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The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational
algorithm designed to tackle combinatorial optimization problems. Despite its promise for near-term
quantum applications, not much is currently understood about the QAOA’s performance beyond its lowest-
depth variant. An essential but missing ingredient for understanding and deploying the QAOA is a
constructive approach to carry out the outer-loop classical optimization. We provide an in-depth study of
the performance of the QAOA on MaxCut problems by developing an efficient parameter-optimization
procedure and revealing its ability to exploit nonadiabatic operations. Building on observed patterns in
optimal parameters, we propose heuristic strategies for initializing optimizations to find quasioptimal
p-level QAOA parameters in O[poly(p)] time, whereas the standard strategy of random initialization
requires 2°(P) optimization runs to achieve similar performance. We then benchmark the QAOA and
compare it with quantum annealing, especially on difficult instances where adiabatic quantum annealing
fails due to small spectral gaps. The comparison reveals that the QAOA can learn via optimization to utilize
nonadiabatic mechanisms to circumvent the challenges associated with vanishing spectral gaps. Finally, we
provide a realistic resource analysis on the experimental implementation of the QAOA. When quantum
fluctuations in measurements are accounted for, we illustrate that optimization is important only for
problem sizes beyond numerical simulations but accessible on near-term devices. We propose a feasible
implementation of large MaxCut problems with a few hundred vertices in a system of 2D neutral atoms,
reaching the regime to challenge the best classical algorithms.
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I. INTRODUCTION

As quantum computing technology develops, there is a
growing interest in finding useful applications of near-term
quantum machines [1]. In the near future, however, the
number of reliable quantum operations will be limited by
noise and decoherence. As such, hybrid quantum-classical
algorithms [2—4] have been proposed to make the best
of available quantum resources and integrate them with
classical routines. The quantum approximate optimization
algorithm (QAOA) [2] and the variational quantum
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eigensolver [3] are such algorithms put forward to address
classical combinatorial optimization and quantum chemistry
problems, respectively. Proof-of-principle experiments run-
ning these algorithms have already been demonstrated in
the lab [5-9].

In these hybrid algorithms, a quantum processor prepares
a quantum state according to a set of variational parameters.
Using measurement outputs, the parameters are then opti-
mized by a classical computer and fed back to the quantum
machine in a closed loop. In the QAOA, the state is prepared
by a p-level circuit specified by 2p variational parameters.
Even at the lowest circuit depth (p = 1), the QAOA has
nontrivial provable performance guarantees [2,10] and is not
efficiently simulatable by classical computers [11]. It is, thus,
an appealing algorithm to explore quantum speedups on
near-term quantum machines.

However, very little is known about the QAOA
beyond the lowest depth. While the QAOA is known to
monotonically improve with depth and succeed in the
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p — oo limit [2], its performance when 1 < p < oo is
largely unexplored. In fact, it has been argued that the
QAOA needs to go beyond low depths in order to compete
with the best classical algorithm for some problems on
bounded-degree graphs [12,13]. It thus remains a critical
problem to assess the QAOA at intermediate depths where
one may hope for a quantum computational advantage. One
major hurdle lies in the difficulty to efficiently optimize in
the nonconvex, high-dimensional parameter landscape.
Without constructive approaches to perform the parameter
optimization, any potential advantages of the hybrid
algorithms could be lost [14].

In this work, we contribute, in three major aspects, to the
understanding and applicability of the QAOA on near-term
devices, with a focus on MaxCut problems. First, we
develop heuristic strategies to efficiently optimize QAOA
variational parameters. These strategies are found, via
extensive benchmarking, to be quasioptimal in the sense
that they usually produce known global optima. The
standard approach with random initialization generically
requires 2°(P) optimization runs to surpass our heuristics.
Second, we benchmark the performance of the QAOA and
compare it with quantum annealing. On difficult graph
instances where the minimum spectral gap is very small,
the time required for quantum annealing to remain adia-
batic is very long, as it scales inversely with the square of
the gap. For these instances, the QAOA is found to
outperform adiabatic quantum annealing by multiple orders
of magnitude in computation time. Last, we provide a
detailed resource analysis on the experimental implemen-
tation of the QAOA with near-term quantum devices.
Taking into account quantum fluctuations in projective
measurements, we argue that optimization plays a role only
for much larger problem sizes than numerically accessible
ones. We also propose a 2D physical implementation of the
QAOA on MaxCut with a few hundred Rydberg-interacting
atoms, which can be put to the test against the best classical
algorithm for potential quantum advantages.

Our main results can be summarized as follows. By
performing extensive searches in the entire parameter
space, we discover persistent patterns in the optimal
parameters. Based on the observed patterns, we develop
strategies for selecting initial parameters in optimization,
which allow us to efficiently optimize the QAOA at a cost
scaling polynomially in p. This scaling is in stark contrast
to the 29(P) optimization runs required by random initial-
ization approaches. We also propose a new parametrization
of the QAOA that may significantly simplify optimization
by reducing the dimension of the search space. Using our
heuristic strategy, we benchmark the performance of the
QAOA on many instances of MaxCut up to N < 22 vertices
and level p <50. Comparing the QAOA with quantum
annealing, we find that the former can learn via optimiza-
tion to utilize diabatic mechanisms [15—-18] and overcome
the challenges faced by adiabatic quantum annealing due to

very small spectral gaps. Considering realistic experimental
implementations, we also study the effects of quantum
“projection noise” in measurement: We find that, for
numerically accessible problem sizes, the QAOA can often
obtain the solution among measurement outputs before the
best variational parameters are found. Parameter optimi-
zation will be more useful at large system sizes (a few
hundred vertices), as one expects the probability of finding
the solution from projective measurements to decrease
exponentially. At such system sizes, we analyze a pro-
cedure to make graphs more experimentally realizable by
reducing the required range of qubit interactions via vertex
renumbering. Finally, we discuss a specific implementation
using neutral atoms interacting via Rydberg excitations
[19,20], where a 2D implementation with a few hundred
atoms appears feasible on a near-term device.

The rest of the paper is organized in the following order:
In Sec. II, we review the QAOA and the MaxCut problem.
In Sec. III, we describe some patterns found for QAOA
optimal parameters and introduce heuristic optimization
strategies based on the observed patterns. We benchmark
our heuristic strategies and study the performance of the
QAOA on typical MaxCut graph instances in Sec. IV.
We then, in Sec. V, compare the QAOA with quantum
annealing, shedding light on the nonadiabatic mechanism
of the QAOA. Last, we discuss considerations for exper-
imental implementations for large problem sizes in Sec. VI.

II. QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

Many interesting real-world problems can be framed as
combinatorial optimization problems [21,22]. These are
problems defined on N-bit binary strings z = zy...2y,
where the goal is to determine a string that maximizes
a given classical objective function C(z):{+1,—1}"
R(. An approximate optimization algorithm aims to find a
string z that achieves a desired approximation ratio

21, (1)

where Cp,x = max,C(z).

The QAOA is a quantum algorithm recently introduced
to tackle these combinatorial optimization problems [2]. To
encode the problem, the classical objective function can be
converted to a quantum problem Hamiltonian by promoting
each binary variable z; to a quantum spin o;:

Hq = C(03,05, ...,0%). (2)

For the p-level QAOA, which is visualized in Fig. 1(a),
we initialize the quantum processor in the state |+)®" and
then apply the problem Hamiltonian H- and a mixing
Hamiltonian Hp = Z?’:] o; alternately with controlled

durations to generate a variational wave function
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1y (7.B) = e Pitoeitoe _emiPtlngminic| 1oV, (3)
which is parameterized by 2p variational parameters y; and
pi (i=1,2,...,p). We then determine the expectation
value H in this variational state:

Fy(7.8) = (w,(7.B)Hclw,(7.B)). (4)
which is done by repeated measurements of the quantum
system in the computational basis. A classical computer is

used to search for the optimal parameters (7*,") so as to
maximize the averaged measurement output F ,(7,):

- -

(7".87) = arg mr;xF »(7.B). (5)
14

This search is typically done by starting with some initial
guess of the parameters and performing simplex or
gradient-based optimization. A figure of merit for bench-
marking the performance of the QAOA is the approxima-
tion ratio

r= 7Fpgm*;xﬂ ) . (6)

The framework of the QAOA can be applied to general
combinatorial optimization problems. Here, we focus on its
application to an archetypical problem called MaxCut,
which is a combinatorial problem whose approximate
optimization beyond a minimum ratio r* is NP-hard
[23,24]. The MaxCut problem, visualized in Fig. 1(b), is
defined for any input graph G = (V,E). Here, V =
{1,2,...,N} denotes the set of vertices, and E =
{((i. j).w;;)} is the set of edges, where w;; € Ry, is the
weight of the edge (i, j) connecting vertices i and j. The
goal of MaxCut is to maximize the following objective
function:

Wi
He =31 - ). )
(i.j)

where an edge (i, j) contributes with weight w;; if and only
if spins o7 and o7 are antialigned.

For simplicity, we restrict our attention to MaxCut on
d-regular graphs, where every vertex is connected to
exactly d other vertices. We study two classes of graphs:
The first is unweighted d-regular graphs (udR), where all
edges have equal weights w;; = 1; the second is weighted
d-regular graphs (wdR), where the weights w;; are chosen
uniformly at random from the interval [0, 1]. It is NP-hard
to design an algorithm that guarantees a minimum approxi-
mation ratio of r* > 16/17 for MaxCut on all graphs [23]
or r*>331/332 when restricted to u3R graphs [24].

Varlatlonal parameters

’yl""’rYp?Blv”'aﬂp :
{} Measure
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FIG. 1. (a) Schematic of a p-level quantum approximation

optimization algorithm [2]. A quantum circuit takes input |+)®"
and alternately applies ¢~7i*/c and Xz = ¢~#", and the final
state is measured to obtain the expectation value with respect to
the objective function H.. This result is fed to a (classical)
optimizer to find the best parameters (7, ﬁ) that maximizes (H¢).
(b) An example of a MaxCut problem on a five-vertex graph,
where one seeks an assignment of spin variables on the vertices
such that the sum of edge weights between antialigned spins is
maximized (black edges).

The current record for approximation ratio guarantee on
generic graphs belongs to Goemans and Williamson [25],
achieving r* ~ 0.87856 with semidefinite programing. This
lower bound can be raised to r* &~ 0.9326 when restricted to
u3R graphs [26]. Farhi, Goldstone, and Gutmann [2] were
able to prove that the QAOA at level p = 1 achieves r* >
0.6924 for u3R graphs, using the fact that F,, can be written
as a sum of quasilocal terms, each corresponding to a
subgraph involving edges at most p steps away from a
given edge. However, this approach to bound r* quickly
becomes intractable, since the locality of each term (i.e.,
size of each subgraph) grows exponentially in p, as does
the number of subgraph types involved.

The QAOA is believed to be a promising algorithm for
multiple reasons [2,10,11,27-32]. As mentioned above,
for certain cases, one can prove a guaranteed minimum
approximation ratio when p =1 [2,10]. Additionally,
under reasonable complexity-theoretic assumptions, the
QAOA cannot be efficiently simulated by any classical
computer even when p = 1, making it a suitable candidate
algorithm to establish the so-called “quantum supremacy”
[11]. It has also been argued that the square-pulse (“bang-
bang”) ansatz of dynamical evolution, of which the QAOA
is an example, is optimal given a fixed quantum compu-
tation time [29]. In general, the performance of the QAOA
can only improve with increasing p, achieving r — 1 when
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p — oo, since it can approximate adiabatic quantum
annealing via Trotterization; this monotonicity makes it
more attractive than quantum annealing, whose perfor-
mance may decrease with an increased run time [15].

While the QAOA has a simple description, not much is
currently understood beyond p = 1. To establish a poten-
tial quantum advantage over classical algorithms, it is of
critical importance to investigate the QAOA at intermediate
depths (p > 1). References [2,12,13] have shown that the
QAOA has limited performance on some problems on
bounded-degree graphs when the depth is shallow. This
limitation may result from the fact that the algorithm cannot
“see” the entire graph at a low depth. It thus indicates that
one may need the depth of the QAOA to grow with the
system size (e.g., p > log N) in order to outperform the best
classical algorithms. For the toy example of MaxCut on
u2R graphs, i.e., 1D antiferromagnetic rings, it is conjec-
tured that the QAOA yields r > (2p +1)/(2p + 2) based
on numerical evidence [2,27,33]. In another example of
Grover’s unstructured search problem among »n items, the
QAOA is shown to be able to find the target state with
p = 0O(y/n), achieving the optimal query complexity
within a constant factor [31]. For more general problems,
Farhi, Goldstone, and Gutmann [2] propose a simple
approach by discretizing each parameter into O[poly(N)]
grid points; this approach, however, requires examining
NOP) possibilities at level p, which quickly becomes
impractical as p grows. Efficient optimization of QAOA
parameters and understanding the algorithm for 1 < p < oo
remain outstanding problems. We address these problems in
the present work.

III. OPTIMIZING VARIATIONAL PARAMETERS

In this section, we address the issue of parameter
optimization in QAOA, since searching for the best
parameters via standard approaches that rely on random
initialization generally become exponentially difficult as
level p increases. We mostly restrict our discussion to
randomly generated instances of u3R and w3R graphs.
Similar results are found for u4R and w4R graphs, as well
as complete graphs with random weights. We utilize
patterns in the optimal parameters to develop heuristic
strategies that can efficiently find quasi-optimal solutions in

O(poly(p)) time.

A. Patterns in optimal parameters

Before searching for patterns in optimal QAOA param-
eters, it is useful to eliminate degeneracies in the parameter
space due to symmetries. Generally, QAOA has a time-

-

reversal symmetry, F, ()7,5) = F,(=7,—P), since both Hp
and H. are real-valued. For QAOA applied to MaxCut,
there is an additional Z, symmetry, as e~ (7/2Hs = (5*)®V
commutes through the circuit. Furthermore, the structure of
the MaxCut problem on udR graphs creates redundancy

since e~™c = 1 if d is even, and (6%)®" if d is odd. These
symmetries allow us to restrict f; € [—(n/4), (x/4)) in
general, and y; € [—(x/2), (z/2)) for udR graphs.

We start by numerically investigating the optimal QAOA
parameters for MaxCut on random u3R and w3R graphs
with vertex number 8 < N < 22, with extensive searches in
the entire parameter space. For each graph instance and a
given level p, we choose a random initial point (seed) in the
parameter space [34] and use a commonly used, gradient-
based optimization routine known as Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [35] to find a local optimum

(¥, BL) This local optimization is repeated with suffi-
ciently many different seeds to find the global optimum

7, B*) [36]. We then reduce the degeneracies of the

optimal parameters (7*, ﬁ*) using the aforementioned
symmetries. In all cases examined, we find that the global
optimum is nondegenerate up to these symmetries.

After performing the above numerical experiment for
100 random u3R and w3R graphs with various vertex
numbers N, we discover some patterns in the optimal

parameters (7%, ﬁ*) Generically, the optimal y; tends to
increase smoothly with i = 1,2, ..., p, while ] tends to
decrease smoothly, as shown for the example instance in
Fig. 2(a). In Fig. 2(b), we illustrate the pattern by simulta-
neously plotting the optimal parameters for 40 instances of
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FIG. 2. (a) Optimal QAOA parameters (}7*,5*) for an example
instance of MaxCut on a 16-vertex unweighted 3-regular (u3R)
graph at level p = 7. (b) The parameter pattern visualized by
plotting the optimal parameters of 40 instances of 16-vertex u3R
graphs, for 3 < p <'5. Each dashed line connects parameters for
one particular graph instance. For each instance and each p, we
use the classical BFGS optimization routine [35] from 10*
random initial points, and keep the best parameters.
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16-vertex u3R graphs for 3 < p < 5. Furthermore, for a
given class of graphs, the optimal parameters are observed
to roughly occupy the same range of values as p is varied.
Similar patterns are found for w3R graphs and weighted
complete graphs, which we illustrate in the Appendix A.
These observations show a clear pattern in the optimal
QAOA parameters that we can exploit in the optimization,
as we discuss later in Sec. III B. Similar patterns are found
for parameters up to p < 15, if the number of random seeds
is increased accordingly.

We give two remarks here: First, we note that surpris-
ingly, even at a small depth, this parameter pattern is
reminiscent of adiabatic quantum annealing where H,
is gradually turned on while Hp is gradually turned off.
However, we demonstrate in Sec. V that the mechanism of
the QAOA goes beyond the adiabatic principle. Second, we
note that these optimal parameters have a small spread over
many different instances. This low variance is because the

-

objective function F, (¥, §) is a sum of terms corresponding
to subgraphs involving vertices that are a distance < p
away from every edge. At small p, there are only a few
relevant subgraph types that enter into F,, and effectively
determine the optimal parameters. As N — oo and at a
fixed finite p, we expect the probability of a relevant
subgraph type appearing in a random graph to approach a
fixed fraction. This asymptotic behavior implies that the

distribution of optimal parameters (7*, ﬁ*) should converge
to a fixed set of values in this limit.

B. Heuristic optimization strategy for large p

The optimal parameter patterns observed above indicate
that, generically, there is a slowly varying continuous curve
that underlies the parameters y; and ;. Moreover, this
curve changes only slightly from level p to p + 1. These
observations allow us to choose educated guesses of
variational parameters for the (p + 1)-level QAOA based
on optimized parameters at level p (or, in general, at level g,
where ¢ < p). These educated guesses can serve as initial
points fed to various classical optimization routines that
find a nearby local optimum. Based on this idea, we
develop two types of heuristic strategies for initializing
optimization. We give a high-level overview of these
heuristics in this section while deferring the details of its
implementation to Appendix B. While these heuristics are
not guaranteed to find the global optimum of QAOA
parameters, we show in Sec. IVA that it can produce, in
O[poly(p)] time, quasioptima that require 2°(?) randomly
initialized optimization runs to surpass. Consequently,
these heuristics allow us to study the performance and
mechanism of the QAOA beyond p = 1.

The first heuristic strategy, which we call INTERP, uses
linear interpolation to choose initial parameters. Starting at
level p = 1, we optimize the parameters at level p, and then
linearly interpolate the curve formed by them to extract a
set of initial parameters for level p + 1.

The second heuristic strategy, which we call FOURIER,
uses a new parameterization of the QAOA. Instead of using
the 2 p parameters (7, #) € R?”, we switch to 2¢g parameters
(u,v) € R*, where the individual elements y; and f3; are
written as functions of (#,¥) through the following trans-
formation:

o[-
-Sonl((-DF

These transformations are known as discrete sine and
cosine transforms, where u; and v, can be interpreted as

the amplitude of the kth frequency component for 7 and ﬁ
respectively. In this strategy, when optimizing level p + 1,
the initial parameters are generated by simply reusing the
optimized amplitudes (#*,v*) from level p. Note that,
when g > p, the (4, v) parametrization is capable of des-
cribing all possible QAOA protocols at level p. However,

the smoothness of the optimal parameters (7, ﬁ) implies
that only the low-frequency components are important.
Thus, we can also consider the case where ¢ is a fixed
constant independent of p, so the number of parameters is
bounded even as the QAOA circuit depth increases.

While both heuristics work well, we decide to focus on
using the FOURIER heuristics in the main text, because we
find that it gives a slight edge in performance for MaxCut
problems. The INTERP heuristic is simpler and may work
better on other problems. More details on the implementa-
tion of the heuristics and their comparison can be found in
Appendix B.

We stress that these heuristic strategies are developed to
generate good initial points for optimization. These initial
points can then be fed to standard optimization routines such
as gradient descent, BFGS [35], Nelder-Mead [37], and
Bayesian optimization [38]. This approach is in contrast to
the standard strategy of random initialization (RI), where one
picks a random set of parameters to begin optimization. In
order to find the global optimum in a highly nonconvex
landscape, the number of RI runs needed generically scales
exponentially with the number of parameters, which
becomes intractable for a large number of parameters. In
the following section, we compare our heuristics to the RI
approach and find that an exponential number of RI runs is
needed to match the performance of our heuristics.

IV. PERFORMANCE OF HEURISTICALLY
OPTIMIZED QAOA

A. Comparison between our heuristics and RI
optimizations

Here, we compare the performance of our heuristic
strategies to the standard strategy of random initialization.
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FIG. 3. (a) Comparison between our FOURIER heuristic and
the RI approach for optimizing the QAOA, on an example
instance of a 16-vertex w4R graph. The figure of merit 1 — 7,
where r is the approximation ratio, is plotted as a function of
QAOA level p on a log-linear scale. The RI points are obtained
by optimizing from 1000 randomly generated initial parameters,
averaged over ten such realizations. (b) The median number of
randomly initialized optimization runs needed to obtain an
approximation ratio as good as our FOURIER heuristic, for 40
instances of 16-vertex u3R and w3R graphs. A log-linear scale is
used, and exponential curves are fitted to the results. Error bars
are Sth and 95th percentiles.

In Fig. 3(a), we show the result for an example instance of a
16-vertex w4R graph. At low p, our FOURIER heuristic
strategies perform just as well as the best out of 1000 RI
optimization runs—both are able to find the global opti-
mum. The average performance of the RI strategy, on the
other hand, is much worse than our heuristics. This result
indicates that the QAOA parameter landscape is highly
nonconvex and filled with low-quality, nondegenerate local
optima. When p > 5, our heuristic optimization outper-
forms the best RI run. To estimate the number of RI runs
needed to find an optimum with the same or better
approximation ratio as our FOURIER heuristics, we gen-
erate 40 instances of 16-vertex u3R and w3R graphs and
perform 40 000 RI optimization for each instance at each
level p. In Fig. 3(b), the median number of RI runs needed to
match our heuristic is shown to scale exponentially with p.
Therefore, our heuristics offer a dramatic improvement in
the resource required to find good parameters for the QAOA.
As we verify with an excessive number of RI runs, the
heuristics usually find the global optima.

We remark that, although we mostly use a gradient-based
optimization routine (BFGS) in our numerical simulations,
nongradient-based routines, such as Nelder-Mead [37],
work equally well with our heuristic strategies. The choice
to use BFGS is mainly motivated by the simulation speed.
Later, in Sec. VI, we account for the measurement costs in
estimating the gradient using a finite-difference method and
perform a full Monte Carlo simulation of the entire QAOA
algorithm, including quantum fluctuations in the determi-
nation of F,.

B. Performance of QAOA on typical instances

With our heuristic optimization strategies in hand, we
study the performance of the intermediate p-level QAOA
on many graph instances. We consider many randomly
generated instances u3R and w3R graphs with vertex
number 8 < N <22 and use our FOURIER strategy to
find optimal QAOA parameters for level p < 20. In the
following discussion, we use the fractional error 1 — r to
assess the performance of the QAOA.

We first examine the case of unweighted graphs, spe-
cifically u3R graphs. In Fig. 4(a), we plot the fractional
error 1 —r as a function of the QAOA’s level p. Here,
we see that, on average, 1 — r « e™?/Po appears to decay
exponentially with p. Note that, since the instances studied
are u3R graphs with system size N <22, where C,,x <
|E| < 33, we would have essentially prepared the MaxCut
state whenever the fractional error goes below 1/33. This
good performance can be understood by interpreting the
QAOA as Trotterized quantum annealing, especially when
the optimized parameters are of the pattern seen in Fig. 2,
where one initializes in the ground state of —Hp and
evolves with Hy (and H) with smoothly decreasing (and
increasing) durations. The equivalent total annealing time 7
is approximately proportional to the level p, since the
individual parameters y;, #; = O(1) and correspond to the
evolution times under H - and Hp. If T is much longer than
1/A2.  where A, is the minimum spectral gap, quantum
annealing is able to find the exact solution to MaxCut
(ground state of —H ) by the adiabatic theorem [18] and
achieves an exponentially small fractional error as pre-
dicted by Landau and Zener [39]. Numerically, we find that
the minimum gaps of these u3R instances when running
quantum annealing are on the order of A;;, 2 0.2. It is thus
not surprising that the QAOA achieves an exponentially
small fractional error on average, since it is able to prepare
the ground state of —H - through the adiabatic mechanism
for these large-gap instances. Nevertheless, as we see in the
following section, this exponential behavior breaks down
for hard instances, where the gap is small.

Let us now turn to the case of w3R graphs. As shown in
Fig. 4(b), the fractional error appears to scale as 1 — r «

e"VP/Po We note that the stretched-exponential scaling is
true in the average sense, while individual instances have
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FIG. 4. Average performance of the QAOA as measured by the
fractional error 1 — r, plotted on a log-linear scale. The results are
obtained by applying our heuristic optimization strategies FOU-
RIER to up to 100 random instances of (a) u3R graphs and
(b) w3R graphs. Differently colored lines correspond to fitted
lines to the average for different system size N, where the model
function is 1 — r o e™?/Po for unweighted graphs and 1 —r

e~V P/Po for weighted graphs. The insets show the dependence of
the fit parameters p, on the system size N.

very different behavior. For easy instances whose corre-
sponding minimum gaps A, are large, exponential scal-
ing of the fractional error is found. For more difficult
instances whose minimum gaps are small, we find that their
fractional errors reach plateaus at intermediate p, before
decreasing further when p is increased. We analyze these
hard instances in more depth in the following Sec. V.
Surprisingly, when we average over randomly generated
instances, the fractional error is fitted remarkably well by a
stretched-exponential function.

These results of average performance of the QAOA are
interesting despite considerations of finite-size effects.
While the decay constant p, does appear to depend on
the system size N as shown in the insets in Fig. 4, our finite-
size simulations cannot conclusively determine the exact
scaling. Although it remains unknown whether the
(stretched-)exponential scaling will start to break down
at larger system sizes, if the trend continues to a system size
of N = 100-1000, then the QAOA will be practically

useful in solving interesting MaxCut instances, better or
on par with other known algorithms, in a regime where
finding the exact solution will be infeasible. Even if the
QAOA fails for the worst-case graphs, it can still be
practically useful, if it performs well on a randomly chosen
graph of large size.

V. ADIABATIC MECHANISM, QUANTUM
ANNEALING, AND QAOA

In the previous section, we benchmark the performance
of the QAOA for MaxCut on random graph instances in
terms of the approximation ratio r. Although designed
for approximate optimization, the QAOA is often able to
find the MaxCut configuration—the global optimum of
the problem—with a high probability as level p increases.
In this section, we assess the efficiency of the algorithm
to find the MaxCut configuration and compare it with
quantum annealing. In particular, we find that the QAOA is
not necessarily limited by the minimum gap as in quantum
annealing and explain a mechanism at work that allows it to
overcome the adiabatic limitations.

A. Comparing QAOA with quantum annealing

A predecessor of the QAOA, quantum annealing (QA) is
widely studied for the purpose of solving combinatorial
optimization problems [40-43]. To find the MaxCut con-
figuration that maximizes (H ), we consider the following
simple QA protocol:

Hoa(s) = =[sHc + (1 = s)Hp], s=1t/T, (9)
where 7 € [0,7] and T is the total annealing time. The
initial state is prepared to be the ground state of
Haa(s =0), ie., [w(0)) = |+)®". The ground state of
the final Hamiltonian, Hg(s = 1), corresponds to the
solution of the MaxCut problem encoded in H, [44]. In
adiabatic QA, the algorithm relies on the adiabatic theorem
to remain in the instantaneous ground state along the
annealing path and solves the computational problem by
finding the ground state at the end. To guarantee success,
the necessary run time of the algorithm typically scales as
T = O(1/A2,. ), where A, is the minimum spectral gap
[18]. Consequently, adiabatic QA becomes inefficient for
instances where A;, is extremely small. We refer to these
graph instances as hard instances (for adiabatic QA).

Beyond the completely adiabatic regime, there is often a
trade-off between the success probability [ground state
population pgs(7)] and the run time (annealing time 7):
One can either run the algorithm with a long annealing time
to obtain a high success probability or run it multiple times
at a shorter time to find the solution at least once. A metric
often used to determine the best balance is the time to
solution (TTS) [18]:
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In(1 - py)
TTSopA(T) =T ——————, 10
MDD =Tt gy 10
opt .
TTSZA = minTTSox (7). (11)

TTSqa(T) measures the time required to find the ground
state at least once with the target probability p, (taken to be
99% in this paper), neglecting nonalgorithmic overheads
such as state-preparation and measurement time. In the

adiabatic regime where In[1 — pgs(T)] o TA2. ~ per the
Landau-Zener formula [39], we have TTSga o 1/AZ.

which is independent of 7. However, it has been observed
in some cases that it can be better to run QA nonadiabati-
cally to obtain a shorter TTS [15-18]. By choosing the best
annealing time 7, regardless of adiabaticity, we can

determine TTSOQIX as the minimum algorithmic run time

of QA. For the QAOA, a similar metric can be defined. The
variational parameters y; and f5; can be regarded as the time
evolved under the Hamiltonians H - and Hjp, respectively.
One can thus interpret the sum of the variational parameters

to be the total “annealing” time, ie., T, = > I (|y;| +
|p;]) [45], and define
In(1 - py)
TS =T, 12
Qa0a(P) PTa[l = pas(p)] (12)
TTSGron = rglggTTSQAOA(p)7 (13)

where pgg(p) is the ground state population after the
optimal p-level QAOA protocol. Note that this quantity
does not take into account the overhead in finding the
optimal parameters. We use TTSga0a(p) here to bench-
mark the algorithm, and it should not be taken directly to be
the actual experimental run time.

To compare the algorithms, we compute TTSOQp/i and
TTS%‘;;O A for many random graph instances. For each even
vertex number from N =10 to N =18, we randomly
generate 1000 instances of w3R graphs. In Fig. 5(a), we
plot the relationship between TTS%‘XO A and the minimum
gap A, in quantum annealing for each instance. Most of
the random graphs have large gaps (A, = 1072), and we
observe that the optimal TTS follows the Landau-Zener
prediction of 1/A2. for these graphs. This result indicates
that a quasiadiabatic parametrization of the QAOA is the
best when A ;, is reasonably large. Many graphs, however,
exhibit very small gaps (A, < 1073) and, thus, require
an exceedingly long run time for adiabatic evolution. For
some graphs, A.;, is as small as 1078, which implies
that an adiabatic evolution requires a run time 7 > 10'.
Nevertheless, we see that the QAOA can find the
solution for these hard instances faster than adiabatic

QA. Remarkably, TTS%XOA appears to be independent

“N=10
*N=12|
N=14f.
aN=16
on=18[
--Lz

*N=10
xN=12

N=14
oN=16
oN=18

10%¢

opt
QAOA

TTS

10%F

opt
TTSQ A

FIG. 5. (a) TTS{,o, versus the minimum spectral gap in QA,
Apin, for many random w3R graph instances. 1000 random
instances are generated for each graph vertex size N. The maxi-
mum cutoff p is taken to be p,,, = 50, 50, 40, 35,30 for N = 10,
12, 14, 16, 18, respectively. The dashed line corresponds to the
prediction of TTS o 1/A2. in the adiabatic regime using the
Landau-Zener formula [39]. (b) TTS&PXO A VErsus TTSSX for each
random graph instance. The dashed line indicates when the two
are equal. The (Pearson’s) correlation coefficient between the two

is p[In(TTSGxo4). In(TTS,)] ~ 0.91.

of the gap for all graphs that have extremely small gaps and
beats the adiabatic TTS (Landau-Zener line) by many
orders of magnitude. This result suggests that an exponen-
tial improvement of the TTS is possible with nonadiabatic
mechanisms when adiabatic QA is limited by exponentially
small gaps.

Similarly for QA, the optimal annealing time 7 is often
not in the adiabatic limit for small-gap graphs. In Fig. 5(b),
we observe a strong correlation between TTS‘ép[;O A and

TTS%‘X for each graph instance. This correlation suggests
that QAOA is making use of the optimal annealing
schedule, regardless of whether a slow adiabatic evolution
or a fast diabatic evolution is better. We believe that if
we use an optimized schedule beyond the linear ramp in
Eq. (9), QA should be able to match the performance of the
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FIG. 6. (a) A schematic of how the QAOA and the interpolated annealing path can overcome the small minimum gap limitations via
diabatic transitions (purple line). A naive adiabatic quantum annealing path leads to excited states passing through the anticrossing point
(green line). (b) An instance of a weighted 3-regular graph that has a small minimum spectral gap along the quantum annealing path
given by Eq. (9). The optimal MaxCut configuration is shown with two vertex colors, and the black (red) lines are the cut (uncut) edges.
(c) Population in low-energy states after the quantum annealing protocol with different total times 7. The black solid line follows the
Landau-Zener formula for the ground state population, pgs = 1 — exp (—cT A2, ), where c is a fitting parameter. (d) Population in low-
energy states using the QAOA at different levels p. The FOURIER heuristic strategy is used in the optimization. (e) Interpreting QAOA
parameters (at p = 40) as a smooth quantum annealing path, via linear interpolation according to Eq. (14). The annealing time
parameter s = 1/T,, where T, = > (|y;| + |f;|). The red dotted line labels the location of anticrossing where the gap is at its
minimum, at which point f(s) ~ 0.92. The inset shows the original QAOA optimal parameters y} and f; for p = 40. (f) Instantaneous
eigenstate population under the annealing path given in (e). Note that the instantaneous ground state and first excited state swap at the
anticrossing point.

QAOA. In the following subsection, we take a represen-  population pgs = 1 —exp (—cTAZ2. ) fits well with our

tative example to explain our results observed in Fig. 5 and  exact numerical simulation, where c is a fitting parameter.
a mechanism of the QAOA to go beyond the adiabatic ~ However, we can clearly observe a “bump” in the ground

paradigm. state population at annealing time 7 ~40. At such a
timescale, the dynamics is clearly nonadiabatic; we call
B. Beyond the adiabatic mechanism: A case study this phenomenon a diabatic bump. This phenomenon has

To understand the behavior of the QAOA, we focus been observed earlier in Refs. [15-18] for other optimiza-
on graph instances that are hard for adiabatic QA in  tion problems.
this subsection. In particular, we study a representative Subsequently, we simulate the QAOA on this hard
instance to explain how the QAOA as well as diabatic QA instance. As mentioned earlier, although the QAOA opti-
can overcome the adiabatic limitations. As illustrated in ~ mizes energy instead of ground state overlap, a substantial
Fig. 6(a), we demonstrate that the QAOA can learn to  ground state population can still be obtained even for many
utilize diabatic transitions at anticrossings to circumvent  hard graphs. Using our FOURIER heuristic strategy,

difficulties caused by very small gaps in QA. various low-energy state populations of the output state
Figure 6(b) shows a representative graph with N = 14,  are shown for different levels p in Fig. 6(d). We observe

whose minimum spectral gap A, < 1073. For this exam-  that the QAOA can achieve a similar ground state pop-

ple hard instance, we first numerically simulate the quan-  ulation as the diabatic bump at small p and then substan-

tum annealing process. Figure 6(c) shows populations in  tially enhance it after p = 24.

the ground state and low excited states at the end of the To better understand the mechanism of the QAOA and

process for different annealing times 7. Since the minimum  make a meaningful comparison with QA, we can interpret
gap is very small, the adiabatic condition requires 7 2 1/ the QAOA parameters as a smooth annealing path. We
A2~ 10°. The Landau-Zener formula for the ground state  again interpret the sum of the variational parameters to be

min
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the total annealing time, ie., T, =27 (lr;)| + |#i]). A
smooth annealing path can be constructed from QAOA
optimal parameters as

Hopoa(t) = ={f()Hc + [1 = f(1)|Hp},

i 1 *
£ =31+ D =5 il + 1)) =

i+ 1B
(14)

where ¢, is chosen to be at the midpoint of each time interval
(yi 4 pBr). With the boundary conditions f(z = 0) = 0 and
f(t =T,) = 1 and linear interpolation at other intermediate
time #, we can convert QAOA parameters to a well-defined
annealing path. We apply this conversion to the QAOA
optimal parameters at p = 40 [Fig. 6(e)]. With this annealing
path, we can follow the instantaneous eigenstate population
throughout the quantum annealing process [Fig. 6(f)]. In
contrast to adiabatic QA, the state population leaks out of
the ground state and accumulates in the first excited state
before the anticrossing point, where the gap is at its
minimum. Using a diabatic transition at the anticrossing,
the two states swap populations, and a large ground state
population is obtained in the end. We note that the final state
population from the constructed annealing path differs
slightly from those of the QAOA, due to Trotterization
and interpolation, but the underlying mechanism is the
same, which is also responsible for the diabatic bump seen
in Fig. 6(c). In addition to the conversion used in Eq. (14), we
have tested a few other prescriptions to construct an
annealing path from QAOA parameters, and qualitative
features do not seem to change.

Hence, our results indicate that the QAOA is closely
related to a cleverly optimized diabatic QA path that can
overcome limitations set by the adiabatic theorem. Through
optimization, the QAOA can find a good annealing path
and exploit diabatic transitions to enhance ground state
population. This result explains the observation in Fig. 5(a)
that TTSOQ‘X0 A can be significantly shorter than the time
required by the adiabatic algorithm. On the other hand, as
seen in Fig. 5(b), TTS%}XOA is strongly correlated with

TTS%%;: The QAOA automatically finds a good annealing

path, which could be adiabatic or not, depending on what is
the best route for the specific problem instance.

The effective dynamics of the QAOA for this specific
instance, as we see in Fig. 6(f), can be understood mostly
by an effective two-level system (see Appendix D for more
discussions). In general, the energy spectrum can be more
complex, and the dynamics may involve many excited
states, which may not be explainable by the simple
schematic in Fig. 6(a). Nonetheless, the QAOA can find
a suitable path via our heuristic optimization strategies even
in more complicated cases (see Appendix H and Ref. [46]).

VI. CONSIDERATIONS FOR EXPERIMENTAL
IMPLEMENTATION

In this section, we discuss some important considera-
tions for experimental realization. The framework of the
QAOA is general and can be applied to various exper-
imental platforms to solve combinatorial optimization
problems. Here, we again focus on the MaxCut problem
as a paradigmatic example, although it can also be applied
to solve other interesting problems [46,47].

A. Finite measurement samples

So far, our focus is on understanding the best theoreti-
cally possible performance of the QAOA, assuming perfect
measurement precision of the objective function in our
numerical simulations. However, due to quantum fluctua-
tions (i.e., projection noise) in actual experiments, the
precision is finite, since it is obtained via averaging over
finitely many measurement outcomes that can take on only
discrete values. Hence, in practice, there is a trade-off
between measurement cost and optimization quality:
Finding a good optimum requires good precision at the
cost of a large number of measurements [48]. Additionally,
a large variance in the objective function value demands
more measurements but may help improve the chances of
finding near-optimal MaxCut configurations.

Here, we study the effect of measurement projection noise
with a full Monte Carlo simulation of the QAOA on some
example graphs, where the objective function is evaluated by
repeated projective measurements until its error is below a
threshold. More implementation details of this numerical
simulation are discussed in Appendix F. In Fig. 7, we present
the Monte Carlo simulation result for the example instance
studied earlier in Fig. 6(b). Here, we simulate the QAOA by
starting at either level p = 1 or p =5 and increasing to
higher p using our FOURIER heuristics after a local
optimum is found at the current p. The initial parameters
at p=1 and p =5, respectively, are chosen based on
known optima found for smaller size instances. We see that
the QAOA can find the MaxCut solution in approximately
10-10% measurements, and starting our optimization at an
intermediate level (p = 5) is better than starting at the lowest
level (p = 1). In comparison, random choices of initial
parameters starting at p = 1 perform much worse, which
fails to find the MaxCut solution until 10* — 10* measure-
ments are made. Moreover, when we compare the QAOA to
QA with various annealing times, it appears that the choice
of annealing time 7" = 100 can perform just as well as the
QAOA in this instance. Nevertheless, running the QAOA at
level p = 5 is still more advantageous than QA at 7 = 100,
when coherence time is limited.

We remark that our simulation is limited only to small-
size instances, and the good performance of the QAOA and
QA we observe is complicated by the small but significant
ground state population from generic annealing schedules.
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FIG. 7. Full Monte Carlo simulation of the QAOA accounting
for measurement projection noise, on the example 14-vertex
instance studied in Fig. 6(b). For various optimization strategies,
we keep track of approximation ratio r; = |Cut;|/|MaxCut| from
the ith measurement and plot minimum fractional error 1 — r;
found after M measurements, averaged over many Monte Carlo
realizations. The blue solid and red dashed lines correspond to
QAOA optimized with the FOURIER strategy starting with an
educated guess of (7, ﬁ) at p =1 and p = 5, respectively. The
orange dash-dotted line corresponds to the QAOA optimized
starting with random guesses at p = 1. The three labeled dotted
lines are results from QA with total time 7 = 10, 102, 10°.

Since it often takes 10> measurements to obtain a suffi-
ciently precise estimate of the objective function, a ground
state probability of >107> means that one can find
the ground state without much parameter optimization.
Nevertheless, as quantum computers with 10> — 10° qubits
begin to come online, it will be interesting to see how
the QAOA performs on much larger instances where the
ground state probability from a generic QAOA or QA
protocol is expected to be exponentially small, whereas
the number of measurements necessary for optimization
grows only polynomially with the problem size. The results
here indicate that the parameter pattern and our heuristic
strategies are practically useful guidelines in realistic
implementations of the QAOA.

B. Implementation for large problem sizes

As experiments begin to test solving the MaxCut
problems with quantum machines [6,8], limited quantum
coherence time and graph connectivity are among the big-
gest challenges. In terms of coherence time, the QAOA is
highly advantageous: The hybrid nature of the QAOA as
well as its short- and intermediate-depth circuit paramet-
rization makes it ideal for near-term quantum devices. In
addition, our results show that the QAOA is not generally
limited by small spectral gaps, which raises hopes to
(approximately) solve interesting problems within the
coherence time.

What would be the necessary problem size to explore a
meaningful quantum advantage? We note that one of the

leading exact classical solvers, the BigMac solver [49], is
able to solve MaxCut exactly up to N < 100 but takes a
long time (more than an hour) for larger problem sizes.
A fast heuristic algorithm, the breakout local search
algorithm [50], can find the MaxCut solution with a high
probability for a problem size of a few hundreds, although
the solution is not guaranteed. Hence, a MaxCut problem
with a few hundred vertices is an interesting regime to
benchmark quantum algorithms. In terms of approxima-
tion, we noted earlier that the polynomial-time Goemans-
Williamson algorithm has an approximation ratio guarantee
of r* =~ 0.878. It will be also interesting to find out if the
QAOA is able to achieve a better approximation ratio for
some problem instances where the exact solution is not
obtainable, in this regime of hundreds of vertices.

We now discuss a few considerations that put these large-
size problems in the experimentally feasible regime on
near-term quantum systems.

1. Reducing interaction range

In a quantum experiment, each vertex can be represented
by a qubit. For a large problem size, a major challenge to
encode general graphs is the necessary range and versatility
of the interaction patterns (between qubits). The embedding
of a random graph into a physical implementation with a
1D or 2D geometry may require very long-range inter-
actions. By relabeling the graph vertices, one can actually
reduce the required range of interactions. This reduction
can be formulated as the graph bandwidth problem: Given
a graph G = (V, E) with N vertices, a vertex numbering is
a bijective map from vertices to distinct integers,
f:V = {l1,2,...,N}. The bandwidth of a vertex number-
ing f is By(G)=max{|f(u) - f(v)|:(u.v) € E(G)},
which can be understood as the length of the longest edge
(in 1D). The graph bandwidth problem is then to find the
minimum bandwidth among all vertex numberings, i.e.,
B(G) = min; B;(G); namely, it is to minimize the length
of the longest edge by vertex renumbering.

In general, finding the minimum graph bandwidth is N P-
hard, but good heuristic algorithms have been developed to
reduce the graph bandwidth. Figure 8(a) shows a simple
example of bandwidth reduction. The top illustrates the
vertex renumbering with a five-vertex graph. The bottom
shows the histogram of graph bandwidths for 1000 random
3-regular graphs of N =400 each. Using the Cuthill-
McKee algorithm [51], the graph bandwidth can be reduced
to around B = 100. While this reduction still requires quite
a long interaction range in 1D, the bandwidth problem can
also be generalized to higher dimensions. In 2D arrange-
ments, we then expect the diameter of interaction to be
Bop ~ /100 for N = 400 3-regular graphs [52], which
seems within reach for near-term quantum devices. A
detailed study of the 2D bandwidth problem is beyond
the scope of this work. Alternatively, one can make use of a
general construction to encode any long-range interactions
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FIG. 8. (a) Vertex renumbering to reduce the graph bandwidth.

Top: An example of vertex renumbering for a five-vertex graph.
Bottom: Distribution of graph bandwidths for 1000 random
3-regular graphs with N =400 each. The blue (orange) bars
are the bandwidth before (after) vertex renumbering. The inset
shows the sparsity pattern of the adjacency matrix before and
after vertex renumbering for one particular graph. (b) A protocol
to use a Rydberg-blockade controlled gate to implement the
interaction term exp(—iyo;o$). By choosing a proper gate time
for the second step (1 = 27/v/Q? + A?), one does not populate
the Rydberg level |r). With tunable coupling strength Q and
detuning A, one can control the interaction time y.

as local fields [53], although it requires additional physical
qubits and gauge constraints. Apart from implementing
arbitrary graphs in full generality, one can also restrict to
special graphs that exhibit some geometric structures. For
example, unit disk graphs are geometric graphs in the 2D
plane, where vertices are connected by an edge only if
they are within a unit distance. These graphs can be more
naturally encoded into 2D physical implementations,
and the MaxCut problem is still NP-hard on unit disk
graphs [54].

2. Example implementation with Rydberg atoms

The above discussion is experimental-platform indepen-
dent and is applicable to any state-of-the-art platforms, such
as neutral Rydberg atoms [19,20,55-57], trapped ions
[7,58-60], and superconducting qubits [5,6,61,62]. As an
example, we briefly describe a feasible implementation of
the QAOA with neutral atoms interacting via Rydberg
excitations, where high-fidelity entanglement has been
recently demonstrated [63]. We can use the hyperfine
ground states in each atom to encode the qubit states |0)
and |1), and the |1) state can be excited to the Rydberg
level |r) to induce interactions. The qubit-rotating term
exp (—if E?’Zl o}) can be implemented straightforwardly
by a global driving beam with tunable durations. The
interaction terms ) _; 4 oio; can be implemented strobo-
scopically by Rydberg-blockade controlled gates [20], as
illustrated in Fig. 8(b). By controlling the coupling strength
Q, detuning A, and the gate time, together with single-qubit
rotations, one can implement exp(—iyc;o}), which can then
be repeated for each interacting pair. An additional major
advantage of the Rydberg-blockade mechanism is its ability

to perform multiqubit collective gates in parallel [20,64].
This ability can reduce the number of two-qubit operation
steps from the number of edges to the number of vertices,
N, which means a factor of N reduction for dense graphs
with approximately N2 edges. While the falloff of Rydberg
interactions may limit the distance two qubits can interact,
MaxCut problems of interesting sizes can still be imple-
mented by vertex renumbering or focusing on unit disk
graphs, as discussed above.

For generic problems of 400-vertex 3-regular graphs, we
expect the necessary interaction range to be five atoms in
2D; assuming a minimum interatom separation of 2 um,
this range means an interaction radius of 10 ym, which is
realizable with high Rydberg levels [20]. Given realistic
estimates of coupling strength Q ~ 2z x 10-100 MHz
and single-qubit coherence time 7~ 200 us (limited by
Rydberg level lifetime), we expect with high-fidelity con-
trol that the error per two-qubit gate can be made roughly
(Q7)~! ~ 1073~10*. For 400-vertex 3-regular graphs, we
can implement the QAOA of level p ~ Qz/N ~ 25 with a
2D array of neutral atoms. We note that these are
conservative estimates, since we do not consider advanced
control techniques such as pulse shaping, and require less
than one error in the entire quantum circuit; it is possible
that the QAOA 1is not sensitive to some of the imperfec-
tions. Hence, we envision that soon the QAOA can be
benchmarked against classical [25,49,50] and semiclassical
[65-67] solvers on large problem sizes with near-term
quantum devices.

VII. CONCLUSION AND OUTLOOK

In summary, we have studied the performance, non-
adiabatic mechanism, and practical implementation of the
QAOA applied to MaxCut problems. Our results provide
important insights into the performance of the QAOA and
suggest promising strategies for its practical realization on
near-term quantum devices. Based on the observed patterns
in the QAOA optimal parameters, we developed heuristic
strategies for initializing optimization so as to efficiently
find quasioptimal parameters in O[poly(p)] time. In con-
trast, optimization with the standard random initialization
strategy that explores the entire parameter space needs
20(P) runs to obtain an equally good solution. We bench-
marked, using these heuristic optimization strategies, the
performance of the QAOA up to p < 50. On average, the
performance characterized by the approximation ratio was
observed to improve exponentially (or stretched exponen-
tially) for random unweighted (or weighted) graphs.
Focusing on hard graph instances where adiabatic QA
fails due to extremely small spectral gaps, we found that the
QAOA could learn via optimization a diabatic path to
achieve significantly higher success probabilities to find the
MaxCut solution. A metric taking into account both the
success probability and the run time indicates the QAOA
may not be limited by small spectral gaps. Finally, we
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provided a detailed resource analysis for experimental
implementation of the QAOA on MaxCut and proposed
a neutral-atom realization where problem sizes of a few
hundred atoms are feasible in the near future.

As we have benchmarked via random MaxCut instances,
our simple heuristic optimization strategies work very well.
Nevertheless, more sophisticated methods could be devel-
oped to improve the performance and robustness. One
possibility would be using machine-learning techniques to
automatically learn and make use of the optimal parameter
patterns to develop even more efficient parametrization and
strategies (see, e.g., Ref. [68]). Another important but
unsettled problem is assessing a reliable system-size scal-
ing for the QAOA. On average, we observed a (stretched)
exponential improvement with level p, up to N =22. It
remains open whether the same scaling will persist for a
larger system size. For the hard instances we generated that
have exceedingly small spectral gaps, the QAOA is able to
overcome the adiabatic limitations in all cases examined; it
remains to be seen how this behavior could extrapolate to
larger problems. An experimental implementation with
near-term quantum devices will be able to push the limit
of our understanding and serve as a litmus test for genuine
quantum speedup in solving practical problems.

Besides MaxCut, another interesting optimization
problem is the maximum independent set (MIS) problem,
which is also NP-hard and has many real-world applica-
tions [69,70]. In a separate work [46], we show that the MIS
problem can be naturally encoded into the ground state of
neutral atoms interacting via Rydberg excitations, with
minimal overhead on the hardware. The QAOA would be a
candidate quantum algorithm to solve the MIS optimization
problem on the neutral-atom platform. The methodology
we have developed here to efficiently optimize the QAOA
on MaxCut can also be directly applied to the MIS pro-
blem, where we observe similar parameter patterns and
nonadiabatic mechanisms of the QAOA; our results on MIS
is discussed in more detail in Appendix H. With such rapid
development in near-term quantum computers, we will
soon be able to witness experimental tests of the capability
of quantum algorithms to solve practically interesting
problems.
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Note added.—Recently, we became aware of a related
work appearing in Ref. [71]. In the preprint, they train
the QAOA variational parameters on a batch of graph
instances and compare the QAOA’s performance with the
classical Goemans-Williamson algorithm on small-size
MaxCut problems. Similar parameter shapes are found,
but Ref. [71] does not make use of any observed patterns to
design optimization strategies. We, in addition, discover
nonadiabatic mechanisms of the QAOA, which is not
studied in Ref. [71].

APPENDIX A: OPTIMAL PARAMETER
PATTERN FOR WEIGHTED GRAPHS

Here, we illustrate the pattern of optimal QAOA param-
eters for both weighted 3-regular (w3R) graphs and
weighted complete graphs. The weight of each edge is
randomly drawn from uniform distribution on the interval
[0,1]. In Fig. 9, we illustrate the pattern by simultaneously
plotting the optimal parameters for 40 instances. In both
cases, we see a pattern analogous to what is found for
unweighted 3-regular (u3R) graphs in Fig. 2(b), where y;
tend to increase smoothly and j; tend to decrease smoothly
withi = 1,2, ..., p. The optimal parameter of graphs from
the same class also appears to cluster together in the
same range.

We observe that the spread of 7* for w3R graphs in
Fig. 9(a) is wider than that for u3R graphs in Fig. 2(b). This
difference is because the random weights effectively
increase the number of subgraph types. Moreover, the
larger value for 7* for w3R compared to u3R graphs can be
understood via the effective mean-field strength that each
qubit experiences.

For complete graphs in Fig. 9(b), we observe that 7* for
different weighted graphs have a narrower spread as well
as a smaller value compared to both u3R and w3R graphs.
This difference is because there is only one type of
subgraph that every edge sees. The nonzero spread is
attributed to the fact that there are random weights on the
edges. We also expect this spread to vanish as problem size
N increases, when, for a typical instance, the distribution of
weights on the N —1 edges incident to each qubits
converges. The smaller value of ¥* can also be understood
via the effective mean-field strength picture, as each qubit
interacts with all N — 1 other qubits.
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FIG. 9. Optimal QAOA parameters (7", B*) for 40 instances of
16-vertex (a) w3R graphs and (b) weighted complete graphs,
for 3 < p < 5. Each dashed line connects parameters for one
particular graph instance. For each instance and each p, the BEGS
routine is used to optimize from 10* random initial points, and the

best parameters are kept as ()7*,3‘)

APPENDIX B: DETAILS OF HEURISTIC
OPTIMIZATION STRATEGIES

In the main text, we propose two classes of heuristic
strategies called INTERP and FOURIER for generating
initial points in optimizing QAOA parameters. Both
INTERP and FOURIER strategies work well for all the
instances we examine. We choose to use FOURIER for
the results in the main text due to the slight edge in its
performance in finding better optima when random per-
turbations are introduced. We now explain how these
strategies work in detail and compare their performances.

1. Interpolation-based strategy

In the optimization strategy that we call INTERP, we use
linear interpolation to produce a good initial point for
optimizing the QAOA as one iteratively increases the level
p- This strategy is based on the observation that the shape

<3

of parameters (y(p H),ﬁzﬁpﬂ)) closely resembles that

of (7, Bip):

The strategy works as follows: For a given instance, we
iteratively optimize the QAOA starting from p = 1 and

increment p after obtaining a local optimum (;7<Lp), ﬁ(LI,)). In

order to optimize parameters for level p + 1, we take the
optimized parameters from level p and produce initial

points (7?17 Ly ﬁ?p+1)) according to
il

p

p—i+1
P

[7(LI’)]i—1 + [7(LP)]1' (B1)

70,

fori =1,2,..., p+ 1. Here, we denote [y]; =y, as the ith
element of the parameter vector ¥, and [7{‘,,)]0 =

-

[7(Lp)] »+1 =0. The expression for ﬁ?p +1) is the same as

above after replacing y — f. Starting from ()7‘()p 1) ﬂ?,, 1)
we then optimize (e.g., using the BFGS routine) to obtain a
local optimum (?(Lp ) ﬂ(LpH)) for the (p + 1)-level QAOA.

Finally, we increment p by one and repeat the same process
until a target level is reached.

2. Details of FOURIER[q, R] strategy

We now provide the details of our second heuristic
strategy for optimizing the QAOA that we call FOURIER.
As described in the main text (Sec. III B), here we use a
new representation of the p-level QAOA parameters as
(u,v) € R%, where

o[-
Sl (-]

Roughly speaking, the FOURIER strategy works by start-
ing with level p =1, optimizing, and then reusing the
optimum at level p in (&, V) representation to generate a
good initial point for level p + 1.

In fact, we propose several variants of the FOURIER
strategy for optimizing p-level QAOA: They are called
FOURIER|g, R], characterized by two integer parameters g
and R. The first integer ¢ labels the maximum frequency
component we allow in the amplitude parameters (@, V).
When we set ¢ = p, the full power of the p-level QAOA
can be utilized, in which case we simply denote the strategy
as FOURIER[o0, R], since ¢ grows unbounded with p.
Nevertheless, the smoothness of the optimal parameters

(B2)

-

(7,p) implies that only the low-frequency components are
important. Thus, we can also consider the case where ¢ is a
fixed constant independent of p, so the number of param-
eters is bounded even as the QAOA circuit depth increases.
The second integer R is the number of random perturba-
tions we add to the parameters so that we can sometimes
escape a local optimum toward a better one. For the results
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shown in the main text, we use the FOURIER[co, 10]
strategy, meaning we set ¢ = p and R = 10, unless other-
wise stated.

In the basic FOURIER[c0, 0] variant of this strategy, we
generate a good initial point for level p + 1 by adding a
higher-frequency component, initialized at zero amplitude,
to the optimum at level p. More concretely, we take
parameters from a local optimum (if,,.V(, ) € R* at

level p and generate an initial point (i, .V, )€

R2(P*1) according to

=() (> =0 (3
Wpyny = (W) 0 V) = (7,):0).  (B3)
Using (" (p+1)° 17(()1, +1)) as an initial point, we perform the

BFGS optimization routine to obtain a local optimum
(#(yy 1) V(i) for the level p+ 1.

We also consider an improved variant of the strategy,
FOURIER[0, R > 0], which is sketched alongside the
R =0 variant in Fig. 10. This variant is motivated by
our observation that the basic FOURIER[ 0, 0] strategy can
sometimes get stuck at a suboptimal local optimum,
whereas perturbing its initial point can improve the per-
formance of the QAOA. Here, in addition to optimizing
according to the basic strategy, we optimize the (p + 1)-
level QAOA from R + 1 extra initial points, R of which are

FOURIER[g, 0] Initial points ==p Local optima

[u(,,_l), "(p—l)] [(ﬁ‘(]pﬁﬁ‘(]p) )] -> [(i&y 17&))] ------------ >

FOURIER(, R]

["(p—l)’”(p—l)] > [( i)> B(r) ] -V[(”(I};)v‘"(p))] """""" >
v [(ﬁ‘(’:)’,i‘(’p‘)’)] - [(11‘(’;;’,6(’;;’)] Best of R+ 2 v

o)) Y () > (550 (O Bf
() = () <

FIG. 10. Schematics of the two variants of the FOURIER[g, R]
heuristic strategy for optimizing the QAOA, when R =0 and
R > 0. Optimized parameters (green) at level p — 1 are used to
generate good initial points (blue) for optimizing at level p; the
same process is repeated to optimize for level p + 1. When
generating initial points, black dashed arrows indicate appending
a higher-frequency component [Eq. (B3)], and pink dashed
arrows correspond to adding random perturbations [Eq. (B4)].
In the R > 0 variant, two local optima (green) are kept in parallel
at each level p for generating good initial points: (#F U, *( >) is the

same optimum obtained from the FOURIER][q, O] strategy, and
(ﬁfp),f;fp)) is the best of R + 2 local optima, R of which are
obtained from perturbed initial points. We find that keeping the
(L_t'(Lp),f;(Lp)) optimum improves the stability of the heuristic, as

random perturbations can sometimes lead to erratic and non-
smooth optimized parameters.

generated by adding random perturbations to the best of all
local optima (#f,. V) found at level p. Specifically, for

each instance at the (p + 1)-level QAOA, and for

r=20,1,...,R, we optimize starting from
~p _
o (83, 0). r=>0
") = @8 +au"",0), 1<r<R
(p) (p) >/ =
=B _
o, (v(p),O), r=0,
v(ll+1) - =B =>P.,r 0 1 < < R (B4)
W) tav;).0). 1<r<R,

where ﬁfpg and 17&'; contain random numbers drawn from

normal distributions with mean 0 and variance given by
~pB SB .
ug, and Vi)

[ﬁ&;}k ~ Normal(0, [if, ]*),
[Vf];;}k ~ Normal(0, [¥(,*). (B5)

There is a free parameter « corresponding to the strength of
the perturbation. Based on our experience from trial and
error, setting @ = 0.6 has consistently yielded good results.
This choice of a is assumed for the results in this paper.
We remark that, while the INTERP strategy can also get
stuck in a local optimum, we find that adding perturbations
to INTERP does not work as well as to FOURIER. We
attribute this difference to the fact that the optimal param-
eters are smooth, and adding perturbations in the (u,V)

space modifies (7, B) in a correlated way, which could
enable the optimization to escape local optima more easily.
Hence, we consider here FOURIER with perturbations but
not INTERP.

Finally, we also consider variants of the FOURIER
strategy where the number of frequency components ¢q is
fixed. These variants are the same as aforementioned
strategies where ¢ = p, except we truncate each of the i
and v parameters to keep only the first ¢ components.
For example, when optimizing the QAOA at level
p > g with the FOURIER[g, 0] strategy, we stop adding
hlgher—frequency components and use the initial point
1) = () €RY.

3. Comparison between heuristics

We now examine the difference in the performance
among the various heuristic strategies we propose. For
our example instance in Fig. 11, we note that the INTERP
and FOURIER[o, 0] strategies have essentially identical
performance (except for small variations barely visible at
large p). This result is expected, since both strategies
generate initial points for optimizing level p + 1 based on
smooth deformation of the optimum at level p. In any case,
the FOURIER[co, 10] strategy outperforms INTERP and
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FIG. 11. The fractional error achieved by optimizing using our

various heuristics on an example instance of a 14-vertex w3R
graph. This instance is the same shown in Fig. 6(b).

FOURIER[o0, 0] beginning at level p = 20. Interestingly,
even when restricting the number of QAOA parameters to
2¢q = 10, the FOURIER][S5,10] strategy closely matches the
performance of other heuristics at low p and beats the R = 0
heuristic at large p. This result suggests that the optimal
QAOA parameters may, in fact, live in a small-dimensional
manifold. Therefore, optimization for the intermediate
p-level QAOA can be dramatically simplified by using
our new parameterization (i, ).

APPENDIX C: TTS FOR EXAMPLE
GRAPH INSTANCE

In Sec. V B, we focus on a representative graph instance
where the adiabatic minimum gap is small [Fig. 6(b)]. The
low-energy spectrum for the graph along the QA path can
be seen in Fig. 12(a). We remark that only eigenstates that
are invariant under the parity operator P = [V oF are
shown, since the Hamiltonian Hs(s) commutes with P
and the initial state is P invariant: Ply(0)) = |yw(0)).

Figures 12(b) and 12(c) illustrate TTSpa and TTSga0a
for the same graph. For QA, one can see that nonadiabatic
evolution with T = 20 yields orders of magnitude shorter
TTS than the adiabatic evolution. We also see that the
TTS in the adiabatic limit is independent of the annealing
time 7, following the Landau-Zener formula pgg =1 —
exp (—cTAZ. ). For the QAOA, we use our FOURIER
[o0, 10] heuristic strategy to perform the numerical simu-
lation up to pp, = 50 and compute TTSgaoa(p) and
TTS(()QP/:OA (up to p < pnax)- For this particular graph, we
note that, although TTS,, occurs at p = 49, in practice
it may be better to run the QAOA at p =4 or p = 5 due to
optimization overhead and error accumulation at deeper
circuit depths. The apparent discontinuous jump in
TTSqao0a is due to the corresponding jump in pgs(p),
which can be explained by two reasons: First, our heuristic
strategy is not guaranteed to find the global optimum, and
random perturbations may help the algorithm escape a local

o TTS g

opt

* TTSaa
Landau-Zener

10° 108
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FIG. 12. (a) Energy spectrum of low excited states (measured
from the ground state energy Egg) along the annealing path for
the graph instance given in Fig. 6(b). Only states that can couple
to the ground state are shown, i.e., states that are invariant under
the parity operator P = [, 67. The inset shows the energy gap
from the ground state in the logarithmic scale. (b) Time to
solution for the linear-ramp quantum annealing protocol, TTS,,
for the same graph instance. The TTS in the long time limit
follows a line predicted by the Landau-Zener formula, which is
independent of the annealing time 7. (c) The TTS for the QAOA
at each iteration depth p.

optimum, resulting in a jump in the ground state popula-
tion; second, even when the global optimum is found for all
level p, there can still be discontinuities in pgg, since the
objective function of the QAOA is energy instead of ground
state population.

APPENDIX D: EFFECTIVE FEW-LEVEL
UNDERSTANDING OF THE DIABATIC BUMP

In this Appendix, we elucidate the mechanism of the
diabatic bump observed in Fig. 6(c) via an effective few-
level dynamics. To study the intermediate dynamics during
quantum annealing, we can work in the basis of instanta-
neous eigenstates |¢;(¢)), where

Hoa(1)lei(1)) = €(1)]e)(1))-

Expanding the time-evolved state in this basis as
lw (1)) = >, a,(t)|e;(t)), the Schrodinger equation can
be written as

(D1)

021067-16



QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM: ...

PHYS. REV. X 10, 021067 (2020)

iZ(imel) +allé)) = Z€zal|€1>7

! !

(D2)

where 72 = 1 and the time dependence in the notations is
dropped for convenience. Multiplying the equation by (€|,
the Schrodinger equation becomes

iay = eay — izal<€k|él>,

l#k

(D3)

where (e;]€;) = 0 is taken by absorbing the phase into the
eigenvector |e). Written in a matrix form, we have

ag 0 —i(eglé) —ilegléz) -+ ag

| @ —ife1|ég) Ay —ilei]ér) - ai
! ay | 7 | —ilea]éo) —i(ea]éy) Ay a |’
(D4)

where we take the ground state energy ¢, = 0 (by absorb-
ing it into the phase of the coefficients) and A;y = ¢; — ¢ is
the instantaneous energy gap from the ith excited state to
the ground state. The time evolution starts from the initial
ground state with @y =1 and a; =0 for i # 0, and the
adiabatic condition to prevent coupling to excited states is

. dH dH
[(eolén] _ [teol T el _ Ieol =g e
Aio A AT

(D5)

The first equality can be derived from Eq. (D1). This condi-
tion gives the standard adiabatic timescale 7 = O(1/A2. ).
As we discuss in Sec. V B, the minimum gap for some
graphs can be exceedingly small, so the adiabatic limit is
not practical. However, it may be possible to choose an
appropriate run time 7 which breaks adiabaticity but is long
enough such that only a few excited states are effectively
involved in the dynamics. This regime is where the diabatic
bump operates, and one can understand the dynamics by
truncating Eq. (D4) to the first few basis states.

As an example, we plot in Fig. 13(a) the instantaneous
eigenstate populations of the first few states. It is simulated
with the full Hilbert space, but effectively the same
dynamics will be generated if the simulation is restricted
to the first few basis states in Eq. (D4). Figure 13(b) shows
the strength of the couplings between the instantaneous
ground state and the low excited states. By comparing
Figs. 13(a) and 13(b), one can see that 7 = 7% = 40 allows
the time evolution to break the adiabatic condition before
the anticrossing: Population leaks to the first excited state,
which becomes the ground state after the anticrossing.
Thus, the timescale of 7™ for the diabatic bump represents a
delicate balance between allowing population to leak out of
the ground state and suppressing excessive population
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FIG. 13. (a) Instantaneous eigenstate populations along the
linear-ramp quantum annealing path given by Eq. (9) for the
example graph in Fig. 6(b). The annealing time is chosen to
be T = T* =40, which corresponds to the time where the
diabatic bump occurs in Fig. 6(c). (b) Coupling between the
instantaneous ground states and the first few excited states.
The plotted quantities measure the degree of adiabaticity [as
explained in Eq. (D5)].

leakage, which explains why it happens at a certain range
of timescale.

APPENDIX E: COMPARING DIFFERENT
CLASSICAL OPTIMIZATION ROUTINES

In this Appendix, we compare three different classical
routines that can be used to optimize QAOA parameters:
Bayesian optimization [38], Nelder-Mead [37], and BFGS
[35]. This comparison is done by a numerical experiment
where we apply these optimization routines to ten instances
of 14-vertex w3R graphs. To compare them on equal
footing, we terminate each optimization run after a budget
of 20p objective function evaluations is used. In the
gradient-based routine BFGS, we include the cost of
gradient estimation via the finite-difference method into
the budget of 20p objective function evaluations. For each
routine, we start at p = 1, gradually increment p, and
perform optimization where the initial point is generated
using either our heuristic strategies (FOURIER and
INTERP) or the standard strategy of RI. We use the
versions of these optimization routines implemented in
MATLAB R2017b as bayesopt, fminsearch, and fminunc,
respectively. The objective function at each set of param-
eters is evaluated to floating point precision. The tolerance
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FIG. 14. Comparison of three different optimization routines applied to ten instances of 14-vertex w3R graphs. The initial point of
optimization is generated with either our heuristics (FOURIER or INTERP) or random initialization (RI). We plot the fractional error
1 — r, averaged over instances, for each optimization routine and each initialization strategy at each p. The error bars are sample
standard deviations from the ten instances. For our heuristic strategy, the optimization starts with a single initial point generated using
our FOURIER[co, O] or INTERP heuristics as described in Appendix B. For the RI strategy, we generate 50 random initial points
uniformly in the parameter space and optimize from each initial point; both the best and the average of 50 RI runs are plotted.

in both the objective function value and step size in
parameter space, as well as the finite-difference-gradient
step size, is chosen to be 0.01.

The result of our numerical experiment is plotted in
Fig. 14. Similar to Fig. 3(a), we see that the average quality
of local optimum found from 50 RI runs is much worse
than the best, indicating the difficulty of optimizing in the
QAOA parameter landscape without a good initial point.
We also see that, regardless of the classical routines chosen,
one run of optimization from an initial point generated from
our heuristic strategies is generally better than the best out
of 50 runs from randomly generated initial points. This
result indicates that our heuristic strategies work much
better than RI and can be integrated with a variety of
classical optimization routines. Moreover, we find that
Bayesian optimization typically does not do as well as
Nelder-Mead or BFGS for larger p, which is consistent
with the folklore that this routine is better suited for low-
dimensional parameter space [38]. On the other hand, it
seems both Nelder-Mead and BFGS have comparable
performance, even when the cost of gradient evaluation
is taken into account. The slight difference we observe
between the two in Fig. 14 is inconclusive and can be
attributed to suboptimal choices of tolerance and step size
parameters and the deliberately limited budget of objective
function evaluations.

APPENDIX F: DETAILS OF SIMULATION WITH
MEASUREMENT PROJECTION NOISE

When running the QAOA on actual quantum devices, the
objective function is evaluated by averaging over many
measurement outcomes, and, consequently, its precision is
limited by the so-called measurement projection noise from

quantum fluctuations. We account for this effect by
performing full Monte Carlo simulations of actual mea-
surements, where the simulated quantum processor outputs
only approximate values of the objective function obtained
by averaging M measurements:

M

1
FP’M = MZ C(zp,i)7

i=1

(F1)

where z,,; is a random variable corresponding to the ith

measurement outcome obtained by measuring |y, (7, ﬁ))
in the computational basis and C(z) is the classical
objective function. Note that, when M — oo, we obtain

F,u—F,=w,7.8)Hclw,(7.8)). In the simulation,
we achieve finite precision |F, ) — F,| < & by sampling
measurements until the cumulative standard error of the
mean falls below the target precision level £ In other
words, for each evaluation of F, requested by the classical
optimizer, the number of measurements M performed is set
by the following criterion:

Z[C<zp.i) -F,ul* <& (F2)

1
MM - 1) =
Roughly, we expect M =~ Var(H)/&*. To address issues
with finite sample sizes, we also require that at least ten
measurements be performed (M > 10) for each objective
function evaluation.

We now provide some details on the classical optimi-
zation algorithm used to optimize QAOA parameters.
Generally, classical optimization algorithms iteratively uses
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information from some given parameter point (¥, f) to find
a new parameter point (¥,f) that hopefully produces a

larger value of the objective function F, (¥, ﬁ/) > F (7, B).
In order for the algorithm to terminate, we need to set some
stopping criteria. Here, we specify two: First, we set an
objective function tolerance €, such that if the change in
objective function |F, 7.8) - F,,,M(f,ﬁﬂ < e, the algo-
rithm terminates. We also set a step tolerance J, so that the
algorithm terminates if the new parameter point is very
close to the previous one |7/ —7|> + |f — B|? < 8% For
gradient-based optimization algorithms such as BFGS, we
also use ¢ as the increment size for estimating gradients via
the finite-difference method: OF ,/8y; ~ [F, s (y; + 6) —
F, m(y:)]/6. In our simulations, we use the BFGS algo-
rithm implemented as fminunc in the standard library of
MATLAB R2017b.

Using the approach described above, we simulate experi-
ments of optimizing the QAOA with measurement projec-
tion noise for a few example instances, with various choices
of precision parameters (e, £, §) and initial points. For the
representative instance studied in Fig. 7, we set € = 0.1,
£=0.05, and 6 =0.01. In each run of the simulated
experiment, we start with the QAOA of level either p =
1 or p =5 and optimize increasing levels of the QAOA
using our FOURIER[o0, 0] heuristic strategy. The initial
point of QAOA optimization is either randomly selected
(when starting at p = 1) or chosen based on an educated
guess using optimal parameters from small-sized instances
(at p =1 and p = 5). Specifically, the educated guess for
the initial points we use are (#°,%°) = (1.4849,0.5409) at
level p =1 and

i = (1.9212,0.2891,0.1601,0.0564,0.0292),  (F3)
7 = (0.6055,-0.0178,0.0431, -0.0061,0.0141) (F4)

at level p = 5. For each such run, we keep track of the
history of all the measurements, so that the largest cut
Cut; found after the ith measurement can be calculated.
We repeat each experiment for 500 times with different
pseudorandom number generation seeds and average over
their histories.

APPENDIX G: TECHNIQUES TO SPEED UP
NUMERICAL SIMULATION

In this Appendix, we discuss a number of techniques we
exploit to speed up the numerical simulation for both the
QAOA and QA.

First, we make use of the symmetries present in the
Hamiltonian. For general graphs, the only symmetry
operator that commutes with both H- and Hj, is the parity
operator P = [[¥, 67: [He,P] =0, [Hp, P] =0, and so
does [Hqa(s),P] =0, where Hga(s) is the quantum

annealing Hamiltonian in Eq. (9). The parity operator
has two eigenvalues, +1 and —1, each with half of the
entire Hilbert space. The initial state for both the QAOA
and QA is in the positive sector, i.e., P|+)® = |+)®N,
Thus, any dynamics remain in the positive parity sector. We
can rewrite H - and Hp in the basis of the eigenvectors of P
and reduce the Hilbert space from 2" to 2V~! by working in
the positive parity sector.

For QA, dynamics involving the time-dependent
Hamiltonian can be simulated by dividing the total sim-
ulation time 7 into sufficiently small discrete time 7 and
implement each time step sequentially. At each small step,
one can evolve the state without forming the full evolution
operator [72], either using the Krylov subspace projection
method [73] or a truncated Taylor series approximation
[74]. In our simulation, we use a scaling and squaring
method with a truncated Taylor series approximation [74],
as it appears to run slightly faster than the Krylov subspace
method for small time steps.

For the QAOA, the dynamics can be implemented in a
more efficient way due to the special form of the operators
Hc and Hp. We work in the standard o, basis. Thus,
He =3 (wij/2)(1 — 6i07) can be written as a diagonal
matrix, and the action of e~7Hc can be implemented as
vector operations. For Hp, the time evolution operator can
be simplified as

N

N
o-iPHs — H oo — H (Tcos p —ic}sinf3).
=1

J=1

(G1)

Therefore, the action of e~#H5 can also be implemented as
N sequential vector operations without explicitly forming
the sparse matrix Hp, which both improves simulation
speed and saves memory. In addition, in the optimization of
variational parameters, we calculate the gradient analyti-
cally instead of using finite-difference methods. Techniques
similar to the gradient ascent pulse engineering method
[75] are used, which reduces the cost of computing the
gradient from O(p?) to O(p), for a p-level QAOA. Finally,
in our FOURIER strategy, we need to calculate the gradient
of the objective function with respect to the new parameters
(id,¥). Since 7 = Agii and f = A¥ for some matrices Ag
and Ac, their gradients are also related via V; = AgVy
and V; = ASVB.

APPENDIX H: QAOA FOR MAXIMUM
INDEPENDENT SET

In this Appendix, we briefly illustrate the generality of
our results by applying the QAOA to another class of
combinatorial optimization problems called the MIS. Given
a graph G = (V,E), the MIS problem concerns finding
the largest independent set—a subset of vertices where no
two of which share an edge. In other words, the problem
Hamiltonian is
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(H1)

Hp = Pis (qu) Pis,

where /i = |1)(1| = (1 —6%)/2 and Pyg is the projection
(or restriction) onto the subspace of independent set states
span{|y) :7;7i;ly) =0 V (i, j) € E}. The p-level QAOA
for the MIS, first suggested by Ref. [2], involves the
preparation of the following variational wave function:

p—1
iy (7.B)) = e rtte [T enttrethittojo)e - (12)
k=1
where
HQ == PIS (ZU;) PIS- (H3)

Similar to the case of MaxCut, here the QAOA works by
repeatedly measuring the system in the computational basis

to obtain an estimate of G, (¥.) = (w,(7.8)|Hp|w ,(7.5))
and using a classical computer to search for the best

variational parameters (7", B*) so as to maximize G,,.
We note that the evolution can be implemented using
the following physical Hamiltonian:

Hyica(t) = Y _[A0A; +Q0)of] + Y _Uhidy.  (H4)

i (i)
In the U > |A|, |Q| limit, the system is constrained to the
manifold where 7;71; = 0 for all edges (i, ;) (since the
initial state is |0)®V), and the QAOA circuit can be
performed by setting appropriate waveforms of A(¢) and
Q(r). See Ref. [46] for an implementation scheme of
the MIS with a platform of neutral atoms interacting via
Rydberg excitations.

After performing exhaustive search of QAOA parameters
using randomly initialized optimization for many instances
of the MIS, we discover a similar pattern. This pattern is
illustrated in Fig. 15(a), where we see that the optimal
parameters at p = 3 tend to cluster in two visually distinct
groups. For one of the groups, the smooth curve underlying
the parameters exhibits a resemblance to a quantum
annealing protocol, using a time-dependent Hamiltonian:

HYR (1) = fp()Hp + fo(1)Hp. (H5)
For example, if we choose (fp, fp) such that f»(0) >0
and fp(T) <0, and f(0) = fo(T) =0, then we can
initialize the system in |0)®V, which is the ground state
of HYX(r=0), and evolve adiabatically to reach the

ground state of HY (t = T) « —Hp (i.e., the state encod-
ing the MIS solution). The Hamiltonian H,, which is

(a)

£

——QAOA

—o— Quantum annealing

— — 1—exp[—0.067A2, ]

10" 102 10°  10*  10°

FIG. 15.

7 (d) 1
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— 4B
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(a) Pattern in the optimal QAOA parameters at level p = 3 for 20 random instances of the MIS problem. Each dashed line

connects parameters for one particular graph instance. (b) The energy difference relative to the ground state in the quantum annealing
protocol of Eq. (H6) for an example 32-vertex MIS instance. The annealing protocol progresses as the parameter £ increases from O to 1.
The minimum spectral gap between the ground state (GS) and the first excited state (1E) is A;, = 0.0012 at £ = 0.6666. (c) Comparing
performance of quantum annealing and the QAOA on the example instance, in terms of the ground state population at the end of the
quantum evolution. The equivalent evolution time for the QAOA is calculated via Topaon = l’-’;l lv:l + >°7, |B:]. (d) The effective
annealing schedule converted from optimized 25-level QAOA parameters for the example MIS instance. (e) The population of the
system in the instantaneous eigenstates, during the effective annealing schedule that approximates the dynamics under the 25-level
QAOA. Here, we observe that the algorithm attempts to transport the system to the fifth excited state, keeping it there before it undergoes
a series of anticrossings toward the ground state.
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turned on in the middle of the time evolution, induces
couplings between different independent-set basis states
and opens a spectral gap between the ground state and
excited states. For concreteness of discussion, we focus on
the following choice of annealing schedule:

fp(8) =6(1-2¢),  f5(8) =sin*(zf). (1) =1/T.

(Ho)

We further analyze the performance and mechanism of
the QAOA for the MIS by focusing on example instances
that are difficult for adiabatic quantum annealing due to
small spectral gaps. In Fig. 15(b), we show the level-
crossing structure for such an example instance, where the
minimum spectral gap is A, = 0.0012. The same in-
stance is studied in Ref. [46]. To study the performance of
the QAOA in deeper-depth circuits, we use the interpola-
tion-based heuristic strategy outlined in Appendix B 1 to
optimize QAOA parameters for this example instance
starting at level p = 3. The performance of the QAOA
and quantum annealing are then compared in Fig. 15(c),
where we see that the QAOA is able to obtain a much larger
ground state population in a much shorter time compared to
the adiabatic timescale of 1/A2. ~ 10°. We then study the
mechanism of the QAOA by converting its parameters at
level p = 25 to a smooth annealing path (24, fQAOA) in

p gPp P 0
a similar procedure as in Sec. V B. This annealing path is

visualized in Fig. 15(d), where we plot the effective &.4(¢)

defined by fplEur(1)]/folEur(r)] = F3 % (0)/£M (1)
for the QAOA-like schedule. We then monitor populations
in the instantaneous eigenstates during the evolution to gain
insights into the mechanism of the QAOA. As shown in
Fig. 15(e), the QAOA is able to learn to navigate a very
complicated level-crossing structure by a combination of
adiabatic and nonadiabatic operations: The system diabati-
cally couples to the excited states, lingers to maximize
population in the fifth excited state, and then exploits a
series of anticrossings to return to the ground state. Our
results here demonstrate that the nonadiabatic mechanisms
observed in the QAOA for MaxCut can play a significant
role in more general problems, such as difficult MIS
instances.
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