof. The second property is essentially immediate from the definition of P, so we
focus on the first property. Suppose P(q1,d) N P(qo,0) # 0. Let z1,..., 2, denote the
holomorphic coordinates centered at ¢; and (1, ...,(, denote the holomorphic coordi-
nates centered at ¢go. The general idea is that these holomorphic coordinates do not differ
greatly. We need to take an arbitrary point p € P(q1, ) and show there exists a constant
C1 s0 p € C1P(¢2,0). Let » € P(q1,9) N P(gz,d). Write the coordinates of p relative to
the coordinate system of the second polydisc as (¢1(p), - ., (u(p)). First observe that the
definition of the polydiscs implies

p—qo| < |p—r|+|r—gqo| <62

and the same bound holds for the quantities |¢g; — ¢2| and |p — ¢1|. Then we have

G Za—” —a24)| + Olp - a2f?)

— Jp — Ip
NEZ Zﬁ_ —q2,5) Za— q)(pj —qj)| +6

S0+ [(9p(q2) — 9p(q1),p — a2)| + [{Op(q1), g2 — q1)]|
SO0+1g —aillp — g2| +1{0p(q1), 92 — q1)|
SO+ |(0p(qr), g2 — 1)l -

We control [(Op(q1),q2 — q1)| as follows:

[(0p(q1), a2 — q1)| < {9p(aq1),m — q1)| + [{Op(q1), g2 — )|
< z1(r) + [(0p(q1) — Op(q2), g2 — )| + [(Op(q2),  — q2)|

SO+ a1 — qellgz — | + Gi(7)
<s.

It is easy to verify all the implicit constants are independent of q1, g2. So there exists
a constant Cy so |(1(p)] < C16.
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On the other hand, for 2 < j < n, we have

GP)I S P - a2] S 62,

so if C is chosen appropriately large, then |(;(p)| < C16%/2. Then p € C1P(q1,0), as we
sought to show.
The other conclusion is immediate by symmetry. This completes the proof. O

As a consequence of these covering properties, one can now introduce a local quasi-
metric M on U:

Definition 4.5. Define the following function on U x U:
M(z,w) = inf{e : w € P(z,¢)}.
e>0

Then M defines a quasi-metric on U. The argument is essentially the same as the other
cases considered in [16].

It is also routine to verify that M (z,w) is comparable to the following metric quantity:

n
M(z,w) & |21 —wi| + Y |z — w;?
j=2

where again the components of z and w are computed in the special coordinates centered
at w.

It is possible to patch together these local quasi-metrics together to obtain a global
quasi-metric d(z,w) that is comparable to each local piece (again the argument is
essentially contained in [16]). Technically, this metric is only defined on a tubular neigh-
borhood of the boundary, but this presents us with no issues and we abuse notation by
writing it to be defined on D (see, for example [6]).

It follows that (D,d,dV) is a space of homogeneous type in the sense of Coifman
and Weiss, where dV' denotes Lebesgue measure on D. We may symmetrize d by taking
replacing it with d(z,w) 4+ d(w, z) and assume d(z,w) = d(w, z). It is also a fact that
V(B(z,r)) = r"*! where B(z,r) = {w € D : d(w,z) < r} (note the biholomorphism is
measure-preserving, see also [6,7]). Moreover, we can define the distance to the boundary
in this metric:

d(z,bD) := inf d .
(27 ) wlélbD (Z’w)
It is verified in [6] that this quantity is comparable to the Euclidean distance to the
boundary.
We have the following relation between the quasi-metric d and the Euclidean distance:
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Proposition 4.6. We have, for z',z € D:
2 =27 Sd(z,2) Sz~ 2|

Proof. It suffices to work locally, so we may assume d coincides with one of the local
quasi-metrics on a neighborhood U. Let ®(z) = ((z) = ({1, ..., (,) denote the biholo-
morphic coordinate change described in detail above in the construction of d. Because
the coordinate change is biholomorphic, we have the following bounds:

n

=22 =) |z — #f

j=1
n
SO IG-GP
j=1
<d(z 7).
The proof of the upper bound is similar. O
It should also be noted that the metric d extends to D x D. We now show that when
we restrict d to bD x bD, we obtain a quantity comparable in size to |g(w, z)|, which
establishes a natural connection between the Szegé and Bergman cases.
Proposition 4.7. If z,w € bD, then we have
d(z,w) = |g(w, z)].

Proof. Let z = ((1,...,(,) in the special holomorphic coordinates centered at w. Note
n
d(z,w) ~ |G + > 11
j=2

Also, we have by [13, Proposition 2.1],
l9(w, 2)| = [Im(Dp(w), w - 2)| + |w — z|*.
But notice that
[(Op(w), w = 2)| S |G| + |w — 2>

and moreover

w—2* $ Y 1G S dlzw)

j=1
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since the coordinate change is biholomorphic. This shows |g(w, z)| < d(z,w). To see the
reverse, note that if |z — w| is small enough, then g(w, z) = P,(z) and

|Gl S [Puw(2)] + |w — 2
which combined with the estimates above gives d(z,w) < |g(w, z)|. O

We can now define a suitable class of B, weights on the domain D. Loosely speaking,
this condition imposes that the product of the average of ¢ and the average of o5t is
controlled on quasi-balls that touch the boundary of D (or so-called Carleson tents). In
what follows, let o be a locally integrable function that is positive almost everywhere.

Definition 4.8. For 1 < p < 0o, we say the weight o belongs to the Békolle-Bonami (B,)
class associated to the quasi-metric d if the following quantity is finite:

vl
olp, = sup —_ odV
] B(w,R):R>d(w,bD) V(B(va))B( "
w,
p—1
1 ~1/(p—1)
—_— 1%
“\ V(B(w, R)) / 7
B(w,R)

We can also define an associated maximal function:

Definition 4.9. For z € D and f € L!(D), define the following maximal function:

1
M) = sup . / fldv .
) B(w,R)>z;R>d(w,bD) V<B(w’R)>B( R) ’

It is proven in [6] that M is bounded on L2 (D) for o € B,,.
Moreover, we can define a suitable class of B; weights (again o is a locally integrable
function on D that is positive almost everywhere).

Definition 4.10. We say the weight ¢ belongs to the class Bj if for all z € D,
M(0)(2) S o(2).
4.2. The main term
We follow the following general outline to prove Theorem 4.1. First, we obtain size

and smoothness estimates for K;(z,w), the kernel of 77. This enables us to prove that
T maps LP(D) to LE(D). We then proceed to show that 7* — T is compact on LZ(D)
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and improves LP spaces. These properties allow us to use the Kerzman-Stein equation
to extract the L2 (D) boundedness of B from the L2 (D) boundedness of 7.

The following proposition follows immediately from the fact that 72 has a bounded
kernel and D is a bounded domain.

Proposition 4.11. For ¢ € B, the operator T, maps LE(D) to L2(D) boundedly, 1 <
p < o0.

Proof. Take f € L?(D). Then we have

p

1Ty = [| [ Kalew)f@ V@) o)dv()

Jiswlavw | | [oeave
D

D

A

p—1

1o | [o2av@ | ([ otw) 7 avw)

D D
< [U]Bp||f||ig(p)- o

IN

We now work to prove the following theorem:

Theorem 4.12. For o € By, the operator T, as well as its adjoint T*, map L2(D) to
L2(D) boundedly, 1 < p < 0.

In light of the previous proposition, which clearly also works for 75", it is sufficient
to show that 77 and 77" are bounded on LP(D). To this end, we define the following
comparison operator:

T(f)(2) = / Wf(w) dv(w).

Note that in light of (12), we have the pointwise domination:

(NS T R)-

To prove the weighted LP regularity of I', we follow Békolleé’s approach of using singular
integral theory that was also undertaken in [6]. In particular, we obtain the following
size and smoothness estimates on the kernel of I':

Lemma 4.13. The following hold:
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1 - min{ 1 1 }
lg(w, )|+~ V(B(z,d(z,bD)))" V(B(w, d(w,bD))) | *

2. If d(z,w) > cd(z,2') for an appropriately chosen constant c, then

‘ 1 B 1
(g(w, 2))" 1 (g(w, 7))+

d(z,2") 1/2 1
§<d<z,w>> V(B )

3. If d(z,w) > cd(w,w") for an appropriately chosen constant ¢, then

' 1 1

B (d(w,w’))l/2 1
(g(w, )"+t (g(w', 2))" 1|~ \ d(z,w) V(B(w, d(z,w)))’

Proof. For the first statement, it suffices to prove

1 - 1
lg(w, 2)|"+1 ™ V(B(z,d(z,bD)))’

since |g(w,z)] =~ |g(z,w)| by [13, Proposition 2.1]. Since V(B(z,d(z,bD))) =
[d(z,bD)]" "1, it is enough to show d(z,bD) < |g(w, z)|. We have d(z,bD) = dist(z,bD) ~
|o(2)|, where dist denotes Euclidean distance. On the other hand, |g(w, z)| 2 |p(2)| by
[13, Proposition 2.1]). This proves the size estimate.

For the smoothness estimate, we first prove as a preliminary fact that d(z,w) <
lg(w, z)|. We may assume |w — z| is small enough so that g(w, z) = —p(w) — P,(z). By
definition we have

d(z,w) = G|+ Y161
j=2

where (1,...,(, are the components of z in the holomorphic coordinates centered at
w. Using the triangle inequality and the definition of the biholomorphic coordinates, we
obtain

530 255 =)+ Ol = ) 5 o) + | = pla) = Put)] + O(1z = ).

Then, appeal to the fact that |g(w, 2)| > |p(w)|+ |w — 2|? by [13, Proposition 2.1] and
the fact that the coordinate change is biholomorphic to obtain the desired conclusion.

We only prove the first smoothness estimate; the second one is proven similarly and
is only slightly more complicated. We use similar ideas as in [12]. We first prove the
estimate
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l9(w, 2) = g(w, 2')| S d(z,2')"2d(z,w)"? + d(z, 2').
To begin with, note that we have
lg(w, 2) = g(w, 2)| < [(Op(w), w = 2) — (Op(w),w — )|

% Z 8w36wk = 2) (we = 2¢) = (wj = 25) (w = 2)] |-

We deal with the first term, [(9p(w), w — z) — (Op(w), w — 2")| = [(Fp(w), 2’ — z)|. We
then have, using Proposition 4.6:

(Bp(w), ' — ) < (Bp(2), ' — )| + [{Bp(aw) — Bp(2), 7' — =)
Sd(z,2) + |z —wl|z = 2|
< d(z,2') + d(z,w)2d(z, 2')V2.

Now we handle the second term. Notice that we have

[(wj — zj)(wr — 21) — (wj — 2)(w — 2;)| < [(wj — 2j)(wg — 21.) — (wj — 2;) (wk — 2)]
+ [(wj — 25)(wi, — 2) — (w; — ) (wg — 2,)|
< lwe = zk|l2; — 25| + lw; — Zjll2x — 2]
< fw—zllz = 2|+ (Jw — 2 + [z = ']) |2 — 2|
< d(z,w)Y2d(z, 2")Y? + (d(z,w)'/?
+ d(z,2)Y?)d(z, 2 )'/?
< d(z,w)2d(z, 212

which proves the required bound for the second piece.

Now, we show |g(w, 2)| =~ |g(w, 2)| if d(z,w) > cd(z, 2"). We estimate, using the work
previously done:

lg(w, 2)| + |g(w,2") — g(w, 2)|
< glw, 2| + d(z,w)?d(z, 2)? + d(z, 2')
Slg(w, 2)| + (72 + ¢ Hd(z, w)
Slg(w, 2N+ (72 + ¢ Hg(w, 2)].

lg(w, 2)| <

Thus, if ¢ is chosen appropriately large, we can subtract the |g(w, z)| term to the
other side and obtain |g(w, 2)| < |g(w, 2’)|. The bound |g(w, 2")| < |g(w, 2)| is obtained
similarly.
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Finally, we obtain, using our assumption d(z,w) > ed(z, 2'):
lg(w, 2) — g(w, 2")| (34 lg(w, 2)[|g(w, 2")|" ")
B lg(w, 2)[**+g(w, /)"

< lg(w, 2) = g(w, )]

1 B 1
(g(w, )"+t (g(w, 2))"*+!

lg(w, 2)|"+2
< 1 d(z,w)*?d(z, 2')}/?
~ d(z,w)nt! d(z,w)

< d(z,z") 1/2 1
~\d(z,w) V(B(z,d(z,w)))
which establishes the smoothness estimate. O

As a consequence of the size and smoothness estimates obtained on the kernel of the
positive operator I', we get the following theorem (one can follow the arguments verbatim
contained in [6, Theorem 1.2]):

Theorem 4.14. For 1 < p < oo, the operators T, T map L2(D) to LE(D) boundedly for
oc B,

Now we can prove Theorem 4.12 as follows:

Proof of Theorem 4.12. Note that Theorem 4.14 implies the operators 7i,7;" map
L2(D) to LE(D) boundedly, which together with Proposition 4.11 establishes the re-
sult. O

4.8. The error term

We now proceed to deal with the “error term” 7* — 7. In light of the arguments
above, we already know 7* — T is bounded on L2(D), but in fact this operator exhibits
much better behavior. In analogy with the approach taken in this paper for the Szeg6
operator, we show that this operator is compact on L2(D) for o € By and improves L?
spaces. We conclude by applying the Kerzman-Stein trick to deduce the boundedness of
B from this information.

Lemma 4.15. Let K(z,w) denote the kernel of the integral operator T* — T. Then we
have the size estimates:

K (2,w)] S d(z,w)~("+32)
and

K (2, w)| < min {d(z,bD)—<n+%>,d(w,bD)—<n+%>} .
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Proof. This is where the hypothesis that D has C* boundary is of importance. It is
proven in [20, Theorem 7.6] that |K(z,w)| < |g(w,z)|"("*2), so using the fact, con-
tained in the proof of Lemma 4.13, that d(z,w) < |g(w, 2)|, we deduce that |K(z,w)| <
d(z,w)~("2). For completeness, we sketch the argument given in [20].

First, note from (13) that we can write N(w,z) = Ny(w,z) + Ni(w,z), where
No(w,z) = — ((0n)" ') A Dwg An) and Ni(w,2) = — (g(On)"). Note that No(w,w) =
— ((9w5wp/\ Duwp N 8wp), so in particular No(w,w) is a real-valued (n,n) form. Write
No(w,z) = No(w,2)dV(w) and Ni(w,z) = Ni(w,z)dV(w). Moreover, it is clear
No(w, z) = No(w,w) + O(|lw — z|) by our smoothness assumptions and the same is
true of Ny(z,w). Thus, we have, using the fact that |g(w,z)| ~ |g(z,w)| and that the
kernel of 73 is uniformly bounded by a constant C:

Nozw)  gEGwNGw)  ( No(w,z) | glw,2)N(w, 2)
|K(Z, w)| < g(z’w)n_H + mn.ﬂ (g(w, Z)n+1 g(w, z)n+1 ) | +C
| FEw Nt |,
ey g(w ) fg(w, 2)|"
w,w = - . W :
< [No(w, )(g(z’w)n«kl g(w’z)n+1> + lg(w, 2)["T " |g(w, 2)["

Moreover, [20, Lemma 7.4] gives that |g(w, 2)—g(z, w)| = O(Jw—z|3) with an argument
very similar to Proposition 2.12. Then proceeding as in Lemma 2.13 and using the fact
that |w — z| < |g(w, 2)|*/? yields the desired conclusion.

The other estimate is proven in the same way, using the fact that d(z,bD) < [g(w, 2)]
and d(w,bD) < |g(w, z)|. O

We have the following lemma concerning the behavior of By weights when integrated
against this kernel:

Lemma 4.16. Let 0 € By. Then we have the following bounds for all z,w € D and § > 0:
| 1K G wlotw)aviw) S 62 + D) o)
B(z,8)

and

K (2,w)lo(2) AV (2) S (8% + d(w, bD)!/)o ()
B(w,d)
Proof. By symmetry, it clearly suffices to prove the first assertion. Let N be the largest

non-negative integer so that 2=V > d(z,bD). If there is no such N, make the obvious
modifications. We have, integrating over dyadic “annuli”
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K (2, w)lo(w) dV(w) = 3 / K (2 w) o (w) dV (w)
B(z,9) j=0 B(2,2-98)\B(z,2-(G+1)3)
N
-y / K (2 w) o (w) dV ()
I=0 B(2,2-96)\ B(z,2-+1)5)
+ Y / K (2 w0) o (w) dV (w)
J=N+1

B(2,2-35)\B(z,2-(+1)5)

We deal with the first summation first. We have

|K (2, w)|o(w) dV (w)

M-

<
Il
o

B(2,2738)\B(2,2—(+1)4)

A

I
=}

d(z,w)~ "2 5 (w) dV (w)

=Y B(2,2798)\B(2,2- (G +1)§)

M=

I
=)

/ QUAHD(+1/2) §=(n+1/2) (1) GV ()
2-

J i8)

B(z,

51/22*j/2m / o (w) dV (w)

B(2,2-35)

<

M-

<
I
=)

N
<> 512272 M(0)(2)
j=0

S 6P M(0)(2)
< 6Y20(2).

Note the implicit constant is independent of N. We now proceed to deal with the
second summation:

o0

Z / | K (z,w)|o(w) dV (w)

I=N+L B, 2-is)\ B(z,2-G+15)

< [ KGwbwaw

B(z,d(z,bD))

\

d(z,bD) =2 5 (w) dV (w)

B(z,d(z,bD))
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_ d(2,bD)'/? " y
~ V(B(z,d(z,bD))) / o(w)dv(w)

B(z,d(z,bD))
(D)2 M(0)(2)

< d(z,
(z,bD)Y %0 (2).

d
d

A

This establishes the result. O

Now we will engage in a series of arguments very similar to what is proven in the
Szegd section. We first note that 7* — 7T improves LP spaces. The proof of this fact is
basically identical to that of Proposition 2.16 and stems from the fact that 7* — 7 has
an “integrable kernel”, so we omit it.

Proposition 4.17. The operator T* —T maps LP(D) to LPT¢(D) boundedly for p > 1 and
e €0, Wlﬂ)

The exact same reasoning from Lemma 2.20 yields the following:

Corollary 4.18. Ifo € By, then 1 is not an eigenvalue of T* =T considered as an operator
on L2(D).

It remains to prove that 7* — 7T is compact on LZ(D) for o € B,. The argument is
again a reprise of the reasoning in the preceding section, namely Lemma 2.18.

Lemma 4.19. The operator T* —T is compact on LE(D) for o € B,,.

Proof. We first note that an integral operator with kernel K bounded on D X D is
automatically compact on L2 (D) for o € Bp; the proof follows as in Theorem 2.1.
To pass to the case where K is unbounded, let §; = % and

K(z,w) d(z,w)>6;,d(z,bD) > d; or d(w,bD) > §,

0 otherwise

Kj(z,w):{

Let 7; be the integral operator with kernel Kj;. Note that K; is bounded on D x
D because |K(z,w)| < W and |g(w,z)| 2 |p(w)| + |p(2)| + |z — w|* by [13,
Proposition 2.1]. Thus 7; is compact on L2(D). To show 7 is compact, it suffices to
show 7; — 7T in operator norm.

To this end, let f € L5 (D) with ||f||z(py < 1. Note that as o € B, we can write

where 01,09 € By by the factorization of B, weights. This factorization of B, weights
holds by the arguments in [21]; note that the adapted maximal function M is bounded
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on L2(D) for o € B, and if 0 € By, o FT € B, where p~! 4+ ¢! =1, so [21, Theorem
2] can be applied. It should also be noted that this factorization appears in the literature
in the context of the unit disk D; see [3]. By Holder’s Inequality applied to the functions

K (z,w) = K;(z,w)[V9os(w)/? and - [K(z,w) = K;(z,w)|Pos(w) | f(w)]
and then applying Proposition 4.16, we obtain the estimate:
(T = TH(H (=)
< [ 1K) = Kz wl )] av )
bD

— XatasD)<s, /\m%mmwmwm
B(Z,(Sj)

x / | K (2,w)|(02(w)) 7P| f (w) [P dV (w)

B(2,8;)n{d(w,bD)<5;}

=

L HATABY / K (2 0) (02(w)) | f(w) [P dV (1)
B(z,6;)n{d(w,bD)<6;}

Thus, we obtain, applying the proceeding estimate, Fubini, and Proposition 4.16 again:

[EARE Y[

< [dfiaaer [ Ko@) i av)
D B(z,6;)0{d(w,bD)<5;}

x 00(1% dv(z)

=i [ [ Ko@) P v @ e av )

D B(z,6;)N{d(w,bD)<4d;}

§/mwmd w) / K (2, w)|o1(2) dV(2) | |F(w)[P(oa(w)) P dV (w)

B(w,d;)

sa/i/al )P (05 ()P dV (w)
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2
= NI )

p/2
géj .

Letting j — oo, we have §; — 0 and thus it immediately follows that the operators
T; approach 7T in operator norm and hence 7 is compact. O

4.4. Proof of main theorem

We now can finally prove Theorem 4.1, using the Kerzman-Stein operator equation
trick.

Proof of Theorem 4.1. The proof is virtually identical to that of Theorem 2.1. Again,
the starting point is the Kerzman-Stein equation, and the invertibility of (I — (7* —T))
on L2 (D) is granted by Corollary 4.18 and Lemma 4.19 using the spectral theorem. The
boundedness of 7 on L2(D) is given by Theorem 4.12. 0O
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