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ABSTRACT  

The RNA-dependent RNA polymerase (RdRp) is a key enzyme which regulates the viral 

replication of SARS-CoV-2. Remdesivir (RDV) is clinically used drug which targets RdRp, 

however its mechanism of action remains elusive. This study aims to find out the binding dynamics 

of active remdesivir-triphosphate (RDV-TP) to RdRp by means of molecular dynamics (MD) 

simulation. We built a homology model of RdRp along with RNA and manganese ion using RdRp 

hepatitis C virus and recent SARS-CoV-2 structures. We determined that the model was stable 

during the 500 ns MD simulations. We then employed the model to study the binding of RDV-TP 

to RdRp during three independent 500 ns MD simulations. It was revealed that the interactions of 

protein and template-primer RNA were dominated by salt bridge interactions with phosphate 

groups of RNA, while interactions with base pairs of template-primer RNA were minimal. The 

binding of RDV-TP showed that the position of phosphate groups were at the entry of the NTP 

channel and it was stabilized by the interactions with K551, R553, and K621, while the adenosine 

group on RDV-TP was pairing with U2 of the template strand. The manganese ion was located 

close to D618, D760, and D761, and helps in stabilization of the phosphate groups of RDV-TP. 

Further we identified three hits from the natural product database that pose similar to RDV-TP 

while having lower binding energies than that of RDV-TP, and that SN00359915 had binding free 

energy about three times lower than that of RDV-TP. 

Keywords: COVID-19; SARS-CoV-2; RdRp; remdesivir; coronavirus; molecular dynamics 

simulation 
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1. Introduction 

Coronavirus 2019 (COVID-19) is a disease due to the SARS-CoV-2 virus which presently 

threatens human life across the globe. It is highly contagious and has affected the lives of millions 

of people with over one million deaths as of October 2020. There is therefore an urgent need to 

discover effective therapeutics for eliminating the disease considering its detrimental effects to 

human life.  

SARS-CoV-2 is a positive-strand RNA virus whose genomic structure expresses high 

similarity with previous severe acute respiratory syndrome coronavirus (SARS-CoV). Like other 

coronaviruses, the proliferation of the SARS-CoV-2 requires non-structural protein 12 (nsp12) 

(RNA-dependent RNA polymerase, RdRp), a key enzyme which regulates the viral genome 

replication and transcription. It is thus the validated target for the development of COVID-19 

disease therapeutics. Remdesivir (RDV) is a clinically-used drug which targets RdRp and its 

efficacy against Ebolavirus (EBOV) infection is well-understood [1, 2], SARS-CoV-1 and Middle 

East respiratory syndrome coronavirus (MERS) [3-6] has also been previously reported. Due to 

the high sequence similarity of RdRp structures of SARS-CoV-1 and SARS-CoV-2 (96% 

sequence identity), it has been therefore approved for emergency use of treating SARS-CoV-2 

virus [7]. 

Remdesivir is a prodrug and nucleoside analogue which functions after biotransoformation 

into its active triphosphate form (RDV-TP).  It works as a substrate mimic of ATP, which is a 

substrate for RdRp, for nucleotide addition on the primer RNA strand. However, RDV has been 

proposed to work differently during chain translocation. Several works proposed that the RDV 

induced delayed chain termination [8, 9], however, its mechanism of action is not completely 

understood [10, 11]. This study aims to elucidate the mechanism of action and dynamics of the 
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RDV binding into RdRp by means of molecular dynamics (MD) simulation. The MD simulation 

approach has been widely accepted to get invaluable insight into drug binding in a specific target 

at the molecular level.  

Previous computational studies on the interactions between remdesivir and SARS-CoV-2 

RdRp were reported. For instance, studies by Elfiky (2020a, 2020b) [12, 13] indicated the strong 

binding of remdesivir to RdRp. Kato et al. (2020) described intermolecular interactions between 

remdesivir  and SARS-CoV-2 RdRp by employing fragment molecular orbital calculations, which 

indicated that T687, N691, and D760 are critical residues [14]. Meanwhile, a study by Zhang and 

Zhou (2020) described the inhibitory mechanism of remdesivir to SARS-CoV-2 RdRp [15]. 

However, the previous studies lacked the RNA template-primer in their RdRp complex models, 

which is crucial in the nucleotide triphosphate binding. Here we reported the remdesivir 

interactions with the RdRp complex along with RNA template-primer.  

We first built the RdRp complex along with the primer RNA, template RNA, and 

manganese ions prior to docking RDV-TP and ATP to the RdRp model. We then employed the 

RDV-TP bound to the RdRp model to identify molecular hits of potential RdRp inhibitors from 

the natural product database through pharmacophore screening. Natural products are continuously 

showing their importance in drug discovery and development, as up to 80% of drugs including 

those that inhibit viral replication approved by the Food and Drug Administration between 1981 

and 2014 are linked to natural products [16]. For instance, catechin and epigallocatechin gallate 

(EGCG) were reported to have antiviral activity against SARS-CoV and MERS-CoV, respectively 

[17]. We validated the binding of our natural product hits using 200 ns MD simulation for each 

compound and performed MM-PBSA energy calculations to evaluate their affinities to RdRp. 

Interestingly, the three molecular hits had lower binding affinities than that of RDV-TP.   
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2. Experimental Section 

Homology Modeling and Ligand Preparation 

The RdRp model was constructed using Maestro’s homology modeling tools [18]. The 

electron microscopy solved structure of SARS-CoV-2 non-structural protein 12 (NSP 12, PDB ID: 

6M71) [19] and X-ray solved structure of RNA primer template hepatitis C virus NS5B (4WTG) 

[20] was employed. The charge state of the RdRp complex was optimized at pH=7. The complex 

was further preprocessed, optimized, and minimized with Maestro’s protein preparation wizard 

tool [18].  

Using the prepared RdRp structure, a receptor grid file was generated around the RDV-TP 

binding site and the ionization/tautomeric state of RDV-TP was generated at pH=7 using Maestro’s 

Epik tool [21, 22]. The ligand was then docked to the receptor using the Glide XP docking [23] 

[24] scoring function. The MD simulation was then performed to check the binding dynamics of 

RDV-TP.  

For comparison and validation of both our constructed RdRp complex and modeling 

methods for accuracy and consistency, we utilized the recently deposited crystal complex of RNA 

polymerase nsp12-nsp7-nsp8 with bound template-primer RNA and RDV-TP (PDB ID: 7BV2) 

[25]. After docking, we performed a sequence alignment of our newly bound polymerase-RDV-

TP complex onto 7BV2, including the RNA template-primer and RDV-TP models and 

corresponding metal ions for best comparison. Figure S1 shows that our model is consistent with 

the geometry of 7BV2 in regards to partial protein conformations, RNA template-primer shape 

and RDV-TP binding poses. This information encouraged us to further continue with this model 

in the future simulations. 
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Pharmacophore screening was performed using active remdesivir (Figure S2) against 

325,187 natural product molecules [26] by means of Ligand Scout 4.3. [27]. In our pharmcophore 

model, we defined seven pharmacophore features including two negative ionizable, one aromatic 

ring and four H-bond acceptors and their corresponding positions. We also identified R553, K621, 

D618, D760, D761, and U2 of the template strand to be crucial in remdesivir binding. The natural 

origin compounds were our greatest priority in the present study since they exhibited inhibition to 

the RdRp of other RNA viruses, low-cost availability, high bioavailability, low toxicity, and 

received greater importance for their antiviral applications. However, we anticipated the potentials 

of compounds of other origin, which is also underway in our group. Before docking, the 

ionization/tautomeric states of each compound were generated at pH=7 using Maestro’s Epik tool 

[21, 22]. The lowest ionization/tautomeric states were selected, and then their geometries were 

minimized to their most energetically favorable states. To check if our docked ligand poses were 

reasonable, we compared the docked poses of the 65 ligands with the RDV-TP pose. Clearly, the 

65 ligands bind similarly to the binding pocket of RDV-TP but with some differences. This 

provided a reasonable starting pose for future MD simulations which could further refine the 

binding pose given the full conformation flexibility from the simulations. 

 

MD System Setup 

Several MD simulations were performed: one 500 ns simulation for the apo-form of RdRp, 

three 500 ns simulations for the RdRp-RDV-TP complex, three 500 ns simulations for the ATP-

RdRp complex, and a 200 ns simulation for each complex of SN00166900, SN00303170, and 

SN00359915. MD simulations were conducted by using AMBER16 software [28]. The AMBER 

ff14SB [29], RNA.OL3 [30, 31], and GAFF2 [32] forcefields were applied for protein, RNA and 
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ligands, respectively. A salt concentration of 0.15 M was applied to each system and were placed 

in a truncated octahedron TIP3P water box with a 10 Å radius. Each system underwent a 10000 

step minimization three times, which consisted of 500 steps of steepest descents and 9500 

conjugate gradients each. Then, minimizations were applied to each system to relax ion and water 

molecular positioning, with second and third minimizations being conducted with and without 

protein backbone atoms restraint, respectively. Each system was heated from 0-100, 100-200, and 

200-300K, with each undergoing 50 ps under NVT ensemble with a time step of 0.0005 ps and a 

5 kcal mol-1 A-2 restraint.  Each system was then allowed three steps of relaxation under NPT 

ensemble, each with and without 3 kcal mol-1 A-2, 1 kcal mol-1 A-2 restraints, respectively. 

The Langevin thermostat with a collision rate of 1.0 ps-1 was applied to all covalent bonds 

involving hydrogen atoms and were restrained using SHAKE algorithm [33]. The PME method 

was employed to treat long-range electrostatic interactions with an integration step of 2 fs [34]. 

The long-range non-bonded interactions were calculated with a cutoff distance of 9.0 Å by 

applying periodic boundary conditions.  

To check the convergence of MD simulations, we calculated the RMSD values of protein 

Cα, RNA backbone, and ligand main atoms for each trajectory by employing the CPPTRAJ 

module [35]. In addition, the root mean square fluctuations (RMSF) of each individual residue of 

the protein, RNA and individual atoms of the ligands were calculated to characterize the local 

structural fluctuations in each complex. 

Clustering analysis was employed to group similar RdRp-ligand structures with ions and 

solvent molecules being omitted. The backbone RMSD matrix was used as the metric for 

similarity, and the clustering method was accessed by DBSCAN [36] via CPPTRAJ module. The 

distance cutoff (epsilon) was 2.5 and minpoints 15, and the most abundant clusters were used for 
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analysis. For the RDV-TP complex, the last 200 ns of simulation data were used, while for complex 

of SN00166900, SN00303170, and SN00359915, the last 100 ns of simulation data were used for 

clustering analysis. 

The binding energy of ligands were calculated using the Molecular Mechanics-Poisson 

Boltzmann solvent accessible surface area (MM-PBSA) method [37] via the MMPBSA.py 

module. Trajectories of 200 snapshots of the last 100 ns of each complex was used for calculations. 

 

3. Results and Discussion 

Homology model of RdRp complex 

Before constructing the RdRp complex model, sequence alignment between SARS-CoV-

2 non-structural protein 12 (NSP 12, PDB ID: 6M71) and RNA primer template hepatitis C virus 

NS5B (4WTG) was conducted. Superposition of the modelled and crystallographic structures is 

depicted (Figure S3-A), which shows that both structures align well with each other, particularly 

amino acid residues 1-541. The interactions of protein and template-primer RNA mostly originated 

from contributions in the RNA phosphate group. Hydrogen bonding interactions occurred with 

S501, R569, S592, Y595, and Y689, while salt bridge interactions occurred with K500, K577, and 

R583 (Figure S3-B). The template-primer RNA base pair interactions with the protein occurred 

between Thymine base and S682 (H-bond) and K500 (pi-cation) (Figure S3, B and C). This 

indicated that the elongation step of RdRp function is not sequence specific which was also implied 

in the previous study [25].  

During the MD simulations, we monitored the H-bond occupancy between RNA and 

protein during the 500 ns timescale (Table S2). It showed that high H-bond occupancies occurred 

between U5 (U554) primer strand and U2 (U543) of the template strand with S814 (S445) and 
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S682 (S313) occupancies of 96.87% and 82.53%, respectively. The modest occupancies occurred 

in many H-bonds interactions; for instance, those between A3 (A544) of the template strand with 

D684 (D315) (69.16%), A4 (A545) with R569 (R200) (66.03%), and U8 (U549) of the template 

strand with Y595 (Y226) (58.40%). In addition, various H-bond interactions between protein and 

RNA and between RNA bases were observed to have low occupancies (Table S2). 

 

The binding of Remdesivir and ATP to RdRp complex 

RDV-TP was docked at the i position against RdRp SARS-CoV-2 model which contains 6 

bases in the primer strand, 8 bases in the template strand, and a manganese ion (Figure 1A). The 

conformation of RDV-TP was identical with the ATP pose (Figure 1B), with both RDV-TP and 

ATP were located at the catalytic site of RdRp. The position of the phosphate group at the NTP 

entrance channel may reflect its role in inhibiting the entry of NTP to the active site. 

 

A 
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B 

 

 

Figure 1. The 3D poses of RDV-TP (A) and ATP (B) in the RdRp SARS-CoV-2 model.  

Primer and template strands are colored red and cyan, respectively. 

 

The detailed interactions of docked RDV-TP and ATP with RdRp are depicted (Figure 2). 

Both phosphate groups of RDV-TP and ATP formed H-bond interactions with positively charged 

amino acid residues K621 and R555, while salt bridge interactions formed with K551 and R555. 

The phosphate groups of both ligands were additionally stabilized by manganese ions through 

metal coordination and salt bridge interactions. The adenosine motifs of both RDV-TP and ATP 

established H-bond interactions with U2 of template strands and pi-pi stacking interactions with 

U6 of primer strands. Additional pi-pi stacking interactions were formed with A3 of the template 

strand in the ATP conformation. Interactions with N691 were formed in both RDV-TP and ATP 

through their 3’-OH groups. In both complexes, D623 and D760 were located close to phosphate 

and manganese ions, while the nitrile group of RDV-TP was surrounded by T687 and A688. 

Clearly, the docked poses of both RDV-TP and ATP were almost identical.  
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A 

 

B 

 

 

Figure 2. The detailed interaction of docked RDV-TP (A) and ATP (B) with RdRp. 

During the 500 ns simulations, several H-bond interactions were conserved. The RDV-TP 

H-bond interactions occurring with U2 (U543) of template strand were retained at high occupancy 

(75.39%), while that occurring with D760 (D391) was maintained at modest occupancy (48.5%). 

In contrast, H-bond with R555 (R186) was maintained at low occupancy (23.62%). Numerous H-

bond interactions between RDV-TP and RdRp complex occurred with low occupancies (Table 

S3). In the case of ATP, the H-bond occupancies observed in the docked conformation were low, 

such as those occurring between ATP and R555 (R186) (33.87%) and K551 (K182) (12.91%). 

Clearly,  RDV-TP was more capable at maintaining base pairing particularly with U2 (U543) of 

template strand. RDV-TP had more intense H-bond interactions during the MD simulation as 
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compared with its ATP counterpart. The H-bond occupancies of ATP complex during 500 ns MD 

simulation are tabulated in Table S4. 

The trajectory convergence during MD simulation was checked through RMSD values  

averaged over three independent 500 ns MD simulation for backbone receptor Cα, RNA and ligand 

main atoms for apo-RdRp, ATP, and RDV-TP complexes (Figure 3). It is clear in Figure 3 that 

the receptor backbone quickly reached stability before 100 ns and remained stable throughout the 

simulation time for both RDV-TP and ATP systems. The RMSD of RNA main atoms showed 

greater fluctuations and reached stability at ~280 ns in both RDV-TP and ATP while the average 

fluctuation during the whole simulation time was ~2Å. The ligand RMSD of RDV-TP reached 

stability at ~50 ns, while those of the ATP system occurred at an earlier simulation time (~100 ns). 

The RMSD values of both RDV-TP and ATP systems were higher than that of the apo system, 

which indicated that the binding of RDV-TP and ATP induced greater fluctuations in RdRp 

complex during 500 ns simulation time. The RMSD values for the first, second and third 500 ns 

MD simulations of ATP and RDV-TP show similar patterns (Figure S4). 

 

  

Figure 3. RMSD values for the receptor Cα, RNA main atoms and ligand main atoms averaged 

over three 500 ns runs for apo RdRp and RDV-TP (A) and apo RdRp and ATP (B). Apo, RDV-

TP, and ATP are colored red, green, and cyan, respectively. 

 

To observe the fluctuations of amino acid residues, RNA residues, ATP and RDV-TP atoms during 

MD simulation, the root mean square fluctuation (RMSF) was recorded (Figure 4). As shown in 
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Figure 4, the high peaks were observed at G16 (G385), V36 (V405), G63 (G432), N78 (N447), 

N127 (N496), W140 (W509), S149 (S518), G215 (G584), T274 (T644), R366 (R735), A428 

(797), G454 (G823), T481 (T850), which corresponded to loop regions of the protein, while L526 

(L895) and E541 (E919) corresponded to the C-terminals of the protein. Residues interacting with 

RDV-TP such as K551 (K182), R555 (R186), D623 (D254), N691 (N322), and D760 (D391) were 

observed to be stable. 

 

 

Figure 4. RMSF plot of protein. Apo RdRp, RDV-TP, and ATP complexes are colored red, 

green, and cyan, respectively. 

 

Meanwhile, RMSF of the RNA main atoms (Figure 5) was highest at A1 (2.5 Å) which is 

the first sequence of primer strand and did not interact directly with both RDV-TP and ATP. It is 

worth noting that the RMSF of U2 and A3 of template strands as well as U6 of primer stands in 

both RDV-TP and ATP systems were observed to be stable around 1Å.  
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Figure 5. RMSF plot of RNA main atoms. Apo RdRp, RDV-TP, and ATP complexes are 

colored red, green, and cyan, respectively. 

 

The RMSF of ligand atoms of both RDV and ATP system are depicted (Figure S5). The 

high peaks were recorded at O9, O10, and O11 (i.e. the oxygen atoms at γ phosphate group of 

RDV-TP and ATP). Atoms of the adenosine motif of RDV-TP fluctuated less than those of ATP 

system, which may indicate that base pairing of RDV-TP occurred with more intense interaction 

compared with the ATP system. Figures S6, S7, and S8 show the RMSF values for each three 

independent 500 ns MD simulation. 

 

We then performed clustering analysis to generate structural representatives of the most 

abundant clusters for the 500 ns simulations. The most abundant clusters of RDV-TP and ATP 

complexes had 100% occupancy. The adenosine motif of RDV-TP interacted with U2 (U543) of 

template strand via H-bonding, which is absent in ATP interactions. The phosphate groups of 

RDV-TP and ATP interacted with positively charged residues such as K182 (K551), R184 (R553), 

and K252 (K621). The manganese ions were also located in the vicinity of the phosphate groups 
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of RDV-TP and ATP, which indicated its role in ligand stabilization. Additionally, the manganese 

ions were also in close proximity with aspartate residues such as D249 (D618), D391 (D760), and 

D392 (D761). The nitrile group of RDV-TP was observed to be located in the empty space between 

C253 (C622), P251 (P620), and V188 (V557).  

Our study is inconsistent with several previous studies. For instance, Hillen et al. (2020) 

implied that N691, S682 and D623 may recognize the 2’-OH group of NTP, thereby rendering the 

RdRp specific for the synthesis of RNA rather than DNA [38]. Yin et al. (2020) indicated that 

K545, R555, S682, N691, and D760 supported remdesivir binding [25], while Zhang and Zhou 

(2020) implied that D618, S549, and R555 are major contributors to remdesivir binding [15].  

In addition, previous reports by Nudler (2009) and Burton et al., (2005) indicated that the 

substrate was pairing with the RNA template after entering through the main channel of the RdRp 

complex [39, 40]. Its structural resemblance to natural ATP enables it to compete with ATP during 

viral synthesis [41]. We confirmed the interaction of U6 of primer strand at i site and RDV-TP at 

i+1 site and hence we speculated that the interaction would lead to delayed chain termination in 

i+3 or i+5 sites. Study by Gordon et al. (2020) and Tchesnokov et al. (2019) implied that the 

inhibition of the viral nucleic acid synthesis occurred through the delayed chain termination 

mechanism, in which following incorporation of RDV-TP, several more NTP molecules could still 

be added to RNA [6, 8]. In brief, our study provides the details at an atomistic level on how 

remdesivir behaves during its interaction with RdRp, which may be useful for finding more potent 

compounds for treating COVID-19 through RdRp targeting.  

We then applied pharmacophoric screening against the natural database using 

pharmacophore features. Screening against the natural product database using seven 

pharmacophoric features, i.e. two negative ionizable, one aromatic ring, and four H-bond acceptors 



 16 

(Figure S2), retrieved 56 molecular hits. We proceeded to select the three best hits for a 200 ns 

molecular dynamics simulation for each. The three best docked hits are subjected for 200 ns MD 

simulation, i.e. SN00166900, SN00303170, and SN00359915. 

The best docked hit molecules show the similar poses with RDV-TP. The oxane group of 

SN00166900 was seen to sit after U6 of primer strand and its phenyl ring established pi-pi 

interactions with U6. More occurrences with N691 and R555 were seen through H-bond and salt 

bridge interactions. Additionally, the manganese ion interacted with OH group of ligand through 

salt bridge interactions. Figure 6 displays the interaction of SN00166900 with RdRp. 

A 
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B 

 

Figure 6. The interaction of SN00166900 with RdRp complex. Primer and template strands are 

colored red and cyan, respectively. 

 

Meanwhile, the SN00303170 pose was also located in the U6 of primer strand and the pi-pi 

interaction was recorded between its phenyl ring and U6. The residues R555, N691, and 

manganese ion were also observed to interact with SN00303170 through H-bond and salt bridge 

interactions. Figure 7 depicts the conformation of SN00303170 in the RdRp complex. 
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A 

 

B 

 

Figure 7. The interaction of SN00303170 with RdRp complex. Primer and template strands are 

colored red and cyan, respectively. 

The docked pose of SN00359915 was similar to other ligands, in which it occupied the space above 

the U6 primer strand. The pi-pi stacking interaction in SN00359915 binding occurred at A3 and 

A4 of the template strand. The H-bond interactions were recorded between the ligand with R555, 
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N691, and C622. The manganese ion also formed a salt bridge interaction with SN00359915. 

Figure 8 depicts the conformation of SN00359915 in the RdRp complex. 

A 

 

B 

 

 

Figure 8. The interaction of SN00359915 with RdRp complex. Primer and template strands are 

colored red and cyan, respectively. 
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MD simulation of molecular hits 

To get the binding dynamics of each ligand, RMSD values for 200 ns were monitored. 

Figure 9 shows the RMSD values for the receptor Cα, RNA and ligand main atoms of each 

complex for the 200 ns simulation. 

The RMSD of protein Cα, RNA and ligand main atoms of each complex was stable during 

200 ns. The stability of protein Cα was reached rapidly in the first 25 ns and for the rest of the 

simulation time for each SN00166900, SN00303170, and SN00359915 system. It was observed 

that the RMSD values of protein Cα of RDV-TP complex was lower than those of SN00166900, 

SN00303170, and SN00359915 complexes. Meanwhile, the RMSD values of RNA main atoms 

were slightly lower in SN00166900 and SN00359915 systems and was higher in SN00303170 

than those of the RDV-TP complex. However, the ligand RMSD values were lower in 

SN00303170 and SN00359915 than the RDV-TP system and was higher in the SN00166900 

system. Meanwhile, RMSF values of the protein were also monitored during 200 ns. High peaks 

were observed at V36 (V405), K61 (K430), T275 (T644), V368 (V737), T481 (T850), which 

corresponded to loop regions of the protein and V527 (V905) and E541 (E919), which was the 

carboxyl ends. While those residues interacting with ligands such as R555 (R186) and N691 

(N322) were observed to be stable. Figure 9D depicts the RMSF of protein residues for each 

complex. 
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Figure 9. The RMSD values of RDV-TP and SN00166900 (A), RDV-TP and SN00303170 

(B), RDV-TP and SN00359915 (C), and RMSF (D) values for each complex. RDV-TP, 

SN00166900, SN00303170, and SN00359915 are colored green, cyan, purple, and pink, 

respectively. 

 

Similar to the RMSF plot of RDV-TP, RMSF of RNA residues (Figure 10) was high at 

A1 of the primer strand, which is the first sequence of the primer strand and was not involved in 

direct ligand interaction. The RMSF of U6 of primer strand and A3 and A4 of the template strand, 

which involved in the ligand binding, were observed to be stable. 
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Figure 10. Plot of RNA residue fluctuation was recorded as RMSF values as RDV-TP (green) 

SN00166900 (cyan), SN00303170 (purple), and SN00359915 (pink).  

Clustering analysis shows the most dominant structure for each complex during the 200 ns 

simulations. The ligand SN00166900 maintained H-bond interactions with U553 (U4) and U554 

(U5) of the primer strand in addition to D83 (D452), R184 (R553), and R186 (R555). The 

manganese ion was stabilized through interaction with the ligand OH group. Binding of 

SN00303170 was preserved through interactions with D249 (D618), T187 (T556), A393 (A762), 

and H441 (H810). While, SN00359915 interacted with D83 (D452), R184 (R553), R186 (R555), 

T187 (T556), C253 (C622), S312 (S681), D315 (D684), and N322 (N691).  

 

Binding free energy calculation 

The total binding free energy was calculated from electrostatic (ΔEELE), van der Waals 

(ΔEVDW), non-polar term of solvation energy (ΔEPB), and polar term of solvation energy (ΔEPBSUR). 

The contribution of each energy term was depicted in Table 1. The total binding energy (ΔEPBTOT) 

was −18.90±7.59 kcal/mol for RDV-TP, −16.62±10.34 for ATP, −35.33±7.56 for SN00166900, 
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−45.23±5.53 for SN00303170, and −64.86±4.66 for SN00359915. It is clear that the SN00359915 

had lowest total binding free energy out of the four ligands, and it is around twice as negative than 

that of RDV-TP. The large contribution of SN00359915 binding to RdRp was originated from van 

der Waals energy term.  

 

Table 1. Binding energy predicted by MM-PBSA protocol calculated for 200 snapshots at 

last 100 ns trajectory. 

Ligand ΔEELE 

 (kcal/mol) 

ΔEVDW 

 (kcal/mol) 

ΔEPB 

(kcal/mol) 

ΔEPBSUR 

(kcal/mol) 

ΔEPBTOT 

(kcal/mol) 

SN00166900 −61.92±6.39 −36.41±8.57 69.72±5.39 −6.72±0.18 −35.33±7.56 

SN00303170 −26.81±4.47 −52.53±6.28 40.36±4.09 −6.26±0.27 −45.23±5.53 

SN00359915 −9.02±4.88 −71.15±5.54 22.35±3.78 −7.04±0.21 −64.86±4.66 

RDV-TP  −52.48±30.14 −18.19±6.16 56.19±26.08 −4.42±0.23 −18.90±7.59 

ATP  −40.99±32.16 −27.11±6.32 56.00±25.73 −4.52±0.13 −16.62±10.34 

 

In addition, the three hits identified in this study showed higher predicted binding energies 

than RDV-TP. The superiority of SN00359915 binding, for instance, which were supported by 

more diverse interactions with key residues such as those with R555 and N691, while was 

additionally corroborated by favorable interactions with D452, R553, T556, C622, S681, and 

D684. 
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4. Conclusion 

In this study, RdRp in complex with RNA and manganese ions were built using homology 

modelling. The RdRp model was stable during 500 ns MD simulation. The binding of RDV-TP to 

RdRp showed that the position of the phosphate group was at the entry of NTP channel, which 

may reflect its role in inhibiting the entry of NTP to the active site. Additionally, the phosphate 

group established interactions with K551, R553, and K621, while the adenosine motif formed base 

pairing with U2 of template strand. The metal ions stabilized the phosphate group of RDV-TP and 

were located close to D618, D760, and D761. Using pharmacophore models, the three natural 

product hits SN00166900, SN00303170 and SN00359915 were observed to have lower binding 

energies than that of RDV-TP. 
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Supporting Information 

Table S1. Parameter for Remdesivir (RDV-TP) and Adenosine triphosphate (ATP). 

Table S2. Hydrogen bond occupancy between RNA and protein generated from 500 ns trajectory. 

Table S3. Hydrogen bond occupancy between RDV-TP and RdRp complex retrieved from 500 ns 

MD simulation.  

Table S4. Hydrogen bond occupancy between ATP and RdRp complex retrieved from 500 ns MD 

simulation. 

Table S5. Hydrogen bond occupancy between ligand and RdRp generated from 200 ns trajectory. 

Figure S1. (Left): Comparison view of our model (green) superimposed onto crystal RdRp-RDV-

TP complex (PDBID: 7BV2) (red). (Middle):  Enhanced view of RNA-RDV-TP metal ion 

complexes of our model and 7BV2 in cyan and yellow, respectively. Molecules colored in green 

and red are RDV-TP for our model and 7BV2, respectively. Metal ions colored in pink and purple 

are our model and 7BV2, respectively. (Right): Superimposed molecular view of RDV-TP of our 

model (green) onto 7BV2 (red). 

 

Figure S2. The pharmacophore features used for screening againts natural product database. 

 

Figure S3. Superposition of the modelled and crystallographic structures of RdRp (A) and detailed 

interactions of protein and template-primer RNA (B and C). 

 

Figure S4. The RMSD values for the receptor Cα, RNA and ligand main atoms of apo (red) and 

RDV-TP (green) (A) and apo (red) and ATP (blue) (B) complexes, calculated from the first, 

second, and third MD simulations. 

 

Figure S5. The ligand RMSF plot averaged over three trajectories (A) and RDV-TP atom label 

(B). 
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Figure S6. Plot of protein RMSF of apo (red), RDV-TP (green) and ATP (blue) complexes 

calculated from first, second and third MD simulations. 

 

Figure S7. The RMSF plot of RNA main atoms of apo (red), RDV-TP (green) and ATP (blue) 

complexes calculated from first, second and third MD simulations. 

 

Figure S8. The RMSF plot of ligand main atoms of RDV-TP (green) and ATP (blue) complexes 

calculated from first, second and third MD simulations. 

 

Figure S9. The fasta sequence of SARS-Cov-2 RdRp, the modified RNA template chain (A2U) 

and the RNA primer chain from PDBID: 4WTG.  

 

Figure S10. The modified primer template chain (T, A2U) and the primer chain (P) obtained 

from PDB ID: 4WTG  in complex with RDV-TP.  These two RNA chains were also used in the 

simulations of ATP and the three novel ligands (SN00166900, SN00303170, and SN00359915).  
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Highlights 

1. A homology model of RdRp along with RNA and manganese ion was built and it was 

stable for 500 ns MD simulation.  

2. Remdesivir and ATP were docked to the RdRp and subjected for each three independent 

500 ns MD simulations.  

3. The binding of RDV-TP showed was stabilized by the interactions with K551, R553, and 

K621, U2 of template strand, and manganese ion.  

4. Three hits from natural product database which had lower binding energies than that of 

RDV-TP, and that SN00359915 had binding free energy about three times lower than that 

of RDV-TP. 
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