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ABSTRACT 12 

Amid the rapid development of building information technologies, wayfinding information has become 13 

more accessible to building users and first responders. As a result, a realistic risk of cognitive load related 14 

to the wayfinding information processing starts to emerge. As cognition-driven adaptive wayfinding 15 

information systems become increasingly captivated to overcome challenges of cognition overload due to 16 

overwhelming information, a practical and non-invasive method to monitor and predict cognitive loads 17 

during the processing of wayfinding information is needed. This paper introduces a Functional Near-18 

Infrared Spectroscopy (fNIRS) based method to identify cognition load related to wayfinding information 19 

processing. It provides a holistic fNIRS signal analytical pipeline to extract hemodynamic response features 20 

in prefrontal cortex (PFC) for cognitive load classification and prediction. A human-subject experiment 21 

(N=15) based on the Sternberg working memory test was performed to model the relationship between 22 

fNIRS features and cognitive load. Personalized models were also evaluated to capture individual 23 

difference and identify unique contributing features to each person. The results find that fNIRS-based 24 
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model can predict cognitive load with satisfactory performance (avg. recall rate 73.41±5.49 percent). The 25 

findings also demonstrate that personalized models, instead of universal models, are needed for predicting 26 

cognitive load based on neuroimaging data. fNIRS has demonstrated comparable advantages over other 27 

neuroimaging methods in cognitive load prediction given its robustness to motor artefacts and the 28 

satisfactory predictability. 29 

KEYWORDS: fNIRS; Cognitive Load; Sternberg Test; Wayfinding 30 

INTRODUCTION 31 

As of 2020, an estimated 20% of U.S. buildings can be classified as “smart” with 50 billion connected 32 

devices forming clusters of Internet of Things (IoT) (Memoori 2015). These new sensing devices and 33 

technologies will generate a large amount of real-time informatics in built environments. The way a 34 

building’s spatial information is presented is becoming more diverse, mixing signage (e.g., directional, 35 

identification, information, warning), text instructions, maps (2D, 3D, interactive), tactile and haptic 36 

guidance, sound, verbal guidance, colors, landmark markers, and lighting, etc. (Calori and Vanden-Eynden 37 

2015). Owing to the development of computing powers, new technologies such as radio-frequency 38 

identification (RFID) (Willis and Helal 2005), indoor positioning systems (Randell and Muller 2001), better 39 

telecommunications (Aporta et al. 2005) and augmented reality (AR) technologies (Olsson et al. 2013) are 40 

increasingly available to interact with the building data for building wayfinding, i.e., orienting and 41 

navigating inside a building (Mulloni et al. 2011).  42 

While real-time data collecting and informatics become easier for building wayfinding, a new 43 

challenge has arisen - cognitive overload due to the overwhelming information. Too much information can 44 

lead to an increased cognitive load (Eppler and Mengis 2004), causing decreased task performance (Sweller 45 

1988) and/or prejudices in decisions such as stereotyping, i.e., relying on personal experiment instead of 46 

facts (Banaji and Greenwald 1994). In emergency wayfinding, for example, first responders often need to 47 

build an accurate spatial working memory of unfamiliar spaces in a timely manner (additional time 48 
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pressure), requiring an intensive retention and processing of received spatial information (such as maps or 49 

verbal instructions) (Logie 2014). Yet according to the cognitive load theory (CLT), human cognition has 50 

a finite information processing capacity (Sweller 1994). The well-proven Miller’s Law shows that in one-51 

dimension judgement tasks (such as temporarily remembering a phone number), an average person can 52 

only hold and process 2 to 3 bits of information at one time (Miller 1956). Literature also suggests that 53 

mental fatigue due to the prolonged period exposed to excessive information also contributes to increased 54 

cognitive load (Tanaka et al. 2015). It further adds to the potential risks of cognitive overload as modern 55 

professional works (e.g., engineers and first responders) rely on the processing of spatial information more 56 

common and more frequently, given the increasing complexity of modern built environments.  Such an 57 

apparent gap between the enormous information processing need (both in amount and in time), and the 58 

limited processing capacity creates a potentially hazardous situation for certain professionals such as civil 59 

engineers and first responders. In the foreseeable future, this gap will be further widened due to the 60 

advancement of information technologies and unprecedented accessibility to large amounts of real-time 61 

data. Successful information delivery in building wayfinding refers to delivering the right information to 62 

the right person at the right time, instead of delivering untailored information to anyone at any time (Fischer 63 

2012). An adaptive information system that is optimized for the real-time and dynamic cognitive load is in 64 

an urgent need.  65 

To set the foundation for a cognition-driven adaptive wayfinding information system, this study 66 

aims to develop and test a cognitive load monitoring and prediction method triggered by the processing of 67 

wayfinding information, such as landmarks, routes and symbolic information related to orientation and 68 

target destinations. Specifically, we will test the use of an explicit neurofunctional measurement via 69 

Functional Near-Infrared Spectroscopy (fNIRS). Although previous literature has indicated a strong 70 

relationship between certain neurophysiological metrics and cognitive load, including pupillary dilation 71 

(Matthews et al. 1991; Shi et al. 2020; van der Wel and van Steenbergen 2018) and electroencephalogram 72 

(EEG) spectral analysis (e.g.,  alpha–gamma versus theta–gamma ratio is a golden standard for cognitive 73 
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load) (Roux and Uhlhaas 2014), fNIRS is more tolerant to motor artefacts and thus is a better candidate for 74 

detecting neural activities in wayfinding tasks.  75 

However, two challenges have clouded the feasibility and viability of fNIRS for cognitive load 76 

prediction. First, fNIRS is still a relatively new neuroimaging method (Hu and Shealy 2019), and the 77 

literature is not clear regarding what features of fNIRS data are strong predictors of cognitive load 78 

(Pinti et al. 2018).  Second, existing efforts have been concentrated on exploring the universal patterns 79 

of fNIRS features related to cognitive load, i.e., knowledge applicable to all people; while in contrast, 80 

there might be a significant individual difference pertaining to the fNIRS-cognitive load relationship. 81 

This study will narrow the gap by testing a personalized cognitive load prediction method based on 82 

fNIRS features extracted from a human-subject experiment. A holistic fNIRS analytical pipeline will 83 

be examined to extend the literature of the existing fNIRS analysis method. In addition, we will 84 

compare individual differences in terms of fNIRS-based cognitive load prediction and what the unique 85 

contributing features are to each person. The remainder of this paper will introduce the theoretical basis 86 

and the human-subject experiment led to the cognitive load prediction model.  87 

LITERATURE REVIEW 88 

Spatial Information Types in Wayfinding 89 

Wayfinding in complex buildings requires the acquisition and processing of large amounts of 90 

spatial information (Werner et al. 1997). The spatial information people leverage to understand the 91 

environment and guild navigation can be hierarchically categorized into three main forms, which are 92 

landmarks (L), routes (R), and survey (S, i.e., cognitive maps), i.e., the “LRS” model (Siegel and White 93 

1975). The landmarks are defined as unique and distinctive objects at fixed locations in the 94 

environment (Werner et al. 1997). Landmark knowledge pertains to identifying and memorizing 95 

landmarks based on their shapes, sizes, colors, and contextual information (Elvins 1997). People can 96 

incidentally recognize the landmarks and unconsciously build their landmark knowledge through the 97 
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navigation in the environment (van Asselen et al. 2006). The process of acquiring landmark knowledge 98 

usually does not need much mental efforts. Siegel and White (1975) found that even very young 99 

children were able to identify and make use of landmarks in spatial understanding. Route knowledge 100 

is a more advanced strategy for spatial knowledge acquisition. Route knowledge is encoded as the 101 

knowledge of memorizing the sequences of landmarks or locations from one location to the other 102 

location (Siegel and White 1975). People can gain route knowledge either from a map or from a 103 

navigation experience (Taylor et al. 1999). The process of developing route knowledge requires a 104 

higher mental effort, and thus practices are helpful for the acquisition of route knowledge such as 105 

navigating in the environment (Lindberg and Gärling 1983). Lastly, survey knowledge is the process 106 

to mentally abstract the configurational information as a map-like representation of the environment 107 

(Werner et al. 1997). It is the last and the most mentally demanding spatial knowledge acquisition 108 

method. People can gain survey knowledge either from a map study or from real-world exposure to 109 

the environment (Elvins 1997). van Asselen et al. (2006) found that route knowledge and survey 110 

knowledge coexisted in the process of spatial memory development. They further found that the spatial 111 

information representation methods of the environment could significantly affect the process of spatial 112 

knowledge acquisition. Subjects who learnt from a map outperformed others in developing the survey 113 

knowledge. On the other hand, subjects who learnt by navigating in the environment performed better 114 

than others in developing the route knowledge (Taylor et al. 1999; van Asselen et al. 2006).  115 

In summary, evidence has shown that the type of spatial information is a contributing factor to 116 

the cognitive load in wayfinding tasks. The LRS model indicates that depending on the phases of spatial 117 

knowledge development, landmarks, route and survey information indeed requires different levels of 118 

cognitive engagement and leads to different levels of cognitive load. As a result, the experiment design 119 

in this study follows the LRS model to test the working memory pertaining to the elements of LRS. 120 

But in order to understand how spatial information triggers different levels of cognitive load, it is also 121 

necessary to examine the role of different formats of information.  122 
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Spatial Information Formats and Cognitive Load 123 

The LRS model specifies that three types of spatial information can lead to different cognitive load 124 

levels. For each type of spatial information, it is noted that different ways or formats of display could also 125 

play an important role in terms of affecting the cognitive load. For instance, landmarks can be 126 

communicated verbally, in written texts, or in visual symbols, with an additional impact on the cognitive 127 

load. Cognitive load theory (CLT) (Chandler and Sweller 1991; Kalyuga 2009; Paas et al. 2003; Sweller 128 

1994; Sweller 2010; Sweller et al. 2011) divides the overall cognitive load into three main components: 129 

intrinsic cognitive load (related to the complexity of tasks), extraneous cognitive load (affected by how 130 

information is presented) and germane cognitive load (devoted to construction of schemas – permanent 131 

knowledge about patterns). Among all, the extraneous cognitive load can be easily affected by the formats 132 

of information. Baddeley et al. proposed a dual-coding theory to describe the internal structure of 133 

extraneous cognitive load in relation to the working memory of information processing (Baddeley 1992; 134 

Baddeley 2000; Baddeley 2003; Baddeley 2012; Baddeley and Hitch 1974; Miyake and Shah 1999; 135 

Moreno and Mayer 2007). They found “dual channels” in human cognition, where different mental 136 

activities are activated when people process two distinct categories of information: phonological 137 

information (i.e., auditory verbal information or visually presented language) and visuospatial information 138 

(i.e., the visually presented information about objects and space). In addition, a central executive cognitive 139 

process also takes place to bind information into coherent episodes, shift between tasks or retrieval 140 

strategies, and select between attention and inhibition (Sridharan et al. 2008). It is more applicable to explain 141 

why there is an increased cognitive load when people process mixed information. The dual channels theory 142 

indicates the need to include phonological, visuospatial and mixed information in our experiment design.  143 

In addition, cognitive load has also been found to relate to the mental fatigue levels driven by task 144 

duration (Ackerman and Kanfer 2009; Pattyn et al. 2008). Based on a comprehensive literature review, 145 

Paas et al. found that the multi-constructs of cognitive load were indeed inter-correlated, including task 146 
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characteristics (e.g., difficulty), mental efforts and mental fatigue (Paas et al. 2003).  Xie and Salvendy 147 

proposed that cognitive load should be a physiological measure (the load perceived by the subject) and 148 

indicative of the cumulative load over a period of time, rather than instantaneous load, i.e., the mean 149 

intensity during the task (Xie and Salvendy 2000). The former one reflects the overall experience of test 150 

subjects for the complete task and thus is more aligned with the self-reported mental workload measured 151 

by NASA TLX (Xie and Salvendy 2000). Roy et al. found that prolonged task duration could substantially 152 

affect the cognitive load in working memory development, and hence, a measurement method that captures 153 

the interaction between working memory task difficulty and task duration is needed (Roy et al. 2013). 154 

Similar findings have also been reported that task duration is a main contributor to subjective cognitive load 155 

(Kessler and Meier 2014; Sandry et al. 2014).  As a result, in this study, we consider the holistic cognitive 156 

load that is affected by both the information processing needs and the mental fatigue level due to the 157 

prolonged task time.   158 

Neurophysiological Measures for Real-Time Cognitive Load Assessment 159 

In wayfinding literature, such as navigation and driving studies, cognitive load related to the wayfinding 160 

information processing and decisions is mainly measured as a single entity (Chang and Wang 2010; 161 

Haapalainen et al. 2010; Klatzky et al. 2006; Liu et al. 2008). Indicators such as task performance (e.g., 162 

errors) and psychometrics (e.g., surveys) are typically used to measure cognitive load in these studies 163 

(Bunch and Lloyd 2006; Cabeza and Nyberg 2000; Meilinger et al. 2008; Rossano and Moak 1998; Smith 164 

and Hart 2006; Sweller 1988). Although these are important measurements to consider, the lagging nature 165 

of the indicators are insufficient to support a real-time monitoring and control mechanism of cognitive load 166 

that attempts to distinguish different types of cognitive load (e.g., visual and verbal-driven). A deeper 167 

insight into the real-time cognitive load measurement methods that balance the prediction accuracy 168 

and mobility required by the wayfinding will enable a fine-tuned mechanism to manipulate and manage 169 

real-time cognitive load. 170 
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With the recent development of neurophysiological sensing technologies, real-time cognitive load 171 

measurement methods have been enriched in the research community (Verney et al. 2001; Wang et al. 2014; 172 

Wu et al. 2019). Among the neurophysiological metrics, eye-tracking is the most examined method 173 

including visual attention and pupillary data to predict real-time cognitive load (Goldinger and Papesh 2012; 174 

Kucewicz et al. 2018; Shi et al. 2020; Shi et al. 2020).  de Fockert et al. (2001)’s study found that the ability 175 

of visual selected attention is strongly related to the real-time cognitive load level. The higher cognitive 176 

load leads to higher visual distractor processing in human brain. Toker et al. (2013) investigated the impact 177 

of cognitive load on user’s attention patterns when users were exposed to different types of visual graphs 178 

(bar graphs and radar graphs). They found that visual attention patterns were changed with task difficulty 179 

and visualization methods. At the same time, Pupillometry has a long history in studies of cognitive load 180 

and memory (Goldinger and Papesh 2012; Klingner et al. 2011; Kucewicz et al. 2018; Paas et al. 2003).  181 

Many studies have suggested that pupil dilation reflects a ‘summed index’ of neural activity during 182 

cognitively demanding tasks (Goldinger and Papesh 2012; Kahneman and Beatty 1966; Papesh et al. 2012). 183 

Pupil dilation has been shown to increase under greater cognitive load. As a task becomes progressively 184 

more difficult pupil dilation increases.  185 

Despite the wide use of eye tracking for cognitive load measures, evidence recognizes its 186 

limitations in a highly dynamic task environment, such as the unexpected impacts of light conditions on 187 

pupillary size and an environment with too many distractors  (Sharafi et al. 2015).  Recently, neurocentral 188 

methods have gained popularity in various engineering domains such as engineering decision making 189 

(Goucher-Lambert et al. 2017) and hazard detection (Thirunavukkarasu et al. 2016). A representative 190 

method is Electroencephalography (EEG) that collects a high-resolution time-domain data for the rapid 191 

propagation speed of electric fields of brain activity.  Evidence shows that alpha and theta activity is related 192 

to cognitive load in a variety of task demands (Antonenko et al. 2010; Gevins and Smith 2003; Sterman et 193 

al. 1994). Gevins and Smith (2003) found that alpha and theta oscillations demonstrated different patterns 194 

according to the task difficulty and cognitive load. As the cognitive load increases, the alpha activity 195 
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decreases, and theta activity increases. Antonenko et al. (2010) also found that EEG could provide good 196 

resolution data for evaluating individual’s cognitive activities during complex learning behaviors. But 197 

literature also finds that EEG data can be easily affected by the motor artefacts (Lohani et al. 2019). 198 

Recently, another non-invasive optical imaging method i.e., functional near-infrared spectroscopy (fNIRS) 199 

has started to show a great potential in cognitive status monitoring and analysis.  200 

fNIRS Method  201 

fNIRS is a novel tool to study and monitor tissue oxygenation changes in the brain non-invasively (Bunce 202 

et al. 2006; Du et al. 2020). The attributes of fNIRS like portability, movement tolerability, and safety of 203 

use have made it particularly suitable for investigating brain function (Pinti et al. 2018). fNIRS uses the 204 

sources (laser or light emitting diode) and detector probes, which are positioned over the scalp surface, to 205 

detect the change in optical density caused by the hemodynamic changes mainly expected in the cortical 206 

grey matter (Pinti et al. 2018). Then intensity data as a result of the absorption of infrared lights of different 207 

waves can be converted into oxy-and deoxygenated signals located in small vessels (<1mm diameter). The 208 

activation changes indicate neuronal activity levels  as these activities provoke an increasing in oxygen 209 

consummation, local cerebral blood flow (CBF) and oxygen delivery (Lloyd-Fox et al. 2010). The measures 210 

of cerebral oxygenated and deoxygenated hemoglobin are also correlated with the functional magnetic 211 

resonance imaging (fMRI) BOLD signals (Cui et al. 2011). Comparing to other available neuroimaging 212 

techniques relying on neurovascular coupling such as fMRI (Ochsner et al. 2002) and positron emission 213 

tomography (PET) (Andreasen et al. 1996), and those based on the electromagnetic activity of the brain 214 

such as (EEG) (Ray and Cole 1985) and magnetoencephalography (MEG) (Halgren et al. 2000), fNIRS 215 

provides a higher temporal resolution. In addition, participants are not restricted to a confined space or are 216 

not required to stay in a supine position motionless (Ayaz et al. 2013), thus fNIRS is more robust for 217 

monitoring cortical hemodynamics during motor tasks or tasks involving walking given its advantages of 218 

low sensitivity to body movements and the systems’ portability (Pinti et al. 2018). These features make 219 
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fNIRS suitable for tracking human brain activities in the complex and real working environment. Previous 220 

studies have proven that hemodynamic responses in the prefrontal cortex (PFC) measured by fNIRS can 221 

be used to quantify and classify mental workload (Herff et al. 2014). Studies of distinguishing among 222 

cognitive states using fNIRS have been applied in various fields such as driving research in the car (Herff 223 

et al. 2014; Tsunashima and Yanagisawa 2009) and airplane (Verdière et al. 2018), brain-computer 224 

interface (BCI) (Erdoĝan et al. 2019; Hong et al. 2018) and human-robot collaboration (Canning and 225 

Scheutz 2013). Given the advantages of fNIRS, this study aims to examine cognitive load monitoring and 226 

prediction methods based on fNIRS measures. Especially, various features of fNIRS data are extracted and 227 

compared in terms of the predictability pertaining to cognitive load, as well as to the differences among 228 

individuals.  229 

FNIRS-BASED COGNITIVE LOAD ANALYTICAL PIPELINE    230 

It is noted that as a relatively new method, there is no generally agreed analytical pipeline for fNIRS 231 

data processing. The hemodynamic response could be affected by the basic physiological activities 232 

such as heart beats and therefore, fNIRS data must be cleaned before the analysis (Pinti et al. 233 

2018).Unlike brain electrical activities, there is often a lag between the trigger event and the 234 

hemodynamic response, usually ranging from 2 seconds to 8 seconds in term of time-to-peak - 235 

calculated as the time to maximum response from the presentation of the stimulus (Huppert et al. 236 

2006) . The unique characteristics of fNIRS data have made it nontrivial for the analysis. Based on 237 

the latest fNIRS literature (Verdière et al. 2018), we propose an analytical pipeline for predicting 238 

cognitive load status based on the dynamic fNIRS data, as illustrated in Signal Acquisition 239 

The placement design of the number and locations of light emitters and detectors (optodes) should be 240 

optimized before data collection. The layout of optodes is determined by the specific purpose of a study 241 

concentrating on the areas of interest (AOIs) with different neural functions. In this research, we 242 

focused on the prefrontal cortex (PFC). PFC is proven to relate to memory and logical thinking (Herff et 243 
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al. 2014; Ramnani and Owen 2004). The fNIRS data from PFC has been deemed as indicative of human 244 

cognitive load in various studies (Faress and Chau 2013; Hong et al. 2015; Naseer and Hong 2013; Noori 245 

et al. 2017; Power and Chau 2013; Verdière et al. 2018). In addition, PFC is not directly affected by motor 246 

disabilities and its hair-free feature makes it easier to facilitate probe set-up and to get qualified fNIRS 247 

signals (Erdoĝan et al. 2019). As a result, PFC is gaining popularity among fNIRS researchers at a 248 

rapid rate in recent years (Faress and Chau 2013; Herff et al. 2014; Pinti et al. 2018; Verdière et al. 249 

2018). Usually, there is a tradeoff between the number of channels and the brain areas required to cover. 250 

In some cases, due to the limited number of the channels the device provided, researchers only focus 251 

on one or two cortices, which should be including both left and right brain portions. Besides, accurate 252 

acquisition of fNIRS signals would require considering the sample rate. Most fNIRS systems nowadays 253 

support at least 1 Hz sampling frequency, which is enough for feature extraction. Researchers can also 254 

adjust the sampling rate for a more efficient calculation (Lohani et al. 2019). The length of the emitting 255 

light also varies across the devices. Usually, most device include two wave lengths which help 256 

differentiate CO2 and O2 absorption separately.  257 

In this study, an 18-channel fNIRS device – NIRx Sport 2 (NIRx, Berlin) with the sample rate of 258 

7.8125 Hz was used to collect hemodynamic activation levels of PFC, as illuminated in Fig.2. Each source 259 

emits two near-infrared wavelengths (760 nm and 850 nm) to detect and differentiate between 260 

oxygenated and deoxygenated hemoglobin. 261 

Data Pre-processing 262 

The purpose of running a data pre-processing is to remove secondary noises from the raw data and 263 

convert the intensity time-series into concentration changes of oxygenated hemoglobin (ΔHbO) and 264 

deoxygenated hemoglobin (ΔHbR). The raw intensity data from qualified channels are converted into 265 

optical densities (ΔOD).  Secondary noises not related to the task-evoked hemodynamic activities should 266 

be removed to extract useful information from the OD data. There are two typical kinds of noise identified 267 
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by previous studies. The first one is physiological noises at specific frequencies associated with heartbeats 268 

(~1 Hz), breath (~0.3 Hz), Mayer waves (~0.1 Hz) and very low frequency (< 0.04, VLF) oscillations (Pinti 269 

et al. 2018). Digital filtering such as high-pass, low-pass and band-pass filters is a common tool to clean 270 

these noises in a specific frequency range. The second noise is related to human motions, such as body 271 

movements. Even fNIRS is relatively robust to motion (Pinti et al. 2018), a sufficient data cleaning process 272 

to remove artifacts is required. Otherwise, the possible optical decoupling between the optode and the scalp  273 

(Cooper et al. 2012) will lead to instantaneous or slow changes in the signal that do not reflect changes in 274 

physiology (von Lühmann et al. 2020), and makes the fNIRS data uninterpretable. To tackle this type of 275 

noise, motion artifact detection and removal or correction algorithms such as principle component analysis 276 

(PCA), spline interpolation, and wavelet analysis are commonly used in fNIRS studies (Brigadoi et al. 2014; 277 

Cooper et al. 2012). Both frequency range and artifact detection algorithms should be chosen carefully in 278 

order to preserve the stimulus frequency and the task-evoked response (Pinti et al. 2018). In the end, fNIRS 279 

optical densities are converted to concentration changes of ΔHbO and ΔHbR by modified Beer-Lambert 280 

law with a partial path length factor of 6 (Delpy et al. 1988). 281 

For this study, we used the raw light intensity fNIRS data form six channels covering PFC as shown 282 

in Fig.2 with the sample rate at 7.8125 Hz of each participant. A band-pass filter with the frequency rate 283 

between 0.01 Hz and 0.5 Hz was used to remove the influences from physiological changes.  After 284 

identifying and remove the motion artifacts through hmrMotion Artifact algorithm (Huppert et al. 2009), 285 

the processed data were calculated according to Modified Beer-Lambert Law method (Delpy et al. 1988) 286 

and output the HbO and HbR concentration variations. For further analysis, we only used ΔHbO2 data of 287 

each channel as indicators of changes in regional cerebral blood volume as it is the more sensitive indicator 288 

of changes in cerebral blood flow (CBF) (Hoshi et al. 2001).  289 

Feature Processing and Classification 290 
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In the processing phase, the pre-processed ΔHbO was used to perform statistical analyses. mean oxygen 291 

consumption (mean), standard deviation of oxygen consumption (std), peak oxygen consumption 292 

(peak), area under curve (AUC),  kurtosis of oxygen consumption distribution (Kurt) and Skewness of 293 

oxygen consumption (Skew) are proven to be sensitive to the changes in levels of hemodynamic activities 294 

by the existing fNIRS literature, as listed in Table 1. For continuous fNIRS data, literature uses different 295 

sliding window sizes to sample training data from a continuous data stream, ranging between 2 seconds 296 

and 60 seconds (Bauernfeind et al. 2014; Erdoĝan et al. 2019; Faress and Chau 2013; Hong et al. 2018; 297 

Hong et al. 2015; Khan et al. 2019; Verdière et al. 2018; Zhang and Zhu 2019). Extracted features from 298 

different channels are usually combined into a limited number of regions of interest (ROI) to reduce the 299 

amount of data and the data dimensionality (Verdière et al. 2018). The combination should average data 300 

from a similar functional cortex on the same side. Because fNIRS signals usually vary dynamically across 301 

different subjects, personalized feature normalization is required to standardize the extracted features for 302 

each subject into the same scale and to improve feature interpretability across subjects (Hosseini et al. 2018). 303 

Normalized feature sets are then fed into the machine learning model to train the classifier – support vector 304 

machine (SVM) in this study. The SVM classifier aims to discriminate different classes by creating an 305 

optimum hyperplane. This supervised learning model is widely used in the classification and prediction of 306 

neural activity studies due to its simplicity and computational efficiency (Gateau et al. 2015; Naseer and 307 

Hong 2015). Although SVM is naturally linear, for datasets with small numbers of features and training 308 

examples like the data in this study, a non-linear SVM with a kernel function would be more efficient. We 309 

selected the Gaussian radial basis function (RBF), which is efficient by allowing complex separation 310 

surface requiring a reduced number of hyper-parameters to tune (Hong et al. 2018), as the kernel to 311 

implement our SVM model, as shown in Eq (1):  312 

K(𝑥, 𝑥′) = exp⁡(−γ‖𝑥 − 𝑥′‖2)…Eq (1) 313 
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where ‖𝑥 − 𝑥′‖2 is the squared Euclidean distance between the two feature vectors, γ  is the parameter for 314 

adjusting the goodness of fit of the RBF model. The one-vs-one scheme (Galar et al. 2011) was used to 315 

handle the multi-class classification. It is supposed to be robustness for fNIRS classification studies.  316 

We used the six channels of ΔHbO2 data from PFC to extract features. A sliding window with size 317 

30s with interval 5s was used to split data and obtain block time series for each level trails per subject. The 318 

Mean, Peak, Stand Deviation, Kurtosis and Skewness were estimated according to the formulas shown in 319 

Table 1. respectively. The AUC was calculated as the sum of the absolute values of the signal (Verdière et 320 

al. 2018). We defined two regions of interest (ROI)-Left and Right PFC, each including three channels. 321 

The features of each channel were aggregated by type in the same ROI. The dimensionality was thus 322 

reduced from 18 to 6 per ROI. To bring all feature variables down to a similar scale, the Z-scoring method 323 

(Jain et al. 2005) was used to normalize data. As a result, we obtained normalized feature data with six 324 

dimensions in each ROI for each of the cognitive load levels per participant. To increase the accuracy of 325 

the classifier, we used the grid search method (Bergstra and Bengio 2012) and K-Folds method (k=10) 326 

cross-validation to get the best-fit parameters for the model. Then the optimized classifier was applied for 327 

training and testing.     328 

In order to test if there are significant individual differences, we will compare model 329 

predictability among different subjects. We will also compare how the contributing features vary 330 

among people. If it is found that the predictability and/or important features are different among 331 

subjects, it suggests fNIRS-cognition relationships are different. 332 

HUMAN-SUBJECT EXPERIMENT  333 

Experiment Setup 334 

A human-subject experiment was conducted based on the Sternberg working memory test, which triggers 335 

cognitive load related to the processing of wayfinding related information elements, including the 336 

recognition of given information, retention and retrieval phases (Sternberg 1969).  The reason we selected 337 
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the Sternberg test was that it is among the most popular, controlled test to examine mental load related to 338 

information processing and working memory development (Ref). This study focuses on the cognitive load 339 

prediction in the phase of spatial information processing, and thus, Sternberg test is deemed to be an 340 

effective approach for data collection. 341 

Based on the literature review, we designed three categories of information elements in the 342 

Sternberg test to reflect different cognitive requirements in processing wayfinding information. Fig.3 343 

illustrates the specific design of the Sternberg test. For category 1, we used phonological information (letters) 344 

to show landmark information. According to the LRS model and the dual channels theory, such information 345 

requires the lowest cognitive engagement, and thus it is marked as the “light cognitive load” group. For 346 

category 2, we used visuospatial information to show route and survey information. In such a way the 347 

cognitive engagement is higher, and we labeled it as the “medium cognitive load” group. Finally, we 348 

combined the wayfinding information elements, including mixed phonological information and 349 

visuospatial information to indicate landmarks, routes and survey information. It requires participants to 350 

process all wayfinding information types and triggers the central executive function according to the 351 

cognitive load theory. As a result, we marked it as the “heavy cognitive load” group. Each group includes 352 

40 trials for eventually distributed tests. To be noted, a challenging task to all cognitive load studies is to 353 

get the ground truth of cognitive load. Self-reported mental load, such as NASA TLX can be easily affected 354 

by the subjective feeling biased toward the newer experience, such as the later phase of an experiment. In 355 

addition, it interrupts the continuous flow of information processing which is the real-life experience of 356 

most people, such as firefighters in search and rescue tasks and who must process spatial information 357 

continuously without any interruptions. As a result, recent literature has started to manipulate the difficulty 358 

levels of the task or the information to trigger varying levels of cognitive load, and to use them as the ground 359 

truth(Haapalainen et al. 2010) . This study follows the second approach.  360 

Each trial started with the presentation of a list of patterns to recognize (encoding period; 2s in 361 

total), followed by a memory retention period (2s) during which the subject must maintain the list of 362 
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patterns in memory, and a retrial period (2s) in which the subject had to answer whether probe pattern had 363 

been displayed before by clicking the corresponding buttons. Between the town sessions was a short 364 

fixation phase (0.5s).  365 

As discussed earlier, this study tracks the cognitive load that captures both the information 366 

processing needs and the increasing mental fatigue level to better reflect the real-world scenarios (such as 367 

predicting a firefighter’s increasing risks of cognitive overload over time). Table 2 lists the use of three 368 

levels of task difficulty (related to working memory encoding) as the basis for varying cognitive load levels. 369 

The encoding patterns were designed related to wayfinding information, including symbolic information, 370 

orientations, words and mixed information.  371 

The experiment consisted of three sessions: (1) preparation session, (2) training session, (3) task 372 

performing session. The preparation session (5-10 minutes) was designed to allow participants to 373 

familiarize the procedure and potential benefit or risk of the experiment. Participants’ demographical 374 

information including age, gender, major, degree level was also collected in this session. The 375 

participants were guided to familiarize themselves with the fNIRS system. In this session, all the 376 

participants were first instructed to wear on the fNIRS device, and the investigators were able to ensure 377 

each probe of the fNIRS device accurately collected the neuroimaging data from the target brain 378 

regions. The participants were asked to stay claim in a chair and let the fNIRS device to set up the 379 

baseline data for each participant. Before starting to collect fNIRS data, we asked subjects to relax 380 

themselves with closed eyes and an empty mind for 3 minutes to remove possible hemodynamic responses 381 

resulting from previous activities. In the training session, a pre-Sternberg test, which provided the same 382 

procedure as the formal test in task performing session with different patterns, was used to train and test 383 

subjects for performing the task in the correct way.  During the task performing session, each subject was 384 

asked to sit in front of a moister screen, which only displayed the test contents without anything else. The 385 

environment kept quiet and in the same light condition during the whole experiment to eliminate the 386 

additional distractions.  387 
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Participants 388 

We recruited 15 subjects (1 Women, mean age = 24 ±2) to participate in the experiment (Fig.4). One of the 389 

participants’ data was excluded from the analysis due to strong noise.  All the participants did not have a 390 

history of any psychiatric or neurologic abnormalities.  We gave the experiment instruction with details to 391 

all participants before they signed the informed consent. All the experiments were done at the same 392 

location (Francis Hall Room 101 - BIM CAVE at Texas A&M University), with the same devices. The 393 

environmental effects can be ruled out as well.  394 

fNIRS Data Pre-Processing Results 395 

After pre-processing, raw intensity signals of each subject was converted into optical density (OD) and then 396 

concentration changes of oxyhemoglobin (ΔHbO2). As shown in Fig.5, the band-pass filter removed very 397 

low frequency systemic fluctuations the respiration and the heart-rate oscillations. Each channel was 398 

screened to detect and correct motion artifacts. In this way, the possible noise from global systemic effects 399 

originating in superficial layers of scale, dura, and peripheral vasculature but not in the cortex was removed.  400 

Then the channels with stability value were retained for further analysis. Fig.6 illustrates the grand averages 401 

of the hemodynamic response under three levels of cognition load of all subjects. From a visual inspection, 402 

the mean values of ΔHbO2 increased from level 1 to level 3. Besides, the curve of level 1 is smoother than 403 

level 3. These indicates that the hemodynamic responses are different among cognition load levels and 404 

therefore can be used for further analysis of classifying and predicting cognition status.  405 

Classification Performance  406 

The first aim of the classification is to detect whether the SVM classifier can distinguish three-level trials 407 

for both the individual and group levels.  We classified both individual level feature sets (i.e., the training 408 

and testing datasets were from each participant data separately) and group level feature sets (i.e., the training 409 

and testing datasets were from aggregated data from a total of fourteen participants). Fig. 7 illustrates the 410 
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paired feature examples for the individual (participant 4) and group level (total participants). After the 411 

feature extraction, we implemented SVM as the classifier to distinguish different cognitive load levels.  412 

Table 3 lists the classification performance, including accuracy, precision and recall rate resulted 413 

from the K-Folds method (k=10) cross-validation for each participant. The average classification 414 

performance for all participants by the SVM classifier was 74.06±5.01 percent in accuracy, 73.41±5.49 415 

percent in recall rate and 80.93±2.67 percent in precision. It is worth noting that the classification accuracy 416 

varied among individual participants. We obtained the best accuracy (85.31%) for participant 10 and the 417 

worst one (65.00%) from for 13. It indicates that the fNIRS shows a significant individual difference and 418 

the model should be personalized. Table 4 lists the classification performance at the group level (i.e., 419 

aggregating all datasets). Compared to individual level models the aggregated model at the group level 420 

shows a relatively low performance. The accuracy, recall rate and precision of group level classification 421 

were 62.10%, 60.98%, 62.87% relatively. It further shows that individual difference in fNIRS patterns 422 

make it difficult to find a generalizable model for cognitive load prediction. In addition, we further found 423 

that the performance of fNIRS-based cognitive load prediction varies at different cognitive load levels. 424 

Fig.8. shows examples of the individual (Participant 4) and group level classification in the form of 425 

confusion matrices. We found that both individual and group level classification showed a higher true 426 

positive rate in Level 1 and Level 3 than Level 2. The worse classification performance in level 2 probably 427 

resulted from the transition period from level 1 to level 2 and level 2 to level 3. The similarity of the HbO 428 

signals between levels made the classifiers easy to false predict the other levels into level 2.  429 

Feature Importance Evaluation  430 

In addition, we further used the wrapper method with a sequential forward feature selection (SFS) method 431 

to find the optimal feature subset to achieve better classification performance for both the left hemisphere 432 

and the right hemisphere as illustrated in Fig. 9. The wrapper method is defined as the feature selection 433 

method that employs a search strategy to look through the space of possible feature subsets regarding the 434 
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quality of the performance of a given algorithm. Comparing to the other feature selection methods including 435 

filter methods and embedded methods, the wrapper method can detect the interaction between different 436 

variables and find the optimal feature subset for the certain machine learning algorithm. According to our 437 

previous study (Shi et al. 2020), the neuro connectivity and interactions can play an important role in 438 

reflecting the neuro activities based on the fNIRS data. Thus, we selected the wrapper method in this 439 

analysis. At the same time, the wrapper methods usually achieve better predictive accuracy than filter 440 

methods. There are four steps of the wrapper method: (1) search for a subset; (2) build a machine learning 441 

model; (3) evaluate the prediction performance; (4) repeat the process. In this analysis, we selected step 442 

forward feature selection also called sequential forward feature selection (SFS). Fig. 9 shows one 443 

interaction of feature selection according to certain machining learning method. We set the accuracy to 444 

evaluate the prediction performance and the K-Folds method (k=10) was also used to cross-validate the 445 

feature selection results. Table 5 lists the ranking orders of these features selected by the wrapper method 446 

with sequential forward feature selection during 10-fold. Each participant had different top 5 key features 447 

according to their individual prediction model. The most significant top 5 features including (1) Peak_Left 448 

Hbo, (2) Peak_Right Hbo, (3) AUC_Left Hbo, (4) Std_Left Hbo, and (5) AUC_Right features. These 449 

results further suggested that using a subset of fNIRS features in the review session can be used to predicting 450 

the cognitive load with satisfactory accuracy.  451 

DISCUSSION AND CONCLUSIONS 452 

Amid the increasing complexity of modern buildings, wayfinding becomes nontrivial for building 453 

users and professionals such as first responders. Although the rapid advancements of building 454 

informatics and visualization methods have made wayfinding information more accessible, the 455 

processing of excessive spatial information may also lead to potential risks of cognitive overload, 456 

leading to erroneous or biased decision making. Adaptive wayfinding information systems that closely 457 

monitor a person’s information-induced cognitive load, and adapt the information formats and amounts 458 
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correspondingly, are expected to be a promising solution for certain high-risk professionals who are 459 

challenged by wayfinding tasks, such as first responders.  A core component of such a system is a real-460 

time cognitive load monitoring and prediction method. This paper examines an explicit cognitive load 461 

measure and prediction method based on fNIRS data, i.e., the hemodynamic responses in different 462 

brain areas for evaluating the neural functional activation related to information processing. Compared 463 

to the existing neurophysiological measurement methods, such as EEG and pupillary dilation, fNIRS 464 

data is less affected by motor artefacts and thus is more suited for the real-time cognitive status 465 

monitoring for wayfinding tasks.  The challenge is that there is still no widely accepted analytical 466 

pipeline for fNIRS-based cognitive load measurement. Basic questions, such as what features of fNIRS 467 

data can be used to cognitive load, remain unanswered. In addition, many fNIRS studies have focused 468 

on revealing the generic patterns hidden in fNIRS data in regard to predicting cognitive load based on 469 

aggregate data of multiple human subjects(Erdoĝan et al. 2019; Hong et al. 2015; Verdière et al. 2018). 470 

There is an urgent need to test and confirm whether there are inherent differences among individuals. 471 

To narrow the gap, we performed a controlled Sternberg experiment (N=15) to model the 472 

relationship between fNIRS data patterns and cognitive load. In the experiment, emergency wayfinding 473 

information, including symbolic information, orientations, words and mixed information, were 474 

presented to the participants.  Participants were required to memorize the presented information and 475 

answer questions based on the working memory. Their performance and fNIRS data were recorded for 476 

modeling purpose. The information was grouped into three levels of difficulty, based on the 477 

information amount and the complexity of the information format. Then fNIRS data was used to 478 

classify three levels of cognitive load according to the corresponding difficulty of information 479 

memorization tasks.   480 

We applied a feature extraction method and obtained 6 features from the raw fNIRS data (every 481 

40s interval), including mean oxygen consumption (mean), standard deviation of oxygen consumption 482 

(std dev), peak oxygen consumption (peak), area under curve (AUC),  kurtosis of oxygen consumption 483 
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distribution (Kurt) and Skewness of oxygen consumption (Skew). Then we trained SVM machine 484 

learning models to predict cognitive load levels (low, medium, and high) measured by the 485 

memorization task difficulty. The results show an average of 74.06±5.01 percent accuracy in predicting 486 

cognitive load using fNIRS data only in the individual level. In addition, we found that peak oxygen 487 

consumption (peak), area under curve (AUC) and standard deviation (std dev). These features all 488 

reflect the volatility of brain oxygen consumption instead of mean oxygen consumption (mean). It 489 

further justifies the robustness of using fNIRS in tracking cognitive load, as the volatility of 490 

hemodynamic response is less affected by body motions compared to the absolute oxygen consumption. 491 

In addition, we found significant individual differences in fNIRS-based cognitive load models. The 492 

significant features for predicting cognitive load, also varied across the participants. It indicates that 493 

each person is unique regarding the patterns of cognitive load due to the processing of wayfinding 494 

information, suggesting that personalized models instead of universal models are needed for predicting 495 

cognitive load based on neuroimaging data.  Based on the findings, we have presented an analytical 496 

pipeline for filtering, cleaning and modeling fNIRS data for cognitive load prediction. The findings are 497 

expected to add evidence to the fNIRS-based cognitive load prediction literature (Du et al. 2020; Shi 498 

et al. 2020), inspire new findings with fNIRS tools, and facilitate the development of future cognition-499 

driven information systems.  500 

One of the limitations to be addressed in the future is to test the cognitive load models in a 501 

more realistic wayfinding experiment setting. In this study, we controlled the experiment environments 502 

where test subjects were required to sit quietly and to memorize relevant elements of wayfinding 503 

information. The findings are more related to the cognitive load for memory development and 504 

information encoding. Yet in our previous studies (Shi et al. 2020), we found that cognitive status 505 

showed different patterns in information memorization phase (information encoding) and task 506 

performance phase (memory retrieval). It suggests the possibilities that the developed cognitive load 507 

prediction models may not be applicable for all wayfinding task phases (i.e., reviewing information 508 
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versus using the working memory in the field). In addition, we will also need to test how 509 

extemporaneous wayfinding information, i.e., onsite wayfinding information that is not previously 510 

reviewed (e.g., interactive road guidance signage), affects the cognitive load in a simultaneous 511 

information encoding and use process.  512 

ACKNOWLEDGMENTS 513 

This material is supported by the National Science Foundation (NSF) under Grants 1937878, as well 514 

as the National Institute of Standards and Technology (NIST) under Grant 60NANB18D152. Any 515 

opinions, findings, conclusions, or recommendations expressed in this article are those of the authors 516 

and do not reflect the views of the NSF and NIST. 517 

DATA AVAILABILITY STATEMENT 518 

All data, models, or code generated or used during the study are available in a repository or online in 519 

accordance with funder data retention policies: 520 

https://www.dropbox.com/sh/cnnmkfns4e3rx2l/AABuGrC-BBqiipN5lnHk3UeLa?dl=0 521 

REFERENCES 522 

Ackerman, P. L., and Kanfer, R. (2009). "Test length and cognitive fatigue: an empirical examination 523 
of effects on performance and test-taker reactions." Journal of Experimental Psychology: 524 
Applied, 15(2), 163. 525 

Andreasen, N. C., O'Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Ponto, L., Watkins, G. L., and 526 
Hichwa, R. D. (1996). "Schizophrenia and cognitive dysmetria: a positron-emission 527 
tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry." Proceedings of 528 
the National Academy of Sciences, 93(18), 9985-9990. 529 

Antonenko, P., Paas, F., Grabner, R., and Van Gog, T. (2010). "Using electroencephalography to 530 
measure cognitive load." Educational Psychology Review, 22(4), 425-438. 531 

Aporta, C., Higgs, E., Hakken, D., Palmer, L., Palmer, M., Rundstrom, R., Pfaffenberger, B., 532 
Wenzel, G., Widlok, T., and Aporta, C. (2005). "Satellite culture: global positioning systems, 533 
Inuit wayfinding, and the need for a new account of technology." Current anthropology, 534 
46(5), 729-753. 535 

Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P. A., McKendrick, R., and Parasuraman, R. (2013). 536 
"Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a 537 
tool for neuroergonomic research: empirical examples and a technological development." 538 
Frontiers in human neuroscience, 7, 871. 539 

Baddeley, A. (1992). "Working memory and conscious awareness." Theories of memory, Lawrence 540 
Erlbaum Associates, 11-20. 541 

https://www.dropbox.com/sh/cnnmkfns4e3rx2l/AABuGrC-BBqiipN5lnHk3UeLa?dl=0


 23 

Baddeley, A. (2000). "The episodic buffer: a new component of working memory?" Trends in 542 
cognitive sciences, 4(11), 417-423. 543 

Baddeley, A. (2003). "Working memory: looking back and looking forward." Nature Reviews. 544 
Neuroscience, 4(10), 829. 545 

Baddeley, A. (2012). "Working memory: theories, models, and controversies." Annual review of 546 
psychology, 63, 1-29. 547 

Baddeley, A. D., and Hitch, G. (1974). "Working memory." Psychology of learning and motivation, 548 
8, 47-89. 549 

Banaji, M. R., and Greenwald, A. G. "Implicit stereotyping and prejudice." Proc., The psychology of 550 
prejudice: The Ontario symposium, 55-76. 551 

Bauernfeind, G., Steyrl, D., Brunner, C., and Müller-Putz, G. R. "Single trial classification of fnirs-552 
based brain-computer interface mental arithmetic data: a comparison between different 553 
classifiers." Proc., 2014 36th Annual International Conference of the IEEE Engineering in 554 
Medicine and Biology Society, IEEE, 2004-2007. 555 

Bergstra, J., and Bengio, Y. (2012). "Random search for hyper-parameter optimization." The Journal 556 
of Machine Learning Research, 13(1), 281-305. 557 

Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., Gagnon, L., Boas, D. A., 558 
and Cooper, R. J. (2014). "Motion artifacts in functional near-infrared spectroscopy: a 559 
comparison of motion correction techniques applied to real cognitive data." Neuroimage, 85, 560 
181-191. 561 

Bunce, S. C., Izzetoglu, M., Izzetoglu, K., Onaral, B., and Pourrezaei, K. (2006). "Functional near-562 
infrared spectroscopy." IEEE engineering in medicine and biology magazine, 25(4), 54-62. 563 

Bunch, R. L., and Lloyd, R. E. (2006). "The cognitive load of geographic information." The 564 
Professional Geographer, 58(2), 209-220. 565 

Cabeza, R., and Nyberg, L. (2000). "Imaging cognition II: An empirical review of 275 PET and 566 
fMRI studies." Journal of cognitive neuroscience, 12(1), 1-47. 567 

Calori, C., and Vanden-Eynden, D. (2015). Signage and wayfinding design: a complete guide to 568 
creating environmental graphic design systems, John Wiley & Sons. 569 

Canning, C., and Scheutz, M. (2013). "Functional near-infrared spectroscopy in human-robot 570 
interaction." Journal of Human-Robot Interaction, 2(3), 62-84. 571 

Chandler, P., and Sweller, J. (1991). "Cognitive load theory and the format of instruction." Cognition 572 
and instruction, 8(4), 293-332. 573 

Chang, Y.-J., and Wang, T.-Y. (2010). "Comparing picture and video prompting in autonomous 574 
indoor wayfinding for individuals with cognitive impairments." Personal and Ubiquitous 575 
Computing, 14(8), 737-747. 576 

Cooper, R., Selb, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K., Ashina, M., and Boas, D. 577 
A. (2012). "A systematic comparison of motion artifact correction techniques for functional 578 
near-infrared spectroscopy." Frontiers in neuroscience, 6, 147. 579 

Cui, X., Bray, S., Bryant, D. M., Glover, G. H., and Reiss, A. L. (2011). "A quantitative comparison 580 
of NIRS and fMRI across multiple cognitive tasks." Neuroimage, 54(4), 2808-2821. 581 

Cui, X., Bray, S., and Reiss, A. L. (2010). "Speeded near infrared spectroscopy (NIRS) response 582 
detection." PLoS one, 5(11), e15474. 583 

de Fockert, J. W., Rees, G., Frith, C. D., and Lavie, N. (2001). "The role of working memory in 584 
visual selective attention." Science, 291(5509), 1803-1806. 585 

Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., and Wyatt, J. (1988). "Estimation of 586 
optical pathlength through tissue from direct time of flight measurement." Physics in 587 
Medicine & Biology, 33(12), 1433. 588 



 24 

Du, J., Zhu, Q., Shi, Y., Wang, Q., Lin, Y., and Zhao, D. (2020). "Cognition digital twins for 589 
personalized information systems of smart cities: Proof of concept." Journal of Management 590 
in Engineering, 36(2), 04019052. 591 

Elvins, T. T. (1997). "VisFiles: virtually lost in virtual worlds—wayfinding without a cognitive 592 
map." ACM SIGGRAPH computer graphics, 31(3), 15-17. 593 

Eppler, M. J., and Mengis, J. (2004). "The concept of information overload: A review of literature 594 
from organization science, accounting, marketing, MIS, and related disciplines." The 595 
information society, 20(5), 325-344. 596 

Erdoĝan, S. B., Özsarfati, E., Dilek, B., Kadak, K. S., Hanoĝlu, L., and Akın, A. (2019). 597 
"Classification of motor imagery and execution signals with population-level feature sets: 598 
implications for probe design in fNIRS based BCI." Journal of neural engineering, 16(2), 599 
026029. 600 

Faress, A., and Chau, T. (2013). "Towards a multimodal brain–computer interface: combining fNIRS 601 
and fTCD measurements to enable higher classification accuracy." Neuroimage, 77, 186-194. 602 

Fischer, G. "Context-aware systems: the'right'information, at the'right'time, in the'right'place, in 603 
the'right'way, to the'right'person." Proc., Proceedings of the international working conference 604 
on advanced visual interfaces, ACM, 287-294. 605 

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., and Herrera, F. (2011). "An overview of 606 
ensemble methods for binary classifiers in multi-class problems: Experimental study on one-607 
vs-one and one-vs-all schemes." Pattern Recognition, 44(8), 1761-1776. 608 

Gateau, T., Durantin, G., Lancelot, F., Scannella, S., and Dehais, F. (2015). "Real-time state 609 
estimation in a flight simulator using fNIRS." PloS one, 10(3), e0121279. 610 

Gevins, A., and Smith, M. E. (2003). "Neurophysiological measures of cognitive workload during 611 
human-computer interaction." Theoretical Issues in Ergonomics Science, 4(1-2), 113-131. 612 

Goldinger, S. D., and Papesh, M. H. (2012). "Pupil dilation reflects the creation and retrieval of 613 
memories." Current Directions in Psychological Science, 21(2), 90-95. 614 

Goucher-Lambert, K., Moss, J., and Cagan, J. (2017). "Inside the mind: using neuroimaging to 615 
understand moral product preference judgments involving sustainability." Journal of 616 
Mechanical Design, 139(4). 617 

Haapalainen, E., Kim, S., Forlizzi, J. F., and Dey, A. K. "Psycho-physiological measures for 618 
assessing cognitive load." Proc., Proceedings of the 12th ACM international conference on 619 
Ubiquitous computing, 301-310. 620 

Halgren, E., Raij, T., Marinkovic, K., Jousmäki, V., and Hari, R. (2000). "Cognitive response profile 621 
of the human fusiform face area as determined by MEG." Cerebral cortex, 10(1), 69-81. 622 

Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., and Schultz, T. (2014). "Mental workload 623 
during n-back task—quantified in the prefrontal cortex using fNIRS." Frontiers in human 624 
neuroscience, 7, 935. 625 

Holper, L., and Wolf, M. (2011). "Single-trial classification of motor imagery differing in task 626 
complexity: a functional near-infrared spectroscopy study." Journal of neuroengineering and 627 
rehabilitation, 8(1), 34. 628 

Hong, K.-S., Khan, M. J., and Hong, M. J. (2018). "Feature extraction and classification methods for 629 
hybrid fNIRS-EEG brain-computer interfaces." Frontiers in human neuroscience, 12, 246. 630 

Hong, K.-S., Naseer, N., and Kim, Y.-H. (2015). "Classification of prefrontal and motor cortex 631 
signals for three-class fNIRS–BCI." Neuroscience letters, 587, 87-92. 632 

Hoshi, Y., Kobayashi, N., and Tamura, M. (2001). "Interpretation of near-infrared spectroscopy 633 
signals: a study with a newly developed perfused rat brain model." Journal of applied 634 
physiology, 90(5), 1657-1662. 635 



 25 

Hosseini, R., Walsh, B., Tian, F., and Wang, S. (2018). "An fNIRS-based feature learning and 636 
classification framework to distinguish hemodynamic patterns in children who stutter." IEEE 637 
Transactions on Neural Systems and Rehabilitation Engineering, 26(6), 1254-1263. 638 

Hu, M., and Shealy, T. (2019). "Application of functional near-infrared spectroscopy to measure 639 
engineering decision-making and design cognition: Literature review and synthesis of 640 
methods." Journal of Computing in Civil Engineering, 33(6), 04019034. 641 

Huppert, T. J., Diamond, S. G., Franceschini, M. A., and Boas, D. A. (2009). "HomER: a review of 642 
time-series analysis methods for near-infrared spectroscopy of the brain." Applied optics, 643 
48(10), D280-D298. 644 

Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., and Boas, D. A. (2006). "A 645 
temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in 646 
adult humans." Neuroimage, 29(2), 368-382. 647 

Jain, A., Nandakumar, K., and Ross, A. (2005). "Score normalization in multimodal biometric 648 
systems." Pattern recognition, 38(12), 2270-2285. 649 

Kahneman, D., and Beatty, J. (1966). "Pupil diameter and load on memory." Science, 154(3756), 650 
1583-1585. 651 

Kalyuga, S. (2009). "Cognitive load theory." Managing Cognitive Load in Adaptive Multimedia 652 
Learning, IGI Global, 34-57. 653 

Kessler, J. B., and Meier, S. (2014). "Learning from (failed) replications: Cognitive load 654 
manipulations and charitable giving." Journal of Economic Behavior & Organization, 102, 655 
10-13. 656 

Khan, M. A., Zafar, A., and Hong, K.-S. "Detection and Classification of Three-Class Initial Dips 657 
Using Vector Phase Analysis with Dual Threshold Circles: An fNIRS Study." Proc., 2019 658 
19th International Conference on Control, Automation and Systems (ICCAS), IEEE, 786-791. 659 

Klatzky, R. L., Marston, J. R., Giudice, N. A., Golledge, R. G., and Loomis, J. M. (2006). "Cognitive 660 
load of navigating without vision when guided by virtual sound versus spatial language." 661 
Journal of Experimental Psychology: Applied, 12(4), 223. 662 

Klingner, J., Tversky, B., and Hanrahan, P. (2011). "Effects of visual and verbal presentation on 663 
cognitive load in vigilance, memory, and arithmetic tasks." Psychophysiology, 48(3), 323-664 
332. 665 

Kucewicz, M. T., Dolezal, J., Kremen, V., Berry, B. M., Miller, L. R., Magee, A. L., Fabian, V., and 666 
Worrell, G. A. (2018). "Pupil size reflects successful encoding and recall of memory in 667 
humans." Scientific reports, 8(1), 4949. 668 

Lindberg, E., and Gärling, T. (1983). "Acquisition of different types of locational information in 669 
cognitive maps: Automatic or effortful processing?" Psychological Research, 45(1), 19-38. 670 

Liu, A. L., Hile, H., Kautz, H., Borriello, G., Brown, P. A., Harniss, M., and Johnson, K. (2008). 671 
"Indoor wayfinding: Developing a functional interface for individuals with cognitive 672 
impairments." Disability and Rehabilitation: Assistive Technology, 3(1-2), 69-81. 673 

Lloyd-Fox, S., Blasi, A., and Elwell, C. (2010). "Illuminating the developing brain: the past, present 674 
and future of functional near infrared spectroscopy." Neuroscience & Biobehavioral Reviews, 675 
34(3), 269-284. 676 

Logie, R. H. (2014). Visuo-spatial working memory, Psychology Press. 677 
Lohani, M., Payne, B. R., and Strayer, D. L. (2019). "A review of psychophysiological measures to 678 

assess cognitive states in real-world driving." Frontiers in human neuroscience, 13, 57. 679 
Matthews, G., Middleton, W., Gilmartin, B., and Bullimore, M. (1991). "Pupillary diameter and 680 

cognitive load." Journal of Psychophysiology. 681 
Meilinger, T., Knauff, M., and Bülthoff, H. H. (2008). "Working memory in wayfinding—A dual 682 

task experiment in a virtual city." Cognitive Science, 32(4), 755-770. 683 
Memoori (2015). "Big Data for Smart Buildings 2015 to 2020." 684 



 26 

Miller, G. A. (1956). "The magical number seven, plus or minus two: Some limits on our capacity for 685 
processing information." Psychological review, 63(2), 81. 686 

Miyake, A., and Shah, P. (1999). Models of working memory: Mechanisms of active maintenance 687 
and executive control, Cambridge University Press. 688 

Moreno, R., and Mayer, R. (2007). "Interactive multimodal learning environments." Educational 689 
psychology review, 19(3), 309-326. 690 

Mulloni, A., Seichter, H., and Schmalstieg, D. "Handheld augmented reality indoor navigation with 691 
activity-based instructions." Proc., Proceedings of the 13th international conference on 692 
human computer interaction with mobile devices and services, 211-220. 693 

Naseer, N., and Hong, K.-S. (2013). "Classification of functional near-infrared spectroscopy signals 694 
corresponding to the right-and left-wrist motor imagery for development of a brain–computer 695 
interface." Neuroscience letters, 553, 84-89. 696 

Naseer, N., and Hong, K.-S. (2015). "fNIRS-based brain-computer interfaces: a review." Frontiers in 697 
human neuroscience, 9, 3. 698 

Noori, F. M., Naseer, N., Qureshi, N. K., Nazeer, H., and Khan, R. A. (2017). "Optimal feature 699 
selection from fNIRS signals using genetic algorithms for BCI." Neuroscience letters, 647, 700 
61-66. 701 

Ochsner, K. N., Bunge, S. A., Gross, J. J., and Gabrieli, J. D. (2002). "Rethinking feelings: an FMRI 702 
study of the cognitive regulation of emotion." Journal of cognitive neuroscience, 14(8), 703 
1215-1229. 704 

Olsson, T., Lagerstam, E., Kärkkäinen, T., and Väänänen-Vainio-Mattila, K. (2013). "Expected user 705 
experience of mobile augmented reality services: a user study in the context of shopping 706 
centres." Personal and ubiquitous computing, 17(2), 287-304. 707 

Paas, F., Renkl, A., and Sweller, J. (2003). "Cognitive load theory and instructional design: Recent 708 
developments." Educational psychologist, 38(1), 1-4. 709 

Paas, F., Tuovinen, J. E., Tabbers, H., and Van Gerven, P. W. (2003). "Cognitive load measurement 710 
as a means to advance cognitive load theory." Educational psychologist, 38(1), 63-71. 711 

Papesh, M. H., Goldinger, S. D., and Hout, M. C. (2012). "Memory strength and specificity revealed 712 
by pupillometry." International Journal of Psychophysiology, 83(1), 56-64. 713 

Pattyn, N., Neyt, X., Henderickx, D., and Soetens, E. (2008). "Psychophysiological investigation of 714 
vigilance decrement: boredom or cognitive fatigue?" Physiology & behavior, 93(1-2), 369-715 
378. 716 

Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., and Tachtsidis, I. (2018). "Current status and 717 
issues regarding pre-processing of fNIRS neuroimaging data: An investigation of diverse 718 
signal filtering methods within a General Linear Model framework." Frontiers in human 719 
neuroscience, 12, 505. 720 

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., and Burgess, P. W. 721 
(2018). "The present and future use of functional near‐ infrared spectroscopy (fNIRS) for 722 
cognitive neuroscience." Annals of the New York Academy of Sciences. 723 

Power, S. D., and Chau, T. (2013). "Automatic single-trial classification of prefrontal hemodynamic 724 
activity in an individual with Duchenne muscular dystrophy." Developmental 725 
neurorehabilitation, 16(1), 67-72. 726 

Ramnani, N., and Owen, A. M. (2004). "Anterior prefrontal cortex: insights into function from 727 
anatomy and neuroimaging." Nature reviews neuroscience, 5(3), 184-194. 728 

Randell, C., and Muller, H. "Low cost indoor positioning system." Proc., Ubicomp 2001: Ubiquitous 729 
Computing, Springer, 42-48. 730 

Ray, W. J., and Cole, H. W. (1985). "EEG alpha activity reflects attentional demands, and beta 731 
activity reflects emotional and cognitive processes." Science, 228(4700), 750-752. 732 



 27 

Rossano, M. J., and Moak, J. (1998). "Spatial representations acquired from computer models: 733 
Cognitive load, orientation specificity and the acquisition of survey knowledge." British 734 
Journal of Psychology, 89(3), 481-497. 735 

Roux, F., and Uhlhaas, P. J. (2014). "Working memory and neural oscillations: alpha–gamma versus 736 
theta–gamma codes for distinct WM information?" Trends in cognitive sciences, 18(1), 16-737 
25. 738 

Roy, R. N., Bonnet, S., Charbonnier, S., and Campagne, A. "Mental fatigue and working memory 739 
load estimation: interaction and implications for EEG-based passive BCI." Proc., 2013 35th 740 
annual international conference of the IEEE Engineering in Medicine and Biology Society 741 
(EMBC), IEEE, 6607-6610. 742 

Sandry, J., Genova, H. M., Dobryakova, E., DeLuca, J., and Wylie, G. (2014). "Subjective cognitive 743 
fatigue in multiple sclerosis depends on task length." Frontiers in neurology, 5, 214. 744 

Schroeter, M. L., Kupka, T., Mildner, T., Uludağ, K., and von Cramon, D. Y. (2006). "Investigating 745 
the post-stimulus undershoot of the BOLD signal—a simultaneous fMRI and fNIRS study." 746 
Neuroimage, 30(2), 349-358. 747 

Sharafi, Z., Soh, Z., and Guéhéneuc, Y.-G. (2015). "A systematic literature review on the usage of 748 
eye-tracking in software engineering." Information and Software Technology, 67, 79-107. 749 

Shi, Y., Du, J., and Ragan, E. (2020). "Review visual attention and spatial memory in building 750 
inspection: Toward a cognition-driven information system." Advanced Engineering 751 
Informatics, 44, 101061. 752 

Shi, Y., Du, J., and Worthy, D. A. (2020). "The impact of engineering information formats on 753 
learning and execution of construction operations: A virtual reality pipe maintenance 754 
experiment." Automation in Construction, 119, 103367. 755 

Shi, Y., Zhu, Y., Mehta, R. K., and Du, J. (2020). "A neurophysiological approach to assess training 756 
outcome under stress: A virtual reality experiment of industrial shutdown maintenance using 757 
Functional Near-Infrared Spectroscopy (fNIRS)." Advanced Engineering Informatics, 46, 758 
101153. 759 

Siegel, A. W., and White, S. H. (1975). "The development of spatial representations of large-scale 760 
environments." Advances in child development and behavior, Elsevier, 9-55. 761 

Smith, S. P., and Hart, J. "Evaluating distributed cognitive resources for wayfinding in a desktop 762 
virtual environment." Proc., 3D User Interfaces, 2006. 3DUI 2006. IEEE Symposium on, 763 
IEEE, 3-10. 764 

Sridharan, D., Levitin, D. J., and Menon, V. (2008). "A critical role for the right fronto-insular cortex 765 
in switching between central-executive and default-mode networks." Proceedings of the 766 
National Academy of Sciences, 105(34), 12569-12574. 767 

Sterman, M. B., Mann, C. A., Kaiser, D. A., and Suyenobu, B. Y. (1994). "Multiband topographic 768 
EEG analysis of a simulated visuomotor aviation task." International journal of 769 
psychophysiology, 16(1), 49-56. 770 

Sternberg, S. (1969). "Memory-scanning: Mental processes revealed by reaction-time experiments." 771 
American scientist, 57(4), 421-457. 772 

Sweller, J. (1988). "Cognitive load during problem solving: Effects on learning." Cognitive science, 773 
12(2), 257-285. 774 

Sweller, J. (1994). "Cognitive load theory, learning difficulty, and instructional design." Learning 775 
and instruction, 4(4), 295-312. 776 

Sweller, J. (2010). "Cognitive load theory: Recent theoretical advances." Cognitive load theory, 1, 777 
29-30. 778 

Sweller, J., Ayres, P., and Kalyuga, S. (2011). Cognitive load theory, Springer. 779 
Tanaka, M., Ishii, A., and Watanabe, Y. (2015). "Effects of mental fatigue on brain activity and 780 

cognitive performance: a magnetoencephalography study." Anat Physiol, 4, 1-5. 781 



 28 

Taylor, H. A., Naylor, S. J., and Chechile, N. A. (1999). "Goal-specific influences on the 782 
representation of spatial perspective." Memory & cognition, 27(2), 309-319. 783 

Thirunavukkarasu, G. S., Abdi, H., and Mohajer, N. "A smart HMI for driving safety using emotion 784 
prediction of EEG signals." Proc., 2016 IEEE International Conference on Systems, Man, 785 
and Cybernetics (SMC), IEEE, 004148-004153. 786 

Toker, D., Conati, C., Steichen, B., and Carenini, G. "Individual user characteristics and information 787 
visualization: connecting the dots through eye tracking." Proc., proceedings of the SIGCHI 788 
Conference on Human Factors in Computing Systems, ACM, 295-304. 789 

Tsunashima, H., and Yanagisawa, K. (2009). "Measurement of brain function of car driver using 790 
functional near-infrared spectroscopy (fNIRS)." Computational intelligence and 791 
neuroscience, 2009. 792 

van Asselen, M., Fritschy, E., and Postma, A. (2006). "The influence of intentional and incidental 793 
learning on acquiring spatial knowledge during navigation." Psychological Research, 70(2), 794 
151-156. 795 

van der Wel, P., and van Steenbergen, H. (2018). "Pupil dilation as an index of effort in cognitive 796 
control tasks: A review." Psychonomic bulletin & review, 25(6), 2005-2015. 797 

Verdière, K. J., Roy, R. N., and Dehais, F. (2018). "Detecting pilot's engagement using fNIRS 798 
connectivity features in an automated vs. manual landing scenario." Frontiers in human 799 
neuroscience, 12, 6. 800 

Verney, S. P., Granholm, E., and Dionisio, D. P. (2001). "Pupillary responses and processing 801 
resources on the visual backward masking task." Psychophysiology, 38(1), 76-83. 802 

von Lühmann, A., Li, X., Müller, K.-R., Boas, D. A., and Yücel, M. A. (2020). "Improved 803 
physiological noise regression in fNIRS: A multimodal extension of the General Linear 804 
Model using temporally embedded Canonical Correlation Analysis." NeuroImage, 208, 805 
116472. 806 

Wang, Q., Yang, S., Liu, M., Cao, Z., and Ma, Q. (2014). "An eye-tracking study of website 807 
complexity from cognitive load perspective." Decision support systems, 62, 1-10. 808 

Werner, S., Krieg-Brückner, B., Mallot, H. A., Schweizer, K., and Freksa, C. (1997). "Spatial 809 
cognition: The role of landmark, route, and survey knowledge in human and robot 810 
navigation." Informatik’97 Informatik als Innovationsmotor, Springer, 41-50. 811 

Willis, S., and Helal, S. "RFID information grid for blind navigation and wayfinding." Proc., 812 
Wearable Computers, 2005. Proceedings. Ninth IEEE International Symposium on, IEEE, 813 
34-37. 814 

Wu, C., Cha, J., Sulek, J., Zhou, T., Sundaram, C. P., Wachs, J., and Yu, D. (2019). "Eye-Tracking 815 
Metrics Predict Perceived Workload in Robotic Surgical Skills Training." Human Factors, 816 
0018720819874544. 817 

Xie, B., and Salvendy, G. (2000). "Prediction of mental workload in single and multiple tasks 818 
environments." International journal of cognitive ergonomics, 4(3), 213-242. 819 

Zhang, Y., and Zhu, C. (2019). "Assessing Brain Networks by Resting-State Dynamic Functional 820 
Connectivity: An fNIRS-EEG Study." Frontiers in Neuroscience, 13. 821 

 822 

 823 

  824 



 29 

 825 

Table 1. fNIRS signal features and related studies 826 

Feature Formula References 
Mean (Average) 𝑀𝑒𝑎𝑛(𝑋) = 𝐸(𝑋)…(2) (Faress and Chau 2013; Hong et al. 

2015; Naseer and Hong 2013; Noori 
et al. 2017; Power and Chau 2013; 
Verdière et al. 2018) 

Peak (Maximum) 𝑃𝑒𝑎𝑘(𝑋) = 𝑀𝑎𝑥(𝑋) …(3) (Bauernfeind et al. 2014; Cui et al. 
2010; Noori et al. 2017; Verdière et 
al. 2018) 

Stand Deviation (Variance) 𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] …(4) (Holper and Wolf 2011; Noori et al. 
2017; Verdière et al. 2018) 

Area Under the Curve 
(AUC) 

𝐴𝑈𝐶(𝑋) = ⁡∑|𝑋|…(5) (Schroeter et al. 2006; Verdière et al. 
2018) 

Skewness 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =

𝐸 [(
𝑋−𝜇

𝜎
)3]…(6) 

(Holper and Wolf 2011; Noori et al. 
2017; Verdière et al. 2018) 

Kurtosis 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =

𝐸 [(
𝑋−𝜇

𝜎
)4]…(7) 

(Holper and Wolf 2011; Noori et al. 
2017; Verdière et al. 2018) 
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 829 

Table 2. Three levels of task difficulty corresponding to cognitive load levels 830 

Cognitive Load Levels Encoding Pattern  Sternberg Trails 
1- Light Load Phonological information for landmarks Trails 1- 40 
2- Medial Load Visuospatial information for routes and 

survey 
Trails 41 - 80 

3- Heavy Load Combinations Trails 81 – 120 
 831 

  832 
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 833 

Table 3. HbO-based classification accuracies of SVM in percentages [%] of individual level feature sets 834 

Subjects SVM  
Accuracy Recall Precisions 

1 73.46 72.94 79.25 
2 70.79 71.11 82.79 
3 78.16 77.65 78.32 
4 76.77 77.05 81.17 
5 70.08 71.45 79.33 
6 78.63 80.05 83.88 
7 72.60 70.10 81.95 
8 77 .27 76.29 83.20 
9 70.21 68.22 77.14 
10 85.31 85.01 86.12 
11 75.42 74.61 82.34 
12 73.18 71.63 80.71 
13 65.00 63.77 76.62 
14 70.02 67.93 80.30 
Mean 74.06±5.01 73.41±5.49 80.93±2.67 
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 837 

Table 4. HbO-based classification accuracies of SVM in percentages [%]  838 

Categories SVM 
Accuracy Recall Precisions 

Individual Level (mean) 74.06 73.41 80.93 
Group Level  62.10 60.98 62.87 
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 841 

Table 5. The Top five features of each subject and group level data sets selected by the wrapper method 842 

Subjects Top features Subjects Top features Subjects Top features 
1 1. AUC_Right 

2. Peak_Right 
3. Std_Right 
4. Kurt_Left 
5. AUC_Left 

6 1. Peak_Righ 
2. Std_Right 
3. Mean_Right 
4. Std_Left 
5. Mean_Left 

11 1. Peak_Right 
2. Std_Right 
3. Skew_Left 
4. AUC_Left 
5. Peak_Left 

2 1. Skew_Right 
2. Skew_Left 
3. Kurt_Left 
4. AUC_Left 
5. Std_Left 

7 1. AUC_Right 
2. Peak_Right 
3. Std_Right 
4. AUC_Left 
5. Peak_Left 

12 1. Std_Right 
2. Kurt_Left 
3. AUC_Left 
4. Peak_Left 
5. Std_Left 

3 1. Skew_Right 
2. Peak_Right 
3. Std_Right 
4. Peak_Left 
5. Mean_Left 

8 1. Kurt_Right 
2. AUC_Right 
3. Std_Right 
4. Kurt_Left 
5. Std_Left 

13 1. Std_Right 
2. Mean_Right 
3. Skew_Left 
4. Std_Left 
5. Mean_Left 

4 1. AUC_Right 
2. Peak_Right 
3. AUC_Left 
4. Peak_Left 
5. Mean_Left 

9 1. Skew_Right 
2. AUC_Right 
3. Peak_Right 
4. Std_Right 
5. AUC_Left 

14 1. AUC_Right 
2. Peak_Right 
3. Mean_Right 
4. AUC_Left 
5. Std_Left 

5 1. Kurt_Right 
2. Peak_Right 
3. Skew_Left 
4. Peak_Left 
5. Std_Left 

10 1. Skew_Right 
2. Kurt_Right 
3. AUC_Right 
4. Std_Right 
5. AUC_Left 

Group 
Level 

1. Kurt_Right 
2. Skew_Left 
3. AUC_Left 
4. Std_Left 
5. Mean_Left 
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