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Electrically controlled emission from singlet and triplet exciton species
in atomically thin light-emitting diodes
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We report electrically tunable spin singlet and triplet exciton emission from atomically aligned transition
metal dichalcogenide (TMD) heterostructures. The observation of these states in both 0° and 60° heterostructures
provides the stacking orientation degree of freedom for polarization switching in interlayer excitons. We confirm
the spin configurations of the light-emitting excitons employing magnetic fields to measure effective exciton
g factors. The interlayer tunneling current across the TMD heterostructure enables the electrical generation of
singlet and triplet exciton emission in this atomically thin p-n junction. We demonstrate tunability between the
singlet and triplet exciton photoluminescence via electrostatic gates and excitation power. By tuning the gates
and interlayer bias voltage, the electroluminescence of the singlet and triplet can be switched with ratios of 10:1.
Atomically thin TMD heterostructure light-emitting diodes thus enable a route for optoelectronic devices that
can configure spin and valley quantum states independently.
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Semiconducting transition metal dichalcogenides (TMDs)
exhibit extraordinary excitonic effects when reduced to the
two-dimensional limit [1–3]. Monolayer TMDs have large
exciton binding energies [4] and spin-valley locking [5,6],
which can be harnessed for optoelectronic [7,8] and val-
leytronic [6] applications. When certain monolayer TMDs are
stacked together to form heterobilayers such as WSe2/MoSe2

[9–17], MoSe2/MoS2 [18], or WS2/MoS2 [19–21], ener-
getically favorable interlayer excitons (IEs) can form across
the atomically sharp interfaces owing to their type-II band
alignment [22] and ultrafast charge transfer [18–20] between
the layers. The resulting IEs have long lifetimes [9,14,15], a
permanent out-of-plane dipole moment [10,14], and modified
optical selection rules [10,11,13,23,24] due to the electrons
and holes residing in separate layers. When the heterostruc-
tures are electron or hole doped, the IEs bind with free carriers
to form charged interlayer excitons (CIEs) [14]. Furthermore,
the IEs are predicted to have modified selection rules allowing
emission from both singlet (electron and hole with opposite
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spin) and triplet (electron and hole with the same spin) ex-
citons with opposite polarization properties [23–25], which
provides a material platform with two long-lived, electrically
tunable IE states.

The singlet and triplet interlayer exciton states, with op-
posite spin characteristics, could be used as the basis for
polarization switches [10] in excitonic quantum devices.
However, since the optical selection rules differ for different
atomic registries of the TMD heterostructure, the IE emis-
sion spectra, even qualitatively, vary between studies without
consistent observation of both singlet and triplet states or
specifications of the heterostructure stacking configuration
[10,11,13,26,27]. Theoretical studies have predicted selection
rules for TMD heterostructures based on the stacking orien-
tation, either 0° aligned or 60° aligned, and atomic registry,
which provide a quasiangular momentum to brighten sin-
glet and triplet optical transitions [23–25]. While singlet and
triplet interlayer excitons have been observed in 60° aligned
heterostructures [26–28], the observation of these states in
0° aligned heterostructures have remained elusive. The 0°
aligned heterostructures are predicted to have flipped polar-
ization coupling to the lower and upper transitions, giving an
additional degree of freedom for valleytronic devices. Further
complications arise from the presence of spatially periodic
moiré potentials in small twist angle structures [29–36]. While
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FIG. 1. Photoluminescence of interlayer excitons in MoSe2/

WSe2 heterostructures. (a),(b) Polarization resolved photolumines-
cence (PL) from devices A and B, respectively. Excitation power,
P = 0.5 μW and 100 μW, respectively, is used to compare all exist-
ing exciton species. Inset: Lowest energy stacking configuration for
0° and 60° heterostructures. (c),(d) Degree of circular polarization
(DOCP) extracted from (a) and (b). (e),(f) PL vs Vtg = αVbg, where
α is based on the h-BN thicknesses, for devices A and B, respectively.
Left inset: device schematic and direction of applied gate voltages.
Right inset: band schematic of an interlayer exciton between the con-
duction band of MoSe2 and valence band of WSe2. (g) Reduced band
diagrams of the MoSe2/WSe2 heterostructure showing the upper
(CB2) and lower (CB1) conduction bands of MoSe2 and the valence
band of WSe2 (VB). The exciton and Fermi energy (black dashed
line) is drawn for each regime marked in (e) and (f). The green
(MoSe2) and yellow (WSe2) shaded areas indicate filled electron
bands.

a multitude of sharp, quantum emitterlike peaks from moiré-
trapped interlayer excitons emerge at very low excitation
power, their selection rules follow that of the broader, free
interlayer excitons, which dominate at higher powers [37–41].
In this work, we demonstrate electrostatic doping and inter-
layer bias-controlled spin singlet and triplet free interlayer
exciton emission in 0° and 60° MoSe2/WSe2 heterostruc-
tures.

Our experiments employ h-BN encapsulated WSe2/

MoSe2 devices with top and bottom gates, and electrically
transparent contacts [Fig. 1(e), left inset], as described in our
previous work [14]. We use a dual-gating scheme where the
top-gate voltage (Vtg) and the back-gate voltage (Vbg) have
the same polarity, achieving higher carrier densities than in

previous IE studies [10,14,15] (see details in Supplemental
Material Sec. 1 [42]). Furthermore, separate electrical con-
tacts made for MoSe2 and WSe2 layers allow operating the
device as an atomically thin p-n diode where the current can
flow across the heterostructure interface. Below we focus on
two representative devices with 0° (device A) and 60° (device
B) stacking orientations.

Figures 1(a) and 1(b) show a comparison of the photolumi-
nescence (PL) spectrum for device A and B at neutral doping
with circularly co- and cross-polarized exciton emission (Ico

and Icross, respectively). In device A, we observe only a single
peak at ∼1.34 eV. For device B, there are two peaks, one at
∼1.39 eV and the other at ∼1.41 eV, with a separation of
∼25 meV. As shown in Figs. 1(c) and 1(d), the degree of
circular polarization (DOCP), computed from Ico−Icross

Ico+Icross
, of the

lower energy peak at 1.39 eV in device B is positive, suggest-
ing that the chirality of the light emitted remains unchanged,
unlike the higher energy peak in device B and the peak in
device A. The observation of two peaks with opposite DOCP
in device B is consistent with previous experimental results
for 60° aligned heterostructures [26,27] and their selection
rules [24,25]. Thus, we tentatively identify the lower and
higher energy peaks as triplet (XT ) and singlet excitons (XS),
respectively, while the emission energy and DOCP for device
A are consistent with a 0° heterostructure [11].

The PL spectrum can further be modified by applying
gate voltages on the devices. Figures 1(e) and 1(f) show the
PL spectrum from devices A and B as a function of Vtg =
αVbg, where α = 0.617 or 1.4 for the two devices (based
on each device’s h-BN thicknesses), respectively. In this gate
voltage configuration, we can maximize our achievable two-
dimensional (2D) carrier density n2D. We identify four distinct
gate regions, marked by I–IV, from the electrostatic doping of
the heterostructure [Fig. 1(g)]. We verify the doping of the
layers by measuring the intralayer exciton absorption spectra
as a function of the gate voltage (see Supplemental Material
Fig. 3 [42]).

The gate dependent PL shows strong atomic stacking
registry dependence. For device A [Fig. 1(e)], only neutral
interlayer excitons labeled as X 0 appear in region I. In region
II (III), the Fermi energy crosses the valence band of WSe2

[lower conduction band (CB1) of MoSe2] and we begin to
p dope (n dope) the heterostructure forming CIEs, X+ (X−

1 ).
The discontinuities in the PL energy between regions I/II
and I/III are attributed to CIE binding energies of ∼15 meV
and ∼10 meV, respectively [14]. In region IV, when the elec-
tron density is further increased, an additional PL peak, X−

2 ,
appears ∼25 meV above the X−

1 peak, which overtakes in
intensity with increasing n2D. This additional exciton feature
is likely related to reaching the upper conduction band of
MoSe2 (CB2). For device B [Fig. 1(f)], we observe a similar
discontinuity in emission energy when entering regions II and
III due to CIE formation but find the higher energy peak to
always be present as we tune the carrier density.

To understand the angular momentum characteristics of
the interlayer excitons, we measure PL under magnetic fields
to determine the effective Zeeman splitting of the exciton
species. We perform polarization-resolved PL measurements
as a function of magnetic field (B) using a cross-polarized
measurement scheme [see Supplemental Material Fig. 4(a)
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FIG. 2. Experimental evidence of spin-singlet and spin-triplet
excitons via magnetic field in device A. (a)–(c) Polarization-resolved
photoluminescence (PL) spectra at n2D = 0, 1.02 × 1013 cm−2, and
1.57 × 1013 cm−2, respectively, for characteristic magnetic fields (B)
using a cross-polarized measurement scheme (see Supplemental Ma-
terial Sec. 4 [42]). Blue (red) curves are σ+ (σ−) collection. The
dashed lines serve as a guide to the eye. (d) PL energy splitting
(�E = Eσ+–Eσ−) as a function magnetic field for X 0, X−

1 , and
X−

2 . Error bars are calculated from the fitting of the peak posi-
tion. The dashed lines are linear fits to the energy splitting giving
g0 = 6.99 ± 0.35, g1 = 6.06 ± 0.58, and g2 = −10.6 ± 1.0. Inset:
Zeeman splitting for the singlet and triplet excitons in the exciton
particle picture and the circular polarization light coupling. (e) Band
diagrams and Zeeman splitting for the singlet and triplet transitions
without (dashed lines) and with (solid lines) magnetic field.

[42]]. Figures 2(a)–2(c) show the normalized σ+ (blue) and
σ– (red) PL spectra measured in device A at n2D = 0, 1.02 ×
1013 cm−2 and 1.57 × 1013 cm−2, respectively. From these
polarization-resolved spectra, we obtain the PL energy split-
ting between the circularly polarized light (�E = Eσ+ −
Eσ−) as a function of B. Figure 2(d) shows that the measured
energy difference follows a linear relation �E = gμBB, where
g is the effective g factor and μB is the Bohr magneton.
From the slope of the measured relation between �E and
B, we obtain the effective g factors for X 0, X−

1 , and X−
2 :

g0 = 6.99 ± 0.35, g1 = 6.06 ± 0.58, and g2 = −10.6 ± 1.0,
respectively. Interestingly, the g factor for X−

2 is greater than
and has the opposite sign of g0 and g1, implying X−

2 has an ad-
ditional Zeeman splitting contribution and that the chiral light
coupling to the K valleys is flipped compared to X 0 or X−

1 .
The observation of a higher energy emission in region IV also
suggests that transitions between the highest WSe2 K-valley

valence band and both spin-split MoSe2 K-valley conduction
bands are allowed. This would indicate that the higher en-
ergy peak is an emissive triplet transition with an in-plane
dipole moment, unlike dark triplet excitons in monolayers
[43–45].

The experimental observations of ∼25 meV splitting be-
tween X−

2 and X−
1 as well as the opposite polarization

characteristics are consistent with spin-singlet and -triplet
transition selection rules in the 0° aligned heterostructure (see
Supplemental Material Sec. 5 [42]). Quantitative evidence for
the singlet and triplet states and opposite circular polarization
coupling is revealed by calculating the expected exciton g
factors using a single electron band picture [9,46]. The ex-
pected g factor is based on the Zeeman shift of each electron
band [Fig. 2(e)] without considering any additional excitonic
effects under magnetic field (see further details in Supple-
mental Material Sec. 6 [42]). More detailed theoretical studies
show that our simplified model uses reasonable assumptions
[25,46,47]. From this model, we calculate the singlet and
triplet g factors to be g0−theory

singlet ≈ 7.1 and g0−theory
triplet ≈ −11.1,

respectively. These calculated g factors are in excellent agree-
ment with experimentally observed values both in terms of
sign and magnitude. Thus, we confirm X−

1 and X−
2 as singlet

and triplet excitonic transitions, respectively. We note that
unlike the traditional picture of singlet and triplet states, the
degeneracy of interlayer exciton singlet and triplet states is
already broken due to spin-orbit coupling. These states split
differently under magnetic field as shown in the inset of
Fig. 2(d) in the exciton particle picture. Similarly, we per-
formed magneto-PL measurement in a separate 60° aligned
sample and confirmed the selection rules and associated large
triplet transition g factor, g60−stack

triplet ≈ −15.1 ± 0.4 (see Sup-
plemental Material Sec. 7 [42]) in agreement with theory and
previous measurements [27]. Thus, we confirm the emission
of triplet excitons in 0° heterostructures occur, but only at high
n2D.

From this analysis, we can now assign the peaks in the
PL spectra as either singlet or triplet states. In regions I–III,
X 0, X+, and X−

1 all have transitions from CB1, allowing us
to assign them as singlet neutral or singlet charged excitons.
In region IV, the X−

2 peak is a transition from CB2 in the
presence of free carriers and is therefore a triplet charged
exciton. Energetically, the triplet charged exciton can form
with an electron in CB1 of either K valley in MoSe2, but
further studies are required for a more detailed understanding.
The emergence of X−

2 only after sufficient band filling can be
explained by the relative dipole strengths of the singlet and
triplet excitons. The lifetimes of X−

1 and X−
2 at high n2D were

measured to be τ1 = 6.08 ± 0.01 ns and τ2 = 6.12 ± 0.02 ns
(see Supplemental Material Fig. 8, inset [42]), respectively,
suggesting the optical dipole strength of the two exciton
species is similar (see Supplemental Material Sec. 8 [42]),
consistent with theoretical calculations [24,25].

We find that the relative intensity of singlet and triplet
exciton emission can be tuned by electrostatic doping and
power of the laser excitation. Figures 3(a) and 3(b) show the
power dependence of the normalized PL emission in devices
A and B. The double peaked features near 1.34 and 1.37 eV
in devices A and B, respectively, are attributed to CIEs due
to changes in residual doping by the excitation power. We
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FIG. 3. Tunable interlayer exciton species via excitation power
and carrier density. (a),(b) Power (P) dependence of the normalized
photoluminescence (PL) spectra at Vtg = αVbg = 0 V for devices A
and B, respectively. (c) Peak intensity ratio between the higher en-
ergy peak and the lower energy peak for device A (orange) and device
B (blue) as a function of excitation power at Vtg = αVbg = 0 V. The
higher energy peak does not appear at this carrier density in device
A. (d) The same peak intensity ratio as a function of carrier density
at P = 6 μW for device A (orange) and P = 100 μW for device B
(blue).

find that device A at neutral doping is always dominated by
lower energy singlet emission without triplet emission even
at high excitation powers. Device B even at neutrality, on the
other hand, has a higher energy singlet peak (∼1.42 eV) which
becomes more prominent at higher powers. In the strongly
nonequilibrium state at the largest excitation, the singlet and
triplet emission are about similar intensity [Fig. 3(c)]. While
the excitation power can show a limited range of singlet/triplet
emission ratio, the electrostatic doping tuned by the gate can
vary the triplet/singlet emission ratio in a wide range. Figure
3(d) shows that the initially dominant singlet emission in
device A turned to more than 70% triplet emission in the high
doping range (n2D > 1.4 × 1013 cm−2), providing a singlet
and triplet device where the emission of one state can be
completely turned off. In device B, the inverse ratio can be
tuned, with the singlet/triplet emission ratio varying between
0.5 and 2.5 over a similar carrier density range. Thus, the
MoSe2/WSe2 heterostructure provides a platform for fully
tunable singlet-triplet exciton emission via electrical gates,
excitation power, and the stacking registry.

Utilizing electrical contacts in WSe2 and MoSe2 layers,
we can operate the device as a gate tunable atomically thin
p-n diode [14,17,54], where the interlayer tunneling current
across the heterostructure interface can generate singlet and
triplet exciton emission. Figure 4(a) shows the current (Ids)
vs drain-source voltage (Vds) curve at Vtg = αVbg = 10 V,

FIG. 4. Electrical generation of singlet and triplet exciton species
in device B. (a) I-V characteristics of device B at Vtg = αVbg = 10 V,
where α = 1.4 is based on the h-BN thicknesses. Inset: Optical im-
age of the sample with yellow (green) lines indicating WSe2 (MoSe2)
area, gray solid (dashed) lines indicatingVtg (Vbg), black dashed lines
outline the contacts, and the red dashed rectangle to indicate sample
area of interest in (b)–(d). (b)–(d) Spatial maps of normalized elec-
troluminescence (EL) generated from the sample when in forward
bias (Vds = 10, 12, and 14 V). The black dashed circle indicates the
collection spot for the spectra. (e) EL spectra as a function of Vds at
fixed Vtg = αVbg = 2.5 V. (f) EL spectra as a function of Vtg = αVbg

at fixed Vds = 7 V. (g) The log of the ratio between the integrated EL
emission from singlet and triplet interlayer excitons as a function of
Vds and Vtg = αVbg showing voltage regions with singlet and triplet
dominant emission. The colored dotted lines show contours of the
total integrated EL. The black dotted and dashed lines correspond to
the linecuts for spectra in (e) and (f), respectively.

where α = 1.4, for device B, demonstrating rectifying diode
behavior as expected for a type-II aligned heterostructure.
Figures 4(b)–4(d) show the spatial distribution of the elec-
troluminescence (EL) emission from the red outlined area
of the heterostructure [Fig. 4(a) inset] under the same gate
conditions at different Vds in the high bias regime. We find
that the spatial distribution of the emission is inhomogeneous,
presumably due to disorders in the channel and the lateral gaps
between the gate structures (see Supplemental Material Sec.
9 [42]). The emission position shifts sensitively with Vds and
Vtg, which tune the current distribution in the channel (see
Supplemental Material Sec. 10 [42]). Figures 4(e) and 4(f)
show the EL spectra collected at a fixed location of the sample
[marked by dashed black circle in Figs. 4(b)–4(d)] for various
gate and bias configurations [along the dotted and dashed
line in Fig. 4(g), respectively]. We demonstrate complete tun-
ability between singlet and triplet exciton EL emission as a
function of Vds and Vtg. Figure 4(g) maps out the log of the
ratio between the integrated singlet and triplet emission as
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a function of Vds and Vtg, showing voltage conditions where
either the singlet or triplet emission is dominant. The ratio
of the EL emission between singlet and triplet, or triplet and
singlet, approaches as large as 10:1. The observed switching is
accompanied by enhancements in the total EL emission (see
Supplemental Material Sec. 11 for details [42]), but further
studies are required to fully understand the gate dependence.
We have demonstrated electrical generation that can be gate-
tuned to be dominated by either singlet or triplet exciton
emission, demonstrating an light-emitting diode (LED) with
selectable emission between opposite spin and polarizability
characteristics.

Our capability of gate tuning to access the higher con-
duction band with opposite spin allows us to create charged
excitons with singlet and triplet spin configurations and op-
posite chiral light coupling. The observation of the elusive
triplet interlayer exciton state allows for the stacking con-
figuration to be used in choosing the lowest energy spin
state of the interlayer exciton. We demonstrate control of
singlet and triplet interlayer exciton emission via electrostatic
doping, optical pump power, and injection current. The ob-
servation of these states under the presence of charges means
circularly polarized light coupling in singlet and triplet ex-
citons can switch between fermionic and bosonic character,
which could be utilized in novel quantum devices. Electrical
generation of tunable singlet and triplet excitons in TMD het-
erostructures, combining long EL lifetime [14] with local gate

engineering [55], paves the way towards independently con-
trolling chiral, valley, and spin quantum states in valleytronic
devices.
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