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1. Introduction

1.1. The problem

Let D be a bounded, strongly pseudoconvex domain in Cn with sufficiently smooth 
(say Ck, with k ≥ 2) boundary, and let bD denote the boundary of D. Thus, there is 
a real-valued, Ck, and strictly plurisubharmonic defining function ρ such that D = {z :
ρ(z) < 0} and ∇ρ �= 0 on bD. Recall that the Bergman projection is the orthogonal 
projection B : L2(D) → A2(D), where A2(D) is the Bergman space, which is the space 
consisting of those holomorphic functions on D which are square-integrable. Similarly, 
we recall that the Cauchy-Szegő (or simply Szegő) projection S : L2(bD) → H2(bD)
is the orthogonal projection of L2(bD) onto the holomorphic Hardy space H2(bD). We 
define H2(bD) to be the following closure in L2(bD):

H2(bD) := {f ∈ L2(bD) : f = F |bD, F ∈ Hol(D) and F ∈ C0(D)}.

It is of interest to determine when the Bergman and Szegő projections extend to 
bounded operators on Lp. In the simpler case that D has smooth (C∞) boundary, it has 
been known for decades that B and S extend to bounded operators on Lp if 1 < p < ∞
because direct estimates can be obtained on the Bergman and Szegő kernels in both 
cases (see [19]). If the domain is less regular, a more indirect approach is needed because 
it is hard to obtain direct estimates on the kernels. Kerzman and Stein around the same 
time developed a powerful idea that allowed them to relate the Szegő projection S to 
a “Cauchy” integral operator C via an operator equation (see [8,9] for the one variable 
and several variable cases, respectively). The essential idea, exploited in [8,9] as well as 
numerous other papers in the literature, involves constructing an auxiliary operator C
that also produces and reproduces holomorphic functions inside D from boundary data, 
and defining C to be a restriction of C to the boundary in an appropriate sense, so that 
C is a singular integral operator. This operator C is given as a sum, C1 + C2, where 
C1 is constructed using the theory of Cauchy-Fantappié integrals and C2 is a correction 
term obtained by solving a ∂ problem on a strongly pseudoconvex, smoothly bounded 
domain that contains D (see, for example, [9,12,20]). Importantly, C1 has a completely 
explicit kernel. The operator C∗ − C then roughly measures the “error” introduced by 
considering C instead of S.3 A similar trick can be employed for the Bergman projection.

Since (Levi) pseudoconvexity is formulated in terms of second derivatives, if we are to 
restrict our attention to strongly pseudoconvex domains (which are the domains on which 
the above auxiliary operators can be constructed), we must at minimum assume that the 
boundary of our domain D is C2 for these questions to make sense. By passing through 
these auxiliary operators, which have “non-canonical” kernels and are constructed using 

3 Throughout this paper, we use the symbol ∗ to denote the adjoint of an operator on L2(bD). Importantly, 
the adjoint is taken on the unweighted Lebesgue space.



N.A. Wagner, B.D. Wick / Advances in Mathematics 384 (2021) 107745 3
the theory of holomorphic integral representations, it is possible to obtain boundedness 
properties for the operators B and S without relying on explicit bounds for the Bergman 
or Szegő kernels. This indirect approach was employed by Lanzani and Stein in [12,13]
to study these problems in the case that D has C2 boundary. These results are the best 
possible on strongly pseudoconvex domains.

In harmonic analysis, it is very common to consider the boundedness of integral opera-
tors on weighted spaces. The consideration of these problems goes back to the formulation 
of the Ap condition for the Hilbert transform by Hunt, Muckenhoupt, and Wheeden, see 
[5]. In the context of the Szegő and Bergman projections, there seems to be two dis-
tinct questions that one could ask. One could consider the weighted Szegő (respectively 
Bergman) projection, which is the projection from L2

σ(bD) to H2
σ(bD), where σ is a 

weight, and try to determine for which weights this projection is bounded on Lp(bD) or 
Lp
σ(bD). Alternately, one could consider the ordinary Szegő (Bergman) projection acting 

as an operator on weighted spaces Lp
σ(bD). It is the latter question we address in this 

paper.
The main results in the literature pertaining to the boundedness of the Bergman 

projection on weighted spaces are due to Békollè and Bonami and consider the underlying 
domain to be the unit ball Bn [1,2]. The correct condition for the weights, which turns 
out to be both necessary and sufficient for boundedness on Lp

σ(Bn), is referred to as the 
Békollè-Bonami, or Bp, condition. This weight class is defined using a Muckenhoupt-type 
condition, but it is slightly altered to reflect the fact that the behavior of the weight away 
from the boundary is not important. The correct generalization of their condition for an 
arbitrary domain D is as follows: we say that a weight σ belongs to the class Bp if

sup
B(w,R);R>d(w,bD)

⎛
⎜⎝ 1
V (B(w,R))

∫
B(w,R)

σ dV

⎞
⎟⎠

⎛
⎜⎝ 1
V (B(w,R))

∫
B(w,R)

σ−1/(p−1) dV

⎞
⎟⎠

p−1

< ∞.

Here V refers to Euclidean volume measure. The balls B(w, R) are taken in a quasi-metric 
that is defined in the interior of the domain D that reflects the boundary geometry.

Considering the Szegő projection, there appear to be few weighted results that appear 
explicitly in the literature. However, from a heuristic point of view, since the Szegő 
projection involves integration on the boundary and is a true singular integral, the correct 
class of weights should be an adaptation of the Ap Muckenhoupt class in Euclidean 
harmonic analysis. Therefore, the correct weight condition for the Szegő projection to 
be bounded on Lp

σ(bD) should be for σ to belong to an Ap class on the boundary, where 
the non-isotropic boundary “balls” reflect the geometry of the domain. In other words, 
we consider weights σ where the following quantity is finite:
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sup
B⊂bD

⎛
⎝ 1
μ(B)

∫
B

σ dμ

⎞
⎠

⎛
⎝ 1
μ(B)

∫
B

σ
−1
p−1 dμ

⎞
⎠

p−1

< ∞.

The measure μ in the definition is defined to be Lebesgue surface measure on bD. Here 
B is used to denote a ball in an appropriate quasi-metric that reflects the boundary 
geometry. In the case that D = D, the “balls” on the boundary are simply intervals on 
the circle T , and the Ap condition is the classical one for the boundedness of the Hilbert 
transform on the circle (see, for example, [18]). We remark that analogous weighted 
results for the ball are likely known to the experts.

1.2. Statement of main results

The main results of this paper are sufficient conditions on the weights σ for the 
Lp
σ boundedness of the Szegő and Bergman projections on domains with near-minimal 

smoothness. This condition on the weights is precisely the Ap condition (Bp condi-
tion, respectively) in the setting of spaces of homogeneous type with the appropriate 
quasi-metric on bD (respectively D). We will precisely define these metric quantities in 
Sections 2.1 and 4.1. We are able to obtain the result for the Szegő projection in the 
minimal smoothness (C2) case. In the Bergman case, because of a technical obstruction, 
we must assume that our domain possesses a C4 boundary. Our two principal results are 
as follows:

Theorem 1.1. Let D be strongly pseudoconvex with C2 boundary. Then for 1 < p < ∞
and σ ∈ Ap, the Szegő projection S extends to a bounded operator on Lp

σ(bD).

Theorem 1.2. Let D be strongly pseudoconvex with C4 boundary. Then for 1 < p < ∞
and σ ∈ Bp the Bergman projection B extends to a bounded operator on Lp

σ(D).

We remark that in the case that D has C3 boundary, our results for the Szegő projec-
tion can be considerably sharpened. In fact, in this case it is possible to explicitly relate 
the extension of the Szegő projection on the weighted space to the auxiliary operator 
C using an operator equation. See Theorem 2.1 in the beginning of Section 2 for more 
details. See also Theorem 4.1 in the beginning of Section 4 for a more detailed version 
of Theorem 1.2.

Note that these theorems only give sufficient conditions, not necessary conditions. 
Notably, our methods are only suited to proving the sufficiency of the Ap/Bp condition, 
not the necessity. To obtain any results concerning the necessity of the Ap/Bp condition, 
it seems likely one would instead have to study the operator S or B directly and obtain 
novel estimates on the kernel function.
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1.3. An outline of the proof

For the remainder of the introduction, we provide a broad strokes outline of the 
method of proof so the reader has an idea of how the various pieces will fit together. 
Recall that via an idea of Kerzman and Stein, the Szego projection S can be related to a 
“Cauchy integral” C. It can be shown that the operator C is a (non-orthogonal) projection 
from L2(bD) to H2(bD). Thus, we obtain the following two operator identities relating 
S and C on L2(bD):

SC = C, CS = S.

Taking adjoints of the second identity, subtracting from the first and some further 
manipulation yields the following operator identity:

S(I − (C∗ − C)) = C. (1)

We will subsequently refer to (1) as the Kerzman-Stein equation. Note that if (I −
(C∗ − C)) is invertible on L2(bD) (this is true in the case D is C∞, see [9]), we arrive at 
an explicit formula for S in terms of C:

S = C(I − (C∗ − C))−1.

At this point, it should be noted that a completely analogous approach can be em-
ployed for the Bergman projection in which the Cauchy-Fantappié integral, which we 
denote by T , is taken over the solid domain rather than the boundary (this approach 
was used to prove certain regularity properties of the Bergman projection; see for exam-
ple [14,15]). Now perhaps the reader can see the utility of such an approach in proving 
Lp estimates. To prove that the Szegő (or Bergman) projection extends to a bounded 
operator on Lp, one must prove the following two facts concerning C (respectively T ):

1. The operator C is bounded on Lp;
2. The operator (I − (C∗ − C)) is invertible on Lp.

The regularity of the domain is crucial in assessing whether the operator (I−(C∗−C))
is invertible on Lp. If this operator is to be invertible, the “error” C∗ − C must be small 
in some appropriate sense (for example, compact, smoothing, and/or with norm less 
than 1). In particular, for the Szegő projection, we will require the domain to be C3 (for 
this method of inversion), while for the Bergman projection we will require the domain 
to be C4.

As mentioned previously, in [12,13], Lanzani and Stein considered the situation of min-
imal regularity and proved that the Cauchy-Szegő and Bergman projections are bounded 
on Lp for 1 < p < ∞. In the case of the Szegő projection they transfer the question of 
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boundedness to real-variable singular integral theory via the theory of spaces of homoge-
neous type. Recall that a space of homogeneous type is a triple (X, d, μ) where X is a set, 
d is a quasi-metric on X, and μ is a measure on X that is doubling on the balls induced 
by the quasi-metric. Lanzani and Stein show that the kernel of the operator C satisfies 
the appropriate size and smoothness estimates with respect to this quasi-metric (more 
precisely, they consider the kernel of the “main part” of the operator, C�; there is an 
error term they also must handle). The celebrated T (1) Theorem in harmonic analysis is 
then invoked to establish that the operator C is bounded on L2(bD). This result together 
with the kernel estimates of course implies that C is bounded on Lp(bD) for 1 < p < ∞. 
With appropriate control on the “error term” C∗ − C, Lanzani and Stein establish that 
S is bounded on Lp(bD) for 1 < p < ∞. The approach to the Bergman projection is 
similar insofar as it uses the Kerzman-Stein operator equation, but it is simpler because 
singular integral theory is not required. Instead, Schur’s test for positive operators is a 
major ingredient in the proof.

We follow the general program of Lanzani and Stein in the weighted setting in the 
next section. In particular, we use the same construction of the auxiliary operator that 
goes back to Kerzman, Stein, and Ligocka in [8,9,15], and we obtain the Kerzman-Stein 
equation. In the case of the Szegő projection, we obtain weighted Lp bounds on the 
auxiliary operator C using the same real-variable singular integral approach in [12]. The 
weights belong to an Ap class induced by the quasi-metric on the boundary of D.

In the case of the Bergman projection, Schur’s Test is ill-equipped to deal with weights 
other than radial weights, so a new approach is needed. In particular, to prove the 
operator T is boudned on Lp

σ(D), we must use a modified singular integral theory and 
view the Bergman projection as a kind of Calderón-Zygmund operator with respect to 
an appropriate quasi-metric. This idea was precisely the one used by Békollè and Bonami 
when they obtained weighted Lp estimates for the Bergman projection on the ball when 
the weight belongs to the Bp class (see [1,2]). Notably, we use key ideas developed by 
McNeal in [16,17] and other papers that show the Bergman projection can be viewed 
as a singular integral operator for several important classes of pseudoconvex domains. 
Combining ideas from these papers, we define a Bp class of weights adapted to our domain 
and prove that the auxiliary operator T is bounded on weighted Lp. The authors recently 
took a similar approach when studying the Bergman projection directly in the case when 
D has smooth boundary, see [6,7]. In particular, our results for the Bergman projection 
in this paper constitute a generalization of the result in [6], because the quasi-metric is 
the same as the one in that paper.

In both cases, to show that the operator (I − (C∗ −C)) (or I − (T ∗ −T )) is invertible 
on Lp

σ when σ ∈ Ap (or Bp), we prove that C∗−C (respectively T ∗−T ) is compact on Lp
σ

for σ ∈ Ap (respectively Bp) and also “improves” Lp spaces. Using the Kerzman-Stein 
equation, this grants the boundedness of S (respectively B) on Lp

σ.
Because Lanzani and Stein assume less regularity, our approach entails an application 

of their arguments in a simpler setting, so some technical obstructions in their paper 
can be ignored. In particular, Lanzani and Stein consider an entire family of Cauchy-
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Fantappié type operators Cε with parameter ε, while we only need to consider a single 
auxiliary operator C (this can be viewed as a special case of the operators in [12] with 
ε = 0). A major technical obstruction in their papers is that the operator (I− (C∗

ε −Cε))
is no longer invertible on Lp, so they must split it appropriately.

As mentioned previously, we are actually able to obtain the same result for the Szegő 
projection in the case of minimal (C2) smoothness. Here we follow the approach in [13]
of “partially inverting” (I − (C∗

ε − Cε)) by writing

C∗
ε − Cε = Aε + Dε,

where Aε has small norm for sufficiently small ε so I − Aε is invertible on L2
σ(bD)

using a Neumann series. We only focus on p = 2; the general result may be obtained 
via extrapolation (see [21]; extrapolation still holds in spaces of homogeneous type). 
The result can also be obtained directly without extrapolation, but no new significant 
information is obtained. The operator Dε may in general be unbounded in norm as ε → 0, 
but it does map L2

σ(bD) to L∞(bD), which turns out to be enough. The reverse Hölder 
property of Ap weights is the only key property we use in the proof. However, because 
Bp weights do not satisfy a reverse Hölder inequality (see [3]), we are unable to obtain 
the same minimal regularity result for the Bergman projection.

This paper is organized as follows. Sections 2 and 3 are devoted to the Szegő projection 
while Section 4 focuses on the Bergman projection. Section 2 focuses on the case where 
D is C3 and sharper results can be obtained, while Section 3 focuses on the minimal 
smoothness case and proves the full strength of Theorem 1.1. At the beginning of each 
section, the first subsection introduces the background material and the construction of 
the relevant integral operators. The latter subsections deal with the proofs.

2. The Szegő projection on C3 domains

In this section, we assume that D is a strongly pseudoconvex domain of class C3. We 
aim to prove the following theorem, which corresponds to a special case of Theorem 1.1
but also provides more detailed information about the connection between the main and 
auxiliary operators that is unavailable in the minimal smoothness case.

Theorem 2.1. Let D be strongly pseudoconvex with C3 boundary. Then for 1 < p < ∞
and σ ∈ Ap, the following hold:

1. The operator C∗ − C is compact on Lp
σ(bD).

2. The operator I − (C∗ − C) is invertible on Lp
σ(bD).

3. The Szegő projection S extends to a bounded operator on Lp
σ(bD) and satisfies

S = C(I − (C∗ − C))−1.
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2.1. Background and setup for C3 domains

The first step, following the approach of Lanzani and Stein as well as many other 
authors, is to construct an integral operator that reproduces and produces holomorphic 
functions from integration of their boundary values. To begin with, define the Levi 
polynomial at w ∈ bD:

Pw(z) :=
n∑

j=1

∂ρ

∂wj
(w)(zj − wj) + 1

2

n∑
j,k=1

∂2ρ

∂wj∂wk
(w)(zj − wj)(zk − wk).

Using the strict pseudoconvexity of D, it is possible to choose a C∞ cutoff function χ
and a constant c so that χ ≡ 1 when |z − w| ≤ c/2 and χ ≡ 0 when |z − w| ≥ c so that 
the function

g(w, z) := χ(−Pw(z)) + (1 − χ)|w − z|2

satisfies

Re(g(w, z)) � −ρ(z) + |w − z|2 (2)

for z ∈ D (see [13]).
Recall that a generating form η(w, z) is a form of type (1, 0) in w with C1 coefficient 

functions such that 〈η(w, z), w − z〉 = 1 for all z ∈ D and w in a neighborhood of bD
[10]. Here 〈·, ·〉 denotes the action of a 1-form on a vector in Cn. The importance of 
generating forms lies in the construction of Cauchy-Fantappié integrals. The upshot of 
(2) is that we can construct a generating form as follows: define the following (1, 0) form 
in w

G(w, z) := χ

⎛
⎝ n∑

j=1

∂ρ

∂wj
(w) dwj −

1
2

n∑
j,k=1

∂2ρ

∂wj∂wk
(w)(wk − zk) dwj

⎞
⎠

+ (1 − χ)
n∑

j=1
(wj − zj) dwj .

Then define for w ∈ bD, z ∈ D

η(w, z) := G(w, z)
〈G(w, z), w − z〉 = G(w, z)

g(w, z) .

Then it is immediate that η is a generating form. As in [12,20], define the associated 
Cauchy-Fantappié integral operator
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C1(f)(z) := 1
(2πi)n

∫
w∈bD

f(w)j∗(η ∧ (∂η)n−1)(w, z)

= 1
(2πi)n

∫
w∈bD

f(w)j∗
(
G ∧ (∂G)n−1(w, z)

)
(g(w, z))n ,

where j : bD ↪→ Cn is the inclusion map. The point is that this operator reproduces 
holomorphic functions that are continuous up the boundary, as made precise in the 
following proposition (see [12]):

Proposition 2.2. Let F be holomorphic on D and continuous on D, and let f = F |bd. 
Then there holds for z ∈ D

C1(f)(z) = F (z).

The problem now is that C1 does not necessarily produce holomorphic functions, as 
the form η is not necessarily holomorphic in z. This difficulty can be overcome by solving 
a ∂ problem on a strongly pseudoconvex, smooth domain Ω that contains D (see [12], 
or for more details [20]). One has the following:

Proposition 2.3. There exists an (n, n − 1) form (in w) C2(w, z) that is C1 in w and 
depends smoothly on the parameter z ∈ D so that the following hold for the operator 
C = C1 + C2:

(i) C(f)(z) = F (z) for F holomorphic on D and continuous on D, where f = F |bd;
(ii) C(f)(z) is holomorphic for f ∈ L1(bD).

Here,

C2(f)(z) =
∫

w∈bD

f(w)C2(w, z).

Note that importantly

sup
z∈D,w∈bD

|C2(w, z)| < ∞. (3)

Thus, C is an operator that produces and reproduces holomorphic functions from 
boundary data.

Next, we proceed to define the relevant quasi-metric on the boundary of D for our 
analysis. Let d(w, z) = |g(w, z)|1/2. Then d(w, z) satisfies all the properties of a quasi-
metric or quasi-distance. In particular, one has the following, as in [12]:

Proposition 2.4. Let d(w, z) = |g(w, z)|1/2. Then the following hold for w, z, ζ ∈ bD:
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(i) d(w, z) ≥ 0 and d(w, z) = 0 iff w = z;
(ii) d(w, z) ≈ d(z, w);
(iii) d(w, z) � d(w, ζ) + d(ζ, z).

By considering the equivalent metric d(w, z) +d(z, w), we might as well assume prop-
erty (ii) holds with equality (and we make this assumption henceforth). Denote a ball in 
bD in the quasi-metric with center z and radius δ by B(z, δ). It is a fact that

μ(B(z, δ)) ≈ δ2n, (4)

where μ denotes induced Lebesgue surface measure on bD.
We also have the important estimates in [12]:

|w − z| � d(w, z) � |w − z|1/2. (5)

We now introduce the Leray-Levi measure λ on bD. This measure is defined

dλ(w) = j∗(∂ρ ∧ (∂∂ρ)n−1)/(2πi)n.

The use of this measure is crucial in Lanzani and Stein’s paper in the computation of 
an adjoint operator (they do not have apriori boundedness so the existence of the adjoint 
is not clear), but it turns out to be equivalent to Lebesgue measure in a certain strong 
sense. In particular, we have

dλ(w) = Λ(w) dμ(w), (6)

where Λ(w) is a function bounded above and below for all w ∈ bD. More explicitly, the 
function Λ is given by

Λ(w) = (n− 1)!(4π)−n|det ρ(w)||∇ρ(w)|

where det(ρ(w)) is the determinant of the (n − 1) × (n − 1) matrix of second derivatives:

{
∂2ρ

∂zj∂zk
(w)

}n−1

j,k=1

and z = (z1, z2, . . . , zn) is computed in a special coordinate system (see [12] for details). 
Crucially, note that Λ is Lipschitz, since ρ is of class C3. The importance of this fact will 
become clear in the proof of Lemma 2.13.

An important result, also in [12], is as follows:

Proposition 2.5. The triple (bD, d, dλ) forms a space of homogeneous type (in the sense 
of the theory of singular integrals).
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Note we could replace the Leray-Levi measure by induced Lebesgue measure and 
the above result would still be true, since the function Λ(w) is bounded above and 
below uniformly. Below, for a measurable set S ⊂ bD, when we write μ(S), we refer to 
its Lebesgue surface measure, but in every case we could replace it by the Leray-Levi 
measure and the result would still be true.

We now want to essentially consider the restriction of the operator C to the boundary 
bD and obtain a singular integral operator C that maps Lp(bD) to Lp(bD). Explicitly, 
Lanzani and Stein define

C(f)(z) = C(f)(z)|bD

when f satisfies a type of Hölder continuity, namely

|f(w1) − f(w2)| � d(w1, w2)α

for some α with 0 < α ≤ 1. In this case one can show C(f) extends to a continuous 
function on D, so the above definition makes sense. The operator C, while initially defined 
only on certain functions, actually extends to a bounded linear operator on Lp(bD) (this 
is proven in [12] using the T (1) theorem).

Now, it is useful to break the operator C into a main term and an error term as 
follows:

C = C� + R,

where

C�(f)(z) =
∫
bD

f(w)
g(w, z)n dλ(w)

and R absorbs the error from replacing the numerator of the Cauchy-Fantappié integral 
with the Leray-Levi measure as well as the error from the operator C2, which in fact 
has a bounded kernel by (2). If we let R(w, z) denote the kernel of the operator R, we 
can obtain the crucial estimate (see [12] again):

|R(w, z)| � d(w, z)−2n+1. (7)

Note that it is immediately obvious that the kernel of C� is bounded above by a 
multiple of d(w, z)−2n, so we see that the operator R is “less singular” in a sense than 
the operator C�.

As before, for functions that satisfy the Hölder continuity condition as above, we can 
define

C�(f) = C�(f)|bD
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and thus obtain the decomposition for the operator C

C = C� + R.

Finally, we define the so-called Ap classes of weights on bD for 1 < p < ∞ with respect 
to the quasi-metric:

Definition 2.6. A function σ ∈ L1(bD) that is positive almost everywhere is said to belong 
to the class Ap if the following quantity is finite:

[σ]p := sup
B⊂bD

⎛
⎝ 1
μ(B)

∫
B

σ dμ

⎞
⎠

⎛
⎝ 1
μ(B)

∫
B

σ
−1
p−1 dμ

⎞
⎠

p−1

where B is a ball in the quasi-metric d.

Additionally, we can define a suitable maximal function with respect to this quasi-
metric on bD:

Definition 2.7. The Hardy-Littlewood Maximal Function is defined, for f ∈ L1(bD)

M(f)(z) = sup
B�z

1
μ(B)

∫
B

|f(w)| dμ(w)

where as before B is a ball in the quasi-metric d.

We also define A1 weights with respect to the same quasi-metric:

Definition 2.8. A function σ ∈ L1(bD) that is positive almost everywhere is said to belong 
to the class A1 if the following estimate holds for all z ∈ bD:

M(σ)(z) � σ(z).

We have now set up all the machinery we need to prove Theorem 2.1.

2.2. The main term

We proceed to analyze the “main term” C�. It should be noted in what follows that in 
the C2 case considered in [12], certain implicit constants depend on ε and can even blow 
up as ε → 0. This is not the case in the C3 case, as there is only one ε, namely ε = 0, 
for which there is no analog in the C2 case. We have the following size and smoothness 
estimates for the kernel of C� given in [12]:



N.A. Wagner, B.D. Wick / Advances in Mathematics 384 (2021) 107745 13
Proposition 2.9. Let K(z, w) = g(w, z)−n denote the kernel of C� with respect to the 
Leray-Levi measure. Then there holds:

(i) |K(z, w)| � d(w, z)−2n;
(ii) |K(z, w) −K(z, w′)| � d(w,w′)

d(w,z)2n+1 for d(w, z) ≥ cd(w, w′);
(iii) |K(z, w) −K(z′, w)| � d(z,z′)

d(w,z)2n+1 for d(w, z) ≥ cd(z, z′),

where c is some appropriately large constant.

Lanzani and Stein also prove the following result by invoking the T (1) theorem:

Theorem 2.10. The operator C� is bounded on L2(bD).

Theorem 2.10 and Proposition 2.9 demonstrate that the operator C� is Calderón-
Zygmund in the sense of spaces of homogeneous type, and consequently the weighted 
theory of real-variable harmonic analysis applies to this case. Thus, we have the following 
result:

Theorem 2.11. Let σ ∈ Ap, where Ap is defined as above. The operator C� is bounded 
from Lp

σ(bD) to Lp
σ(bD), 1 < p < ∞.

Proof. This is an easy consequence of classical singular integral theory on spaces of 
homogeneous type. The only remark that needs to be made is that the equivalence of 
the Leray-Levi measure and Lebesgue measure in (6) must be invoked because the kernel 
above is with respect to Leray-Levi measure, not Lebesgue measure. In particular, if 
σ ∈ Ap as we have defined it, then σ is in Ap with respect to the Leray-Levi measure. By 
Calderón-Zygmund theory on spaces of homogeneous type, the operator C� is bounded on 
Lp(bD, σ dλ), and hence bounded on Lp(bD, σ dμ) by the equivalence of the measures. �
2.3. The error terms

Let C∗ denote the adjoint of C with respect to Lebesgue measure. We now proceed to 
deal with the error terms R as well as C∗ −C. Both of these terms will play a role in the 
proof of the main theorem in the subsequent section. We know from (7) that the kernel 
of the “remainder operator” R is “less singular” than the main operator C�. We proceed 
to show that this is also true for the kernel of the “difference operator” C∗ − C. First we 
need a preliminary proposition, which is similar to an argument that can be found in 
[20]:

Proposition 2.12. The following estimate holds for w, z ∈ bD:

|g(w, z) − g(z, w)| � |w − z|3.
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Proof. It suffices to prove the estimate when |w− z| ≤ c/2, so we can assume g(w, z) =
−Pw(z) and g(z, w) = −Pz(w). To avoid cumbersome notation, we use the shorthand 
∂ρ
∂wj

(w) = ρj(w) and ∂2ρ
∂wj∂wk

(w) = ρj,k(w). Recall the Levi polynomial at w is defined as

Pw(z) =
n∑

j=1
ρj(w)(zj − wj) + 1

2

n∑
j,k=1

ρj,k(w)(zj − wj)(zk − wk).

We also define the Levi form

Lw(z) =
n∑

j,k=1

∂2ρ

∂wj∂wk
(w)(zj − wj)(zk − wk).

The Taylor expansion (in w) of ρj(w) about w = z is

ρj(w) = ρj(z) +
n∑

k=1

ρj,k(z)(wk − zk) +
n∑

k=1

∂2ρ

∂zj∂zk
(z)(wk − zk) + O(|w − z|2)

while the Taylor expansion of ρj,k(w) gives

ρj,k(w) = ρj,k(z) + O(|w − z|).

Substituting these Taylor expansions into Pw(z), we obtain

Pw(z) =
n∑

j=1
ρj(z)(zj − wj) −

1
2

n∑
j,k=1

ρj,k(z)(wj − zj)(wk − zk)

−
n∑

j,k=1

∂2ρ

∂zj∂zk
(z)(wj − zj)(wk − zk) + O(|w − z|3).

On the other hand, we have

Pz(w) =
n∑

j=1
ρj(z)(wj − zj) + 1

2

n∑
j,k=1

ρj,k(z)(wj − zj)(wk − zk).

A computation shows

Pz(w) − Pw(z) = 2RePz(w) + Lz(w) + O(|w − z|3).

Then just use the well-known fact that

ρ(w) = ρ(z) + 2RePz(w) + Lz(w) + O(|w − z|3),

together with the fact that ρ(z) = ρ(w) = 0 as w, z ∈ bD. �
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This proposition will allow us to prove the following lemma. Again, the argument is 
essentially from [20].

Lemma 2.13. Let K(z, w) denote the kernel of (C�)∗−C� with respect to Lebesgue measure 
dμ. Then the following estimate holds:

|K(z, w)| � d(w, z)−2n+1.

Proof. Here we need to come to grips with the distinction between the Leray-Levi mea-
sure dλ and the Lebesgue measure dμ. Note that if (C�)† denotes the adjoint of C� taken 
with respect to the Leray-Levi measure, then we have the relation (C�)† = Λ(C�)∗Λ−1 (see 
[12]). Let KL(w, z) denote the kernel, with respect to dλ, of the operator (C�)† − C�. It 
is immediate that KL(w, z) = g(z, w)

−n − g(w, z)−n. Compute to see

|K(z, w)| =
∣∣∣Λ(z)[g(z, w)

−n
Λ(w)]Λ−1(w)) − g(w, z)−nΛ(w)

∣∣∣
=

∣∣∣Λ(z)g(z, w)
−n − g(w, z)−nΛ(w)

∣∣∣
≤ |Λ(z) − Λ(w)||g(z, w)|−n + |Λ(w)||KL(w, z)|

� |z − w|d(w, z)−2n + |KL(w, z)|

� d(w, z)−2n+1 + |KL(w, z)|.

Here we use the fact that Λ is Lipschitz. Then, compute to see:

|KL(z, w)| =
∣∣∣g(z, w)

−n − g(w, z)−n
∣∣∣

=

∣∣∣∣∣g(w, z)
n − g(z, w)

n

g(w, z)ng(z, w)
n

∣∣∣∣∣
=

∣∣∣∣∣∣
(
g(w, z) − g(z, w)

)(∑n−1
t=0 (g(w, z))t(g(z, w))n−1−t

)
g(w, z)ng(z, w)

n

∣∣∣∣∣∣
� |g(w, z) − g(z, w)|d(w, z)2n−2

d(w, z)4n

� d(w, z)−2n+1

where in the last estimation we used Proposition 2.12. �
One can show using a special coordinate system that

sup
z∈bD

∫
d(w, z)−2n+1 dμ(w) < ∞ (8)
bD
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(see [12] or [20]). This result can also be obtained by integrating over dyadic “annuli” as 
we will later see. Thus, we see that R and (C�)∗ − C� have integrable kernels, while C�

does not.
Now we show the these kernel estimates are not only enough to guarantee boundedness 

on weighted Lp spaces; they are actually enough to guarantee compactness which is 
much better. The following proposition allows for good control of the integration of an 
A1 weight σ against a kernel K(z, w) which satisfies the size estimate above.

Proposition 2.14. Let K(z, w) be a kernel measurable on bD × bD that satisfies the size 
estimate |K(z, w)| � d(w, z)−2n+1, and let σ ∈ A1. Then the following estimates hold 
for all z, w ∈ bD:

∫
B(z,δ)

|K(z, w)|σ(w) dμ(w) � δσ(z)

∫
B(w,δ)

|K(z, w)|σ(z) dμ(z) � δσ(w).

Proof. Break the region of integration up into dyadic annuli and estimate the integral 
as follows:

∫
B(z,δ)

|K(z, w)|σ(w) dμ(w)

�
∫

B(z,δ)

d(w, z)−2n+1σ(w) dμ(w)

=
∞∑
i=0

∫
B(z,2−iδ)\B(z,2−(i+1)δ)

d(w, z)−2n+1σ(w) dμ(w)

≤
∞∑
i=0

∫
B(z,2−iδ)\B(z,2−(i+1)δ)

2(−(i+1)(−2n+1))δ(−2n+1)σ(w) dμ(w)

≤
∞∑
i=0

2(−(i+1)(−2n+1))δ(−2n+1)μ(B(z, 2−iδ)) 1
μ(B(z, 2−iδ))

∫
B(z,2−iδ)

σ(w) dμ(w)

≤
∞∑
i=0

22n−12−iδM(σ)(z)

� δM(σ)(z)

� δσ(z).
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Note all implicit equivalences are independent of w and z. The proof of the other 
statement is completely analogous. �

Note if K(z, w) is the kernel of an integral operator satisfying the size estimate of the 
previous proposition, then K is “integrable” in the sense that

sup
z∈bD

∫
bD

|K(z, w)| dμ(w) < ∞, (9)

and obviously (9) still holds if the roles of z and w are interchanged. This can be seen 
by taking σ = 1 and δ sufficiently large in Proposition 2.14. But in fact, we can say 
something slightly better. The proof of the following proposition is essentially a reprise 
of Proposition 2.14 taking σ = 1 with obvious modifications.

Proposition 2.15. Let K(z, w) be a kernel measurable on bD × bD that satisfies the size 
estimate |K(z, w)| � d(w, z)−2n+1, and let ε ∈ [0, 1

2n−1 ). Then the following hold:

sup
z∈bD

∫
bD

|K(z, w)|1+ε dμ(w) < ∞

sup
w∈bD

∫
bD

|K(z, w)|1+ε dμ(z) < ∞.

As a consequence of this proposition, we can prove that an integral operator K that 
has a kernel with the above size estimate “improves” Lp spaces. This was noted before 
in [9] using a slightly different approach.

Proposition 2.16. Let K be an integral operator on Lp(bD) with a kernel K(z, w) that 
satisfies the size estimate |K(z, w)| � d(w, z)−2n+1. Then K maps Lp(bD) to Lp+ε(bD)
boundedly for p ≥ 1 and ε ∈ [0, 1

2n−1 ).

Proof. We first demonstrate the result for p = 1 and then show how this implies the 
result for p > 1. Take f ∈ L1(bD) and ε ∈ [0, 1

2n−1 ). Then compute, using Minkowski’s 
integral inequality and Proposition 2.15:

⎛
⎜⎝ ∫

bD

∣∣∣∣∣∣
∫
bD

K(z, w)f(w) dμ(w)

∣∣∣∣∣∣
1+ε

dμ(z)

⎞
⎟⎠

1
1+ε

≤

⎛
⎜⎝ ∫ ⎛

⎝ ∫
|K(z, w)||f(w)| dμ(w)

⎞
⎠

1+ε

dμ(z)

⎞
⎟⎠

1
1+ε
bD bD
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≤
∫
bD

⎛
⎝ ∫

bD

|K(z, w)|1+ε dμ(z)

⎞
⎠

1
1+ε

|f(w)| dμ(w)

� ||f ||L1(bD).

To obtain the result for p > 1, proceed as follows, using Hölder’s inequality with 
exponents p and q:

⎛
⎝ ∫

bD

∣∣∣∣∣∣
∫
bD

K(z, w)f(w) dμ(w)

∣∣∣∣∣∣
p+ε

dμ(z)

⎞
⎠

1
p+ε

≤

⎛
⎝ ∫

bD

⎛
⎝ ∫

bD

|K(z, w)|1/p|K(z, w)|1/q|f(w)| dμ(w)

⎞
⎠

p+ε

dμ(z)

⎞
⎠

1
p+ε

≤

⎛
⎜⎝ ∫

bD

⎛
⎝ ∫

bD

|K(z, w)| dμ(w)

⎞
⎠

p+ε
q

⎛
⎝ ∫

bD

|K(z, w)||f(w)|p dμ(w)

⎞
⎠

p+ε
p

dμ(z)

⎞
⎟⎠

1
p+ε

�

⎛
⎜⎝ ∫

bD

⎛
⎝ ∫

bD

|K(z, w)||f(w)|p dμ(w)

⎞
⎠

p+ε
p

dμ(z)

⎞
⎟⎠

1
p+ε

=

⎛
⎜⎜⎝
⎛
⎜⎝ ∫

bD

⎛
⎝ ∫

bD

|K(z, w)||f(w)|p dμ(w)

⎞
⎠

p+ε
p

dμ(z)

⎞
⎟⎠

p
p+ε

⎞
⎟⎟⎠

1
p

≤

⎛
⎜⎝ ∫

bD

⎛
⎝ ∫

bD

|K(z, w)|1+ ε
p dμ(z)

⎞
⎠

p
p+ε

|f(w)|p dμ(w)

⎞
⎟⎠

1
p

� ||f ||Lp(bD).

In the penultimate line, notice we apply Minkowski’s integral inequality with exponent 
p+ε
p = 1 + ε

p and with respect to measures |f(w)|p dμ(w) and dμ(z). �
Thus, we obtain the following important corollary:

Corollary 2.17. The operators R, R∗, and (C�)∗−C� map Lp(bD) to Lp+ε(bD) for p ≥ 1
and ε ∈ [0, 1

2n−1 ).

We now turn to a proof of the major lemma concerning the error terms. This lemma 
adapts an argument that can be found in [20] to the weighted setting. It also should be 
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noted that components of this proof are analogous to a “weighted Schur test,” which 
appears to be well known, see, for example, [22].

Lemma 2.18. Let K(z, w) be a measurable function on bD × bD satisfying the following 
for all z, w ∈ bD and all weights σ ∈ A1:

(i)
∫
B(z,δ) |K(z, w)|σ(w) dμ(w) � C(δ)σ(z);

(ii)
∫
B(w,δ) |K(z, w)|σ(z) dμ(z) � C(δ)σ(w);

(iii) For any fixed δ > 0, the kernel K(z, w) is bounded on

bD × bD \ {(z, w) : d(z, w) < δ}

(with a bound that depends on δ).

Furthermore, C(δ) tends to 0 as δ → 0. Then the operator K defined by K(f)(z) =∫
bD

K(z, w)f(w) dμ(w) is compact on Lp
σ(bD) for σ ∈ Ap.

Proof. First, consider the case when K is bounded on bD × bD, say ||K||L∞(bD) ≤ M . 
Let σ ∈ Ap. Then note that the kernel of the operator K with respect to the weighted 
measure dσ = σ dμ is K̃(z, w) = K(z, w)σ−1(w). To prove compactness on Lp

σ(bD), it 
suffices to show the following double-norm is finite (it is well-known the finiteness of this 
double-norm implies compactness, for example see [4]):

∫
bD

⎛
⎝ ∫

bD

|K̃(z, w)|q dσ(w)

⎞
⎠

p/q

dσ(z),

where q denotes the Hölder exponent conjugate to p. Then we have

∫
bD

⎛
⎝ ∫

bD

|K̃(z, w)|q dσ(w)

⎞
⎠

p/q

dσ(z) =
∫
bD

⎛
⎝ ∫

bD

|K(z, w)|qσ− 1
p−1 dμ(w)

⎞
⎠

p/q

σ(z) dμ(z)

≤ Mp||σ||L1(bD)||σ
−1
p−1 ||p−1

L1(bD)

< ∞

since σ, σ− 1
p−1 are integrable on bD. Thus the theorem holds in this case.

To pass to the case where K is unbounded, let δj = 1
j and

Kj(z, w) =
{
K(z, w) d(w, z) ≥ δj

0 d(w, z) < δj
.

Let Kj be the integral operator with kernel Kj. Then, by hypothesis Kj is bounded 
on bD × bD and by the argument above, Kj is compact on Lp

σ(bD). Since the compact 
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operators are a closed subspace of the Banach space of bounded linear operators on 
Lp
σ(bD), if we can show that the operators Kj approach K in operator norm, we will be 

done.
To this end, let f ∈ Lp

σ(bD) with ||f ||Lp
σ(bD) ≤ 1. Note that as σ ∈ Ap, we can write

σ = σ1

σp−1
2

where σ1, σ2 ∈ A1 by the factorization of Ap weights in the setting of spaces of homo-
geneous type (see, for example, [21] for a proof of this well-known fact). By Hölder’s 
Inequality applied to the functions |K(z, w) − Kj(z, w)|1/qσ2(w)1/q and |K(z, w) −
Kj(z, w)|1/pσ2(w)−1/q|f(w)| and then applying Proposition 2.14, we obtain the estimate:

|(K −Kj)(f)(z)| ≤
∫
bD

|K(z, w) −Kj(z, w)||f(w)| dμ(w)

=

⎛
⎜⎝ ∫

B(z,δj)

|K(z, w)|σ2(w) dμ(w)

⎞
⎟⎠

1/q

×

⎛
⎜⎝ ∫

B(z,δj)

|K(z, w)|(σ2(w))1−p|f(w)|p dμ(w)

⎞
⎟⎠

1/p

� C(δj)1/qσ2(z)1/q

⎛
⎜⎝ ∫

B(z,δj)

|K(z, w)|(σ2(w))1−p|f(w)|p dμ(w)

⎞
⎟⎠

1/p

.

Thus, we obtain, applying the proceeding estimate, Fubini, and Proposition 2.14 again:

||(K −Kj)f ||pLp
σ(bD) ≤

∫
bD

C(δj)
p
q σ2(z)

p
q

⎛
⎜⎝ ∫

B(z,δj)

|K(z, w)|(σ2(w))1−p|f(w)|p dμ(w)

⎞
⎟⎠

× σ1(z)
σ2(z)p−1 dμ(z)

= C(δj)
p
q

∫
bD

∫
B(z,δj)

|K(z, w)|(σ2(w))1−p|f(w)|p dμ(w)σ1(z) dμ(z)

= C(δj)
p
q

∫
bD

⎛
⎜⎝ ∫

B(w,δj)

|K(z, w)|σ1(z) dμ(z)

⎞
⎟⎠

× |f(w)|p(σ2(w))1−p dμ(w)
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� C(δj)p
∫
bD

σ1(w)|f(w)|p(σ2(w))1−p dμ(w)

= C(δj)p||f ||pLp
σ(bD)

≤ C(δj)p.

Letting j → ∞, we have δj → 0 and C(δj) → 0. Thus, it immediately follows that 
the operators Kj approach K in operator norm and hence K is compact. �

The preceding lemma admits the following, very useful corollary:

Corollary 2.19. The operators R, R∗, and (C�)∗−C� are compact on Lp
σ(bD) for σ ∈ Ap.

We need one more crucial lemma to conclude our analysis of the error terms and allow 
us to present the proof of Theorem 2.1 in the next section.

Lemma 2.20. Let K be an integral operator on Lp(bD) with a kernel K(z, w) that satisfies 
the size estimate |K(z, w)| � d(w, z)−2n+1. Further suppose that iK is self-adjoint on 
L2(bD). Then 1 is not in the spectrum of K considered as an operator on Lp

σ(bD), where 
σ is an Ap weight.

Proof. First, note that 1 is not an eigenvalue of K considered as an operator on 
(unweighted) L2(bD). So suppose to the contrary that there exists an eigenfunction 
f ∈ Lp

σ(bD) such that Kf = f . We assert f ∈ L1(bD). To see this, note by Hölder
∫
bD

|f(w)| dμ(w) =
∫
bD

|f(w)|σ(w)1/pσ(w)−1/p dμ(w)

≤ ||f ||Lp
σ(bD)||σ− 1

p−1 ||1/qL1(bD)

< ∞.

Then, by Corollary 2.17, f ∈ L1+ε(bD). In particular, we have

||f ||L1+ε(bD) = ||Kf ||L1+ε(bD)

� ||f ||L1(bD)

< ∞.

But since Kf = f , we can repeat this argument to obtain f ∈ L1+2ε. In fact, we can 
iterate this argument arbitrarily many times to obtain that f ∈ Lp(bD) for all p ≥ 1! 
In particular, f ∈ L2(bD). This contradicts the fact that 1 is not an eigenvalue of K
on L2(bD). Since K is compact on Lp

σ(bD) by Corollary 2.19 (or rather the arguments 
leading to this corollary), this implies 1 is not in the spectrum of K on Lp

σ(bD), as 
required. �
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2.4. Proof of Theorem 2.1

Equipped with these definitions and results, we are in a position to prove Theorem 2.1. 
As discussed, the essential ideas in this proof have been around for a long time and can 
be found, for example, in [8,9].

Proof of Theorem 2.1. First, note that both S and C essentially produce and reproduce 
boundary values of holomorphic functions: they are projections onto H2(bD) (this is 
proven precisely in [11]). Consequently, we obtain the following two operator identities 
on L2(bD): SC = C and CS = S. Taking adjoints of the second identity and using the 
fact that the Szegő projection is self-adjoint, we get SC∗ = S, and further manipulation 
yields S(C∗ − C) = S − C, or S(I − A) = C where I denotes the identity operator and 
A = C∗ − C. By Theorem 2.11 and Corollary 2.19 and, we know that C = C� + R is 
bounded on Lp

σ(bD) for σ ∈ Ap.
Next, we assert that the operator A is compact on Lp

σ(bD). To see this, write

A = (C�)∗ − C� + (C� − C) + (C∗ − (C�)∗) = ((C�)∗ − C�) −R + R∗

and appeal to Corollary 2.19. Next, an easy computation shows that iA is self-adjoint 
on L2(bD). It follows from Lemma 2.20 that 1 is not in the spectrum of A considered as 
an operator on Lp

σ(bD) and hence the operator (I − A) is invertible on Lp
σ(bD). Thus, 

we may write

S = C(I −A)−1

and conclude that S extends to a bounded operator on Lp
σ(bD) since both C and (I−A)−1

are bounded on Lp
σ(bD). Thus, we have established all parts of Theorem 2.1. �

3. The Szegő projection on C2 domains

3.1. Background for C2 case

We now consider what modifications are necessary to prove Theorem 1.1, as in [12]. 
From now on we assume D has boundary of class C2, but all the other assumptions 
about D and ρ from before remain in force. We shall be brief, as basically the same 
setup applies with one crucial change. This involves uniformly approximating the second 
derivatives of ρ by differentiable functions. In particular, since that boundary is of class 
C2, we must replace the second derivatives ∂2ρ

∂wj∂wk
by an n × n matrix of {τ εj,k} of C1

functions satisfying

sup
∣∣∣∣ ∂ρ (w) − τ εj,k(w)

∣∣∣∣ ≤ ε 1 ≤ j, k ≤ n.

w∈bD ∂wj∂wk
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Now we define the analogs of g(w, z), G(w, z) and η(w, z) In particular, define

gε(w, z) := χ

⎛
⎝ n∑

j=1

∂ρ

∂wj
(w)(wj − zj) −

1
2

n∑
j,k=1

τ εj,k(w)(wj − zj)(wk − zk)

⎞
⎠

+ (1 − χ)|w − z|2

where χ is the same C∞ cutoff function as in the C3 case. If ε is taken sufficiently small, 
we have the analogous estimate

Re(gε(w, z)) � −ρ(z) + |w − z|2,

where the implicit constant is independent of ε.
In the same way, we define the (1, 0) form in w Gε(w, z) as follows:

Gε(w, z) := χ

⎛
⎝ n∑

j=1

∂ρ

∂wj
(w)dwj −

1
2

n∑
j,k=1

τ εj,k(w)(wk − zk)dwj

⎞
⎠+(1−χ)

n∑
j=1

(w̄j−z̄j)dwj .

As before, we define for w ∈ bD, z ∈ D:

ηε(w, z) := Gε(w, z)
gε(w, z)

.

Then of course ηε is again a generating form. Therefore, we can construct the associ-
ated Cauchy-Fantappié integral operator C1

ε in exactly the same way as we constructed 
C1, with ηε playing the role of η. In particular, the analog of Proposition 2.2 holds for 
C1

ε.
The issue, again, is that C1

ε reproduces but does not produce holomorphic functions. 
Again, we can introduce a correction operator C2

ε and consider the operator C = C1
ε +

C2
ε. Proposition 2.3 will hold in this case; the operator Cε will reproduce and produce 

holomorphic functions.
The rest of the setup follows basically identically. The definition of the Leray-Levi 

measure dλ does not change, except now Λ will merely be a continuous rather than 
Lipschitz map. The quasi-metric d will be defined in the same way, namely

d(w, z) = |gε(w, z)|1/2

and will satisfy the same properties, including (bD, d, μ) being a space of homogeneous 
type.

We can again consider the operator

Cε(f)(z) = Cε(f)(z)|bD
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and this definition makes sense when the function f is Hölder continuous with respect 
to d as before. We also can obtain the decomposition

Cε = C�
ε + Rε

where

C�
ε(f)(z) =

∫
bD

f(w)
gε(w, z)n

dλ(w)

and the kernel Rε(w, z) of the operator Rε satisfies

|Rε(w, z)| ≤ cεd(w, z)−2n+1.

Here cε denotes a constant that can depend on ε.
Restricting this decomposition to the boundary, it is possible to obtain the following 

operator equation, acting on an appropriate class of functions:

Cε = C�
ε + Rε.

The class of Ap weights and the maximal function are defined in the exact same 
manner as before.

This concludes our reiteration of the preliminaries for the C2 case. The reader is 
invited to consult [12] for more details.

3.2. Weighted estimates in the C2 case

We now demonstrate how weighted Lp bounds can be obtained in the C2 case. 
Throughout we closely follow the arguments in [12]. First, note that we can still ob-
tain the Kerzman-Stein equation in the same way as before. Thus, we have on L2(bD):

S(I − (C∗
ε − Cε)) = Cε. (10)

In this case, we will be unable to invert the operator (I − (C∗
ε − Cε)). It suffices to 

prove that S is bounded on L2
σ(bD) for all σ ∈ A2; then we can appeal to extrapolation. 

To begin with, we have:

Lemma 3.1. For σ ∈ A2 the operator Cε extends to a bounded operator on L2
σ(bD) and 

in particular satisfies

||Cεf ||L2
σ(bD) ≤ cε,σ||f ||L2

σ(bD),

where cε,σ is a constant that depends on ε and the weight σ.
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Proof. First, the operator C�
ε is Calderón-Zygmund (see the proof of [12, Theorem 7]); 

however, the constants in its smoothness estimates do depend on ε. The bound on the ker-
nel of Rε in fact implies that it is compact on L2

σ(bD) by the arguments in Lemma 2.18. 
This finishes the proof. �

The dependence of the constant on ε turns out not to be an issue because ultimately 
in the course of the proof we will fix ε sufficiently small and do not need to take a limit 
as ε → 0.

Next, we need to break up the operator C∗
ε − Cε. Roughly, we break the kernel of Cε

into pieces supported on and off the diagonal w = z. Let s = s(ε) be a parameter chosen 
depending on ε. We write

Cε = Cs
ε + Rs

ε

where

Cs
ε(f) = Cε(fχs)

and χs(w, z) is a symmetrized smooth cutoff function that is 1 when d(z, w) ≤ cs and 0 
when d(z, w) ≥ s (see [12] for details). Thus,

C∗
ε − Cε = [(Cs

ε)∗ − Cs
ε ] + [(Rs

ε)∗ −Rs
ε] := Aε + Dε.

It is immediate from previous discussions that for fixed ε, s, the kernel of Rs
ε is 

bounded. It is then an entirely straightforward exercise using Hölder’s inequality and 
the integrability of σ that Rs

ε boundedly maps L2
σ(bD) to L∞(bD).

We now need to deal with the other term. First, we state a lemma ([12, Lemma 24]) 
that we will later need. It is a decomposition lemma that partitions Cn = R2n into cubes 
at various levels. In particular, let Q1

0 denote the unit cube centered at the origin in Cn, 
and for k ∈ Zn let Q1

k = k + Q1
0 be its integer translates. For γ > 0, let Qγ

k = γQ1
k. 

Note that for a given cube Qγ
k, there are at most N = 32n cubes that touch it; i.e. whose 

closures have non-empty intersection.

Lemma 3.2. Fix γ > 0. Suppose T is a bounded operator on L2
σ(bD) that satisfies:

1. 1jT1k = 0 if the cubes Qγ
j and Qγ

k do not touch.
2. ||1jT1k||L2

σ
≤ A otherwise.

Then T satisfies

||T ||L2
σ
≤ AN.

Proof. The proof is identical to the one given in [12]. The underlying measure is now 
σ dμ as opposed to just Lebesgue measure, but the argument is the same. �
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We have the following lemma:

Lemma 3.3. Given ε > 0, there exists an s = s(ε) so the following holds:

||(Cs
ε)∗ − Cs

ε ||L2
σ(bD) ≤ ε1/2Mσ

where the constant Mσ depends on the weight σ but not ε.

Proof. Here the distinction between the Leray-Levi measure and Lebesgue measure be-
comes important. As before, let † denote the adjoint of an operator taken with respect 
to Leray-Levi measure, and write

(Cs
ε)∗ − Cε = [(Cs

ε)† − Cε] + [(Cs
ε)∗ − (Cs

ε)†].

We will first show

||(Cs
ε)† − Cs

ε ||L2(σ) ≤ ε1/2Mσ.

Note as before we decomposed Cε, we can write Cs
ε = C�,s

ε + R�,s
ε , where C�,s

ε is the 
corresponding truncation of the operator C�

ε. Write

(Cs
ε)† − Cε = [(C�,s

ε )† − C�,s
ε ] + [(R�,s

ε )† −R�,s
ε ] = As

ε + Bs
ε.

Recall that the kernel of Rε is majorized by cεd(w, z)−2n+1. Using basically the ar-
guments of Proposition 2.14, we have, for any σ′ ∈ A1:

R�,s
ε (σ′)(z) � sσ′(z)

and

(R�,s
ε )∗(σ′)(z) � sσ′(z)

where the implicit constants depend on the weight σ′ and ε. Then, by writing σ ∈ A2
as a quotient of A1 weights and applying the reasoning in the proof of Lemma 2.18, it 
is straightforward to show that ||R�,s

ε ||L2
σ(bD) ≤ cε,σs. Choosing s appropriately small in 

terms of ε, we obtain the estimate

||R�,s
ε ||L2

σ(bD) ≤ ε1/2Mσ,

as desired. The same estimate is easily seen to hold for (R�,s
ε )†, proving the estimate for 

Bs
ε.
We now turn to As

ε. It is proven in [12] that the operators ε−1/2As
ε satisfy size/smooth-

ness and cancellation conditions that are uniform in ε. Lanzani and Stein apply the T (1)
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theorem to show that ||As
ε||Lp(bD) ≤ ε1/2Mp, where Mp is independent of ε. But the 

same Calderón-Zygmund theory shows that

||As
ε||L2

σ(bD) ≤ ε1/2Mσ,

as we sought to show. We have thus demonstrated the result for (Cs
ε)† − Cs

ε .
We now turn to the operator (Cs

ε)∗ − (Cs
ε)†. Estimating the norm of this operator 

turns out to involve estimating the norm of a commutator. In particular, (Cs
ε)∗− (Cs

ε)† =
(Cs

ε)∗ − Λ(Cs
ε)∗Λ−1, where dλ = Λ dμ and Λ is a continuous function that is bounded 

above and below. Thus, the L2
σ norm of this operator is controlled by

||Λ||L∞(bD)
∥∥[Λ−1, (Cs

ε)∗
]∥∥

L2
σ(bD) ,

where [A, B] = AB −BA.
Notice by a simple computation,

([
Λ−1, (Cs

ε)∗
])∗ = Cs

ε Λ̄−1 − Λ̄−1Cs
ε =

[
Cs
ε , Λ̄−1] ,

so by duality it suffices to estimate the norm of a commutator [Cs
ε , φ] on L2

σ(bD) for any 
σ ∈ A2, where φ is an arbitrary continuous map bD → C. In particular, we claim for 
fixed φ:

‖[Cs
ε , φ]‖L2

σ(bD) ≤ εMσ.

This is exactly proven in [12], but for unweighted Lp. A key ingredient in the proof 
is contained in [12, Proposition 19], which states that we can get a uniform bound 
||Cs

ε ||Lp(bD) ≤ Mp for ε and s chosen sufficiently small. This is proven using the T (1)
theorem with estimates uniform in ε, but then of course the same proof implies

||Cs
ε ||L2

σ(bD) ≤ Mσ.

Now we provide a short sketch of how Lemma 3.2 leads to the desired conclusion again 
following the arguments from [12]. In particular, we apply the lemma to the operator 
[Cs

ε , φ] with ε and s chosen appropriately. The first condition of Lemma 3.2 basically 
follows because Cs

ε has a kernel that is supported in a small neighborhood of the diagonal 
(in particular, we take γ = cs).

The second condition follows from the (uniform) continuity of φ. For a cube Qγ
k , 

denote its center by zk. If s is chosen sufficiently small, then by continuity, if z ∈ Qγ
j , 

where Qγ
j touches Qk, we have

|φ(z) − φ(zk)| < ε.
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Now write φ = φk + ψk, where φk(z) = φ(z) − φ(zk) and ψk(z) = zk. Obviously, 
[Cs

ε , φ] = [Cs
ε , φk] +[Cs

ε , ψk], but [Cs
ε , ψk] = 0 as ψk is constant. Therefore, we have for any 

cube Qγ
j that touches Qγ

k :

||1j [Cs
ε , φ]1k||L2

σ(bD) = ||1j [Cs
ε , φk]1k||L2

σ(bD)

≤ ||1jCs
εφk1k||L2

σ(bD) + ||1jφkCs
ε1k||L2

σ(bD)

< 2ε||Cs
ε ||L2

σ(bD)

≤ 2εMσ.

This completes the proof. �
The following proposition is an immediate consequence of the well-known reverse 

Hölder property of Ap weights.

Proposition 3.4. Let 1 < p < ∞ and suppose σ ∈ Ap. Then there exists a δ > 0 so 
σ1+δ ∈ L1(bD).

We are now finally ready to prove the main theorem.

Proof of Theorem 1.1. As noted before, it suffices to prove the result for p = 2. Recall 
Aε = (Cs

ε)∗ − Cs
ε and Dε = (Rs

ε)∗ − Rs
ε. Thus, the Kerzman-Stein equation takes the 

form

S(I −Aε) − SDε = Cε.

By Lemma 3.3, if ε and s are chosen sufficiently small, then ||Aε||L2
σ(bD) < 1. Inverting 

Aε using a Neumann series yields:

S = Cε(I −Aε)−1 + SDε(I −Aε)−1.

By Lemma 3.1, the operator Cε(I−Aε)−1 maps L2
σ(bD) to itself. Now, by discussions 

above Dε(I − Aε)−1 maps L2
σ(bD) to L∞(bD), and hence maps L2

σ(bD) to Lp(bD)
boundedly for any p, 1 < p < ∞. Additionally, by the principle result in [12], S extends 
to a bounded operator on Lp. So in particular SDε(I − Aε)−1 maps L2

σ(bD) to Lp for 
all p, 1 < p < ∞. We claim that if p is chosen sufficiently large (depending on σ), then 
||g||L2

σ(bD) � ||g||Lp(bD) for all measurable functions g. Then

||SDε(I −Aε(f))||L2
σ(bD) � ||SDε(I −Aε(f))||Lp(bD)

for all measurable f , which will then establish the result.
To prove the claim, we use Proposition 3.4. In particular, we have, using Hölder’s 

inequality with exponents p and r =
(
p
)′:
2 2
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||g||2L2
σ(bD) =

∫
bD

|g|2σ dμ

≤

⎛
⎝ ∫

bD

|g|p dμ

⎞
⎠

2
p
⎛
⎝ ∫

bD

σr dμ

⎞
⎠

1
r

� ||g||2Lp(bD)

provided p is chosen so r < 1 + δ. This completes the proof. �
4. The Bergman projection

In this section, we will study the Bergman projection on weighted spaces under the as-
sumption that D is a C4 domain. Our main goal is to prove the following theorem, which 
is a more detailed version of Theorem 1.2. Here T is the auxiliary operator corresponding 
to the Bergman projection that we discussed in subsection 1.3.

Theorem 4.1. Let D be strongly pseudoconvex with C4 boundary. Then for 1 < p < ∞
and σ ∈ Bp, the following hold:

1. The operator T ∗ − T is compact on Lp
σ(D).

2. The operator I − (T ∗ − T ) is invertible on Lp
σ(D).

3. The Bergman projection B extends to a bounded operator on Lp
σ(D) and satisfies

B = T (I − (T ∗ − T ))−1.

4.1. Background and setup

Now we let D be a strongly pseudoconvex domain with C4 defining function ρ. As in 
Lanzani-Stein [13], we can construct an integral operator T = T1+T2 that integrates over 
the interior of the domain D, where T1 is constructed using Cauchy-Fantappié theory 
and T2 is obtained by solving a ∂̄ problem. The operator T has the property that it 
produces and reproduces holomorphic functions.

We now make several definitions that are analogous to our treatment above of the 
Szegő projection. We will slightly abuse notation by reusing certain letters to represent 
analogous objects in the Bergman case. Define

g(w, z) := −ρ(w) − χ(Pw(z)) + (1 − χ)|w − z|2

where Pw(z) denotes the Levi polynomial at w and χ is an appropriately chosen C∞

cutoff function. In particular, using the strict pseudoconvexity of D, χ can be chosen so

Re g(w, z) � −ρ(w) − ρ(z) + c|w − z|2.
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Now, as before define the (1, 0) form in w

G(w, z) := χ

⎛
⎝ n∑

j=1

∂ρ

∂wj
(w) dwj −

1
2

n∑
j,k=1

∂2ρ

∂wj∂wk
(w)(wk − zk) dwj

⎞
⎠

+ (1 − χ)
n∑

j=1
(w̄j − z̄j) dwj .

Note that G has the property that if we let

η̂(w, z) = G(w, z)
g(w, z) + ρ(w) , (11)

then

〈η̂(w, z), w − z〉 = 1

for all z ∈ D and w in neighborhood of bD. Note that (11) indicates η̂ is a generating 
form. However, we instead define the (1, 0) form in w:

η(w, z) = G(w, z)
g(w, z)

and associated integral operator

T1(f)(z) := 1
(2πi)n

∫
D

(∂̄wη)n(w, z)f(w),

where (∂̄wη)n denotes the wedge product taken n times. We have the following proposi-
tion (see [13, Proposition 3.1]):

Proposition 4.2. Suppose f is holomorphic on D and belongs to L1(D). Then for all 
z ∈ D, one has

T1(f)(z) = f(z).

A computation shows the operator T1 has kernel

K1(w, z) = N(w, z)
(g(w, z))n+1 (12)

where N(w, z) is an (n, n) form of class C1 (in w) with coefficients smooth in z. In 
particular, we have (see [13]):
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N(w, z) = −
(
(∂̄η)n−1 ∧ ∂̄wg ∧ η + g(∂̄η)n

)
. (13)

We write N(w, z) = N (w, z)dV (w), where dV denotes the Euclidean volume form. Notice 
the fact that N (w, z) is of class C1 in w is a direct consequence of the fact that D has 
C4 boundary.

Proposition 4.2 guarantees that T1 reproduces holomorphic functions, but as in the 
Szegő case we need to add a correction operator to ensure that it produces holomorphic 
functions. The details can be found in [13], and again involve solving a ∂̄ problem on 
a strongly pseudoconvex domain that contains D. We have the following proposition 
concerning T2 and the operator T = T1 + T2 (see [13, Proposition 3.2]):

Proposition 4.3. There is an integral operator T2 defined

T2f(z) :=
∫
D

K2(z, w)f(w) dV (w)

with

sup
(z,w)∈D̄×D̄

|K(z, w)| < ∞

that satisfies:

1. If f ∈ L1(D), then T (f) is holomorphic on D.
2. If, in addition, f is holomorphic on D, then T (f)(z) = f(z) for z ∈ D.

We now introduce an appropriate quasi-metric which gives rise to a space of homo-
geneous type on D. This metric can be defined using polydiscs introduced by McNeal 
(see [17]) and is defined locally at first on a neighborhood U of a point p ∈ bD. Fix a 
point w ∈ U . First, we may by a unitary rotation (plus a normalization) and translation 
assume ∂ρ(w) = dz1 and w = 0. Then, define holomorphic coordinates ζ = (ζ1, . . . , ζn)
as follows:

ζ1 = z1 + 1
2

n∑
j,k=1

∂2ρ(w)
∂zj∂zk

(zj)(zk), ζj = zj , j = 2, . . . n.

Note if Φ : U → Φ(U) denotes this coordinate map, Φ is a biholomorphism if U is chosen 
small enough.

Consider the polydisc:

P (w, δ) = {z : |z1| < δ, |zj | < δ1/2, 2 ≤ j ≤ n},

where again zj denotes the special holomorphic coordinates centered at w.
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These polydiscs satisfy certain types of doubling properties (see [16]). We include a 
proof for completeness.

Proposition 4.4. There exist independent constants C1, C2 so the following hold for the 
polydiscs:

1. If P (q1, δ) ∩ P (q2, δ) �= ∅, then P (q1, δ) ⊂ C1P (q2, δ) and P (q2, δ) ⊂ C1P (q1, δ).
2. There holds P (q1, 2δ) ⊂ C2P (q1, δ).

Proof. The second property is essentially immediate from the definition of P , so we 
focus on the first property. Suppose P (q1, δ) ∩ P (q2, δ) �= ∅. Let z1, . . . , zn denote the 
holomorphic coordinates centered at q1 and ζ1, . . . , ζn denote the holomorphic coordi-
nates centered at q2. The general idea is that these holomorphic coordinates do not differ 
greatly. We need to take an arbitrary point p ∈ P (q1, δ) and show there exists a constant 
C1 so p ∈ C1P (q2, δ). Let r ∈ P (q1, δ) ∩ P (q2, δ). Write the coordinates of p relative to 
the coordinate system of the second polydisc as (ζ1(p), . . . , ζn(p)). First observe that the 
definition of the polydiscs implies

|p− q2| ≤ |p− r| + |r − q2| � δ1/2

and the same bound holds for the quantities |q1 − q2| and |p − q1|. Then we have

|ζ1(p)| ≈

∣∣∣∣∣∣
n∑

j=1

∂ρ

∂zj
(q2)(pj − q2,j)

∣∣∣∣∣∣ + O(|p− q2|2)

� |z1(p)| +

∣∣∣∣∣∣
n∑

j=1

∂ρ

∂zj
(q2)(pj − q2,j) −

n∑
j=1

∂ρ

∂zj
(q1)(pj − q1,j)

∣∣∣∣∣∣ + δ

� δ + |〈∂ρ(q2) − ∂ρ(q1), p− q2〉| + |〈∂ρ(q1), q2 − q1〉|
� δ + |q2 − q1||p− q2| + |〈∂ρ(q1), q2 − q1〉|
� δ + |〈∂ρ(q1), q2 − q1〉| .

We control |〈∂ρ(q1), q2 − q1〉| as follows:

|〈∂ρ(q1), q2 − q1〉| ≤ |〈∂ρ(q1), r − q1〉| + |〈∂ρ(q1), q2 − r〉|
≤ z1(r) + |〈∂ρ(q1) − ∂ρ(q2), q2 − r〉| + |〈∂ρ(q2), r − q2〉|
� δ + |q1 − q2||q2 − r| + ζ1(r)

� δ.

It is easy to verify all the implicit constants are independent of q1, q2. So there exists 
a constant C1 so |ζ1(p)| < C1δ.
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On the other hand, for 2 ≤ j ≤ n, we have

|ζj(p)| � |p− q2| � δ1/2,

so if C1 is chosen appropriately large, then |ζj(p)| < C1δ
1/2. Then p ∈ C1P (q1, δ), as we 

sought to show.
The other conclusion is immediate by symmetry. This completes the proof. �
As a consequence of these covering properties, one can now introduce a local quasi-

metric M on U :

Definition 4.5. Define the following function on U × U :

M(z, w) = inf
ε>0

{ε : w ∈ P (z, ε)}.

Then M defines a quasi-metric on U . The argument is essentially the same as the other 
cases considered in [16].

It is also routine to verify that M(z, w) is comparable to the following metric quantity:

M(z, w) ≈ |z1 − w1| +
n∑

j=2
|zj − wj |2

where again the components of z and w are computed in the special coordinates centered 
at w.

It is possible to patch together these local quasi-metrics together to obtain a global 
quasi-metric d(z, w) that is comparable to each local piece (again the argument is 
essentially contained in [16]). Technically, this metric is only defined on a tubular neigh-
borhood of the boundary, but this presents us with no issues and we abuse notation by 
writing it to be defined on D (see, for example [6]).

It follows that (D, d, dV ) is a space of homogeneous type in the sense of Coifman 
and Weiss, where dV denotes Lebesgue measure on D. We may symmetrize d by taking 
replacing it with d(z, w) + d(w, z) and assume d(z, w) = d(w, z). It is also a fact that 
V (B(z, r)) ≈ rn+1, where B(z, r) = {w ∈ D : d(w, z) < r} (note the biholomorphism is 
measure-preserving, see also [6,7]). Moreover, we can define the distance to the boundary 
in this metric:

d(z, bD) := inf
w∈bD

d(z, w).

It is verified in [6] that this quantity is comparable to the Euclidean distance to the 
boundary.

We have the following relation between the quasi-metric d and the Euclidean distance:
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Proposition 4.6. We have, for z′, z ∈ D:

|z − z′|2 � d(z, z′) � |z − z′|.

Proof. It suffices to work locally, so we may assume d coincides with one of the local 
quasi-metrics on a neighborhood U . Let Φ(z) = ζ(z) = (ζ1, . . . , ζn) denote the biholo-
morphic coordinate change described in detail above in the construction of d. Because 
the coordinate change is biholomorphic, we have the following bounds:

|z − z′|2 =
n∑

j=1
|zj − z′j |2

�
n∑

j=1
|ζj − ζ ′j |2

≤ d(z, z′).

The proof of the upper bound is similar. �
It should also be noted that the metric d extends to D̄× D̄. We now show that when 

we restrict d to bD × bD, we obtain a quantity comparable in size to |g(w, z)|, which 
establishes a natural connection between the Szegő and Bergman cases.

Proposition 4.7. If z, w ∈ bD, then we have

d(z, w) ≈ |g(w, z)|.

Proof. Let z = (ζ1, . . . , ζn) in the special holomorphic coordinates centered at w. Note

d(z, w) ≈ |ζ1| +
n∑

j=2
|ζj |2.

Also, we have by [13, Proposition 2.1],

|g(w, z)| ≈ |Im〈∂ρ(w), w − z〉| + |w − z|2.

But notice that

|〈∂ρ(w), w − z〉| � |ζ1| + |w − z|2

and moreover

|w − z|2 �
n∑

|ζj |2 � d(z, w)

j=1
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since the coordinate change is biholomorphic. This shows |g(w, z)| � d(z, w). To see the 
reverse, note that if |z − w| is small enough, then g(w, z) = Pw(z) and

|ζ1| � |Pw(z)| + |w − z|2

which combined with the estimates above gives d(z, w) � |g(w, z)|. �
We can now define a suitable class of Bp weights on the domain D. Loosely speaking, 

this condition imposes that the product of the average of σ and the average of σ
−1
p−1 is 

controlled on quasi-balls that touch the boundary of D (or so-called Carleson tents). In 
what follows, let σ be a locally integrable function that is positive almost everywhere.

Definition 4.8. For 1 < p < ∞, we say the weight σ belongs to the Békollè-Bonami (Bp) 
class associated to the quasi-metric d if the following quantity is finite:

[σ]Bp
:= sup

B(w,R);R>d(w,bD)

⎛
⎜⎝ 1
V (B(w,R))

∫
B(w,R)

σ dV

⎞
⎟⎠

×

⎛
⎜⎝ 1
V (B(w,R))

∫
B(w,R)

σ−1/(p−1) dV

⎞
⎟⎠

p−1

.

We can also define an associated maximal function:

Definition 4.9. For z ∈ D and f ∈ L1(D), define the following maximal function:

Mf(z) := sup
B(w,R)�z;R>d(w,bD)

1
V (B(w,R))

∫
B(w,R)

|f | dV .

It is proven in [6] that M is bounded on Lp
σ(D) for σ ∈ Bp.

Moreover, we can define a suitable class of B1 weights (again σ is a locally integrable 
function on D that is positive almost everywhere).

Definition 4.10. We say the weight σ belongs to the class B1 if for all z ∈ D,

M(σ)(z) � σ(z).

4.2. The main term

We follow the following general outline to prove Theorem 4.1. First, we obtain size 
and smoothness estimates for K1(z, w), the kernel of T1. This enables us to prove that 
T maps Lp

σ(D) to Lp
σ(D). We then proceed to show that T ∗ − T is compact on L2

σ(D)



36 N.A. Wagner, B.D. Wick / Advances in Mathematics 384 (2021) 107745
and improves Lp spaces. These properties allow us to use the Kerzman-Stein equation 
to extract the Lp

σ(D) boundedness of B from the Lp
σ(D) boundedness of T .

The following proposition follows immediately from the fact that T2 has a bounded 
kernel and D is a bounded domain.

Proposition 4.11. For σ ∈ Bp, the operator T2 maps Lp
σ(D) to Lp

σ(D) boundedly, 1 <
p < ∞.

Proof. Take f ∈ Lp
σ(D). Then we have

||T2(f)(z)||p
Lp

σ(D) =
∫
D

∣∣∣∣∣∣
∫
D

K2(z, w)f(w) dV (w)

∣∣∣∣∣∣
p

σ(z) dV (z)

�

⎛
⎝ ∫

D

|f(w)| dV (w)

⎞
⎠

p ⎛
⎝ ∫

D

σ(z) dV (z)

⎞
⎠

≤ ||f ||p
Lp

σ(D)

⎛
⎝ ∫

D

σ(z) dV (z)

⎞
⎠

⎛
⎝ ∫

D

σ(w)−
1

p−1 dV (w)

⎞
⎠

p−1

≤ [σ]Bp
||f ||p

Lp
σ(D). �

We now work to prove the following theorem:

Theorem 4.12. For σ ∈ Bp, the operator T , as well as its adjoint T ∗, map Lp
σ(D) to 

Lp
σ(D) boundedly, 1 < p < ∞.

In light of the previous proposition, which clearly also works for T ∗
2 , it is sufficient 

to show that T1 and T ∗
1 are bounded on Lp

σ(D). To this end, we define the following 
comparison operator:

Γ(f)(z) =
∫
D

1
|g(w, z)|n+1 f(w) dV (w) .

Note that in light of (12), we have the pointwise domination:

|T1(f)(z)| � Γ(|f |)(z).

To prove the weighted Lp regularity of Γ, we follow Békollè’s approach of using singular 
integral theory that was also undertaken in [6]. In particular, we obtain the following 
size and smoothness estimates on the kernel of Γ:

Lemma 4.13. The following hold:
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1.

1
|g(w, z)|n+1 � min

{
1

V (B(z, d(z, bD))) ,
1

V (B(w, d(w, bD)))

}
.

2. If d(z, w) ≥ cd(z, z′) for an appropriately chosen constant c, then

∣∣∣∣ 1
(g(w, z))n+1 − 1

(g(w, z′))n+1

∣∣∣∣ �
(
d(z, z′)
d(z, w)

)1/2 1
V (B(z, d(z, w))) .

3. If d(z, w) ≥ cd(w, w′) for an appropriately chosen constant c, then

∣∣∣∣ 1
(g(w, z))n+1 − 1

(g(w′, z))n+1

∣∣∣∣ �
(
d(w,w′)
d(z, w)

)1/2 1
V (B(w, d(z, w))) .

Proof. For the first statement, it suffices to prove

1
|g(w, z)|n+1 � 1

V (B(z, d(z, bD))) ,

since |g(w, z)| ≈ |g(z, w)| by [13, Proposition 2.1]. Since V (B(z, d(z, bD))) ≈
[d(z, bD)]n+1, it is enough to show d(z, bD) � |g(w, z)|. We have d(z, bD) ≈ dist(z, bD) ≈
|ρ(z)|, where dist denotes Euclidean distance. On the other hand, |g(w, z)| � |ρ(z)| by 
[13, Proposition 2.1]). This proves the size estimate.

For the smoothness estimate, we first prove as a preliminary fact that d(z, w) �
|g(w, z)|. We may assume |w − z| is small enough so that g(w, z) = −ρ(w) − Pw(z). By 
definition we have

d(z, w) ≈ |ζ1| +
n∑

j=2
|ζj |2

where ζ1, . . . , ζn are the components of z in the holomorphic coordinates centered at 
w. Using the triangle inequality and the definition of the biholomorphic coordinates, we 
obtain

|ζ1| �

∣∣∣∣∣∣
n∑

j=1

∂ρ(w)
∂zj

(zj − wj)

∣∣∣∣∣∣ + O(|z − w|2) � |ρ(w)| + | − ρ(w) − Pw(z)| + O(|z − w|2).

Then, appeal to the fact that |g(w, z)| � |ρ(w)| + |w− z|2 by [13, Proposition 2.1] and 
the fact that the coordinate change is biholomorphic to obtain the desired conclusion.

We only prove the first smoothness estimate; the second one is proven similarly and 
is only slightly more complicated. We use similar ideas as in [12]. We first prove the 
estimate
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|g(w, z) − g(w, z′)| � d(z, z′)1/2d(z, w)1,2 + d(z, z′).

To begin with, note that we have

|g(w, z) − g(w, z′)| ≤ |〈∂ρ(w), w − z〉 − 〈∂ρ(w), w − z′〉|

+ 1
2

∣∣∣∣∣∣
n∑

j,k=1

∂2ρ(w)
∂wj∂wk

[
(wj − zj)(wk − zk) − (wj − z′j)(wk − z′k)

]∣∣∣∣∣∣ .
We deal with the first term, |〈∂ρ(w), w − z〉 − 〈∂ρ(w), w − z′〉| = |〈∂ρ(w), z′ − z〉|. We 

then have, using Proposition 4.6:

|〈∂ρ(w), z′ − z〉| ≤ |〈∂ρ(z), z′ − z〉| + |〈∂ρ(w) − ∂ρ(z), z′ − z〉|

� d(z, z′) + |z − w||z − z′|

� d(z, z′) + d(z, w)1/2d(z, z′)1/2.

Now we handle the second term. Notice that we have

|(wj − zj)(wk − zk) − (wj − z′j)(wk − z′k)| ≤ |(wj − zj)(wk − zk) − (wj − z′j)(wk − zk)|

+ |(wj − z′j)(wk − zk) − (wj − z′j)(wk − z′k)|

≤ |wk − zk||zj − z′j | + |wj − z′j ||zk − z′k|

≤ |w − z||z − z′| + (|w − z| + |z − z′|)|z − z′|

� d(z, w)1/2d(z, z′)1/2 + (d(z, w)1/2

+ d(z, z′)1/2)d(z, z′)1/2

� d(z, w)1/2d(z, z′)1/2

which proves the required bound for the second piece.
Now, we show |g(w, z)| ≈ |g(w, z′)| if d(z, w) ≥ cd(z, z′). We estimate, using the work 

previously done:

|g(w, z)| ≤ |g(w, z)| + |g(w, z′) − g(w, z)|

� |g(w, z′)| + d(z, w)1/2d(z, z′)1/2 + d(z, z′)

� |g(w, z′)| + (c−1/2 + c−1)d(z, w)

� |g(w, z′)| + (c−1/2 + c−1)|g(w, z)|.

Thus, if c is chosen appropriately large, we can subtract the |g(w, z)| term to the 
other side and obtain |g(w, z)| � |g(w, z′)|. The bound |g(w, z′)| � |g(w, z)| is obtained 
similarly.
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Finally, we obtain, using our assumption d(z, w) ≥ cd(z, z′):
∣∣∣∣ 1
(g(w, z))n+1 − 1

(g(w, z′))n+1

∣∣∣∣ ≤ |g(w, z) − g(w, z′)| (
∑n

t=0 |g(w, z)|t|g(w, z′)|n−t)
|g(w, z)|n+1|g(w, z′)|n+1

� |g(w, z) − g(w, z′)|
|g(w, z)|n+2

� 1
d(z, w)n+1

d(z, w)1/2d(z, z′)1/2

d(z, w)

�
(
d(z, z′)
d(z, w)

)1/2 1
V (B(z, d(z, w)))

which establishes the smoothness estimate. �
As a consequence of the size and smoothness estimates obtained on the kernel of the 

positive operator Γ, we get the following theorem (one can follow the arguments verbatim 
contained in [6, Theorem 1.2]):

Theorem 4.14. For 1 < p < ∞, the operators Γ, Γ∗ map Lp
σ(D) to Lp

σ(D) boundedly for 
σ ∈ Bp.

Now we can prove Theorem 4.12 as follows:

Proof of Theorem 4.12. Note that Theorem 4.14 implies the operators T1, T ∗
1 map 

Lp
σ(D) to Lp

σ(D) boundedly, which together with Proposition 4.11 establishes the re-
sult. �
4.3. The error term

We now proceed to deal with the “error term” T ∗ − T . In light of the arguments 
above, we already know T ∗ −T is bounded on Lp

σ(D), but in fact this operator exhibits 
much better behavior. In analogy with the approach taken in this paper for the Szegő 
operator, we show that this operator is compact on L2

σ(D) for σ ∈ B2 and improves Lp

spaces. We conclude by applying the Kerzman-Stein trick to deduce the boundedness of 
B from this information.

Lemma 4.15. Let K(z, w) denote the kernel of the integral operator T ∗ − T . Then we 
have the size estimates:

|K(z, w)| � d(z, w)−(n+ 1
2 )

and

|K(z, w)| � min
{
d(z, bD)−(n+ 1

2 ), d(w, bD)−(n+ 1
2 )
}
.
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Proof. This is where the hypothesis that D has C4 boundary is of importance. It is 
proven in [20, Theorem 7.6] that |K(z, w)| � |g(w, z)|−(n+ 1

2 ), so using the fact, con-
tained in the proof of Lemma 4.13, that d(z, w) � |g(w, z)|, we deduce that |K(z, w)| �
d(z, w)−(n+ 1

2 ). For completeness, we sketch the argument given in [20].
First, note from (13) that we can write N(w, z) = N0(w, z) + N1(w, z), where 

N0(w, z) = − 
(
(∂̄η)n−1) ∧ ∂̄wg ∧ η

)
and N1(w, z) = − 

(
g(∂̄η)n

)
. Note that N0(w, w) =

− 
(
∂w∂̄wρ ∧ ∂̄wρ ∧ ∂wρ

)
, so in particular N0(w, w) is a real-valued (n, n) form. Write 

N0(w, z) = N0(w, z)dV (w) and N1(w, z) = N1(w, z)dV (w). Moreover, it is clear 
N0(w, z) = N0(w, w) + O(|w − z|) by our smoothness assumptions and the same is 
true of N0(z, w). Thus, we have, using the fact that |g(w, z)| ≈ |g(z, w)| and that the 
kernel of T2 is uniformly bounded by a constant C:

|K(z, w)| �
∣∣∣∣∣ N0(z, w)

g(z, w)
n+1 + g(z, w)N1(z, w)

g(z, w)
n+1 −

(
N0(w, z)
g(w, z)n+1 + g(w, z)N1(w, z)

g(w, z)n+1

)∣∣∣∣∣ + C

�
∣∣∣∣∣ N0(z, w)

g(z, w)
n+1 − N0(w, z)

g(w, z)n+1

∣∣∣∣∣ + 1
|g(w, z)|n

�
∣∣∣∣∣N0(w,w)

(
1

g(z, w)
n+1 − 1

g(w, z)n+1

)∣∣∣∣∣ + |w − z|
|g(w, z)|n+1 + 1

|g(w, z)|n .

Moreover, [20, Lemma 7.4] gives that |g(w, z) −g(z, w)| = O(|w−z|3) with an argument 
very similar to Proposition 2.12. Then proceeding as in Lemma 2.13 and using the fact 
that |w − z| � |g(w, z)|1/2 yields the desired conclusion.

The other estimate is proven in the same way, using the fact that d(z, bD) � |g(w, z)|
and d(w, bD) � |g(w, z)|. �

We have the following lemma concerning the behavior of B1 weights when integrated 
against this kernel:

Lemma 4.16. Let σ ∈ B1. Then we have the following bounds for all z, w ∈ D and δ > 0:
∫

B(z,δ)

|K(z, w)|σ(w) dV (w) � (δ1/2 + d(z, bD)1/2)σ(z)

and ∫
B(w,δ)

|K(z, w)|σ(z) dV (z) � (δ1/2 + d(w, bD)1/2)σ(z)

Proof. By symmetry, it clearly suffices to prove the first assertion. Let N be the largest 
non-negative integer so that 2−Nδ > d(z, bD). If there is no such N , make the obvious 
modifications. We have, integrating over dyadic “annuli”
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∫
B(z,δ)

|K(z, w)|σ(w) dV (w) =
∞∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w)

=
N∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w)

+
∞∑

j=N+1

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w) .

We deal with the first summation first. We have

N∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w)

�
N∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

d(z, w)−(n+1/2)σ(w) dV (w)

≤
N∑
j=0

∫
B(z,2−jδ)

2(j+1)(n+1/2)δ−(n+1/2)σ(w) dV (w)

�
N∑
j=0

δ1/22−j/2 1
V (B(z, 2−jδ))

∫
B(z,2−jδ)

σ(w) dV (w)

≤
N∑
j=0

δ1/22−j/2M(σ)(z)

� δ1/2M(σ)(z)

� δ1/2σ(z).

Note the implicit constant is independent of N . We now proceed to deal with the 
second summation:

∞∑
j=N+1

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w)

≤
∫

B(z,d(z,bD))

|K(z, w)|σ(w) dV (w)

�
∫

d(z, bD)−(n+1/2)σ(w) dV (w)

B(z,d(z,bD))
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= d(z, bD)1/2

V (B(z, d(z, bD)))

∫
B(z,d(z,bD))

σ(w) dV (w)

≤ d(z, bD)1/2M(σ)(z)

� d(z, bD)1/2σ(z).

This establishes the result. �
Now we will engage in a series of arguments very similar to what is proven in the 

Szegő section. We first note that T ∗ − T improves Lp spaces. The proof of this fact is 
basically identical to that of Proposition 2.16 and stems from the fact that T ∗ − T has 
an “integrable kernel”, so we omit it.

Proposition 4.17. The operator T ∗−T maps Lp(D) to Lp+ε(D) boundedly for p ≥ 1 and 
ε ∈ [0, 1

2n+1 ).

The exact same reasoning from Lemma 2.20 yields the following:

Corollary 4.18. If σ ∈ Bp, then 1 is not an eigenvalue of T ∗−T considered as an operator 
on Lp

σ(D).

It remains to prove that T ∗ − T is compact on Lp
σ(D) for σ ∈ Bp. The argument is 

again a reprise of the reasoning in the preceding section, namely Lemma 2.18.

Lemma 4.19. The operator T ∗ − T is compact on Lp
σ(D) for σ ∈ Bp.

Proof. We first note that an integral operator with kernel K bounded on D × D is 
automatically compact on Lp

σ(D) for σ ∈ Bp; the proof follows as in Theorem 2.1.
To pass to the case where K is unbounded, let δj = 1

j and

Kj(z, w) =
{
K(z, w) d(z, w) ≥ δj , d(z, bD) ≥ δj or d(w, bD) ≥ δj

0 otherwise
.

Let Tj be the integral operator with kernel Kj . Note that Kj is bounded on D ×
D because |K(z, w)| � 1

|g(w,z)|n+1/2 and |g(w, z)| � |ρ(w)| + |ρ(z)| + |z − w|2 by [13, 
Proposition 2.1]. Thus Tj is compact on Lp

σ(D). To show T is compact, it suffices to 
show Tj → T in operator norm.

To this end, let f ∈ Lp
σ(D) with ||f ||Lp

σ(D) ≤ 1. Note that as σ ∈ Bp, we can write

σ = σ1

σp−1
2

where σ1, σ2 ∈ B1 by the factorization of Bp weights. This factorization of Bp weights 
holds by the arguments in [21]; note that the adapted maximal function M is bounded 
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on Lp
σ(D) for σ ∈ Bp and if σ ∈ Bp, σ− 1

p−1 ∈ Bq where p−1 + q−1 = 1, so [21, Theorem 
2] can be applied. It should also be noted that this factorization appears in the literature 
in the context of the unit disk D; see [3]. By Hölder’s Inequality applied to the functions

|K(z, w) −Kj(z, w)|1/qσ2(w)1/q and |K(z, w) −Kj(z, w)|1/pσ2(w)−1/q|f(w)|

and then applying Proposition 4.16, we obtain the estimate:

|(T − Tj)(f)(z)|

≤
∫
bD

|K(z, w) −Kj(z, w)||f(w)| dV (w)

= χd(z,bD)<δj

⎛
⎜⎝ ∫

B(z,δj)

|K(z, w)|σ2(w) dV (w)

⎞
⎟⎠

1
q

×

⎛
⎜⎝ ∫

B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))1−p|f(w)|p dV (w)

⎞
⎟⎠

1
p

� δ
1/2q
j σ2(z)

1
q

⎛
⎜⎝ ∫

B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))1−p|f(w)|p dV (w)

⎞
⎟⎠

1
p

.

Thus, we obtain, applying the proceeding estimate, Fubini, and Proposition 4.16 again:

||(T − Tj)f ||pLp
σ(bD)

≤
∫
D

δ
p
2q
j σ2(z)p−1

⎛
⎜⎝ ∫

B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))1−p|f(w)|p dV (w)

⎞
⎟⎠

× σ1(z)
σ2(z)p−1 dV (z)

= δ
p
2q
j

∫
D

∫
B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))1−p|f(w)|p dV (w)σ1(z) dV (z)

= δ
p
2q
j

∫
D

χd(w,bD)<δj (w)

⎛
⎜⎝ ∫

B(w,δj)

|K(z, w)|σ1(z) dV (z)

⎞
⎟⎠ |f(w)|p(σ2(w))1−p dV (w)

� δ
p/2
j

∫
σ1(w)|f(w)|p(σ2(w))1−p dV (w)
D
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= δ
p/2
j ||f ||p

Lp
σ(D)

≤ δ
p/2
j .

Letting j → ∞, we have δj → 0 and thus it immediately follows that the operators 
Tj approach T in operator norm and hence T is compact. �
4.4. Proof of main theorem

We now can finally prove Theorem 4.1, using the Kerzman-Stein operator equation 
trick.

Proof of Theorem 4.1. The proof is virtually identical to that of Theorem 2.1. Again, 
the starting point is the Kerzman-Stein equation, and the invertibility of (I− (T ∗ −T ))
on Lp

σ(D) is granted by Corollary 4.18 and Lemma 4.19 using the spectral theorem. The 
boundedness of T on Lp

σ(D) is given by Theorem 4.12. �
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