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A B S T R A C T   

Shutdown maintenance, i.e., turning off a facility for a short period for renewal or replacement operations is a 
highly stressful task. With the limited time and complex operation procedures, human stress is a leading risk. 
Especially shutdown maintenance workers often need to go through excessive and stressful on-site trainings to 
digest complex operation information in limited time. The challenge is that workers’ stress status and task 
performance are hard to predict, as most trainings are only assessed after the shutdown maintenance operation is 
finished. A proactive assessment or intervention is needed to evaluate workers’ stress status and task perfor
mance during the training to enable early warning and interventions. This study proposes a neurophysiological 
approach to assess workers’ stress status and task performance under different virtual training scenarios. A 
Virtual Reality (VR) system integrated with the eye-tracking function was developed to simulate the power plant 
shutdown maintenance operations of replacing a heat exchanger in both normal and stressful scenarios. 
Meanwhile, a portable neuroimaging device – Functional Near-Infrared Spectroscopy (fNIRS) was also utilized to 
collect user’s brain activities by measuring hemodynamic responses associated with neuron behavior. A hu
man–subject experiment (n = 16) was conducted to evaluate participants’ neural activity patterns and phy
siological metrics (gaze movement) related to their stress status and final task performance. Each participant was 
required to review the operational instructions for a pipe maintenance task for a short period and then perform 
the task based on their memory in both normal and stressful scenarios. Our experiment results indicated that 
stressful training had a strong impact on participants’ neural connectivity patterns and final performance, 
suggesting the use of stressors during training to be an important and useful control factors. We further found 
significant correlations between gaze movement patterns in review phase and final task performance, and be
tween the neural features and final task performance. In summary, we proposed a variety of supervised machine 
learning classification models that use the fNIRS data in the review session to estimate individual’s task per
formance. The classification models were validated with the k-fold (k = 10) cross-validation method. The 
Random Forest classification model achieved the best average classification accuracy (80.38%) in classifying 
participants’ task performance compared to other classification models. The contribution of our study is to help 
establish the knowledge and methodological basis for an early warning and estimating system of the final task 
performance based on the neurophysiological measures during the training for industrial operations. These 
findings are expected to provide more evidence about an early performance warning and prediction system 
based on a hybrid neurophysiological measure method, inspiring the design of a cognition-driven personalized 
training system for industrial workers.   

1. Introduction 

Industrial shutdown maintenance (hereafter, shutdown main
tenance) is an event wherein the entire plant is shut down for a short 

period of time for renewal [1]. It plays a critical role in renovating 
America’s infrastructure systems [2]. The Energy Information Admin
istration data [3] shows that the shutdown maintenance has become 
more intensive recently: just in the first six months of 2018, there were 
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7783 planned outages in the US due to industrial shutdown main
tenance works. A common challenge of shutdown maintenance is the 
excessive stress posted to the workers [1]. For example, 4500 con
tractors were involved in the second major shutdown at the Muskeg 
River Mine and Scotford Upgrader by Shell and more than 250 valves 
were repaired and installed within a two-month timeframe [4]. To 
minimize the impact of the shutdown schedule, the work is usually 
done in a 24/7 manner [5]. Typical work schedule is 12 h a day, and 
7 days a week [6]. To cope with the tight schedule, workers also need to 
go through fast while excessive training on the site to digest a large 
amount of complex information (e.g., engineering and operation in
structions) in limited time [6]. This presents potentially significant 
stress to the shutdown maintenance workers during the on-site training, 
as well as underexplored implications in their final task performance. 
Possibly driven by the stress issues (during training and during opera
tions), shutdown maintenance is becoming one of the most dangerous 
career in the US oil and gas industry, there have been 152 documented 
major industrial disasters since 2000, causing more than 40 deaths and 
even more injuries [7]. The US Chemical Safety Board (CSB) has in
dicated that the lack of inherent safety training principles and processes 
are the root causes of shutdown maintenance accidents [8] and growing 
evidence has linked the root causes of these incidents to human errors 
directly and indirectly tied to excessive stress [9–13]. 

Since stress is of particular interest due to the high-risk nature of 
shutdown maintenance and the likely psychological impacts on the 
workers, there is a pressing need for stress and training assessment in a 
timely or even real-time manner, for fast responses and early inter
ventions for potential human errors. Most training is assessed afterward 
(i.e., after the training is done), but given the time constraints of the 
shutdown maintenance, a pre-training effectiveness assessment is 
needed. This research focuses on the training assessment during the 
shutdown maintenance training, since training quality serves as a po
tential predictor of the final performance and allows a more proactive 
early intervention [14,15]. 

This study aims to test a neurophysiological approach for assessing 
and forecasting workers’ training quality of the shutdown maintenance 
operations based on a temporal analysis of fNIRS data and neural 
connectivity patterns during the training. It also helps build a knowl
edge base for an early warning system based on neural analysis during 
training. The experiment results indicated that stressful training sce
nario had a strong impact on participants’ neural connectivity patterns 
and physiological metrics, and finally affected participants’ task per
formance. Owing to the difficulty of simulating industry shutdown 
operation tasks in the real world, a Virtual Reality (VR) system in
tegrated with the eye-tracking function was developed to simulate a 
typical power plant shutdown maintenance operation. The operation is 
replacing a plate heat exchanger in both normal and emergency 
stressful scenarios. Meanwhile, a neuroimaging device - Functional 
Near-Infrared Spectroscopy (fNIRS) was utilized to collect user’s brain 
activities by measuring hemodynamic responses associated with neuron 
activation levels. The participants’ task performance including opera
tion time and operation accuracy were used as the indicators of training 
quality, while the temporal analysis of neural connectivity patterns and 
gaze movement patterns were used to evaluate workers’ neurocognitive 
performance in normal and stressful scenarios. The results suggest that 
simulated stress during the training can serve as an important adaptive 
factor for desired training outcomes. We also found a significant cor
relation between the neurophysiological features including gaze 
movement and fNIRS data, and the final task performance. Based on the 
findings, we propose a framework for a classification model that may 
use fNIRS signals in the review session to estimate individual’s task 
performance following training. These findings are expected to provide 
more evidence about an early performance warning and performance 
forecasting system based on a hybrid neurophysiological measure 
method, inspiring the design of a cognition-driven personalized training 
system for industrial workers. The remainder of this paper introduces 

the point of departure of this study, the research method and the ex
periment, and the findings and recommendations. 

2. Literature review 

2.1. Assessing mental stress in construction operations 

Construction industry is known as one of the most stressful in
dustries because of high physical and mental demands [16,17]. Ac
cording to a professional survey conducted in the United Kingdom (UK) 
in 2006 [18], nearly 68% of the construction workers have suffered 
from obvious stress on construction sites. Haynes and Love [19] found 
three most significant mental stressors experienced by the construction 
professionals, including high workload, long working hours, and in
sufficient time with family. The high level of mental stress amplifies the 
construction workers’ errors and leads to increasing unsafe behaviors  
[16,20]. Many scholars have proposed different approaches to assess 
individual’s mental stress. The most common method to evaluate 
workers’ mental stress on construction sites is the subjective ques
tionnaire or survey [21,22]. It was proven to be an effective method to 
evaluate a large number of workers’ mental stress status at the same 
time on construction sites. However, Jebelli [16] pointed two limita
tions of this assessment method, which were interrupting workers’ tasks 
and imprecise subjective evaluation. Thus, other scholars have explored 
physiological measurements to evaluate individual’s mental stress level 
such as cortisol and glucocorticoids [23], Electrocardiography (ECG)  
[22,24,25], and Electroencephalography (EEG) [26–28]. Although 
these approaches can provide on individual’s mental stress status, these 
methods are hard to be implemented in real-world projects due to the 
technical complexity and cost. Jebelli [16] indicated that high-quality 
EEG signals can be only collected in a well-controlled lab environment 
setting since EEG devices are very sensitive to individual’s motion. 
Despite a variety of signal processing filters and algorithms have been 
developed to handle the intrinsic motion artifacts (e.g., eye blink, facial 
muscle movement), it is still very challenge of collecting high-quality 
EEG data during human locomotion or large scale body movement in 
dynamic work environments [29–31]. In summary, this study proposed 
an alternative neurophysiological approach - functional near-infrared 
spectroscopy (fNIRS) to evaluate individual’s stress status. 

2.2. Electroencephalogram (EEG) and Functional Near-Infrared 
Spectroscopy (fNIRS) 

EEG measures the electric current density on the scalp due to the 
task-related neural activity [32]. It offers significant higher temporal 
resolution compares other neural imaging methods such as functional 
magnetic resonance imaging (fMRI), positron emission tomography 
(PET), and functional Transcranial Doppler sonography (fTCD), but 
lacks spatial resolutions [33,34]. The mobility of EEG system is con
sidered moderate compares to fMRI and PET, which allows for cogni
tive and controlled motor tasks laboratory based studies [34]. Com
pared to EEG that offers higher temporal resolution, fNIRS has a 
relatively low sampling frequency of less than 20 Hz but offers higher 
spatial resolution which is essential in monitoring mental workload 
related brain regions [35,36]. fNIRS system also requires significantly 
less calibration and preparation efforts than both dry and wet elec
trodes EEG systems [37]. To minimize the impact of motion artifacts on 
the signal quality, greater computational effort was required for fil
tering and frequency domain analysis of EEG data. In contrast, less 
filtering and time domain analysis demands less computational effort 
for fNIRS signal processing due to its robustness to motion artifacts  
[37]. The comparison between EEG and fNIRS based previous literature 
was summarized in the Table 1. The fNIRS devices measure the changes 
in blood flow and oxygenation related to task-specific neural activities. 
The basic work principle of fNIRS is that the device sends infrared lights 
signals between 650 and 1000 nm wavelengths via multiple light 
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emitters into the scalp. The photodetector measures the strength of the 
received light signals and converts into the concentration changes of 
both oxygenated (ΔHbO) and deoxygenated (ΔHbR) hemoglobin in the 
channels formed by the closest emitters and detectors [38]. The emit
ters and detectors are designed to be placed within 3 cm. The fNIRS 
devices have been proven to be a non-invasive safe neuroimaging 
technique since the fiber optics are very suitable for any head position 
and posture [38]. The fNIRS devices have been widely used in the 
neuroimage research areas to investigate infants’ language develop
ment [39–41]. Multimodal neuroimaging studies that compensate EEG 
system with fNIRS system have been explored to deliver complimentary 
data on task related neural activations and improve motor task classi
fication model performance [42,43]. fNIRS system is much more robust 
to motor task-related signal artifacts and therefore, adopted by this 
study to quantify individual’s stress status. Recently, it has also shown 
the potential as a promising neuroimaging technology that can better 
be integrated with VR devices to explore human cognitive process  
[44–47]. In the construction literature, Hu and Shealy [48] used fNIRS 
devices to investigate sustainable engineering decision-making and 
design cognition [49]. They also utilized the fNIRS device to explore the 
cognitive response to hazards on the construction site [50]. Du, Zhu, 
Shi, Wang, Lin and Zhao [51] used fNIRS to investigate the cognitive 
load in processing different formats of engineering information. In this 
study, we used a wireless fNIRS device integrated with the VR system to 
assess the test subjects’ stress status and training quality of the shut
down maintenance operations. 

3. Methodology 

3.1. Experiment apparatus: VR, eye tracker, and fNIRS 

Owing to the difficulty of simulating industrial shutdown main
tenance operations in the real world, a VR system integrated with eye- 
tracking function and neuroimaging function was developed based on 
our previously well-validated VR systems [56–59]. In order to collect 
high-precise and high-resolution gaze movement data, the Tobii Pro eye 
tracker integrated with HTC VIVE Head Mounted Display (HMD) [60] 
was used. The Tobii Pro VR integration is manufactured by Tobii and 
uses advanced Pupil Centre Corneal Reflection (PCCR) remote eye- 
tracking technique to capture eyeball movement and pupil size [61]. 
The Near-infrared illuminators in the eye tracker are used to create the 
reflection patterns on the cornea and pupil of the eye. The cameras in 
the eye tracker are used to capture high-resolution images. Finally, the 
advanced image-processing algorithms and a physiological 3D model of 
the eye are implemented to estimate the position of the eye in the 
virtual environment and the user’s pupil size [61]. The Tobii Pro VR 
integration eye-tracker has an accuracy of 0.5° and the maximum gaze 
data output frequency is 120 Hz [62]. To achieve the eye-tracking and 
playback functions in the virtual environment, we developed several 
C# scripts based on the Tobii Pro Software Development Kit (SDK) [62] 
and the application programming interface (API) in Unity. Fig. 1 shows 
the eye-tracking in the virtual environment. Fig. 1(a) shows the eye- 
tracking data collection mode in the virtual environment. Fig. 1(b) 
shows the playback visualization function of showing the gaze 

movement in the virtual environment. The white-purple lines indicate 
the gaze movement trajectories. In the virtual environment, the system 
collected participants’ gaze movement data, body movement data, hand 
movement data, and pupil diameter data with a frequency of 90 Hz. The 
gaze and pupil tracking serve as supplementary evidence of the stress 
assessment, and the body and hand movement data is used to evaluate 
task performance. After each VR experimental trial, the developed VR 
system automatically generated a CSV file with all the raw data.  
Fig. 2(a) shows the eye-tracking function in the immersive virtual en
vironment. Meanwhile, the Cerebral hemodynamic response of each 
participant was monitored using an 18-channel portable fNIRS system 
NIRSportTM (NIRx Medical Technologies, NY, USA). The system con
sists of 8 emitters (in red, Fig. 2(b)) and 8 detectors (in blue, Fig. 2(b)). 
The emitters and detectors were designed to be located less than 3 cm. 
The infrared light signals were emitted in two wavelengths (760 and 
850 nm) and collected at a sampling frequency of 7.81 Hz through the 
detectors. The VR and fNIRS systems were synchronized by the Psy
chopy software during the experiment. In order to avoid the inter
ference of the infrared light generated from the VR lighthouses with the 
fNIRS device, a black shower head was used to cover the emitters and 
detectors of the fNIRS device during the experiment. 

3.2. Virtual environment and experimental task 

Two immersive virtual training scenarios were created in this study, 
i.e., the normal training scenario and the stressful training scenario, as 
shown in Fig. 3. To control the undesired influence of the virtual en
vironment on participants’ task performance, we designed the same 
plate heat exchanger in a virtual operation room and set the environ
ment lighting the same in both conditions. In the simulated space, each 
participant could see the limited space boundary, and they were told 
not to go beyond the boundary when they performed the task. The 
participant could interact freely with the virtual plate heat exchanger 
and each valve using the HTC controllers. The experiment task was 
designed to let each participant memorize sequences for turning or 
closing the valves before they replaced the plate heat exchanger. Each 
participant was asked to memorize two different operation sequences in 
both normal and stressful scenarios and then perform the operations in 
both normal and stressful conditions. Each pre-start-up sequence to cut 
off/open the hot water and cold water consisted of 10 steps, which were 
developed based on the operation instruction manual of Alfa Laval plate 
heat exchangers, as listed in Table 2 [63]. The pipe operation sequence 
as shown in Table 2 were consistent to each participant for each ex
periment condition. The experiment was conducted in a well-controlled 
virtual environment. Since we used a within-participant experiment 
design, to avoid the learning effect from the previous sessions, we de
signed two different pipe operation sequences with different valve po
sitions. The two sequences were carefully designed to reflect the same 
level of difficulty. For the normal review session as shown in Fig. 3(a), 
the instruction of pipe operation sequence was placed on the left side 
the virtual plate heat exchanger model and each valve was marked with 
a valve number on the virtual model. The participant could navigate 
freely in the virtual environment. We added serval stressors in the 
stressful review session as shown in Fig. 3(b). Since we used a within 

Table 1 
The comparison between EEG and fNIRS based on previous literature.      

EEG fNIRS  

Experimental Setup Laboratory setting; Greater preparation and calibration effort [37] Both laboratory and field settings; Lower preparation and calibration 
effort [37] 

Signal Quality High temporal resolution. 
Vulnerable to motion artifacts 

High spatial resolution; Resistance to motion artifacts 

Data Analysis Power Spectra; Coherence [52] Time-Series; Connectivity [37] 
Utilization Mental Workload Monitoring [53]; Brain Computer Interface (BCI) [52]; 

Predictive Modeling [52] 
Mental Workload Monitoring [54]; Brain Stimulation [55]; Predictive 
Modeling 
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participant experiment design, to rule out learning effects, we used a 
different pipe operation sequence in the stress condition and redesigned 
all the valve positions on the virtual heat exchanger model. The stres
sors in the stressful review scenario included simulated smoke gradu
ally occluding the vision, virtual fire propagation, virtual smoke pro
pagation, sudden structural collapse sound, and fire burning sound in 
the distance. The purpose of adding these stressors in the virtual en
vironment was to simulate the stressful shut-down maintenance sce
nario as realistic as possible. For the normal operation session as shown 
in Fig. 3(c), the same virtual plate heat exchanger model was placed in 
the middle of the operation room, but there were not valve numbers 

displayed for each valve. The virtual setting was the same as the normal 
review session for a controlled experiment. Finally, in the stressful 
operation session we also added the same stressors as demonstrated in 
the stressful review session as shown in Fig. 3(d). 

3.3. Experiment procedure 

All the participants were asked to memorize two different 10-step 
pipe operation sequences with the virtual pipe model in both normal 
and stressful virtual scenarios, and then to perform the pipe operation 
in two scenarios respectively. To avoid the influence from previous 

Fig. 1. The eye-tracking in the virtual environment. (a) data collection mode; (b) data visualization mode.  

Fig. 2. Experiment setting. (a) eye-tracking function in the virtual environment; (b) equipment setting in the real-world.  

Fig. 3. The training scenarios. (a) normal review scenario; (b) stressful review scenario; (c) normal training scenario; (d) stressful training scenario.  
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scenario, we used a counter-balanced approach randomly choosing to 
start with the normal or stressful scenarios for each participant. It 
means that some of the participants started with normal sessions while 
others started with stressful sessions. The participants were also in
structed that their compensation would be determined by the task 
performance. The purpose of this experimental design was to motivate 
participants to memorize the pipe operation sequence and perform the 
pipe operation as accurately as possible. The experiment consisted of 
five sessions: (1) preparation session, (2) device calibration and VR 
training session, (3) review session, (4) retention session, (5) operation 
session. The preparation session (5–10 min) was designed to allow 
participants to familiarize the procedure and potential benefit or risk of 
the experiment. Participants’ demographical information including age, 
gender, major, degree level, previous game and VR experience, and 
knowledge level of the HVAC system were also collected in this session. 
The device calibration and VR training session (10–20 min) were de
signed for participants to familiarize themselves with the fNIRS system, 
eye-tracking system, and interactions/navigation in the virtual en
vironment. In this session, all the participants were first instructed to 
wear on the fNIRS device, and the investigators were able to ensure 
each probe of the fNIRS device accurately collected the neuroimaging 
data from the target brain regions. The participants were asked to stay 
claim in a chair and let the fNIRS device to set up the baseline data for 
each participant. After the fNIRS calibration, the participants were 
asked to set up the VR headset and the experiment investigators were 
also able to ensure participants’ eyeball movements were accurately 
captured by the eye tracker integrated with the VR headset after serval 
five-point calibration in the virtual environment. Participants were also 
given instructions about how to use the two controllers to interact with 
the virtual valves. The review session (15 min) was used for partici
pants to review and memorize the pipe operation sequence. The review 
session was divided into 10 trails (1 min for each review trail) for both 
normal and stress scenarios. For each trial in the review session, each 
participant was given 60 s to review and memorize the pipe operation 
sequence and pipe model. Between each review trial, there was a re
tention session (30 s), including 25 s of break time and 5 s of stand-by 
time. In the retention session, participants were told to sit to calm 
down. The purpose was to settle down participants’ neural activities 
and minimize the influence on the following sessions. The participants 
were not asked to perform the operation in the review session. Instead, 
we designed a separate session for participants to perform the pipe 
operation after the 10 review trials. After the review session, partici
pants were asked to perform the pipe maintenance task in normal or 
stress virtual environment (with no time limit). At the end of all ex
perimental stages, participants were asked to provide comments and 
feedback on the experiment. We used NIRSTIM which is a programmed 
experiment instruction software to coordinate the collaboration be
tween the fNIRS device and VR system. Fig. 4 shows the experiment 
procedure. The sequence between normal scenario and stress scenario 
was counter-balanced assigned to each participant. All the experiments 
were done at the same location (Francis Hall Room 101 – BIM CAVE at 

Texas A&M University), with the same devices. The environmental ef
fects can be ruled out as well. Given that the experiment settings were 
well controlled, the final operation performance was indeed an in
dicator of the memory quality. We admit that in reality the task per
formance is also affected by other factors, such as the motor skills of the 
worker. However, as a study focusing on the impact of stress on 
knowledge-based learning (in this case, memorizing the correct se
quence of valve operations), factors other than the memory quality are 
out of the scope. In summary, the experiment was designed in a way 
that memory quality based on review sessions was critical to the final 
performance. Difference in motor skill, for example, was deliberately 
removed with the same simple control mechanisms, i.e., touching the 
valves with two HTC controllers. The only influential factor is the dif
ference in the use of stressors. We also made sure that the experimental 
stimuli were clear to participants, without any possible vague inter
pretations. 

3.4. Data collection 

We collected three types of data for post-experiment analysis: task 
performance, gaze movement, and neural activity. Task performance 
indicators include participants’ operation time (s) and pipe operation 
accuracy (%). Pipe maintenance accuracy was defined as the accuracy 
in performing correct steps and directly represents how well the par
ticipants memorized and performed the pipe operation task. Pipe 
maintenance accuracy is recorded in a range from 0% to 100%. The 
operation time was defined as the time participants used to complete 
the task in the virtual environment. This indicator represents how ef
ficiently the participants finished the task. 

For the data analysis of gaze movement in the virtual environment, 
we extracted gaze transition approximate entropy (ApEn) [64] as a 
feature to evaluate participants’ general attention patterns in the virtual 
environment. The ApEn was selected to evaluate the regularity and 
unpredictability of the fluctuations over participants’ gaze movement 
data. ApEn is defined as a technique to quantify the regularity and 
complexity of the noisy time-series data [65]. This method is widely 
used in the data analysis of physiological time-series data such as heart 
rate [66,67], EEG [68,69], and endocrine hormone [70,71]. A higher 
value of gaze movement entropy indicates more irregularity and un
predictability of gaze movement, suggesting that participants just ran
domly look around in the environment. On the other hand, a lower 
value of gaze movement entropy shows a more regular and relatively 
stable gaze focus transitions [72]. Although we cannot conclude that 
distinct gaze movement patterns are results of different cognitive pro
cesses, but at least, we shall be able to claim that distinct gaze move
ment patterns, such as entropy of visual scan pathways, indicate the use 
of different scan patterns. This is supported by Hartley, Maguire, Spiers 
and Burgess [72] finding that the eye movement is associated with the 
forward motion and turning during the navigation. Jyotsna and 
Amudha [73] also found that the gaze movement is associated with the 
stress level. Therefore, we evaluated participants’ visual scan patterns 

Table 2 
10-steps of operation sequence for the pre-start-up plate heat exchanger across two conditions.    

Normal Training Scenario Stressful Training Scenario  

Step 1: Close hot side pump isolation valve (v1) Step 1: Open Cold Valves (v9 and v10) 
Step 2: Close hot drain valves (v2 and then v5) Step 2: Open Cold Valve (v11) 
Step 3: Close hot isolation valves (v3 and then v4) Step 3: Slowly open cold feed valve (v13) 
Step 4: Open hot vent valve (v6) Step 4: When air is completely bled from cold side of HX, close (v12) 
Step 5: Close hot feed valve (v7) Step 5: Adjust cold feed valve for desired flow rate (v13) 
Step 6: Close cold side pump isolation valve (v9) Step 6: Open Hot Valves (v1 and v3) 
Step 7: Close cold drain valves (v8 and then v14) Step 7: Open Hot Valve (v4) 
Step 8: Close cold isolation valves (v10 and then v11) Step 8: Slowly open hot feed valve (v7) 
Step 9: Open cold vent valve (v12) Step 9: When air is completely bled from hot side of HX, close (v6) 
Step 10: Close cold feed valve (v13) Step 10: Adjust hot feed valve for desired flow rate (v7) 
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based on participants’ gaze movement entropy in vertical and hor
izontal directions in this study. 

The neural activities were measured with fNIRS. The fNIRS probe 
design is presented according to the international 10–20 system format 
with the probe cap placed on the vertex (Cz) of each participant (Fig. 5 
left). The 18-channel system monitored six regions of interest (ROIs) 
which were specified by averaging the nearby channels (Fig. 5 right). 
These ROIs include left and right dorsal-lateral prefrontal cortex (L/R- 
DLPFC), left and right premotor cortex (L/R-PMC), and left and right 
primary motor cortex (L/R-M1). The dorsal-lateral prefrontal cortex has 
been shown to be associated with complex mental activities such as 
cognitive control network (CCN), dorsal attention network (DAN), and 
verbal episodic retrieval [74–76]. The premotor cortex has been shown 
to be associated with more complex and cognitive controls, such as the 
alternation of motor plans, task switching, acquisition of new motor 
skills, and motor selection [77–79]. The motor cortex has been well 
proven to be associated with motor movements [80–82]. ROIs corre
sponded Brodmann Areas and their functions are shown in Table 3. 

The cerebral hemodynamic data collected by the fNIRS device was 
filtered by the band-pass filter. High-frequency noise was rejected at 
3 Hz and motion artifacts caused by physiological noise such as 
heartbeat and slow-wave drift were corrected at 0.5 to 0.016 Hz [83]. 
Kurtosis wavelet algorithm [84] and spline interpolation [85] were 
used to reject abrupt motion artifacts and smooth the cerebral hemo
dynamic signals. At last, oxygenated (ΔHbO) and deoxygenated (ΔHbR) 
hemoglobin at the 18 channels was calculated by the modified Beer- 
Lambert law [83]. Fig. 6 shows a sample of participant #1′s post-pro
cessed fNIRS data related to the Dorsal-lateral prefrontal cortex across 
different conditions (red represents normal condition and orange re
presents stress condition). 

In this study, oxygenated (ΔHbO) hemoglobin was used to analyze 
functional connectivity [83]. Functional connectivity measures task- 
related interactions among multiple cortical regions using covariance 
analysis of time series ΔHbO signals [83,86] as shown in Fig. 7. Pearson 
correlations, R, are calculated across all ROIs to find the correlation 
coefficients [87,88]. 

=R
cov(x ,x )

s sij
i j

i j (1)  

=
+

z 1
2

ln
1 R
1 Rij

ij

ij (2)  

Eq. (1) represents the Pearson correlation coefficient, R values, 
calculated between the ith and jth signals where i,j ∈ (LDLPFC, RDLPFC, 
LPMC, RPMC, LM1 and RM1), xi and xj are both ΔHbO signals, cov 
(xi,xj) represents the covariance between the ith and jth signals, and si 

and sj stand for the standard deviations of the ith and jth signals. The 
calculated R values are then converted to Fisher’s z-scores, Z values, to 
determine the strength of correlations following Eq. (2) [83]. Func
tional connectivity with z-score between 0.4 and −0.4 were identified 
as not connected. Nodes with solid edge indicate intra-hemispheric 
connectivity [89,90]. Nodes with doted edge indicate inter-hemispheric 
connectivity. 

4. Results 

4.1. Overview 

In total, 16 participants (15 males, 1 female) participated in the 
study, including 1 undergraduate student and 15 graduate students. All 
participants were recruited via the university emailing list. Participants 
were from a variety of disciplines, including computer science, civil 
engineering, construction science, and other engineering majors. We 
performed a power analysis for the paired test [91]. We found that 16 
participants can achieve a power of 80% and a level of significance of 
5% (two sided), for detecting an effect size of 0.8 between pairs. In 
addition, we found that many existing neural research studies have 
been based on a similar sample size, such as [87,92]. As a result, the 
selection of the sample size was also following the literature standard. 
Participants were also asked to report their previous knowledge of the 
HVAC system and none of the participants have previous pipe main
tenance knowledge. None of the participants felt VR sickness while 
performing the pipe operation task in the virtual environment. The 

Fig. 4. Experiment procedure. The sequence between normal scenario and stress scenario was counter-balanced assigned to each participant.  

Fig. 5. fNIRS probe design in the international 10–20 system (left); fNIRS probe Regions of Interest (ROIs, right).  

Table 3 
Brodmann Area and Functions.    

ROIs Brodmann Areas and Functions  

Dorsal-lateral prefrontal cortex (DLPFC) Area 8, 9; motor planning, complex mental activities 
Premotor cortex (PMC) Area 6; planning of complex and coordinated motor movements 
Primary motor cortex (M1) Area 4; motor movements 

Y. Shi, et al.   Advanced Engineering Informatics 46 (2020) 101153

6



experimental procedure took approximately 40–60 min for each parti
cipant. Each participant got a $15 Amazon gift card after they finished 
the experiment. Fig. 8 shows one participant was using the proposed VR 
system. 

4.2. Task performance 

First, we evaluated whether task performance was sufficiently dif
ferent between normal and stressful conditions. Two task performance 
indicators were used including pipe operation accuracy (%) and op
eration time (s). We evaluated participants’ operation accuracy by 
checking each operation trail by dividing the pipe model into five 
sections. For the pipe operation accuracy as shown in Fig. 9(a), we used 
a matched pairs t-test to evaluate the pipe operation accuracy for each 
participant. We found a significant difference (p = 0.014  <  0.05) in 
pipe maintenance accuracy between the two conditions. The results 
indicated that, on average, the participants performed 26.43% better in 
the normal scenario than the stressful scenario. Thus, the stressful vir
tual environment could make participants perform worse in this 

experiment. As for the operation time as shown in Fig. 9(b), the mat
ched pairs t-test did not find any significant difference 
(p = 0.7144  >  0.05) in the operation time between the two condi
tions. The results reveal that the stressful scenario did not have a strong 
impact on the participants’ operation time. 

4.3. Visual scan pattern 

Second, we evaluated whether the visual scan pattern was suffi
ciently different between normal and stressful conditions. As mentioned 
in the methodology part, we extracted gaze ApEn as a feature to eval
uate participants’ general attention patterns in the virtual environment. 
A higher value of gaze movement entropy indicates more irregularity 
and unpredictability of gaze movement, suggesting that participants 
just randomly visual scan in the environment. On the other hand, a 
lower value of gaze movement entropy shows a more regular and re
latively stable gaze focus transitions. In this study, we evaluated par
ticipants’ visual scan patterns in the horizontal direction (x-axis) and 
vertical direction (y-axis). As illustrated in Fig. 10(a), we did not find 
any significant difference in ApEn at horizontal direction between the 
normal and stressful conditions by using a two-sample t-test 
(p = 0.2345  >  0.05). As illustrated in Fig. 10(b), we found a sig
nificant difference in ApEn at vertical direction between the normal and 
stressful conditions by using a two-sample t-test (p = 0.0328  <  0.05). 
A higher value of ApEn indicates a more frequent gaze scan pattern in 
the vertical direction when reviewing the instructions. In other words, 
participants in stressful condition tended to scan information more 
quickly and repeatedly across different task steps in the vertical direc
tion. In summary, the results confirmed that participants tended to 
perform different visual scan patterns in different training scenarios. A 
higher value ApEn may serve as an indicator of high stress level. Since 
the review instructions were designed to be listed in the vertical di
rection, participants in this experiment demonstrated a high value of 
ApEn in the vertical direction. This is supported by Jyotsna and 
Amudha [73]’s finding that the gaze movement is associated with the 
stress level. Although we cannot conclude that distinct gaze movement 
patterns are results of stress scenario. But at least, we shall be able to 
claim that distinct gaze movement patterns, such as entropy of visual 
pathways, indicate the participants experienced the stress scenario. 

Fig. 6. A sample of participant #1′s post-processed fNIRS data across different conditions. The red line represents the normal condition and the orange line represents 
the stressful condition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. A Sample of Functional Connectivity based on fNIRS data.  
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4.4. Functional connectivity 

Third, we analyzed the functional connectivity strength between 
normal and stressful conditions. Pearson correlations are calculated 
across all ROIs to find the correlation coefficients. All the calculated R 
values are then converted to Fisher’s z-scores to determine the strength 
of correlations. Functional connectivity between two regions were de
termined based on predetermined threshold of 0.4. Fig. 11 illustrates 
the average Fisher’s z-score (functional connectivity strength) across 
different conditions (normal and stressful) and different phases (early 
and late). 

Significant increases in connectivity strength were observed for the 

stressful condition compared to the normal condition in Fig. 12. We 
analyzed the functional connectivity of two phases, including the Early 
(first 5 training trials) and Late phases (last 5 training trials). Six blue 
nodes in each graph of Fig. 10 indicate six regions of interest. The color 
of each line indicates the strength of functional connectivity based on 
the color scale on the right. Solid lines indicate intra-hemispheric 
connectivity and dashed lines indicate inter-hemispheric connectivity. 
The middle column shows significant changes between two groups of 
sessions. All the lines in the middle column are in dark red (positive 
correlations) which indicates significantly stronger connectivity for the 
stressful condition compared to the normal condition. As shown in the 
result, at the early phase, significant increases of multiple 

Fig. 8. The participant was using the proposed VR system. (a) review session-normal; (b) operation session-normal; (c) review session-stressful; (d) operation session- 
stressful. 

Fig. 9. The results of task performance across different conditions. (a) operation accuracy; (b) operation time.  
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interhemispheric connections were identified from normal and to 
stressful condition by using two-sample t-test 
(p = 0.005–0.026  <  0.05). At the late phase, significant increases 
were identified within the right hemisphere from normal and to 
stressful condition (p = 0.015–0.022  <  0.05). Interhemispheric con
nection between LM and RM also increased significantly at the late 
phase (p = 0.041  <  0.05). Fig. 13 shows a sample of participant #10′s 
neuroimage data between normal and stressful conditions. 

We also compared the functional connectivity changes between 

early and late phases as shown in Fig. 14. The color of each line in
dicates the strength of functional connectivity based on the color scale 
on the right. Solid lines indicate intra-hemispheric connectivity and 
dashed lines indicate inter-hemispheric connectivity. The middle 
column shows significant changes between two groups of sessions. All 
the lines in the middle column are in dark red (positive changes) which 
indicates significantly stronger connectivity for the Late phase than for 
the Early Phase. In the stressful condition, there is no significant 
changes between early and late phases were observed. However, there 

Fig. 10. The results of ApEn across different conditions. (a) horizontal direction (x-axis); (b) vertical direction (y-axis).  

Fig. 11. The average Fisher’s z-score (functional connectivity strength) across different conditions (normal and stressful) and different phases (early and late).  
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are significant increases in the interhemispheric connections in the 
normal condition. Connectivity among RPMC, RDLPFC, and RM1 were 
increased significantly from early to late phase by using two-sample t- 
test (p = 0.005 and 0.034  <  0.05). 

In summary, the functional connectivity result confirms significant 
and potentially quantifiable difference between normal and stressful 
trainings. It constitutes a theoretical foundation for an early warning 
and performance prediction system based on neural connectivity data. 
The temporal analysis also shows a significant difference between the 
early and late phase of the training combined with the neural con
nectivity pattern difference driven by normal-stress training. 

4.5. Correlations between neurophysiological metrics and task performance 

The experiment results indicated correlations between a set of 
neurophysiological measures and the final operation performance (time 
and accuracy), which set the methodological foundation for a perfor
mance early warning and estimating system based on the 

neurophysiological data during training. First, we found a significant 
correlation between gaze movement entropy in vertical direction (y- 
axis) and operation accuracy (r = −0.388, p = 0.019  <  0.05) as 
shown in the following Fig. 15. Combining the results we found in  
Sections 4.2 and 4.3, the participants had lower operation accuracy in 
the stress condition compared to normal condition and participants had 
higher of gaze movement entropy in vertical direction in the stress 
condition compared to normal condition. These results revealed that 
there was a negative correlation between gaze movement entropy in 
vertical direction and operation accuracy, which means that the higher 
value of gaze movement entropy in vertical direction might reduce 
participants’ operation accuracy. 

Then, we extracted the peak HbO of six ROI including LDLPFC, 
RDLPFC, LPMC, RPMC, LM1 and RM1 for each review trail from the 
fNIRS data as the neural activation features across different conditions. 
We found significant correlations between RSMC and operation accu
racy (r = 0.205, p = 0.019  <  0.05), between LM and operation ac
curacy (r = 0.208, p = 0.0176  <  0.05), and between RM and 

Fig. 12. Functional connectivity maps of the Normal condition (left column), the Stressful condition (right column), and the significantly increased connectivity s 
from Normal to Stressful Condition (middle column). 

Fig. 13. The participant #10′s neuroimage data between normal and stressful conditions. (a) Normal condition; (b) stressful condition.  
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operation accuracy (r = −0.196, p = 0.0252  <  0.05) in the normal 
condition. We did not find any significant correlations between op
eration accuracy and other ROIs in the normal condition as shown in  
Fig. 16(a). However, in the stress condition, we detected stronger cor
relations between the peak Hbo of six ROIs and operation accuracy, we 
found significant correlations between RSMC and operation accuracy 
(r = 0.47, p = < 0.001), between LSMC and operation accuracy (r = 

−0.194, p = < 0.001), between RM and operation accuracy (r = 
−0.26, p  <  0.001), between LPFC and operation accuracy (r = 
−0.328, p  <  0.001), and between RPFC and operation accuracy (r = 
−0.273, p  <  0.001) in the stress condition as shown in Fig. 16(b). We 
detected stronger correlations between the peak HbO of six ROIs and 
operation accuracy in stress condition compared to normal condition. 
These results further confirmed that fNIRS has the potential to estimate 

Fig. 14. Functional connectivity maps of the Early phase (first 5 training trials; left column), the Late phase (last 5 training trials; right column), and significantly 
increased functional connectivity strengths from Early to Late Phase. 

Fig. 15. The correlations between gaze movement entropy and task performance. The boxes crossed out mean that the p-value of the correlations is larger than 0.05.  
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and project task performance based on training data. It helps us to build 
a next logic step for using the neurophysiological metrics to estimate 
final task performance. 

4.6. Assessing training outcome 

Finally, since the fNIRS data correlated with the task performance in 
different training scenarios, it is possible to use the fNIRS metrics in the 

Fig. 16. The correlations between peak Hbo of six ROI and task performance. The boxes crossed out mean that the p-value of the correlations is larger than 0.05.  
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review session to estimate individual’s final task performance. We used 
supervised machine learning method to classify the training results. All 
the participants have 20 trails of fNIRS data in the review session (10 
review trails in normal condition and 10 review trails in stress condi
tion) and all the fNIRS data was labeled by their training outcome of the 
operation accuracy. The principle of labeling the data is that if the 
participant achieved 100% operation accuracy, we labeled the data as 
“satisfactory” otherwise the data was labeled as “unsatisfactory”. Our 
purpose is to create a classification model that can use the fNIRS data in 
the review session to estimate training outcome. A total of 12 features 
were selected to classify pipe operation task performance, including 6 
fNIRS peak Hbo features (peak Hbo of LDLPFC area, peak Hbo of 
RDLPFC area, peak Hbo of LPMC area, peak Hbo of RPMC area, peak 
Hbo of LM1 area, and peak Hbo of RM1 area) and 6 fNIRS average Hbo 
features (average Hbo of LDLPFC area, average Hbo of RDLPFC area, 
average Hbo of LPMC area, average Hbo of RPMC area, average Hbo of 
LM area, and average Hbo of RM area). For the pre-processing of the 
fNIRS data for the classification model, we followed the fNIRS data pre- 
processing pipeline proposed by [87]. All the motion artefact of the 
fNIRS data for each ROIs was removed by the wavelet interpolation and 
band pass filter (0.01–0.5 Hz) [9]. All the fNIRS features were nor
malized using the z-score method [92,93]. We compared the classifi
cation models by using different machine learning classification algo
rithms including Decision Tree (DT), Random Forest (RF), K-Nearest 
Neighbors (KNN), Nominal Logistical Regression (LR), and Naïve Bayes 
(NB). We also used the K-Folds method (k = 10) to cross-validate our 
classification results. We selected accuracy, precision, recall, F-score, 
and ROC area to evaluate the classification performance. Table 4 shows 
the summary of classification models before feature selection. These 
results indicated that Random Forest can provide more accuracy clas
sification (78.08%) than other classification models. In addition, we 
further used wrapper method with sequential backward feature selec
tion (SBS) method to find the optimal feature subset to achieve the 
better classification performance. The K-Folds method (k = 10) was 
also used to cross-validate the feature selection results. Table 5 shows 
the summary of classification models after feature selection and (n/10) 
in Table 5 indicates how many times this feature was selected by the 
wrapper method with sequential backward feature selection during 10- 
fold. These results also indicated that Random Forest can provide more 
accuracy classification (80.38%) than other classification models with 6 
selected features including LM (Peak Hbo) (10/10), RSMC (Peak Hbo) 
(9/10), LSMC (Peak Hbo) (8/10), LPFC (Peak Hbo) (5/10), RSMC 
(Average Hbo) (4/10), and LM (Average Hbo) (4/10). The classification 
accuracy was improved from 78.08% to 80.38% after feature selection. 
These results further suggested that the fNIRS features in review session 
can be used to estimate future task performance during different 
training scenarios. Combing with the results of functional connectivity, 
task performance assessment can be used for early monitoring of in
dividual’s task performance in pipe maintenance training and provide 
interactive assessments for performance and learning. 

5. Discussion 

These experiment results revealed several important findings re
garding the stress during shutdown maintenance training. First, our 
experiment results confirmed that the presence of stressors during 

learning or training process did affect complex knowledge-based tasks 
(e.g. pipe maintenance) in a negative way. Performance assessment 
indicated that although there was no significant difference in task 
completion time between the two conditions, the performance accuracy 
under stressful training was much lower. It suggested that participants’ 
cognitive process might have been affected by the stress during the 
review phase. This result further indicated the importance of assessing 
task performance under stress training scenarios. 

Second, we explored the promising possibility of using neurophy
siological measures to assess workers’ stress status and task perfor
mance under different training scenarios. Stress level assessment and 
task performance assessment have been recently identified as promising 
research directions in the construction research area. There is a pressing 
need for a robust assessment method to predict workers’ task perfor
mance under different working scenarios. This study echoes recent 
studies proposed using wireless EEG device (EMOTIV) and other 
wearable biosensors to assess workers’ mental stress on site [16,17,94]. 
The novelty of this study pertains to using neurophysiological measures 
during the training to estimate and classify the final performance in 
industrial operations. We used an alternative portable neuroimage de
vice - fNIRS integrated with the eye-tracking VR system to collect high- 
quality temporal neuroimaging data and eye-tracking data during the 
simulated VR training scenarios. Based on the data, we found that 
several supervised machine learning methods were able to classify the 
participants’ final task performance based on the neurophysiological 
data in the review phase. It provides innovative methods and knowl
edge about the role of neural analysis in training evaluation. The novel 
contribution of this study also lies in the added knowledge about stress 
in training, which helps scholars and practitioners better understand 
and leverage stressors to stimulate desired neural activations during 
training. Specifically, the fNIRS data analysis confirmed significant 
differences in terms of neurofunctional connectivity between the 
normal and stressful training conditions. Participants demonstrated a 
stronger interhemispheric connectivity in the early phase of stress 
training. We also detected significant increases within the right hemi
sphere between the normal and stressful conditions in the late training 
phase. Interhemispheric connections between LM and RM were also 
increased significantly in the late phase. In summary, the participants 
who were in the stressful condition tended to have more interhemi
spheric connections between the left and right hemispheres. The dif
ferences in connectivity can be quantified as a leading indicator of 
detecting the presence of stress. In addition, we also tested the corre
lations between participants’ task performance and activation level of 6 
ROIs’ fNIRS data. We found significant correlations between RSMC and 
operation accuracy (r = 0.205, p = 0.019  <  0.05), between LM and 
operation accuracy (r = 0.208, p = 0.0176  <  0.05), and between RM 
and operation accuracy (r = −0.196, p = 0.0252  <  0.05) in the 
normal condition. We detected more correlations between the peak Hbo 
of six ROIs and operation accuracy in the stressful condition, we found 
significant correlations between RSMC and operation accuracy 
(r = 0.47, p = < 0.001), between LSMC and operation accuracy (r = 
−0.194, p = < 0.001), between RM and operation accuracy (r = − 
0.26, p  <  0.001), between LPFC and operation accuracy (r = −0.328, 
p  <  0.001), and between RPFC and operation accuracy (r = −0.273, 
p  <  0.001). These results further confirmed that fNIRS has the po
tential to assess the task performance in different training scenarios. 
Based on the correlation results, we tested several supervised machine 
learning classification models that uses the fNIRS data in the review 
session to early assess individual’s task performance and we utilized k- 
fold (k = 10) cross-validation method to validate our results. The 
Random Forest classification model achieved an average 80.38% clas
sification accuracy after feature selection to assess participants’ training 
outcome compared to other classification models. 

At last, in addition to fNIRS data, this study also identified a neu
rophysiological metrics as potential predictor - gaze movement pat
terns. We found a significant correlation between gaze movement 

Table 4 
The summary of classification models before feature selection.        

Classification Algorithm Accuracy Precision Recall F-score ROC Area  

Random Forest 78.08% 77.10% 78.10% 0.746 0.759 
Logistical Regression 75.38% 72.90% 75.40% 0.727 0.709 
Decision Tree 73.08% 68.60% 73.10% 0.679 0.517 
K-Nearest Neighbors 68.85% 60.40% 68.80% 0.688 0.498 
Naïve Bayes 66.92% 68.40% 66.90% 0.676 0.686 
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entropy in vertical direction (y-axis) and operation accuracy (r = 
−0.388, p = 0.019  <  0.05). Specifically, increased entropy of gaze 
movement in vertical direction may be an indicator of stress. This result 
suggests that participants tended to vertically scan information more 
quickly and repeatedly across different task steps in stressful condition 
compared to normal condition. These findings provide empirical evi
dence that the neurophysiological features can be used to develop a task 
performance assessment model under different training scenarios. 

6. Conclusions 

This study proposed a neurophysiological approach to assess 
workers’ stress status and training outcomes under normal and stressful 
training scenarios. A VR system integrated with the eye-tracking func
tion was developed to simulate different training scenarios. A neuroi
maging device – fNIRS was used to collect user’s brain activities by 
measuring hemodynamic responses associated with neuron behavior. A 
pipe maintenance task of replacing a plate heat exchanger was selected 
as the shutdown maintenance training scenario. A human-subject ex
periment was conducted to test the feasibility and usability of the 
neurocentric approach. Our experiment results indicated that stressful 
training scenario had a strong impact on participants’ neural con
nectivity patterns and gaze movement patterns in vertical direction 
during training scenarios, and finally negatively affected participants’ 
task performance. We also found that the task performance was cor
related with neurophysiological features including gaze movement 
entropy and fNIRS data. At last, we tested several supervised machine 
learning classification models that uses the fNIRS data in the review 
session to early assess individual’s task performance and we utilized k- 
fold (k = 10) cross-validation method to validate our results. The 
Random Forest classification model achieved an average 80.38% clas
sification accuracy after feature selection to assess participants’ training 
outcome compared to other classification models. The focus of this 
study does not only rely on developing a neurocentric training ap
proach via the VR system, but it also aims to make a theoretical con
tribution of how different training scenarios affect training quality re
lated to neural connectivity. These findings are expected to provide 

more evidence about an early performance warning and prediction 
system based on a hybrid neurophysiological measure method, in
spiring the design of a cognition-driven personalized training system for 
industrial workers in the future. 

Several research limitations still need to be addressed in the future 
research agenda. First, there was gender bias in this experiment (15 
males, 1 female). Gender difference might have influence on partici
pants’ task performance in this experiment. According to previous lit
erature, gender is known to influence both physical and cognitive task 
performance. Male and female differ in the way when handling stress  
[95,96]. Previous literatures also have found gender differences in both 
neural signature and motor task performance [97,98]. Male were found 
to exhibit higher activation in prefrontal cortex during stress compares 
to women [99]. However, exploring gender differences in both task 
performance and neural activities is not the focus of this study. We 
admitted this gender bias is one of the limitations of this study. We will 
investigate the effects of diversity of users including disciplines, back
grounds, ages, and gender difference in our future studies. Second, this 
study was conducted in a well-controlled laboratory environment. In 
real world, construction sites and construction operations are more 
complex and unpredictable. Thus, more complex and dynamic sce
narios should be tested in future research. At last, we only proposed the 
implementation of using fNIRS to assess individual’s task performance 
under different training scenarios. Multimodal neuroimaging studies 
found that compensate EEG system with fNIRS system have been ex
plored to deliver complimentary data on task related neural activations 
and improve motor task classification model performance [42,43]. A 
comparison study of using EEG and fNIRS was suggested in our future 
studies. 
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Table 5 
The summary of classification models after feature selection.         

Classification Algorithm Accuracy (%) Precision (%) Recall (%) F-score ROC Area Selected Features  

Random Forest 80.38% 80.1% 80.4% 0.777 0.687  • LM (Peak Hbo) (10/10)  

• RSMC (Peak Hbo) (9/10)  

• LSMC (Peak Hbo) (8/10)  

• LPFC (Peak Hbo) (5/10)  

• RSMC (Average Hbo) (4/10)  

• LM (Average Hbo) (4/10) 
Logistical Regression 79.61% 82.8% 79.6% 0.75 0.547  • RSMC (Peak Hbo) (10/10)  

• LM (Peak Hbo) (9/10)  

• LPFC (Peak Hbo) (8/10)  

• LSMC (Peak Hbo) (7/10)  

• RSMC (Average Hbo) (7/10)  

• RPFC (Average Hbo) (2/10)  

• LSMC (Average Hbo) (2/10) 
Decision Tree 79.23% 79.5% 79.2% 0.755 0.667  • RM (Peak Hbo) (6/10)  

• RPFC (Peak Hbo) (5/10)  

• LM (Peak Hbo) (5/10) 
K-Nearest Neighbors 79.2% 77.9% 79.2% 0.777 0.682  • LM (Peak Hbo) (9/10)  

• RM (Peak Hbo) (9/10)  

• LM (Average Hbo) (8/10)  

• RSMC (Peak Hbo) (7/10)  

• RPFC (Peak Hbo) (4/10)  

• LPFC (Peak Hbo) (3/10) 
Naïve Bayes 78.5% 77.8% 78.5% 0.749 0.701  • RPFC (Peak Hbo) (10/10)  

• RSMC (Peak Hbo) (10/10)  

• LM (Peak Hbo) (10/10)  

• LSMC (Peak Hbo) (6/10)  

• RM (Average Hbo) (6/10)  

• LM (Average Hbo) (1/10) 
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