Advanced Engineering Informatics 46 (2020) 101153

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

A neurophysiological approach to assess training outcome under stress: A R
virtual reality experiment of industrial shutdown maintenance using At

Functional Near-Infrared Spectroscopy (fNIRS)

Yangming Shi”, Yibo Zhu", Ranjana K. Mehta”, Jing Du™"

2 Department of Civil and Coastal Engineering, Engineering School of Sustainable Infrastructure and Environment (ESSIE), Herbert Wertheim College of Engineering,
University of Florida, Gainesville, FL 32611, United States
b Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, United States

ARTICLE INFO ABSTRACT

Keywords: Shutdown maintenance, i.e., turning off a facility for a short period for renewal or replacement operations is a
Shutdown maintenance training highly stressful task. With the limited time and complex operation procedures, human stress is a leading risk.
Virtual reality Especially shutdown maintenance workers often need to go through excessive and stressful on-site trainings to

Eye-tracking

NIRS digest complex operation information in limited time. The challenge is that workers’ stress status and task

performance are hard to predict, as most trainings are only assessed after the shutdown maintenance operation is
finished. A proactive assessment or intervention is needed to evaluate workers’ stress status and task perfor-
mance during the training to enable early warning and interventions. This study proposes a neurophysiological
approach to assess workers’ stress status and task performance under different virtual training scenarios. A
Virtual Reality (VR) system integrated with the eye-tracking function was developed to simulate the power plant
shutdown maintenance operations of replacing a heat exchanger in both normal and stressful scenarios.
Meanwhile, a portable neuroimaging device — Functional Near-Infrared Spectroscopy (fNIRS) was also utilized to
collect user’s brain activities by measuring hemodynamic responses associated with neuron behavior. A hu-
man-subject experiment (n = 16) was conducted to evaluate participants’ neural activity patterns and phy-
siological metrics (gaze movement) related to their stress status and final task performance. Each participant was
required to review the operational instructions for a pipe maintenance task for a short period and then perform
the task based on their memory in both normal and stressful scenarios. Our experiment results indicated that
stressful training had a strong impact on participants’ neural connectivity patterns and final performance,
suggesting the use of stressors during training to be an important and useful control factors. We further found
significant correlations between gaze movement patterns in review phase and final task performance, and be-
tween the neural features and final task performance. In summary, we proposed a variety of supervised machine
learning classification models that use the fNIRS data in the review session to estimate individual’s task per-
formance. The classification models were validated with the k-fold (k = 10) cross-validation method. The
Random Forest classification model achieved the best average classification accuracy (80.38%) in classifying
participants’ task performance compared to other classification models. The contribution of our study is to help
establish the knowledge and methodological basis for an early warning and estimating system of the final task
performance based on the neurophysiological measures during the training for industrial operations. These
findings are expected to provide more evidence about an early performance warning and prediction system
based on a hybrid neurophysiological measure method, inspiring the design of a cognition-driven personalized
training system for industrial workers.

1. Introduction period of time for renewal [1]. It plays a critical role in renovating
America’s infrastructure systems [2]. The Energy Information Admin-

Industrial shutdown maintenance (hereafter, shutdown main- istration data [3] shows that the shutdown maintenance has become
tenance) is an event wherein the entire plant is shut down for a short more intensive recently: just in the first six months of 2018, there were
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7783 planned outages in the US due to industrial shutdown main-
tenance works. A common challenge of shutdown maintenance is the
excessive stress posted to the workers [1]. For example, 4500 con-
tractors were involved in the second major shutdown at the Muskeg
River Mine and Scotford Upgrader by Shell and more than 250 valves
were repaired and installed within a two-month timeframe [4]. To
minimize the impact of the shutdown schedule, the work is usually
done in a 24/7 manner [5]. Typical work schedule is 12 h a day, and
7 days a week [6]. To cope with the tight schedule, workers also need to
go through fast while excessive training on the site to digest a large
amount of complex information (e.g., engineering and operation in-
structions) in limited time [6]. This presents potentially significant
stress to the shutdown maintenance workers during the on-site training,
as well as underexplored implications in their final task performance.
Possibly driven by the stress issues (during training and during opera-
tions), shutdown maintenance is becoming one of the most dangerous
career in the US oil and gas industry, there have been 152 documented
major industrial disasters since 2000, causing more than 40 deaths and
even more injuries [7]. The US Chemical Safety Board (CSB) has in-
dicated that the lack of inherent safety training principles and processes
are the root causes of shutdown maintenance accidents [8] and growing
evidence has linked the root causes of these incidents to human errors
directly and indirectly tied to excessive stress [9-13].

Since stress is of particular interest due to the high-risk nature of
shutdown maintenance and the likely psychological impacts on the
workers, there is a pressing need for stress and training assessment in a
timely or even real-time manner, for fast responses and early inter-
ventions for potential human errors. Most training is assessed afterward
(i.e., after the training is done), but given the time constraints of the
shutdown maintenance, a pre-training effectiveness assessment is
needed. This research focuses on the training assessment during the
shutdown maintenance training, since training quality serves as a po-
tential predictor of the final performance and allows a more proactive
early intervention [14,15].

This study aims to test a neurophysiological approach for assessing
and forecasting workers’ training quality of the shutdown maintenance
operations based on a temporal analysis of fNIRS data and neural
connectivity patterns during the training. It also helps build a knowl-
edge base for an early warning system based on neural analysis during
training. The experiment results indicated that stressful training sce-
nario had a strong impact on participants’ neural connectivity patterns
and physiological metrics, and finally affected participants’ task per-
formance. Owing to the difficulty of simulating industry shutdown
operation tasks in the real world, a Virtual Reality (VR) system in-
tegrated with the eye-tracking function was developed to simulate a
typical power plant shutdown maintenance operation. The operation is
replacing a plate heat exchanger in both normal and emergency
stressful scenarios. Meanwhile, a neuroimaging device - Functional
Near-Infrared Spectroscopy (fNIRS) was utilized to collect user’s brain
activities by measuring hemodynamic responses associated with neuron
activation levels. The participants’ task performance including opera-
tion time and operation accuracy were used as the indicators of training
quality, while the temporal analysis of neural connectivity patterns and
gaze movement patterns were used to evaluate workers’ neurocognitive
performance in normal and stressful scenarios. The results suggest that
simulated stress during the training can serve as an important adaptive
factor for desired training outcomes. We also found a significant cor-
relation between the neurophysiological features including gaze
movement and fNIRS data, and the final task performance. Based on the
findings, we propose a framework for a classification model that may
use fNIRS signals in the review session to estimate individual’s task
performance following training. These findings are expected to provide
more evidence about an early performance warning and performance
forecasting system based on a hybrid neurophysiological measure
method, inspiring the design of a cognition-driven personalized training
system for industrial workers. The remainder of this paper introduces
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the point of departure of this study, the research method and the ex-
periment, and the findings and recommendations.

2. Literature review
2.1. Assessing mental stress in construction operations

Construction industry is known as one of the most stressful in-
dustries because of high physical and mental demands [16,17]. Ac-
cording to a professional survey conducted in the United Kingdom (UK)
in 2006 [18], nearly 68% of the construction workers have suffered
from obvious stress on construction sites. Haynes and Love [19] found
three most significant mental stressors experienced by the construction
professionals, including high workload, long working hours, and in-
sufficient time with family. The high level of mental stress amplifies the
construction workers’ errors and leads to increasing unsafe behaviors
[16,20]. Many scholars have proposed different approaches to assess
individual’s mental stress. The most common method to evaluate
workers’ mental stress on construction sites is the subjective ques-
tionnaire or survey [21,22]. It was proven to be an effective method to
evaluate a large number of workers’ mental stress status at the same
time on construction sites. However, Jebelli [16] pointed two limita-
tions of this assessment method, which were interrupting workers’ tasks
and imprecise subjective evaluation. Thus, other scholars have explored
physiological measurements to evaluate individual’s mental stress level
such as cortisol and glucocorticoids [23], Electrocardiography (ECG)
[22,24,25], and Electroencephalography (EEG) [26-28]. Although
these approaches can provide on individual’s mental stress status, these
methods are hard to be implemented in real-world projects due to the
technical complexity and cost. Jebelli [16] indicated that high-quality
EEG signals can be only collected in a well-controlled lab environment
setting since EEG devices are very sensitive to individual’s motion.
Despite a variety of signal processing filters and algorithms have been
developed to handle the intrinsic motion artifacts (e.g., eye blink, facial
muscle movement), it is still very challenge of collecting high-quality
EEG data during human locomotion or large scale body movement in
dynamic work environments [29-31]. In summary, this study proposed
an alternative neurophysiological approach - functional near-infrared
spectroscopy (fNIRS) to evaluate individual’s stress status.

2.2. Electroencephalogram (EEG) and Functional Near-Infrared
Spectroscopy (fNIRS)

EEG measures the electric current density on the scalp due to the
task-related neural activity [32]. It offers significant higher temporal
resolution compares other neural imaging methods such as functional
magnetic resonance imaging (fMRI), positron emission tomography
(PET), and functional Transcranial Doppler sonography (fTCD), but
lacks spatial resolutions [33,34]. The mobility of EEG system is con-
sidered moderate compares to fMRI and PET, which allows for cogni-
tive and controlled motor tasks laboratory based studies [34]. Com-
pared to EEG that offers higher temporal resolution, fNIRS has a
relatively low sampling frequency of less than 20 Hz but offers higher
spatial resolution which is essential in monitoring mental workload
related brain regions [35,36]. fNIRS system also requires significantly
less calibration and preparation efforts than both dry and wet elec-
trodes EEG systems [37]. To minimize the impact of motion artifacts on
the signal quality, greater computational effort was required for fil-
tering and frequency domain analysis of EEG data. In contrast, less
filtering and time domain analysis demands less computational effort
for fNIRS signal processing due to its robustness to motion artifacts
[37]. The comparison between EEG and fNIRS based previous literature
was summarized in the Table 1. The fNIRS devices measure the changes
in blood flow and oxygenation related to task-specific neural activities.
The basic work principle of fNIRS is that the device sends infrared lights
signals between 650 and 1000 nm wavelengths via multiple light
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Table 1
The comparison between EEG and fNIRS based on previous literature.
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EEG

fNIRS

Experimental Setup
Signal Quality High temporal resolution.

Vulnerable to motion artifacts
Data Analysis Power Spectra; Coherence [52]
Utilization

Predictive Modeling [52]

Laboratory setting; Greater preparation and calibration effort [37]

Mental Workload Monitoring [53]; Brain Computer Interface (BCI) [52];

Both laboratory and field settings; Lower preparation and calibration
effort [37]
High spatial resolution; Resistance to motion artifacts

Time-Series; Connectivity [37]
Mental Workload Monitoring [54]; Brain Stimulation [55]; Predictive
Modeling

emitters into the scalp. The photodetector measures the strength of the
received light signals and converts into the concentration changes of
both oxygenated (AHbO) and deoxygenated (AHbR) hemoglobin in the
channels formed by the closest emitters and detectors [38]. The emit-
ters and detectors are designed to be placed within 3 cm. The fNIRS
devices have been proven to be a non-invasive safe neuroimaging
technique since the fiber optics are very suitable for any head position
and posture [38]. The fNIRS devices have been widely used in the
neuroimage research areas to investigate infants’ language develop-
ment [39-41]. Multimodal neuroimaging studies that compensate EEG
system with fNIRS system have been explored to deliver complimentary
data on task related neural activations and improve motor task classi-
fication model performance [42,43]. fNIRS system is much more robust
to motor task-related signal artifacts and therefore, adopted by this
study to quantify individual’s stress status. Recently, it has also shown
the potential as a promising neuroimaging technology that can better
be integrated with VR devices to explore human cognitive process
[44-47]. In the construction literature, Hu and Shealy [48] used fNIRS
devices to investigate sustainable engineering decision-making and
design cognition [49]. They also utilized the fNIRS device to explore the
cognitive response to hazards on the construction site [50]. Du, Zhu,
Shi, Wang, Lin and Zhao [51] used fNIRS to investigate the cognitive
load in processing different formats of engineering information. In this
study, we used a wireless fNIRS device integrated with the VR system to
assess the test subjects’ stress status and training quality of the shut-
down maintenance operations.

3. Methodology
3.1. Experiment apparatus: VR, eye tracker, and fNIRS

Owing to the difficulty of simulating industrial shutdown main-
tenance operations in the real world, a VR system integrated with eye-
tracking function and neuroimaging function was developed based on
our previously well-validated VR systems [56-59]. In order to collect
high-precise and high-resolution gaze movement data, the Tobii Pro eye
tracker integrated with HTC VIVE Head Mounted Display (HMD) [60]
was used. The Tobii Pro VR integration is manufactured by Tobii and
uses advanced Pupil Centre Corneal Reflection (PCCR) remote eye-
tracking technique to capture eyeball movement and pupil size [61].
The Near-infrared illuminators in the eye tracker are used to create the
reflection patterns on the cornea and pupil of the eye. The cameras in
the eye tracker are used to capture high-resolution images. Finally, the
advanced image-processing algorithms and a physiological 3D model of
the eye are implemented to estimate the position of the eye in the
virtual environment and the user’s pupil size [61]. The Tobii Pro VR
integration eye-tracker has an accuracy of 0.5° and the maximum gaze
data output frequency is 120 Hz [62]. To achieve the eye-tracking and
playback functions in the virtual environment, we developed several
C# scripts based on the Tobii Pro Software Development Kit (SDK) [62]
and the application programming interface (API) in Unity. Fig. 1 shows
the eye-tracking in the virtual environment. Fig. 1(a) shows the eye-
tracking data collection mode in the virtual environment. Fig. 1(b)
shows the playback visualization function of showing the gaze

movement in the virtual environment. The white-purple lines indicate
the gaze movement trajectories. In the virtual environment, the system
collected participants’ gaze movement data, body movement data, hand
movement data, and pupil diameter data with a frequency of 90 Hz. The
gaze and pupil tracking serve as supplementary evidence of the stress
assessment, and the body and hand movement data is used to evaluate
task performance. After each VR experimental trial, the developed VR
system automatically generated a CSV file with all the raw data.
Fig. 2(a) shows the eye-tracking function in the immersive virtual en-
vironment. Meanwhile, the Cerebral hemodynamic response of each
participant was monitored using an 18-channel portable fNIRS system
NIRSportTM (NIRx Medical Technologies, NY, USA). The system con-
sists of 8 emitters (in red, Fig. 2(b)) and 8 detectors (in blue, Fig. 2(b)).
The emitters and detectors were designed to be located less than 3 cm.
The infrared light signals were emitted in two wavelengths (760 and
850 nm) and collected at a sampling frequency of 7.81 Hz through the
detectors. The VR and fNIRS systems were synchronized by the Psy-
chopy software during the experiment. In order to avoid the inter-
ference of the infrared light generated from the VR lighthouses with the
fNIRS device, a black shower head was used to cover the emitters and
detectors of the fNIRS device during the experiment.

3.2. Virtual environment and experimental task

Two immersive virtual training scenarios were created in this study,
i.e., the normal training scenario and the stressful training scenario, as
shown in Fig. 3. To control the undesired influence of the virtual en-
vironment on participants’ task performance, we designed the same
plate heat exchanger in a virtual operation room and set the environ-
ment lighting the same in both conditions. In the simulated space, each
participant could see the limited space boundary, and they were told
not to go beyond the boundary when they performed the task. The
participant could interact freely with the virtual plate heat exchanger
and each valve using the HTC controllers. The experiment task was
designed to let each participant memorize sequences for turning or
closing the valves before they replaced the plate heat exchanger. Each
participant was asked to memorize two different operation sequences in
both normal and stressful scenarios and then perform the operations in
both normal and stressful conditions. Each pre-start-up sequence to cut
off/open the hot water and cold water consisted of 10 steps, which were
developed based on the operation instruction manual of Alfa Laval plate
heat exchangers, as listed in Table 2 [63]. The pipe operation sequence
as shown in Table 2 were consistent to each participant for each ex-
periment condition. The experiment was conducted in a well-controlled
virtual environment. Since we used a within-participant experiment
design, to avoid the learning effect from the previous sessions, we de-
signed two different pipe operation sequences with different valve po-
sitions. The two sequences were carefully designed to reflect the same
level of difficulty. For the normal review session as shown in Fig. 3(a),
the instruction of pipe operation sequence was placed on the left side
the virtual plate heat exchanger model and each valve was marked with
a valve number on the virtual model. The participant could navigate
freely in the virtual environment. We added serval stressors in the
stressful review session as shown in Fig. 3(b). Since we used a within
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Connected

Please warm up your eyes and press 'C' to start the
calibration or 'P' to preview the calibration targets.
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Fig. 2. Experiment setting. (a) eye-tracking function in the virtual environment; (b) equipment setting in the real-world.

participant experiment design, to rule out learning effects, we used a
different pipe operation sequence in the stress condition and redesigned
all the valve positions on the virtual heat exchanger model. The stres-
sors in the stressful review scenario included simulated smoke gradu-
ally occluding the vision, virtual fire propagation, virtual smoke pro-
pagation, sudden structural collapse sound, and fire burning sound in
the distance. The purpose of adding these stressors in the virtual en-
vironment was to simulate the stressful shut-down maintenance sce-
nario as realistic as possible. For the normal operation session as shown
in Fig. 3(c), the same virtual plate heat exchanger model was placed in
the middle of the operation room, but there were not valve numbers

vaive v12
vaive v6.

4. Open
5. Close Hot feed valve (v7)

displayed for each valve. The virtual setting was the same as the normal
review session for a controlled experiment. Finally, in the stressful
operation session we also added the same stressors as demonstrated in
the stressful review session as shown in Fig. 3(d).

3.3. Experiment procedure

All the participants were asked to memorize two different 10-step
pipe operation sequences with the virtual pipe model in both normal
and stressful virtual scenarios, and then to perform the pipe operation
in two scenarios respectively. To avoid the influence from previous

3. When air is completely bled from Coid
HX (water exits v12),close (+12)
4. Adjust cold feed valve for desired flow ate

W vaiyg yive va

Fig. 3. The training scenarios. (a) normal review scenario; (b) stressful review scenario; (c) normal training scenario; (d) stressful training scenario.
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Table 2
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10-steps of operation sequence for the pre-start-up plate heat exchanger across two conditions.

Normal Training Scenario

Stressful Training Scenario

Step 1: Close hot side pump isolation valve (v1)

Step 2: Close hot drain valves (v2 and then v5)

Step 3: Close hot isolation valves (v3 and then v4)
Step 4: Open hot vent valve (v6)

Step 5: Close hot feed valve (v7)

Step 6: Close cold side pump isolation valve (v9)

Step 7: Close cold drain valves (v8 and then v14)
Step 8: Close cold isolation valves (v10 and then v11)
Step 9: Open cold vent valve (v12)

Step 10: Close cold feed valve (v13)

Step 1: Open Cold Valves (v9 and v10)

Step 2: Open Cold Valve (v11)

Step 3: Slowly open cold feed valve (v13)

Step 4: When air is completely bled from cold side of HX, close (v12)
Step 5: Adjust cold feed valve for desired flow rate (v13)

Step 6: Open Hot Valves (v1 and v3)

Step 7: Open Hot Valve (v4)

Step 8: Slowly open hot feed valve (v7)

Step 9: When air is completely bled from hot side of HX, close (v6)
Step 10: Adjust hot feed valve for desired flow rate (v7)

scenario, we used a counter-balanced approach randomly choosing to
start with the normal or stressful scenarios for each participant. It
means that some of the participants started with normal sessions while
others started with stressful sessions. The participants were also in-
structed that their compensation would be determined by the task
performance. The purpose of this experimental design was to motivate
participants to memorize the pipe operation sequence and perform the
pipe operation as accurately as possible. The experiment consisted of
five sessions: (1) preparation session, (2) device calibration and VR
training session, (3) review session, (4) retention session, (5) operation
session. The preparation session (5-10 min) was designed to allow
participants to familiarize the procedure and potential benefit or risk of
the experiment. Participants’ demographical information including age,
gender, major, degree level, previous game and VR experience, and
knowledge level of the HVAC system were also collected in this session.
The device calibration and VR training session (10-20 min) were de-
signed for participants to familiarize themselves with the fNIRS system,
eye-tracking system, and interactions/navigation in the virtual en-
vironment. In this session, all the participants were first instructed to
wear on the fNIRS device, and the investigators were able to ensure
each probe of the fNIRS device accurately collected the neuroimaging
data from the target brain regions. The participants were asked to stay
claim in a chair and let the fNIRS device to set up the baseline data for
each participant. After the fNIRS calibration, the participants were
asked to set up the VR headset and the experiment investigators were
also able to ensure participants’ eyeball movements were accurately
captured by the eye tracker integrated with the VR headset after serval
five-point calibration in the virtual environment. Participants were also
given instructions about how to use the two controllers to interact with
the virtual valves. The review session (15 min) was used for partici-
pants to review and memorize the pipe operation sequence. The review
session was divided into 10 trails (1 min for each review trail) for both
normal and stress scenarios. For each trial in the review session, each
participant was given 60 s to review and memorize the pipe operation
sequence and pipe model. Between each review trial, there was a re-
tention session (30 s), including 25 s of break time and 5 s of stand-by
time. In the retention session, participants were told to sit to calm
down. The purpose was to settle down participants’ neural activities
and minimize the influence on the following sessions. The participants
were not asked to perform the operation in the review session. Instead,
we designed a separate session for participants to perform the pipe
operation after the 10 review trials. After the review session, partici-
pants were asked to perform the pipe maintenance task in normal or
stress virtual environment (with no time limit). At the end of all ex-
perimental stages, participants were asked to provide comments and
feedback on the experiment. We used NIRSTIM which is a programmed
experiment instruction software to coordinate the collaboration be-
tween the fNIRS device and VR system. Fig. 4 shows the experiment
procedure. The sequence between normal scenario and stress scenario
was counter-balanced assigned to each participant. All the experiments
were done at the same location (Francis Hall Room 101 — BIM CAVE at

Texas A&M University), with the same devices. The environmental ef-
fects can be ruled out as well. Given that the experiment settings were
well controlled, the final operation performance was indeed an in-
dicator of the memory quality. We admit that in reality the task per-
formance is also affected by other factors, such as the motor skills of the
worker. However, as a study focusing on the impact of stress on
knowledge-based learning (in this case, memorizing the correct se-
quence of valve operations), factors other than the memory quality are
out of the scope. In summary, the experiment was designed in a way
that memory quality based on review sessions was critical to the final
performance. Difference in motor skill, for example, was deliberately
removed with the same simple control mechanisms, i.e., touching the
valves with two HTC controllers. The only influential factor is the dif-
ference in the use of stressors. We also made sure that the experimental
stimuli were clear to participants, without any possible vague inter-
pretations.

3.4. Data collection

We collected three types of data for post-experiment analysis: task
performance, gaze movement, and neural activity. Task performance
indicators include participants’ operation time (s) and pipe operation
accuracy (%). Pipe maintenance accuracy was defined as the accuracy
in performing correct steps and directly represents how well the par-
ticipants memorized and performed the pipe operation task. Pipe
maintenance accuracy is recorded in a range from 0% to 100%. The
operation time was defined as the time participants used to complete
the task in the virtual environment. This indicator represents how ef-
ficiently the participants finished the task.

For the data analysis of gaze movement in the virtual environment,
we extracted gaze transition approximate entropy (ApEn) [64] as a
feature to evaluate participants’ general attention patterns in the virtual
environment. The ApEn was selected to evaluate the regularity and
unpredictability of the fluctuations over participants’ gaze movement
data. ApEn is defined as a technique to quantify the regularity and
complexity of the noisy time-series data [65]. This method is widely
used in the data analysis of physiological time-series data such as heart
rate [66,67], EEG [68,69], and endocrine hormone [70,71]. A higher
value of gaze movement entropy indicates more irregularity and un-
predictability of gaze movement, suggesting that participants just ran-
domly look around in the environment. On the other hand, a lower
value of gaze movement entropy shows a more regular and relatively
stable gaze focus transitions [72]. Although we cannot conclude that
distinct gaze movement patterns are results of different cognitive pro-
cesses, but at least, we shall be able to claim that distinct gaze move-
ment patterns, such as entropy of visual scan pathways, indicate the use
of different scan patterns. This is supported by Hartley, Maguire, Spiers
and Burgess [72] finding that the eye movement is associated with the
forward motion and turning during the navigation. Jyotsna and
Amudha [73] also found that the gaze movement is associated with the
stress level. Therefore, we evaluated participants’ visual scan patterns
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Review (Stress) Perform (Stress)

| | 10 trials

1 trial

<«—— 10 trials —>{<+—— 1 trial —>

Fig. 4. Experiment procedure. The sequence between normal scenario and stress scenario was counter-balanced assigned to each participant.

Probe Design
in 10-20 international

Regions of Interests
(ROIs)
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Fig. 5. fNIRS probe design in the international 10-20 system (left); fNIRS probe Regions of Interest (ROIs, right).

based on participants’ gaze movement entropy in vertical and hor-
izontal directions in this study.

The neural activities were measured with fNIRS. The fNIRS probe
design is presented according to the international 10-20 system format
with the probe cap placed on the vertex (Cz) of each participant (Fig. 5
left). The 18-channel system monitored six regions of interest (ROIs)
which were specified by averaging the nearby channels (Fig. 5 right).
These ROIs include left and right dorsal-lateral prefrontal cortex (L/R-
DLPFQ), left and right premotor cortex (L/R-PMC), and left and right
primary motor cortex (L/R-M1). The dorsal-lateral prefrontal cortex has
been shown to be associated with complex mental activities such as
cognitive control network (CCN), dorsal attention network (DAN), and
verbal episodic retrieval [74-76]. The premotor cortex has been shown
to be associated with more complex and cognitive controls, such as the
alternation of motor plans, task switching, acquisition of new motor
skills, and motor selection [77-79]. The motor cortex has been well
proven to be associated with motor movements [80-82]. ROIs corre-
sponded Brodmann Areas and their functions are shown in Table 3.

The cerebral hemodynamic data collected by the fNIRS device was
filtered by the band-pass filter. High-frequency noise was rejected at
3 Hz and motion artifacts caused by physiological noise such as
heartbeat and slow-wave drift were corrected at 0.5 to 0.016 Hz [83].
Kurtosis wavelet algorithm [84] and spline interpolation [85] were
used to reject abrupt motion artifacts and smooth the cerebral hemo-
dynamic signals. At last, oxygenated (AHbO) and deoxygenated (AHbR)
hemoglobin at the 18 channels was calculated by the modified Beer-
Lambert law [83]. Fig. 6 shows a sample of participant #1’s post-pro-
cessed fNIRS data related to the Dorsal-lateral prefrontal cortex across
different conditions (red represents normal condition and orange re-
presents stress condition).

In this study, oxygenated (AHbO) hemoglobin was used to analyze
functional connectivity [83]. Functional connectivity measures task-
related interactions among multiple cortical regions using covariance
analysis of time series AHbO signals [83,86] as shown in Fig. 7. Pearson
correlations, R, are calculated across all ROIs to find the correlation
coefficients [87,88].

Table 3
Brodmann Area and Functions.

cov(X;,Xj)
K SiSj (€]
1 ( 1+Rij )
Zij:—ln
2 | 1-Ry 2

Eq. (1) represents the Pearson correlation coefficient, R values,
calculated between the ith and jth signals where i,j € (LDLPFC, RDLPFC,
LPMC, RPMC, LM1 and RM1), x; and x; are both AHbO signals, cov
(x;,X;) represents the covariance between the ith and jth signals, and s;
and s; stand for the standard deviations of the ith and jth signals. The
calculated R values are then converted to Fisher’s z-scores, Z values, to
determine the strength of correlations following Eq. (2) [83]. Func-
tional connectivity with z-score between 0.4 and — 0.4 were identified
as not connected. Nodes with solid edge indicate intra-hemispheric
connectivity [89,90]. Nodes with doted edge indicate inter-hemispheric
connectivity.

4. Results
4.1. Overview

In total, 16 participants (15 males, 1 female) participated in the
study, including 1 undergraduate student and 15 graduate students. All
participants were recruited via the university emailing list. Participants
were from a variety of disciplines, including computer science, civil
engineering, construction science, and other engineering majors. We
performed a power analysis for the paired test [91]. We found that 16
participants can achieve a power of 80% and a level of significance of
5% (two sided), for detecting an effect size of 0.8 between pairs. In
addition, we found that many existing neural research studies have
been based on a similar sample size, such as [87,92]. As a result, the
selection of the sample size was also following the literature standard.
Participants were also asked to report their previous knowledge of the
HVAC system and none of the participants have previous pipe main-
tenance knowledge. None of the participants felt VR sickness while
performing the pipe operation task in the virtual environment. The

ROIs

Brodmann Areas and Functions

Dorsal-lateral prefrontal cortex (DLPFC)
Premotor cortex (PMC)
Primary motor cortex (M1)

Area 8, 9; motor planning, complex mental activities
Area 6; planning of complex and coordinated motor movements
Area 4; motor movements
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Fig. 6. A sample of participant #1’s post-processed fNIRS data across different conditions. The red line represents the normal condition and the orange line represents
the stressful condition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

NASION

Fig. 7. A Sample of Functional Connectivity based on fNIRS data.

experimental procedure took approximately 40-60 min for each parti-
cipant. Each participant got a $15 Amazon gift card after they finished
the experiment. Fig. 8 shows one participant was using the proposed VR
system.

4.2. Task performance

First, we evaluated whether task performance was sufficiently dif-
ferent between normal and stressful conditions. Two task performance
indicators were used including pipe operation accuracy (%) and op-
eration time (s). We evaluated participants’ operation accuracy by
checking each operation trail by dividing the pipe model into five
sections. For the pipe operation accuracy as shown in Fig. 9(a), we used
a matched pairs t-test to evaluate the pipe operation accuracy for each
participant. We found a significant difference (p = 0.014 < 0.05) in
pipe maintenance accuracy between the two conditions. The results
indicated that, on average, the participants performed 26.43% better in
the normal scenario than the stressful scenario. Thus, the stressful vir-
tual environment could make participants perform worse in this

experiment. As for the operation time as shown in Fig. 9(b), the mat-
ched pairs ttest did not find any significant difference
(p = 0.7144 > 0.05) in the operation time between the two condi-
tions. The results reveal that the stressful scenario did not have a strong
impact on the participants’ operation time.

4.3. Visual scan pattern

Second, we evaluated whether the visual scan pattern was suffi-
ciently different between normal and stressful conditions. As mentioned
in the methodology part, we extracted gaze ApEn as a feature to eval-
uate participants’ general attention patterns in the virtual environment.
A higher value of gaze movement entropy indicates more irregularity
and unpredictability of gaze movement, suggesting that participants
just randomly visual scan in the environment. On the other hand, a
lower value of gaze movement entropy shows a more regular and re-
latively stable gaze focus transitions. In this study, we evaluated par-
ticipants’ visual scan patterns in the horizontal direction (x-axis) and
vertical direction (y-axis). As illustrated in Fig. 10(a), we did not find
any significant difference in ApEn at horizontal direction between the
normal and stressful conditions by using a two-sample t-test
(p = 0.2345 > 0.05). As illustrated in Fig. 10(b), we found a sig-
nificant difference in ApEn at vertical direction between the normal and
stressful conditions by using a two-sample t-test (p = 0.0328 < 0.05).
A higher value of ApEn indicates a more frequent gaze scan pattern in
the vertical direction when reviewing the instructions. In other words,
participants in stressful condition tended to scan information more
quickly and repeatedly across different task steps in the vertical direc-
tion. In summary, the results confirmed that participants tended to
perform different visual scan patterns in different training scenarios. A
higher value ApEn may serve as an indicator of high stress level. Since
the review instructions were designed to be listed in the vertical di-
rection, participants in this experiment demonstrated a high value of
ApEn in the vertical direction. This is supported by Jyotsna and
Amudha [73]’s finding that the gaze movement is associated with the
stress level. Although we cannot conclude that distinct gaze movement
patterns are results of stress scenario. But at least, we shall be able to
claim that distinct gaze movement patterns, such as entropy of visual
pathways, indicate the participants experienced the stress scenario.
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Fig. 8. The participant was using the proposed VR system. (a) review session-normal; (b) operation session-normal; (c) review session-stressful; (d) operation session-

stressful.

4.4. Functional connectivity

Third, we analyzed the functional connectivity strength between
normal and stressful conditions. Pearson correlations are calculated
across all ROIs to find the correlation coefficients. All the calculated R
values are then converted to Fisher’s z-scores to determine the strength
of correlations. Functional connectivity between two regions were de-
termined based on predetermined threshold of 0.4. Fig. 11 illustrates
the average Fisher’s z-score (functional connectivity strength) across
different conditions (normal and stressful) and different phases (early
and late).

Significant increases in connectivity strength were observed for the
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stressful condition compared to the normal condition in Fig. 12. We
analyzed the functional connectivity of two phases, including the Early
(first 5 training trials) and Late phases (last 5 training trials). Six blue
nodes in each graph of Fig. 10 indicate six regions of interest. The color
of each line indicates the strength of functional connectivity based on
the color scale on the right. Solid lines indicate intra-hemispheric
connectivity and dashed lines indicate inter-hemispheric connectivity.
The middle column shows significant changes between two groups of
sessions. All the lines in the middle column are in dark red (positive
correlations) which indicates significantly stronger connectivity for the
stressful condition compared to the normal condition. As shown in the
result, at the early phase, significant increases of multiple
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Fig. 9. The results of task performance across different conditions. (a) operation accuracy; (b) operation time.
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Fig. 10. The results of ApEn across different conditions. (a) horizontal direction (x-axis); (b) vertical direction (y-axis).

interhemispheric connections were identified from normal and to
stressful condition by using two-sample t-test
(p = 0.005-0.026 < 0.05). At the late phase, significant increases
were identified within the right hemisphere from normal and to
stressful condition (p = 0.015-0.022 < 0.05). Interhemispheric con-
nection between LM and RM also increased significantly at the late
phase (p = 0.041 < 0.05). Fig. 13 shows a sample of participant #10’s
neuroimage data between normal and stressful conditions.

We also compared the functional connectivity changes between

Normal

LSMC
LM

Early
RPFC

RSMC

RM

LPFC LSMC LM RPFC  RSMC RM

LSMC

Late LM

RPFC

RSMC

RM

LPRC LSMC LM RPFC

RSMC RM

early and late phases as shown in Fig. 14. The color of each line in-
dicates the strength of functional connectivity based on the color scale
on the right. Solid lines indicate intra-hemispheric connectivity and
dashed lines indicate inter-hemispheric connectivity. The middle
column shows significant changes between two groups of sessions. All
the lines in the middle column are in dark red (positive changes) which
indicates significantly stronger connectivity for the Late phase than for
the Early Phase. In the stressful condition, there is no significant
changes between early and late phases were observed. However, there
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LSMC

Late
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Fig. 11. The average Fisher’s z-score (functional connectivity strength) across different conditions (normal and stressful) and different phases (early and late).
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Fig. 13. The participant #10’s neuroimage data between normal and stressful conditions. (a) Normal condition; (b) stressful condition.

are significant increases in the interhemispheric connections in the
normal condition. Connectivity among RPMC, RDLPFC, and RM1 were
increased significantly from early to late phase by using two-sample t-
test (p = 0.005 and 0.034 < 0.05).

In summary, the functional connectivity result confirms significant
and potentially quantifiable difference between normal and stressful
trainings. It constitutes a theoretical foundation for an early warning
and performance prediction system based on neural connectivity data.
The temporal analysis also shows a significant difference between the
early and late phase of the training combined with the neural con-
nectivity pattern difference driven by normal-stress training.

4.5. Correlations between neurophysiological metrics and task performance

The experiment results indicated correlations between a set of
neurophysiological measures and the final operation performance (time
and accuracy), which set the methodological foundation for a perfor-
mance early warning and estimating system based on the

10

neurophysiological data during training. First, we found a significant
correlation between gaze movement entropy in vertical direction (y-
axis) and operation accuracy (r = —0.388, p = 0.019 < 0.05) as
shown in the following Fig. 15. Combining the results we found in
Sections 4.2 and 4.3, the participants had lower operation accuracy in
the stress condition compared to normal condition and participants had
higher of gaze movement entropy in vertical direction in the stress
condition compared to normal condition. These results revealed that
there was a negative correlation between gaze movement entropy in
vertical direction and operation accuracy, which means that the higher
value of gaze movement entropy in vertical direction might reduce
participants’ operation accuracy.

Then, we extracted the peak HbO of six ROI including LDLPFC,
RDLPFC, LPMC, RPMC, LM1 and RM1 for each review trail from the
fNIRS data as the neural activation features across different conditions.
We found significant correlations between RSMC and operation accu-
racy (r = 0.205, p = 0.019 < 0.05), between LM and operation ac-
curacy (r = 0.208, p = 0.0176 < 0.05), and between RM and
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Fig. 15. The correlations between gaze movement entropy and task performance. The boxes crossed out mean that the p-value of the correlations is larger than 0.05.

operation accuracy (r = —0.196, p = 0.0252 < 0.05) in the normal
condition. We did not find any significant correlations between op-
eration accuracy and other ROIs in the normal condition as shown in
Fig. 16(a). However, in the stress condition, we detected stronger cor-
relations between the peak Hbo of six ROIs and operation accuracy, we
found significant correlations between RSMC and operation accuracy
(r = 0.47, p = < 0.001), between LSMC and operation accuracy (r =

11

—0.194, p = < 0.001), between RM and operation accuracy (r =
—0.26, p < 0.001), between LPFC and operation accuracy (r =
—0.328, p < 0.001), and between RPFC and operation accuracy (r =
—0.273, p < 0.001) in the stress condition as shown in Fig. 16(b). We
detected stronger correlations between the peak HbO of six ROIs and
operation accuracy in stress condition compared to normal condition.
These results further confirmed that fNIRS has the potential to estimate
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Fig. 16. The correlations between peak Hbo of six ROI and task performance. The boxes crossed out mean that the p-value of the correlations is larger than 0.05.

and project task performance based on training data. It helps us to build
a next logic step for using the neurophysiological metrics to estimate

final task performance.

12

4.6. Assessing training outcome

Finally, since the fNIRS data correlated with the task performance in
different training scenarios, it is possible to use the fNIRS metrics in the
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review session to estimate individual’s final task performance. We used
supervised machine learning method to classify the training results. All
the participants have 20 trails of f{NIRS data in the review session (10
review trails in normal condition and 10 review trails in stress condi-
tion) and all the fNIRS data was labeled by their training outcome of the
operation accuracy. The principle of labeling the data is that if the
participant achieved 100% operation accuracy, we labeled the data as
“satisfactory” otherwise the data was labeled as “unsatisfactory”. Our
purpose is to create a classification model that can use the fNIRS data in
the review session to estimate training outcome. A total of 12 features
were selected to classify pipe operation task performance, including 6
fNIRS peak Hbo features (peak Hbo of LDLPFC area, peak Hbo of
RDLPFC area, peak Hbo of LPMC area, peak Hbo of RPMC area, peak
Hbo of LM1 area, and peak Hbo of RM1 area) and 6 fNIRS average Hbo
features (average Hbo of LDLPFC area, average Hbo of RDLPFC area,
average Hbo of LPMC area, average Hbo of RPMC area, average Hbo of
LM area, and average Hbo of RM area). For the pre-processing of the
fNIRS data for the classification model, we followed the fNIRS data pre-
processing pipeline proposed by [87]. All the motion artefact of the
fNIRS data for each ROIs was removed by the wavelet interpolation and
band pass filter (0.01-0.5 Hz) [9]. All the fNIRS features were nor-
malized using the z-score method [92,93]. We compared the classifi-
cation models by using different machine learning classification algo-
rithms including Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), Nominal Logistical Regression (LR), and Naive Bayes
(NB). We also used the K-Folds method (k = 10) to cross-validate our
classification results. We selected accuracy, precision, recall, F-score,
and ROC area to evaluate the classification performance. Table 4 shows
the summary of classification models before feature selection. These
results indicated that Random Forest can provide more accuracy clas-
sification (78.08%) than other classification models. In addition, we
further used wrapper method with sequential backward feature selec-
tion (SBS) method to find the optimal feature subset to achieve the
better classification performance. The K-Folds method (k = 10) was
also used to cross-validate the feature selection results. Table 5 shows
the summary of classification models after feature selection and (n/10)
in Table 5 indicates how many times this feature was selected by the
wrapper method with sequential backward feature selection during 10-
fold. These results also indicated that Random Forest can provide more
accuracy classification (80.38%) than other classification models with 6
selected features including LM (Peak Hbo) (10/10), RSMC (Peak Hbo)
(9/10), LSMC (Peak Hbo) (8/10), LPFC (Peak Hbo) (5/10), RSMC
(Average Hbo) (4/10), and LM (Average Hbo) (4/10). The classification
accuracy was improved from 78.08% to 80.38% after feature selection.
These results further suggested that the fNIRS features in review session
can be used to estimate future task performance during different
training scenarios. Combing with the results of functional connectivity,
task performance assessment can be used for early monitoring of in-
dividual’s task performance in pipe maintenance training and provide
interactive assessments for performance and learning.

5. Discussion
These experiment results revealed several important findings re-

garding the stress during shutdown maintenance training. First, our
experiment results confirmed that the presence of stressors during

Table 4

The summary of classification models before feature selection.
Classification Algorithm  Accuracy Precision Recall F-score  ROC Area
Random Forest 78.08% 77.10% 78.10%  0.746 0.759
Logistical Regression 75.38% 72.90% 75.40%  0.727 0.709
Decision Tree 73.08% 68.60% 73.10% 0.679 0.517
K-Nearest Neighbors 68.85% 60.40% 68.80% 0.688 0.498
Naive Bayes 66.92% 68.40% 66.90% 0.676 0.686
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learning or training process did affect complex knowledge-based tasks
(e.g. pipe maintenance) in a negative way. Performance assessment
indicated that although there was no significant difference in task
completion time between the two conditions, the performance accuracy
under stressful training was much lower. It suggested that participants’
cognitive process might have been affected by the stress during the
review phase. This result further indicated the importance of assessing
task performance under stress training scenarios.

Second, we explored the promising possibility of using neurophy-
siological measures to assess workers’ stress status and task perfor-
mance under different training scenarios. Stress level assessment and
task performance assessment have been recently identified as promising
research directions in the construction research area. There is a pressing
need for a robust assessment method to predict workers’ task perfor-
mance under different working scenarios. This study echoes recent
studies proposed using wireless EEG device (EMOTIV) and other
wearable biosensors to assess workers’ mental stress on site [16,17,94].
The novelty of this study pertains to using neurophysiological measures
during the training to estimate and classify the final performance in
industrial operations. We used an alternative portable neuroimage de-
vice - fNIRS integrated with the eye-tracking VR system to collect high-
quality temporal neuroimaging data and eye-tracking data during the
simulated VR training scenarios. Based on the data, we found that
several supervised machine learning methods were able to classify the
participants’ final task performance based on the neurophysiological
data in the review phase. It provides innovative methods and knowl-
edge about the role of neural analysis in training evaluation. The novel
contribution of this study also lies in the added knowledge about stress
in training, which helps scholars and practitioners better understand
and leverage stressors to stimulate desired neural activations during
training. Specifically, the fNIRS data analysis confirmed significant
differences in terms of neurofunctional connectivity between the
normal and stressful training conditions. Participants demonstrated a
stronger interhemispheric connectivity in the early phase of stress
training. We also detected significant increases within the right hemi-
sphere between the normal and stressful conditions in the late training
phase. Interhemispheric connections between LM and RM were also
increased significantly in the late phase. In summary, the participants
who were in the stressful condition tended to have more interhemi-
spheric connections between the left and right hemispheres. The dif-
ferences in connectivity can be quantified as a leading indicator of
detecting the presence of stress. In addition, we also tested the corre-
lations between participants’ task performance and activation level of 6
ROIs’ NIRS data. We found significant correlations between RSMC and
operation accuracy (r = 0.205, p = 0.019 < 0.05), between LM and
operation accuracy (r = 0.208, p = 0.0176 < 0.05), and between RM
and operation accuracy (r = —0.196, p = 0.0252 < 0.05) in the
normal condition. We detected more correlations between the peak Hbo
of six ROIs and operation accuracy in the stressful condition, we found
significant correlations between RSMC and operation accuracy
(r = 0.47, p = < 0.001), between LSMC and operation accuracy (r =
—0.194, p = < 0.001), between RM and operation accuracy (r = —
0.26, p < 0.001), between LPFC and operation accuracy (r = —0.328,
p < 0.001), and between RPFC and operation accuracy (r = —0.273,
p < 0.001). These results further confirmed that fNIRS has the po-
tential to assess the task performance in different training scenarios.
Based on the correlation results, we tested several supervised machine
learning classification models that uses the fNIRS data in the review
session to early assess individual’s task performance and we utilized k-
fold (k = 10) cross-validation method to validate our results. The
Random Forest classification model achieved an average 80.38% clas-
sification accuracy after feature selection to assess participants’ training
outcome compared to other classification models.

At last, in addition to fNIRS data, this study also identified a neu-
rophysiological metrics as potential predictor - gaze movement pat-
terns. We found a significant correlation between gaze movement
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The summary of classification models after feature selection.
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Classification Algorithm Accuracy (%) Precision (%)

Recall (%)

F-score ROC Area Selected Features

Random Forest 80.38% 80.1%

Logistical Regression 79.61% 82.8%

Decision Tree 79.23% 79.5%

K-Nearest Neighbors 79.2% 77.9%

Naive Bayes 78.5% 77.8%

80.4%

79.6%

79.2%

79.2%

78.5%

0.777 0.687 LM (Peak Hbo) (10/10)
RSMC (Peak Hbo) (9/10)
LSMC (Peak Hbo) (8/10)
LPFC (Peak Hbo) (5/10)
RSMC (Average Hbo) (4/10)
LM (Average Hbo) (4/10)
RSMC (Peak Hbo) (10/10)
LM (Peak Hbo) (9/10)
LPFC (Peak Hbo) (8/10)
LSMC (Peak Hbo) (7/10)
RSMC (Average Hbo) (7/10)
RPFC (Average Hbo) (2/10)
LSMC (Average Hbo) (2/10)
RM (Peak Hbo) (6/10)
RPFC (Peak Hbo) (5/10)
LM (Peak Hbo) (5/10)

LM (Peak Hbo) (9/10)

RM (Peak Hbo) (9/10)

LM (Average Hbo) (8/10)
RSMC (Peak Hbo) (7/10)
RPFC (Peak Hbo) (4/10)
LPFC (Peak Hbo) (3/10)
RPFC (Peak Hbo) (10/10)
RSMC (Peak Hbo) (10/10)
LM (Peak Hbo) (10/10)
LSMC (Peak Hbo) (6/10)
RM (Average Hbo) (6/10)
LM (Average Hbo) (1/10)

0.75 0.547

0.755 0.667

0.777 0.682

0.749 0.701

entropy in vertical direction (y-axis) and operation accuracy (r =
—0.388, p = 0.019 < 0.05). Specifically, increased entropy of gaze
movement in vertical direction may be an indicator of stress. This result
suggests that participants tended to vertically scan information more
quickly and repeatedly across different task steps in stressful condition
compared to normal condition. These findings provide empirical evi-
dence that the neurophysiological features can be used to develop a task
performance assessment model under different training scenarios.

6. Conclusions

This study proposed a neurophysiological approach to assess
workers’ stress status and training outcomes under normal and stressful
training scenarios. A VR system integrated with the eye-tracking func-
tion was developed to simulate different training scenarios. A neuroi-
maging device — fNIRS was used to collect user’s brain activities by
measuring hemodynamic responses associated with neuron behavior. A
pipe maintenance task of replacing a plate heat exchanger was selected
as the shutdown maintenance training scenario. A human-subject ex-
periment was conducted to test the feasibility and usability of the
neurocentric approach. Our experiment results indicated that stressful
training scenario had a strong impact on participants’ neural con-
nectivity patterns and gaze movement patterns in vertical direction
during training scenarios, and finally negatively affected participants’
task performance. We also found that the task performance was cor-
related with neurophysiological features including gaze movement
entropy and fNIRS data. At last, we tested several supervised machine
learning classification models that uses the fNIRS data in the review
session to early assess individual’s task performance and we utilized k-
fold (k = 10) cross-validation method to validate our results. The
Random Forest classification model achieved an average 80.38% clas-
sification accuracy after feature selection to assess participants’ training
outcome compared to other classification models. The focus of this
study does not only rely on developing a neurocentric training ap-
proach via the VR system, but it also aims to make a theoretical con-
tribution of how different training scenarios affect training quality re-
lated to neural connectivity. These findings are expected to provide
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more evidence about an early performance warning and prediction
system based on a hybrid neurophysiological measure method, in-
spiring the design of a cognition-driven personalized training system for
industrial workers in the future.

Several research limitations still need to be addressed in the future
research agenda. First, there was gender bias in this experiment (15
males, 1 female). Gender difference might have influence on partici-
pants’ task performance in this experiment. According to previous lit-
erature, gender is known to influence both physical and cognitive task
performance. Male and female differ in the way when handling stress
[95,96]. Previous literatures also have found gender differences in both
neural signature and motor task performance [97,98]. Male were found
to exhibit higher activation in prefrontal cortex during stress compares
to women [99]. However, exploring gender differences in both task
performance and neural activities is not the focus of this study. We
admitted this gender bias is one of the limitations of this study. We will
investigate the effects of diversity of users including disciplines, back-
grounds, ages, and gender difference in our future studies. Second, this
study was conducted in a well-controlled laboratory environment. In
real world, construction sites and construction operations are more
complex and unpredictable. Thus, more complex and dynamic sce-
narios should be tested in future research. At last, we only proposed the
implementation of using fNIRS to assess individual’s task performance
under different training scenarios. Multimodal neuroimaging studies
found that compensate EEG system with fNIRS system have been ex-
plored to deliver complimentary data on task related neural activations
and improve motor task classification model performance [42,43]. A
comparison study of using EEG and fNIRS was suggested in our future
studies.
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