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QUANTUM CONTROL
Controlling quantum many-body dynamics in driven
Rydberg atom arrays

D. Bluvstein®, A. Omran'?, H. Levine?, A. Keesling®, G. Semeghini', S. Ebadi’, T. T. Wang?,
A. A. Michailidis®, N. Maskara’, W. W. Ho'*, S. Choi®, M. Serbyn®, M. Greiner’, V. Vuleti¢®, M. D. Lukin'*

The control of nonequilibrium quantum dynamics in many-body systems is challenging because interactions
typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate
nonequilibrium dynamics after rapid quenches in a many-body system composed of 3 to 200 strongly
interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on
Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can
be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-
crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size
dependence of this emergent phenomenon, demonstrating new ways to steer complex dynamics in many-body
systems and enabling potential applications in quantum information science.

ynamics of complex, strongly inter-

acting many-body systems have broad

implications in quantum science and

engineering, ranging from understand-

ing fundamental phenomena (7, 2) to
realizing robust quantum information sys-
tems (3). Such dynamics typically lead to a
rapid growth of quantum entanglement and
a chaotic spreading of the wave function
throughout an exponentially large Hilbert
space, a phenomenon associated with quan-
tum thermalization (7, 2, 4). Recent advances
in the controlled manipulation of isolated, pro-
grammable many-body systems have enabled
detailed studies of nonequilibrium states in
strongly interacting quantum matter (4-6), in
regimes inaccessible to numerical simulations
on classical machines. Identifying nontrivial
states for which dynamics can be stabilized or A
steered by external controls is a central ques-
tion explored in these studies. For instance, it
has been shown that strong disorder, leading
to many-body localization (MBL), allows sys- B
tems to suppress entanglement growth and
retain memory of their initial state for long
times (7, 8). Another example involves quantum
many-body scars, which manifest as periodic
entanglement and disentanglement dynamics

nonequilibrium phases of matter, such as the
discrete time crystal (DTC), which sponta-
neously breaks the discrete time-translation
symmetry of the underlying drive (72, 13). Here,
we report the discovery of a new type of non-
equilibrium dynamics associated with many-
body scarring trajectories stabilized by periodic
driving. The driven scars result in an emergent
phenomenon akin to discrete time-crystalline
order that can be harnessed to steer entangle-
ment dynamics in complex many-body systems.

In our experiments, neutral #’Rb atoms are
trapped in optical tweezers and arranged into
arbitrary two-dimensional patterns generated
by a spatial light modulator (14, 15). This pro-
grammable system allows us to explore quan-
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tum dynamics in systems ranging from chains
and square lattices to exotic decorated lattices,
with sizes up to 200 atoms. All atoms are
initialized in an electronic ground state |g)
and coupled to a Rydberg state |r) by a two-
photon optical transition with an effective
Rabi frequency Q(¢) and detuning A(t) (Fig. 1A).
When excited into Rydberg states, atoms in-
teract through a strong, repulsive van der
Waals interaction V ~1/d%, where d is the
interatomic separation, resulting in the many-
body Hamiltonian (10)

H Q
DM O W
Ziq‘Vij ity

where 7 is the reduced Planck constant, n; =
|r;)(r;| is the projector onto the Rydberg state
at site 4, and of = |g;)(rs| + |7:)(g:| flips the
atomic state. We choose lattice spacings where
the nearest-neighbor (NN) interaction I, > Q
results in the Rydberg blockade (14, 16, 17), pre-
venting adjacent atoms from simultaneously
occupying |r). For large negative detunings, the
many-body ground state is |[gggg...), and at
large positive detunings on bipartite lattices,
the ground state is antiferromagnetic, of the
form |rgrg...). Starting with all atoms in |g),
adiabatically increasing A from large negative
values to large positive values thus prepares
antiferromagnetic initial states |AF) (10, 18-21);
we choose array configurations (e.g., odd num-
bers of atoms) such that one of the two classical
orderings, |AF;), is energetically preferred.

To explore quantum scarring in two-
dimensional systems, we prepare |AF;) on an
85-atom honeycomb lattice and then suddenly
quench at fixed Q to a small positive detuning
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Fig. 1. Experimental investigations of quantum many-body scars. (A) Two-dimensional atom array
subject to global Rydberg lasers with Rabi frequency Q and detuning A. (B) A quasi-adiabatic ramp of A and
Q prepares an antiferromagnetic state |AF;) with sublattice A excited, and a detuning quench launches
nonequilibrium dynamics. Atoms in |g) are imaged in optical tweezers by fluorescence, whereas atoms

in |r) (empty circles) are expelled and detected as atom loss. (C) The Rydberg population on sublattices A
and B undergoes periodic oscillations. The inset shows the geometry used here.
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(Fig. 1B). The system quickly evolves from
|AF,) into a disordered state as expected from
a thermalizing system, but then notably the
opposite order|AF,) emerges at a later time (11).
Through the same process, the system evolves
back to |AF,), consistent with previous obser-
vations of quantum scars in one-dimensional
chains (10, II). These scarring dynamics can
be seen in the evolution of sublattice A and B
populations as a function of quench duration
(Fig. 1C), where disordered configurations arise
when the sublattice populations are approxi-
mately equal. These observations are surprising
in a strongly interacting system and indicate a
special dynamical behavior as well as a form of
ergodicity breaking (71, 22). This scarring be-
havior is captured by the so-called “PXP” model
of perfect NN blockade, in which V, is infinite
and interactions beyond NN are zero: Hpxp =
(Q/2)) " P; 10} P;y1, where P; = [g;)(gi| is the
projector onto the ground state at site 1.
(11, 22-26). In this model, the coherent oscil-
lations of the sublattice population difference
(n), — (n)p are understood as the oscillations
of an emergent “large spin” (27).

We observe this oscillatory behavior in a
wide variety of bipartite lattices (Fig. 2A). (We
do not observe scarring on the nonbipartite
lattices that we measure.) As an example, we
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plot the difference between the sublattice A
and B populations (n), — (n)y for a 49-atom
square and a 54-atom decorated honeycomb
(28), with Rabi frequency Q/2n = 4.2 MHz and
interaction strength V, /21 = 9.1 MHz We note
a marked difference in the lifetime of periodic
revivals for these two different lattices. Quanti-
tatively, we find that dynamics of (n), — (n)y
are well-described by a damped cosine, v+
Ccos(Qt)exp(—t/t), with oscillation frequency
fz, decay time 1, offset yo, and contrast C.
Although Q~ 0.6Q on both the square and
decorated honeycomb lattices (and on the
other lattices we probe), the fitted  for these
two different configurations are 0.22(1) and
0.50(1) us, respectively.

To understand this geometry dependence,
we consider an empirical model for the decay
rate of many-body scars [see (29)], parame-
trized as follows:

1 1 Q2
- ”(;nzwm) +
1 1
(o D)t @)

where the first two terms capture deviations
of the Rydberg Hamiltonian from the ideal-
ized PXP model, owing to second-order virtual
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coupling to states violating blockade and next-
nearest-neighbor (NNN) interactions, respec-
tively (29); o, B, and 15 are phenomenological
values. In Fig. 2B, we plot the measured 1/ as
a function of the first and second terms in Eq. 2
for all geometries shown in Fig. 2A and varied
interaction strengths ;. We find that the decay
rates fit well to a plane with slopes o = 0.72(12)
and B = 0.58(5) and offset 1/1y = 0.4(2)MHz.
Note that 1/1o, which includes decay contri-
butions inherent to the idealized PXP model
(11, 28), is much smaller than 1/7; i.e., the decay
of scars is dominated by imperfect blockade
and long-range interactions. The observation
that long-range fields contribute to decay also
motivates quenching to small positive Aq =
Agopt =1/ ZZZ,,bNN Vi, which cancels the
static contribution from the long-range inter-
actions (29) and is used throughout this work.
These results also suggest an intrinsic limit to
the scar lifetime, coming from the trade-off
between imperfect blockade (<1/7) and long-
range interactions (c<1V}). For example, we
estimate a maximum lifetime 1, = 0.9 us fora
chain and 1y, = 0.4 us for a honeycomb lattice.

‘We next investigate the effect of parametric
driving on many-body scars. To this end, we
implement quenches to a time-dependent de-
uning Aq(¢) = Ao + Amcos(ont), as illustrated
in Fig. 3A, and explore a nonperturbative
regime of Ay, Ay, o, ~ Q. Notably, in Fig. 3B,
we find that such a quench results in a fivefold
increase of scar lifetime compared with the
fixed-detuning case, for properly chosen drive
parameters (modulation frequency m,, = 1.24€Q,
offset Ay = 0.85€) and amplitude A,, = 0.98Q
for this nine-atom chain). Further, we find that
the drive changes the oscillation frequency Q
to /2, apparent in the synchronous revival
of (n), — (n)y every two drive periods of
Ag(2).

Figure 3C shows the scar lifetime and oscil-
lation frequency as a function of modulation
frequency o, for a nine-atom chain (with dif-
ferent I/, than Fig. 3A), a 41-atom honeycomb,
and a 66-atom edge-imbalanced decorated
honeycomb [tabulation of system and drive
parameters in (29)]. For all three lattices, a
robust subharmonic locking of the scar fre-
quency is observed at oy, /2 over a wide range
of on, accompanied by a marked increase in
the scar lifetime. The optimal driving frequency
roughly corresponds to twice the natural scar
oscillation frequency for the chain and honey-
comb lattice (with an apparent ~10% shift
toward lower m,,), whereas the imbalanced
lattice exhibits an unexpected double-peak
structure (29). We note that sizable lifetime
enhancements are found even when Ay, Ag >

Vi, and even in numerics for the ideal-
ized PXP model (29), indicating that the phys-
ical origin of the enhancement is not simply
amean-field-interaction cancellation akin to
fixed Aq opt-

2 of 4

1202 ‘sl Aepy uo /Bio Bewasusios aousios//:dny woly papeojumoq


http://science.sciencemag.org/

RESEARCH | REPORT

Fig. 3. Emergent sub- A c
harmonic locking and G 2 Prepare [AF;) 1o war2 . 3
stabilization. (A) Pulse 33 QuenchENaITe & Chain ) +¢¢ 4
sequence showing state @ :;’g:yli’b":;md o 25 %%
preparation and quench with B o5 — Tinea = 0-33(2)us, W= 0.6926) Q.5 081 dec. hon. ¢+ 8 2 ¢ ¢#><> S/

Aq(t). (B) Scar dynamics = @] % £ ¢/ B

on a chain during quench to 5_0 5 Bare | QE So6 (; & + _51.5 é é’b |
. . . : = , 0 A G
fixed optimal detuning LC 05 — e = 1.81(13)pis, wn = 0.6232) Q] » 5 : o #¢&‘§ e 00 A
(bare) with lifetime tfyeq, and = 0 -

. . < 0.4 05 =" o9
time-dependent detuning seeetey Y
(drive) with modulation 0.5 0 1

1240 and 0 2 3 08 12 16 2 08 12 16 2
frequency om = 1. an Quench time (us) Modulation frequency w,/Q Modulation frequency w,/Q

lifetime tgrive. The drive D E
. T 1 ly mixed
increases thevscar lifetime s 53 (is Bare o [DW,) | In(@)f---- e
and changes its frequency to § g2 Z |AFs) |
/2. (C) Scar response 2 s 2 g &
frequency and lifetime as a 2 |AF;) &
function of wm, showing a £ [ofo¥xouc]), 0 w 0

. . @©

subharmonic locking and = 1 " 05T ome nf ]
lifetime increase. (D) Dynam- & b
. . . o
ics of the entire Hilbert space g .- 3
measured with experimental £ [cadesoigi] i; /\/\»\f\/“\["\m[\
snapshots (0.5 million total bit \DW1)51 0 0 Drive
strings). The microstates of 0 oot 0 1 2 3 0 1 2 3
the constrained Hilbert space |AF)[50+0+0:0+ ] Quench time (us) Quench time (ps) Quench time (ps)

are ordered by ny — ng, or equivalently by Hamming distance (number of spin flips) from |AF;) [see (29) for details]. Right subplots highlight |AF,) and a state with a domain
wall |[DW;). (E) Reduced density matrix of a single atom in a chain (numerics) shows that driving reduces the growth of entanglement entropy Sent.

Figure 3D shows the experimentally ob-
served distribution of microscopic many-body
states across the entire Hilbert space of the
nine-atom chain, as a function of quench time
(see also movie S1). For the fixed detuning
quench, oscillations between |AF;) and |AF,)
product states are observed, before the quan-
tum state spreads and thermalizes to a near-
uniform distribution across the many-body states
(1, 2). Notably, parametric driving not only
delays thermalization but also alters the actual
trajectory being stabilized: The driven case also
shows periodic, synchronous occupation of
several other many-body states (emphasized
in the right panels of Fig. 3D), seemingly dom-
inated by those with near-maximal excitation
number (indicated in the left panels). This
suggests that rather than enhancing oscil-
lations between the |AF) states, the parametric
driving actually stabilizes the scar dynamics to
oscillations between entangled superpositions
composed of various product states. Figure 3E
further illustrates the change in trajectory with
numerical simulations of the local entangle-
ment entropy, revealing that driving stabilizes
the periodic entangling and disentangling of
an atom with the rest of the system.

‘We observe this emergent subharmonic sta-
bilization for a wide range of system and drive
parameters. Figure 4, A and B, shows the time
dynamics of (n), — (n); and the normalized
intensity of its associated Fourier transform
|S(w)|? as a function of the drive frequency for
a nine-atom chain. A response is observed
at o = oy, for o, < 0.8Q, before suddenly
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transitioning into a subharmonic response
® = Oy /2 for oy > 0.8Q. For different drive
parameters, a weak fourth subharmonic re-
sponse at ® = oy, /4 is also observed (29). To
quantify the robustness of the observed re-
sponse, we evaluate the subharmonic weight,
IS(® = o /2)|?, which encapsulates both the
®m /2 response and enhanced lifetime (30, 31).
Figure 4C shows the corresponding results for
a nine-atom chain and a 41-atom honeycomb
as a function of the modulation frequency
oy and the lattice spacing a [in units of the
blockade radius R; defined by V(Rp) = Q1.
A wide plateau in the subharmonic weight is
clearly observed for both lattices, as a function
of both modulation frequency and interaction
strength (range 0.6 to 0.9a/R; corresponds to
Vo/2m =~ 8 to 80 MHz). To quantify the many-
body nature of this stable region (13), we make
use of the subharmonic rigidity, defined as the
sum of the subharmonic weights measured

at each modulation frequency: Zmn [Se, (0 =

om/2)|> for on = 0.75,0.85,...,1.75Q. The
subharmonic rigidity quantifies robustness of
the subharmonic response, where large values
imply a large subharmonic response over a
wide range of modulation frequencies. Figure
4D shows that subharmonic rigidity increases
with system size until saturating at roughly 13
atoms for both a chain and a honeycomb lat-
tice and appearing stable for the honeycomb
lattice even to 200 atoms.

The emergent subharmonic response and
its rigidity are strongly reminiscent of those

26 March 2021

associated with discrete time-crystalline order
(12, 13, 30-32). Yet, there are clear distinctions.
Specifically, this behavior is observed only
for antiferromagnetic initial states, whereas
other initial states such as |ggg...) thermalize
and do not show subharmonic responses
(29). This sharp state dependence distinguishes
these observations from conventional MBL
or prethermal time crystals (33), where sub-
harmonic responses are not tied to special
initial states. Moreover, it is surprising that
our drive, whose frequency is resonant with
local energy scales, enhances quantum scarring
and ergodicity breaking instead of rapidly
injecting energy into the system, as would
generally be expected in many-body sys-
tems (34).

To gain intuition into the origin of the ob-
served subharmonic stabilization of many-body
scars, we consider a toy, pulsed model with

Floquet unitary Ur(6,1) = e*ieziniefinxpr,

where rotation angle 6 arises from an infini-
tesimal, strong detuning pulse [see the follow-up
theoretical work (35)]. Owing to the particle-
hole symmetry of the PXP Hamiltonian, for
0 = m, the time evolution e~»<* during one
pulse is canceled by the time evolution eZ7rxet
in a subsequent pulse, generating an effective
many-body echo and subharmonic response
(29, 35). Interestingly, for small deviations
e from perfect n rotations, giving rotation
angles 6 = © + €, revivals vanish for generic
initial states but persist robustly for an
initial |AF) state (29, 35). This behavior can be
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Fig. 4. Robustness of the subharmonic response. (A) Dynamics of sublattice population difference after quench, as a function of modulation frequency. (B) Fourier
transform intensity |S(m)|2 of data in (A), showing a harmonic locking for my, < 0.8Q and a subharmonic locking for om > 0.8Q. (C) Phase diagram of the

subharmonic response |S(®w = on/ 2)|2 in chain data (left), chain numerics (middle) from perfectly initialized |AF;) without experimental imperfections, and honeycomb data
(right). (D) Increase of subharmonic rigidity (sum of subharmonic weights measured over a range of modulation frequencies) with increasing system size.

understood as follows: Owing to the scarring
character of the antiferromagnetic initial states,
the PXP evolution approximately realizes an
effective n-pulse from |AF,;) to |AF,) but results
in ergodic spreading for other initial states.
Accordingly, for 6 = © + €, evolution still ap-
proximates an effective many-body echo for the
scarred |AF) but does not reverse the chaotic
evolution of generic initial states. Finally,
the additional szini serves as a “stabilizing
Hamiltonian” by creating an effective gap
between the |AF) states (which have maximal
atomic excitations 72,,x = Zini) from the rest
of the spectrum. In practice, the |AF) states
will be dressed by other states with near-
maximal atomic excitations, consistent with
the dynamics in Fig. 3D. Although the above
arguments involve an idealized pulsed model,
neglect large NNN interactions, and do not
explicitly explain the observations in imbalanced
lattices (Fig. 3C), this analysis already offers
useful insight by connecting the observed
subharmonic response to DTC physics (35)
and warrants further study.

These considerations indicate that the ob-
served subharmonic stabilization of many-body
scars constitutes a new physical phenomenon
that can be used for steering quantum dynam-
ics in complex systems. Our observations chal-
lenge conventional understandings of quantum
thermalization, warranting further investiga-
tion to understand the exact nature and con-
ditions for this stabilization, its relationship to
dynamical phases of matter such as the DTC,
and the special role of the many-body scar
states. Such studies could be extended to
systems with more complex geometry, control,
and topology, ranging from other initial states
(36) and nonbipartite arrays (14, 21I) to the
implementation of these techniques in other
controllable many-body systems. These results
open new possibilities for robust control of
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complex entangled states in many-body sys-
tems, with potential applications in areas such
as quantum metrology and quantum informa-
tion science (3).
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Dynamic stabilization of an array

Large-scale systems comprising one-dimensional chains and two-dimensional arrays of excited atoms held in a
programmable optical lattice are a powerful platform with which to simulate emergent phenomena. Bluvstein et al. built
an array of up to 200 Rydberg atoms and subjected the system to periodic excitation. Under such driven excitation, they
found that the array of atoms stabilized, freezing periodically into what looked like time crystals. Understanding and
controlling the dynamic interactions in quantum many-body systems lies at the heart of contemporary condensed matter
physics and the exotic phenomena that can occur.
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