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ABSTRACT

Amid the rapid development of building information technologies, wayfinding information has become
more accessible to building users and first responders. As a result, a realistic risk of cognitive load related
to the wayfinding information processing starts to emerge. As cognition-driven adaptive wayfinding
information systems become increasingly captivated to overcome challenges of cognition overload due to
overwhelming information, a practical and non-invasive method to monitor and predict cognitive loads
during the processing of wayfinding information is needed. This paper introduces a Functional Near-
Infrared Spectroscopy (fNIRS) based method to identify cognition load related to wayfinding information
processing. It provides a holistic NIRS signal analytical pipeline to extract hemodynamic response features
in prefrontal cortex (PFC) for cognitive load classification and prediction. A human-subject experiment
(N=15) based on the Sternberg working memory test was performed to model the relationship between
fNIRS features and cognitive load. Personalized models were also evaluated to capture individual

difference and identify unique contributing features to each person. The results find that {NIRS-based
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model can predict cognitive load with satisfactory performance (avg. recall rate 73.41+5.49 percent). The
findings also demonstrate that personalized models, instead of universal models, are needed for predicting
cognitive load based on neuroimaging data. fNIRS has demonstrated comparable advantages over other
neuroimaging methods in cognitive load prediction given its robustness to motor artefacts and the
satisfactory predictability.

KEYWORDS: fNIRS; Cognitive Load; Sternberg Test; Wayfinding

INTRODUCTION

As of 2020, an estimated 20% of U.S. buildings can be classified as “smart” with 50 billion connected
devices forming clusters of Internet of Things (IoT) (Memoori 2015). These new sensing devices and
technologies will generate a large amount of real-time informatics in built environments. The way a
building’s spatial information is presented is becoming more diverse, mixing signage (e.g., directional,
identification, information, warning), text instructions, maps (2D, 3D, interactive), tactile and haptic
guidance, sound, verbal guidance, colors, landmark markers, and lighting, etc. (Calori and Vanden-Eynden
2015). Owing to the development of computing powers, new technologies such as radio-frequency
identification (RFID) (Willis and Helal 2005), indoor positioning systems (Randell and Muller 2001), better
telecommunications (Aporta et al. 2005) and augmented reality (AR) technologies (Olsson et al. 2013) are
increasingly available to interact with the building data for building wayfinding, i.e., orienting and
navigating inside a building (Mulloni et al. 2011).

While real-time data collecting and informatics become easier for building wayfinding, a new
challenge has arisen - cognitive overload due to the overwhelming information. Too much information can
lead to an increased cognitive load (Eppler and Mengis 2004), causing decreased task performance (Sweller
1988) and/or prejudices in decisions such as stereotyping, i.e., relying on personal experiment instead of
facts (Banaji and Greenwald 1994). In emergency wayfinding, for example, first responders often need to

build an accurate spatial working memory of unfamiliar spaces in a timely manner (additional time
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pressure), requiring an intensive retention and processing of received spatial information (such as maps or
verbal instructions) (Logie 2014). Yet according to the cognitive load theory (CLT), human cognition has
a finite information processing capacity (Sweller 1994). The well-proven Miller’s Law shows that in one-
dimension judgement tasks (such as temporarily remembering a phone number), an average person can
only hold and process 2 to 3 bits of information at one time (Miller 1956). Literature also suggests that
mental fatigue due to the prolonged period exposed to excessive information also contributes to increased
cognitive load (Tanaka et al. 2015). It further adds to the potential risks of cognitive overload as modern
professional works (e.g., engineers and first responders) rely on the processing of spatial information more
common and more frequently, given the increasing complexity of modern built environments. Such an
apparent gap between the enormous information processing need (both in amount and in time), and the
limited processing capacity creates a potentially hazardous situation for certain professionals such as civil
engineers and first responders. In the foreseeable future, this gap will be further widened due to the
advancement of information technologies and unprecedented accessibility to large amounts of real-time
data. Successful information delivery in building wayfinding refers to delivering the right information to
the right person at the right time, instead of delivering untailored information to anyone at any time (Fischer
2012). An adaptive information system that is optimized for the real-time and dynamic cognitive load is in
an urgent need.

To set the foundation for a cognition-driven adaptive wayfinding information system, this study
aims to develop and test a cognitive load monitoring and prediction method triggered by the processing of
wayfinding information, such as landmarks, routes and symbolic information related to orientation and
target destinations. Specifically, we will test the use of an explicit neurofunctional measurement via
Functional Near-Infrared Spectroscopy (fNIRS). Although previous literature has indicated a strong
relationship between certain neurophysiological metrics and cognitive load, including pupillary dilation
(Matthews et al. 1991; Shi et al. 2020; van der Wel and van Steenbergen 2018) and electroencephalogram

(EEG) spectral analysis (e.g., alpha—gamma versus theta—gamma ratio is a golden standard for cognitive
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load) (Roux and Uhlhaas 2014), fNIRS is more tolerant to motor artefacts and thus is a better candidate for
detecting neural activities in wayfinding tasks.

However, two challenges have clouded the feasibility and viability of fNIRS for cognitive load
prediction. First, fNIRS is still a relatively new neuroimaging method (Hu and Shealy 2019), and the
literature is not clear regarding what features of fNIRS data are strong predictors of cognitive load
(Pinti et al. 2018). Second, existing efforts have been concentrated on exploring the universal patterns
of INIRS features related to cognitive load, i.e., knowledge applicable to all people; while in contrast,
there might be a significant individual difference pertaining to the fNIRS-cognitive load relationship.
This study will narrow the gap by testing a personalized cognitive load prediction method based on
fNIRS features extracted from a human-subject experiment. A holistic fNIRS analytical pipeline will
be examined to extend the literature of the existing fNIRS analysis method. In addition, we will
compare individual differences in terms of fNIRS-based cognitive load prediction and what the unique
contributing features are to each person. The remainder of this paper will introduce the theoretical basis

and the human-subject experiment led to the cognitive load prediction model.

LITERATURE REVIEW

Spatial Information Types in Wayfinding

Wayfinding in complex buildings requires the acquisition and processing of large amounts of
spatial information (Werner et al. 1997). The spatial information people leverage to understand the
environment and guild navigation can be hierarchically categorized into three main forms, which are
landmarks (L), routes (R), and survey (S, i.e., cognitive maps), i.e., the “LRS” model (Siegel and White
1975). The landmarks are defined as unique and distinctive objects at fixed locations in the
environment (Werner et al. 1997). Landmark knowledge pertains to identifying and memorizing
landmarks based on their shapes, sizes, colors, and contextual information (Elvins 1997). People can

incidentally recognize the landmarks and unconsciously build their landmark knowledge through the
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navigation in the environment (van Asselen et al. 2006). The process of acquiring landmark knowledge
usually does not need much mental efforts. Siegel and White (1975) found that even very young
children were able to identify and make use of landmarks in spatial understanding. Route knowledge
is a more advanced strategy for spatial knowledge acquisition. Route knowledge is encoded as the
knowledge of memorizing the sequences of landmarks or locations from one location to the other
location (Siegel and White 1975). People can gain route knowledge either from a map or from a
navigation experience (Taylor et al. 1999). The process of developing route knowledge requires a
higher mental effort, and thus practices are helpful for the acquisition of route knowledge such as
navigating in the environment (Lindberg and Gérling 1983). Lastly, survey knowledge is the process
to mentally abstract the configurational information as a map-like representation of the environment
(Werner et al. 1997). It is the last and the most mentally demanding spatial knowledge acquisition
method. People can gain survey knowledge either from a map study or from real-world exposure to
the environment (Elvins 1997). van Asselen et al. (2006) found that route knowledge and survey
knowledge coexisted in the process of spatial memory development. They further found that the spatial
information representation methods of the environment could significantly affect the process of spatial
knowledge acquisition. Subjects who learnt from a map outperformed others in developing the survey
knowledge. On the other hand, subjects who learnt by navigating in the environment performed better
than others in developing the route knowledge (Taylor et al. 1999; van Asselen et al. 2006).

In summary, evidence has shown that the type of spatial information is a contributing factor to
the cognitive load in wayfinding tasks. The LRS model indicates that depending on the phases of spatial
knowledge development, landmarks, route and survey information indeed requires different levels of
cognitive engagement and leads to different levels of cognitive load. As a result, the experiment design
in this study follows the LRS model to test the working memory pertaining to the elements of LRS.
But in order to understand how spatial information triggers different levels of cognitive load, it is also

necessary to examine the role of different formats of information.
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Spatial Information Formats and Cognitive Load

The LRS model specifies that three types of spatial information can lead to different cognitive load
levels. For each type of spatial information, it is noted that different ways or formats of display could also
play an important role in terms of affecting the cognitive load. For instance, landmarks can be
communicated verbally, in written texts, or in visual symbols, with an additional impact on the cognitive
load. Cognitive load theory (CLT) (Chandler and Sweller 1991; Kalyuga 2009; Paas et al. 2003; Sweller
1994; Sweller 2010; Sweller et al. 2011) divides the overall cognitive load into three main components:
intrinsic cognitive load (related to the complexity of tasks), extraneous cognitive load (affected by how
information is presented) and germane cognitive load (devoted to construction of schemas — permanent
knowledge about patterns). Among all, the extraneous cognitive load can be easily affected by the formats
of information. Baddeley et al. proposed a dual-coding theory to describe the internal structure of
extraneous cognitive load in relation to the working memory of information processing (Baddeley 1992;
Baddeley 2000; Baddeley 2003; Baddeley 2012; Baddeley and Hitch 1974; Miyake and Shah 1999;
Moreno and Mayer 2007). They found “dual channels” in human cognition, where different mental
activities are activated when people process two distinct categories of information: phonological
information (i.e., auditory verbal information or visually presented language) and visuospatial information
(i.e., the visually presented information about objects and space). In addition, a central executive cognitive
process also takes place to bind information into coherent episodes, shift between tasks or retrieval
strategies, and select between attention and inhibition (Sridharan et al. 2008). It is more applicable to explain
why there is an increased cognitive load when people process mixed information. The dual channels theory
indicates the need to include phonological, visuospatial and mixed information in our experiment design.

In addition, cognitive load has also been found to relate to the mental fatigue levels driven by task
duration (Ackerman and Kanfer 2009; Pattyn et al. 2008). Based on a comprehensive literature review,

Paas et al. found that the multi-constructs of cognitive load were indeed inter-correlated, including task
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characteristics (e.g., difficulty), mental efforts and mental fatigue (Paas et al. 2003). Xie and Salvendy
proposed that cognitive load should be a physiological measure (the load perceived by the subject) and
indicative of the cumulative load over a period of time, rather than instantaneous load, i.e., the mean
intensity during the task (Xie and Salvendy 2000). The former one reflects the overall experience of test
subjects for the complete task and thus is more aligned with the self-reported mental workload measured
by NASA TLX (Xie and Salvendy 2000). Roy et al. found that prolonged task duration could substantially
affect the cognitive load in working memory development, and hence, a measurement method that captures
the interaction between working memory task difficulty and task duration is needed (Roy et al. 2013).
Similar findings have also been reported that task duration is a main contributor to subjective cognitive load
(Kessler and Meier 2014; Sandry et al. 2014). As a result, in this study, we consider the holistic cognitive
load that is affected by both the information processing needs and the mental fatigue level due to the

prolonged task time.

Neurophysiological Measures for Real-Time Cognitive Load Assessment

In wayfinding literature, such as navigation and driving studies, cognitive load related to the wayfinding
information processing and decisions is mainly measured as a single entity (Chang and Wang 2010;
Haapalainen et al. 2010; Klatzky et al. 2006; Liu et al. 2008). Indicators such as task performance (e.g.,
errors) and psychometrics (e.g., surveys) are typically used to measure cognitive load in these studies
(Bunch and Lloyd 2006; Cabeza and Nyberg 2000; Meilinger et al. 2008; Rossano and Moak 1998; Smith
and Hart 2006; Sweller 1988). Although these are important measurements to consider, the lagging nature
of the indicators are insufficient to support a real-time monitoring and control mechanism of cognitive load
that attempts to distinguish different types of cognitive load (e.g., visual and verbal-driven). A deeper
insight into the real-time cognitive load measurement methods that balance the prediction accuracy
and mobility required by the wayfinding will enable a fine-tuned mechanism to manipulate and manage

real-time cognitive load.
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With the recent development of neurophysiological sensing technologies, real-time cognitive load
measurement methods have been enriched in the research community (Verney et al. 2001; Wang et al. 2014;
Wu et al. 2019). Among the neurophysiological metrics, eye-tracking is the most examined method
including visual attention and pupillary data to predict real-time cognitive load (Goldinger and Papesh 2012;
Kucewicz et al. 2018; Shi et al. 2020; Shi et al. 2020). de Fockert et al. (2001)’s study found that the ability
of visual selected attention is strongly related to the real-time cognitive load level. The higher cognitive
load leads to higher visual distractor processing in human brain. Toker et al. (2013) investigated the impact
of cognitive load on user’s attention patterns when users were exposed to different types of visual graphs
(bar graphs and radar graphs). They found that visual attention patterns were changed with task difficulty
and visualization methods. At the same time, Pupillometry has a long history in studies of cognitive load
and memory (Goldinger and Papesh 2012; Klingner et al. 2011; Kucewicz et al. 2018; Paas et al. 2003).
Many studies have suggested that pupil dilation reflects a ‘summed index’ of neural activity during
cognitively demanding tasks (Goldinger and Papesh 2012; Kahneman and Beatty 1966; Papesh et al. 2012).
Pupil dilation has been shown to increase under greater cognitive load. As a task becomes progressively
more difficult pupil dilation increases.

Despite the wide use of eye tracking for cognitive load measures, evidence recognizes its
limitations in a highly dynamic task environment, such as the unexpected impacts of light conditions on
pupillary size and an environment with too many distractors (Sharafi et al. 2015). Recently, neurocentral
methods have gained popularity in various engineering domains such as engineering decision making
(Goucher-Lambert et al. 2017) and hazard detection (Thirunavukkarasu et al. 2016). A representative
method is Electroencephalography (EEG) that collects a high-resolution time-domain data for the rapid
propagation speed of electric fields of brain activity. Evidence shows that alpha and theta activity is related
to cognitive load in a variety of task demands (Antonenko et al. 2010; Gevins and Smith 2003; Sterman et
al. 1994). Gevins and Smith (2003) found that alpha and theta oscillations demonstrated different patterns

according to the task difficulty and cognitive load. As the cognitive load increases, the alpha activity
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decreases, and theta activity increases. Antonenko et al. (2010) also found that EEG could provide good
resolution data for evaluating individual’s cognitive activities during complex learning behaviors. But
literature also finds that EEG data can be easily affected by the motor artefacts (Lohani et al. 2019).
Recently, another non-invasive optical imaging method i.e., functional near-infrared spectroscopy (fNIRS)

has started to show a great potential in cognitive status monitoring and analysis.
fNIRS Method

fNIRS is a novel tool to study and monitor tissue oxygenation changes in the brain non-invasively (Bunce
et al. 2006; Du et al. 2020). The attributes of fNIRS like portability, movement tolerability, and safety of
use have made it particularly suitable for investigating brain function (Pinti et al. 2018). fNIRS uses the
sources (laser or light emitting diode) and detector probes, which are positioned over the scalp surface, to
detect the change in optical density caused by the hemodynamic changes mainly expected in the cortical
grey matter (Pinti et al. 2018). Then intensity data as a result of the absorption of infrared lights of different
waves can be converted into oxy-and deoxygenated signals located in small vessels (<Imm diameter). The
activation changes indicate neuronal activity levels as these activities provoke an increasing in oxygen
consummation, local cerebral blood flow (CBF) and oxygen delivery (Lloyd-Fox et al. 2010). The measures
of cerebral oxygenated and deoxygenated hemoglobin are also correlated with the functional magnetic
resonance imaging (fMRI) BOLD signals (Cui et al. 2011). Comparing to other available neuroimaging
techniques relying on neurovascular coupling such as fMRI (Ochsner et al. 2002) and positron emission
tomography (PET) (Andreasen et al. 1996), and those based on the electromagnetic activity of the brain
such as (EEG) (Ray and Cole 1985) and magnetoencephalography (MEG) (Halgren et al. 2000), fNIRS
provides a higher temporal resolution. In addition, participants are not restricted to a confined space or are
not required to stay in a supine position motionless (Ayaz et al. 2013), thus fNIRS is more robust for
monitoring cortical hemodynamics during motor tasks or tasks involving walking given its advantages of

low sensitivity to body movements and the systems’ portability (Pinti et al. 2018). These features make
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fNIRS suitable for tracking human brain activities in the complex and real working environment. Previous
studies have proven that hemodynamic responses in the prefrontal cortex (PFC) measured by fNIRS can
be used to quantify and classify mental workload (Herff et al. 2014). Studies of distinguishing among
cognitive states using fNIRS have been applied in various fields such as driving research in the car (Herff
et al. 2014; Tsunashima and Yanagisawa 2009) and airplane (Verdic¢re et al. 2018), brain-computer
interface (BCI) (Erdogan et al. 2019; Hong et al. 2018) and human-robot collaboration (Canning and
Scheutz 2013). Given the advantages of fNIRS, this study aims to examine cognitive load monitoring and
prediction methods based on fNIRS measures. Especially, various features of fNIRS data are extracted and
compared in terms of the predictability pertaining to cognitive load, as well as to the differences among

individuals.

FNIRS-BASED COGNITIVE LOAD ANALYTICAL PIPELINE

It is noted that as a relatively new method, there is no generally agreed analytical pipeline for fNIRS
data processing. The hemodynamic response could be affected by the basic physiological activities
such as heart beats and therefore, fNIRS data must be cleaned before the analysis (Pinti et al.
2018).Unlike brain electrical activities, there is often a lag between the trigger event and the
hemodynamic response, usually ranging from 2 seconds to 8 seconds in term of time-to-peak -
calculated as the time to maximum response from the presentation of the stimulus (Huppert et al.
2006) . The unique characteristics of fNIRS data have made it nontrivial for the analysis. Based on
the latest {NIRS literature (Verdicre et al. 2018), we propose an analytical pipeline for predicting

cognitive load status based on the dynamic fNIRS data, as illustrated in Signal Acquisition

The placement design of the number and locations of light emitters and detectors (optodes) should be
optimized before data collection. The layout of optodes is determined by the specific purpose of a study
concentrating on the areas of interest (AOIs) with different neural functions. In this research, we

focused on the prefrontal cortex (PFC). PFC is proven to relate to memory and logical thinking (Herff et
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al. 2014; Ramnani and Owen 2004). The fNIRS data from PFC has been deemed as indicative of human
cognitive load in various studies (Faress and Chau 2013; Hong et al. 2015; Naseer and Hong 2013; Noori
etal. 2017; Power and Chau 2013; Verdicre et al. 2018). In addition, PFC is not directly affected by motor
disabilities and its hair-free feature makes it easier to facilitate probe set-up and to get qualified fNIRS
signals (Erdogan et al. 2019). As a result, PFC is gaining popularity among fNIRS researchers at a
rapid rate in recent years (Faress and Chau 2013; Herff et al. 2014; Pinti et al. 2018; Verdicre et al.
2018). Usually, there is a tradeoff between the number of channels and the brain areas required to cover.
In some cases, due to the limited number of the channels the device provided, researchers only focus
on one or two cortices, which should be including both left and right brain portions. Besides, accurate
acquisition of fNIRS signals would require considering the sample rate. Most fNIRS systems nowadays
support at least 1 Hz sampling frequency, which is enough for feature extraction. Researchers can also
adjust the sampling rate for a more efficient calculation (Lohani et al. 2019). The length of the emitting
light also varies across the devices. Usually, most device include two wave lengths which help
differentiate CO> and O absorption separately.

In this study, an 18-channel fNIRS device — NIRx Sport 2 (NIRx, Berlin) with the sample rate of
7.8125 Hz was used to collect hemodynamic activation levels of PFC, as illuminated in Fig.2. Each source
emits two near-infrared wavelengths (760 nm and 850 nm) to detect and differentiate between

oxygenated and deoxygenated hemoglobin.

Data Pre-processing

The purpose of running a data pre-processing is to remove secondary noises from the raw data and
convert the intensity time-series into concentration changes of oxygenated hemoglobin (AHbO) and
deoxygenated hemoglobin (AHbR). The raw intensity data from qualified channels are converted into
optical densities (AOD). Secondary noises not related to the task-evoked hemodynamic activities should

be removed to extract useful information from the OD data. There are two typical kinds of noise identified
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by previous studies. The first one is physiological noises at specific frequencies associated with heartbeats
(~1 Hz), breath (~0.3 Hz), Mayer waves (~0.1 Hz) and very low frequency (< 0.04, VLF) oscillations (Pinti
et al. 2018). Digital filtering such as high-pass, low-pass and band-pass filters is a common tool to clean
these noises in a specific frequency range. The second noise is related to human motions, such as body
movements. Even fNIRS is relatively robust to motion (Pinti et al. 2018), a sufficient data cleaning process
to remove artifacts is required. Otherwise, the possible optical decoupling between the optode and the scalp
(Cooper et al. 2012) will lead to instantaneous or slow changes in the signal that do not reflect changes in
physiology (von Lithmann et al. 2020), and makes the fNIRS data uninterpretable. To tackle this type of
noise, motion artifact detection and removal or correction algorithms such as principle component analysis
(PCA), spline interpolation, and wavelet analysis are commonly used in fNIRS studies (Brigadoi et al. 2014;
Cooper et al. 2012). Both frequency range and artifact detection algorithms should be chosen carefully in
order to preserve the stimulus frequency and the task-evoked response (Pinti et al. 2018). In the end, fNIRS
optical densities are converted to concentration changes of AHbO and AHbR by modified Beer-Lambert
law with a partial path length factor of 6 (Delpy et al. 1988).

For this study, we used the raw light intensity fNIRS data form six channels covering PFC as shown
in Fig.2 with the sample rate at 7.8125 Hz of each participant. A band-pass filter with the frequency rate
between 0.01 Hz and 0.5 Hz was used to remove the influences from physiological changes. After
identifying and remove the motion artifacts through hmrMotion Artifact algorithm (Huppert et al. 2009),
the processed data were calculated according to Modified Beer-Lambert Law method (Delpy et al. 1988)
and output the HbO and HbR concentration variations. For further analysis, we only used AHbO2 data of
each channel as indicators of changes in regional cerebral blood volume as it is the more sensitive indicator

of changes in cerebral blood flow (CBF) (Hoshi et al. 2001).

Feature Processing and Classification
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In the processing phase, the pre-processed AHbO was used to perform statistical analyses. mean oxygen
consumption (mean), standard deviation of oxygen consumption (std), peak oxygen consumption
(peak), area under curve (AUC), kurtosis of oxygen consumption distribution (Kurt) and Skewness of
oxygen consumption (Skew) are proven to be sensitive to the changes in levels of hemodynamic activities
by the existing fNIRS literature, as listed in Table 1. For continuous fNIRS data, literature uses different
sliding window sizes to sample training data from a continuous data stream, ranging between 2 seconds
and 60 seconds (Bauernfeind et al. 2014; Erdogan et al. 2019; Faress and Chau 2013; Hong et al. 2018;
Hong et al. 2015; Khan et al. 2019; Verdicre et al. 2018; Zhang and Zhu 2019). Extracted features from
different channels are usually combined into a limited number of regions of interest (ROI) to reduce the
amount of data and the data dimensionality (Verdiére et al. 2018). The combination should average data
from a similar functional cortex on the same side. Because fNIRS signals usually vary dynamically across
different subjects, personalized feature normalization is required to standardize the extracted features for
each subject into the same scale and to improve feature interpretability across subjects (Hosseini et al. 2018).
Normalized feature sets are then fed into the machine learning model to train the classifier — support vector
machine (SVM) in this study. The SVM classifier aims to discriminate different classes by creating an
optimum hyperplane. This supervised learning model is widely used in the classification and prediction of
neural activity studies due to its simplicity and computational efficiency (Gateau et al. 2015; Naseer and
Hong 2015). Although SVM is naturally linear, for datasets with small numbers of features and training
examples like the data in this study, a non-linear SVM with a kernel function would be more efficient. We
selected the Gaussian radial basis function (RBF), which is efficient by allowing complex separation
surface requiring a reduced number of hyper-parameters to tune (Hong et al. 2018), as the kernel to

implement our SVM model, as shown in Eq (1):

K(x,x") = exp(=yllx — x[[*)...Eq (1)
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where ||x — x'||? is the squared Euclidean distance between the two feature vectors, y is the parameter for
adjusting the goodness of fit of the RBF model. The one-vs-one scheme (Galar et al. 2011) was used to
handle the multi-class classification. It is supposed to be robustness for fNIRS classification studies.

We used the six channels of AHbO2 data from PFC to extract features. A sliding window with size
30s with interval 5s was used to split data and obtain block time series for each level trails per subject. The
Mean, Peak, Stand Deviation, Kurtosis and Skewness were estimated according to the formulas shown in
Table 1. respectively. The AUC was calculated as the sum of the absolute values of the signal (Verdicre et
al. 2018). We defined two regions of interest (ROI)-Left and Right PFC, each including three channels.
The features of each channel were aggregated by type in the same ROI. The dimensionality was thus
reduced from 18 to 6 per ROI. To bring all feature variables down to a similar scale, the Z-scoring method
(Jain et al. 2005) was used to normalize data. As a result, we obtained normalized feature data with six
dimensions in each ROI for each of the cognitive load levels per participant. To increase the accuracy of
the classifier, we used the grid search method (Bergstra and Bengio 2012) and K-Folds method (k=10)
cross-validation to get the best-fit parameters for the model. Then the optimized classifier was applied for
training and testing.

In order to test if there are significant individual differences, we will compare model
predictability among different subjects. We will also compare how the contributing features vary
among people. If it is found that the predictability and/or important features are different among

subjects, it suggests NIRS-cognition relationships are different.
HUMAN-SUBJECT EXPERIMENT
Experiment Setup

A human-subject experiment was conducted based on the Sternberg working memory test, which triggers
cognitive load related to the processing of wayfinding related information elements, including the

recognition of given information, retention and retrieval phases (Sternberg 1969). The reason we selected
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the Sternberg test was that it is among the most popular, controlled test to examine mental load related to
information processing and working memory development (Ref). This study focuses on the cognitive load
prediction in the phase of spatial information processing, and thus, Sternberg test is deemed to be an
effective approach for data collection.

Based on the literature review, we designed three categories of information elements in the
Sternberg test to reflect different cognitive requirements in processing wayfinding information. Fig.3
illustrates the specific design of the Sternberg test. For category 1, we used phonological information (letters)
to show landmark information. According to the LRS model and the dual channels theory, such information
requires the lowest cognitive engagement, and thus it is marked as the “light cognitive load” group. For
category 2, we used visuospatial information to show route and survey information. In such a way the
cognitive engagement is higher, and we labeled it as the “medium cognitive load” group. Finally, we
combined the wayfinding information elements, including mixed phonological information and
visuospatial information to indicate landmarks, routes and survey information. It requires participants to
process all wayfinding information types and triggers the central executive function according to the
cognitive load theory. As a result, we marked it as the “heavy cognitive load” group. Each group includes
40 trials for eventually distributed tests. To be noted, a challenging task to all cognitive load studies is to
get the ground truth of cognitive load. Self-reported mental load, such as NASA TLX can be easily affected
by the subjective feeling biased toward the newer experience, such as the later phase of an experiment. In
addition, it interrupts the continuous flow of information processing which is the real-life experience of
most people, such as firefighters in search and rescue tasks and who must process spatial information
continuously without any interruptions. As a result, recent literature has started to manipulate the difficulty
levels of the task or the information to trigger varying levels of cognitive load, and to use them as the ground
truth(Haapalainen et al. 2010) . This study follows the second approach.

Each trial started with the presentation of a list of patterns to recognize (encoding period; 2s in

total), followed by a memory retention period (2s) during which the subject must maintain the list of
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patterns in memory, and a retrial period (2s) in which the subject had to answer whether probe pattern had
been displayed before by clicking the corresponding buttons. Between the town sessions was a short
fixation phase (0.5s).

As discussed earlier, this study tracks the cognitive load that captures both the information
processing needs and the increasing mental fatigue level to better reflect the real-world scenarios (such as
predicting a firefighter’s increasing risks of cognitive overload over time). Table 2 lists the use of three
levels of task difficulty (related to working memory encoding) as the basis for varying cognitive load levels.
The encoding patterns were designed related to wayfinding information, including symbolic information,
orientations, words and mixed information.

The experiment consisted of three sessions: (1) preparation session, (2) training session, (3) task
performing session. The preparation session (5-10 minutes) was designed to allow participants to
familiarize the procedure and potential benefit or risk of the experiment. Participants’ demographical
information including age, gender, major, degree level was also collected in this session. The
participants were guided to familiarize themselves with the fNIRS system. In this session, all the
participants were first instructed to wear on the fNIRS device, and the investigators were able to ensure
each probe of the fNIRS device accurately collected the neuroimaging data from the target brain
regions. The participants were asked to stay claim in a chair and let the fNIRS device to set up the
baseline data for each participant. Before starting to collect fNIRS data, we asked subjects to relax
themselves with closed eyes and an empty mind for 3 minutes to remove possible hemodynamic responses
resulting from previous activities. In the training session, a pre-Sternberg test, which provided the same
procedure as the formal test in task performing session with different patterns, was used to train and test
subjects for performing the task in the correct way. During the task performing session, each subject was
asked to sit in front of a moister screen, which only displayed the test contents without anything else. The
environment kept quiet and in the same light condition during the whole experiment to eliminate the

additional distractions.
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Participants

We recruited 15 subjects (1 Women, mean age = 24 £2) to participate in the experiment (Fig.4). One of the
participants’ data was excluded from the analysis due to strong noise. All the participants did not have a
history of any psychiatric or neurologic abnormalities. We gave the experiment instruction with details to
all participants before they signed the informed consent. All the experiments were done at the same
location (Francis Hall Room 101 - BIM CAVE at Texas A&M University), with the same devices. The

environmental effects can be ruled out as well.

JNIRS Data Pre-Processing Results

After pre-processing, raw intensity signals of each subject was converted into optical density (OD) and then
concentration changes of oxyhemoglobin (AHbO2). As shown in Fig.5, the band-pass filter removed very
low frequency systemic fluctuations the respiration and the heart-rate oscillations. Each channel was
screened to detect and correct motion artifacts. In this way, the possible noise from global systemic effects
originating in superficial layers of scale, dura, and peripheral vasculature but not in the cortex was removed.
Then the channels with stability value were retained for further analysis. Fig.6 illustrates the grand averages
of the hemodynamic response under three levels of cognition load of all subjects. From a visual inspection,
the mean values of AHbO2 increased from level 1 to level 3. Besides, the curve of level 1 is smoother than
level 3. These indicates that the hemodynamic responses are different among cognition load levels and

therefore can be used for further analysis of classifying and predicting cognition status.

Classification Performance

The first aim of the classification is to detect whether the SVM classifier can distinguish three-level trials
for both the individual and group levels. We classified both individual level feature sets (i.e., the training
and testing datasets were from each participant data separately) and group level feature sets (i.e., the training

and testing datasets were from aggregated data from a total of fourteen participants). Fig. 7 illustrates the
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paired feature examples for the individual (participant 4) and group level (total participants). After the
feature extraction, we implemented SVM as the classifier to distinguish different cognitive load levels.
Table 3 lists the classification performance, including accuracy, precision and recall rate resulted
from the K-Folds method (k=10) cross-validation for each participant. The average classification
performance for all participants by the SVM classifier was 74.06+5.01 percent in accuracy, 73.41£5.49
percent in recall rate and 80.93+2.67 percent in precision. It is worth noting that the classification accuracy
varied among individual participants. We obtained the best accuracy (85.31%) for participant 10 and the
worst one (65.00%) from for 13. It indicates that the fNIRS shows a significant individual difference and
the model should be personalized. Table 4 lists the classification performance at the group level (i.e.,
aggregating all datasets). Compared to individual level models the aggregated model at the group level
shows a relatively low performance. The accuracy, recall rate and precision of group level classification
were 62.10%, 60.98%, 62.87% relatively. It further shows that individual difference in fNIRS patterns
make it difficult to find a generalizable model for cognitive load prediction. In addition, we further found
that the performance of fNIRS-based cognitive load prediction varies at different cognitive load levels.
Fig.8. shows examples of the individual (Participant 4) and group level classification in the form of
confusion matrices. We found that both individual and group level classification showed a higher true
positive rate in Level 1 and Level 3 than Level 2. The worse classification performance in level 2 probably
resulted from the transition period from level 1 to level 2 and level 2 to level 3. The similarity of the HbO

signals between levels made the classifiers easy to false predict the other levels into level 2.

Feature Importance Evaluation

In addition, we further used the wrapper method with a sequential forward feature selection (SFS) method
to find the optimal feature subset to achieve better classification performance for both the left hemisphere
and the right hemisphere as illustrated in Fig. 9. The wrapper method is defined as the feature selection

method that employs a search strategy to look through the space of possible feature subsets regarding the
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quality of the performance of a given algorithm. Comparing to the other feature selection methods including
filter methods and embedded methods, the wrapper method can detect the interaction between different
variables and find the optimal feature subset for the certain machine learning algorithm. According to our
previous study (Shi et al. 2020), the neuro connectivity and interactions can play an important role in
reflecting the neuro activities based on the fNIRS data. Thus, we selected the wrapper method in this
analysis. At the same time, the wrapper methods usually achieve better predictive accuracy than filter
methods. There are four steps of the wrapper method: (1) search for a subset; (2) build a machine learning
model; (3) evaluate the prediction performance; (4) repeat the process. In this analysis, we selected step
forward feature selection also called sequential forward feature selection (SFS). Fig. 9 shows one
interaction of feature selection according to certain machining learning method. We set the accuracy to
evaluate the prediction performance and the K-Folds method (k=10) was also used to cross-validate the
feature selection results. Table 5 lists the ranking orders of these features selected by the wrapper method
with sequential forward feature selection during 10-fold. Each participant had different top 5 key features
according to their individual prediction model. The most significant top 5 features including (1) Peak Left
Hbo, (2) Peak Right Hbo, (3) AUC Left Hbo, (4) Std Left Hbo, and (5) AUC Right features. These
results further suggested that using a subset of fNIRS features in the review session can be used to predicting

the cognitive load with satisfactory accuracy.

DISCUSSION AND CONCLUSIONS

Amid the increasing complexity of modern buildings, wayfinding becomes nontrivial for building
users and professionals such as first responders. Although the rapid advancements of building
informatics and visualization methods have made wayfinding information more accessible, the
processing of excessive spatial information may also lead to potential risks of cognitive overload,
leading to erroneous or biased decision making. Adaptive wayfinding information systems that closely

monitor a person’s information-induced cognitive load, and adapt the information formats and amounts
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correspondingly, are expected to be a promising solution for certain high-risk professionals who are
challenged by wayfinding tasks, such as first responders. A core component of such a system is a real-
time cognitive load monitoring and prediction method. This paper examines an explicit cognitive load
measure and prediction method based on fNIRS data, i.e., the hemodynamic responses in different
brain areas for evaluating the neural functional activation related to information processing. Compared
to the existing neurophysiological measurement methods, such as EEG and pupillary dilation, fNIRS
data is less affected by motor artefacts and thus is more suited for the real-time cognitive status
monitoring for wayfinding tasks. The challenge is that there is still no widely accepted analytical
pipeline for fNIRS-based cognitive load measurement. Basic questions, such as what features of fNIRS
data can be used to cognitive load, remain unanswered. In addition, many fNIRS studies have focused
on revealing the generic patterns hidden in fNIRS data in regard to predicting cognitive load based on
aggregate data of multiple human subjects(Erdogan et al. 2019; Hong et al. 2015; Verdiére et al. 2018).
There is an urgent need to test and confirm whether there are inherent differences among individuals.

To narrow the gap, we performed a controlled Sternberg experiment (N=15) to model the
relationship between fNIRS data patterns and cognitive load. In the experiment, emergency wayfinding
information, including symbolic information, orientations, words and mixed information, were
presented to the participants. Participants were required to memorize the presented information and
answer questions based on the working memory. Their performance and fNIRS data were recorded for
modeling purpose. The information was grouped into three levels of difficulty, based on the
information amount and the complexity of the information format. Then fNIRS data was used to
classify three levels of cognitive load according to the corresponding difficulty of information
memorization tasks.

We applied a feature extraction method and obtained 6 features from the raw fNIRS data (every
40s interval), including mean oxygen consumption (mean), standard deviation of oxygen consumption

(std dev), peak oxygen consumption (peak), area under curve (AUC), kurtosis of oxygen consumption
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distribution (Kurt) and Skewness of oxygen consumption (Skew). Then we trained SVM machine
learning models to predict cognitive load levels (low, medium, and high) measured by the
memorization task difficulty. The results show an average of 74.06+5.01 percent accuracy in predicting
cognitive load using fNIRS data only in the individual level. In addition, we found that peak oxygen
consumption (peak), area under curve (AUC) and standard deviation (std dev). These features all
reflect the volatility of brain oxygen consumption instead of mean oxygen consumption (mean). It
further justifies the robustness of using fNIRS in tracking cognitive load, as the volatility of
hemodynamic response is less affected by body motions compared to the absolute oxygen consumption.
In addition, we found significant individual differences in fNIRS-based cognitive load models. The
significant features for predicting cognitive load, also varied across the participants. It indicates that
each person is unique regarding the patterns of cognitive load due to the processing of wayfinding
information, suggesting that personalized models instead of universal models are needed for predicting
cognitive load based on neuroimaging data. Based on the findings, we have presented an analytical
pipeline for filtering, cleaning and modeling fNIRS data for cognitive load prediction. The findings are
expected to add evidence to the fNIRS-based cognitive load prediction literature (Du et al. 2020; Shi
et al. 2020), inspire new findings with fNIRS tools, and facilitate the development of future cognition-
driven information systems.

One of the limitations to be addressed in the future is to test the cognitive load models in a
more realistic wayfinding experiment setting. In this study, we controlled the experiment environments
where test subjects were required to sit quietly and to memorize relevant elements of wayfinding
information. The findings are more related to the cognitive load for memory development and
information encoding. Yet in our previous studies (Shi et al. 2020), we found that cognitive status
showed different patterns in information memorization phase (information encoding) and task
performance phase (memory retrieval). It suggests the possibilities that the developed cognitive load

prediction models may not be applicable for all wayfinding task phases (i.e., reviewing information
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versus using the working memory in the field). In addition, we will also need to test how
extemporaneous wayfinding information, i.e., onsite wayfinding information that is not previously
reviewed (e.g., interactive road guidance signage), affects the cognitive load in a simultaneous

information encoding and use process.
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Table 1. fNIRS signal features and related studies

Feature

Formula

References

Mean (Average)

Peak (Maximum)

Stand Deviation (Variance)
Area Under the Curve

(AUC)
Skewness

Kurtosis

Mean(X) = E(X)...2)

Peak(X) = Max(X) ...(3)

Var(X) = E[(X — ©)?] ...(4)

AUC(X) = Y|X]...(5)

Skewness(X) =
E|ED3]-.©0
Kurtosis(X) =
E|EHY..o

(Faress and Chau 2013; Hong et al.
2015; Naseer and Hong 2013; Noori
et al. 2017; Power and Chau 2013;
Verdiére et al. 2018)

(Bauernfeind et al. 2014; Cui et al.
2010; Noori et al. 2017; Verdiére et
al. 2018)

(Holper and Wolf 2011; Noori et al.
2017; Verdiére et al. 2018)
(Schroeter et al. 2006; Verdiére et al.
2018)

(Holper and Wolf 2011; Noori et al.
2017; Verdiére et al. 2018)

(Holper and Wolf 2011; Noori et al.
2017; Verdiére et al. 2018)
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829

830 Table 2. Three levels of task difficulty corresponding to cognitive load levels
Cognitive Load Levels | Encoding Pattern Sternberg Trails
1- Light Load Phonological information for landmarks Trails 1- 40
2- Medial Load Visuospatial information for routes and | Trails 41 - 80
survey
3- Heavy Load Combinations Trails 81 — 120
831
832
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833
834 Table 3. HbO-based classification accuracies of SVM in percentages [%] of individual level feature sets

. SVM

Subjects Accuracy Recall Precisions

1 73.46 72.94 79.25

2 70.79 71.11 82.79

3 78.16 77.65 78.32

4 76.77 77.05 81.17

5 70.08 71.45 79.33

6 78.63 80.05 83.88

7 72.60 70.10 81.95

8 77 .27 76.29 83.20

9 70.21 68.22 77.14

10 85.31 85.01 86.12

11 7542 74.61 82.34

12 73.18 71.63 80.71

13 65.00 63.77 76.62

14 70.02 67.93 80.30

Mean 74.06+5.01  73.41+£5.49  80.93+2.67
835
836
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Table 4. HbO-based classification accuracies of SVM in percentages [%]

Categories SVM

Accuracy Recall Precisions
Individual Level (mean) 74.06 73.41 80.93
Group Level 62.10 60.98 62.87
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Table 5. The Top five features of each subject and group level data sets selected by the wrapper method

Subjects Top features Subjects Top features Subjects Top features

1 1. AUC Right 6 1. Peak Righ 11 1. Peak Right
2. Peak Right 2. Std Right 2. Std Right
3. Std Right 3. Mean Right 3. Skew Left
4. Kurt Left 4. Std Left 4. AUC Left
5. AUC Left 5. Mean Left 5. Peak Left

2 1. Skew Right 7 1. AUC Right 12 1. Std Right
2. Skew Left 2. Peak Right 2. Kurt Left
3. Kurt Left 3. Std Right 3. AUC Left
4. AUC Left 4. AUC Left 4. Peak Left
5. Std Left 5. Peak Left 5. Std Left

3 1. Skew Right 8 1. Kurt Right 13 1. Std Right
2. Peak Right 2. AUC Right 2. Mean Right
3. Std Right 3. Std Right 3. Skew Left
4. Peak Left 4. Kurt Left 4. Std Left
5. Mean Left 5. Std Left 5. Mean Left

4 1. AUC Right 9 1. Skew Right 14 1. AUC Right
2. Peak Right 2. AUC Right 2. Peak Right
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Figure 1. The analytical pipeline for developing the prediction model of cognitive load with fNIRS.
Figure 2. Placement of emitters and detectors for PFC cognitive load data collection.

Figure 3. Sternberg working memory test: The experiment included three levels of working memory tasks. A
trial consisted a Sternberg test with a duration of 2s recognition, 2s retention, 2s retrieval and 500ms fixation.

This test was repeated 40 times with similar patterns in each level group.
Figure 4. Participants: a. Setting up fNIRS optodes; b. Performing Sternberg working memory test

Figure 5. fNIRS signal pre-processing example of participant 4: (a) raw intensity signals; (b) AHbO?2 after

pre-processing (noise and motor artefacts removed).(c) summed signals

Figure 6. The averaged hemodynamic responses (AHbO2) over subjects and channels under level 1-3. Greyed

areas indicate 95% C.1.
Figure 7. Examples of paired features (ROI-right). (a) Individual data (Participant 4); (b) group data.
Figure 8. Examples of Classifier confusion matrices of (a) individual level (participants 4) and (b) group level.

Figure 9. An example of one interaction of feature selection.



