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Solving strongly coupled gauge theories in two or three spatial dimensions is of fundamental importance
in several areas of physics ranging from high-energy physics to condensed matter. On a lattice, gauge
invariance and gauge-invariant (plaquette) interactions involve (at least) four-body interactions that are
challenging to realize. Here, we show that Rydberg atoms in configurable arrays realized in current tweezer
experiments are the natural platform to realize scalable simulators of the Rokhsar-Kivelson Hamiltonian—a
2D U(1) lattice gauge theory that describes quantum dimer and spin-ice dynamics. Using an electro-
magnetic duality, we implement the plaquette interactions as Rabi oscillations subject to Rydberg blockade.
Remarkably, we show that by controlling the atom arrangement in the array we can engineer anisotropic
interactions and generalized blockade conditions for spins built of atom pairs. We describe how to prepare
the resonating valence bond and the crystal phases of the Rokhsar-Kivelson Hamiltonian adiabatically and
probe them and their quench dynamics by on-site measurements of their quantum correlations. We discuss
the potential applications of our Rydberg simulator to lattice gauge theory and exotic spin models.

DOI: 10.1103/PhysRevX.10.021057 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics

I. INTRODUCTION

Atoms trapped in tweezer arrays and interacting via van
der Waals interactions of laser-excited Rydberg states have
recently emerged as one of the most promising platforms
for quantum simulation of spin models. Unique features of
Rydberg tweezer arrays include the flexibility of freely
arranging atoms in any geometric structure in one, two, or
three spatial dimensions [1–3]. In combination with strong,
and potentially angular-dependent, Rydberg-Rydberg inter-
actions, such arrays yield a versatile tool available to realize
a wide variety of effective spin models, as demonstrated
in recent experiments with Ising-type [4–6] and topo-
logical Su-Schrieffer-Heeger models [7] (for alternative

realizations in optical lattices, see Refs. [8,9]). A key
element of quantum many-body systems in Rydberg
tweezer arrays is the Rydberg blockade mechanism [10].
Here, only single atomic Rydberg excitations within a
given blockade radius Rc are allowed, with double exci-
tations strongly suppressed by large energy shifts from
Rydberg van der Waals interactions. In this paper, we show
that such an experimental setting provides a natural
framework for implementing 2D U(1) lattice gauge models
for spin 1=2 and, in particular, (a variant of) the Rokhsar-
Kivelson Hamiltonian [11]. Such a Hamiltonian corre-
sponds to a paradigmatic model of quantum spin ice and
quantum dimers [12]. Configurable 2D atomic tweezer
arrays thus offer a unique opportunity to study Rokhsar-
Kivelson dynamics and phase diagrams, in particular,
accessing and characterizing its resonating valence bond
phase [13–15].

The implementation of lattice gauge theories in spatial
dimensions larger than one is presently one of the key
challenges in the ongoing development of quantum sim-
ulators. Recently, pioneering experiments have demon-
strated the quantum simulation of 1D lattice gauge
theories, including the 1D Schwinger model, as 1D
quantum electrodynamics, with trapped ions [16,17], and
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superconducting qubits [18]. Furthermore, recent experi-
ments with 1D Rydberg chains [5] could be reinterpreted in
terms of a truncated 1D Schwinger model [19] and string
breaking. In contrast, lattice gauge theories in higher spatial
dimensions are much harder to simulate. They are expected
to display a plethora of novel physical phenomena which
are absent in 1D, due to the interplay between electric and
magnetic interactions, such as confined-deconfined phase
transitions [20] and topological order [21]. A difficulty in
implementing lattice gauge theories in higher spatial
dimensions is that gauge invariance (Gauss law) and
gauge-invariant magnetic interactions, plaquette terms,
typically translate into four-body (or higher-order) inter-
actions. This difficulty also applies when gauge field
excitations are represented as finite dimensional, such as
in lattice gauge spin models [22–25]. While recent pro-
posals report significant advances in constructing gauge-
invariant terms in Kogut-Susskind–like [26] Hamiltonians
from basic and natural building blocks, e.g., in cold
atom systems [27–33], a laboratory implementation of
2D lattice gauge theories remains elusive (for a digital
approach, see, e.g., Refs. [34–37]; for reviews, see
Refs. [38–40]; for Floquet engineering and related progress
with density-dependent gauge fields, see Refs. [41–45]).
For instance, plaquette (ring-exchange) interactions have
been experimentally demonstrated for disconnected
plaquettes only [46].
In this work, we take a different route for achieving a

natural implementation of 2D U(1) spin-1=2 models. The
enabling insight is the existence of a dual formulation,
where plaquette interactions are mapped into single-body
terms with constraints. In the context of our Rydberg
tweezer array, these correspond to Rabi couplings between
atomic states which are subjected to generalized blockade
conditions due to Rydberg interactions. Thus, we obtain a
natural relation between the gauge theories and atomic
systems with generalized blockade constraints, which
provides a physical basis for the scalable [47] quantum
simulation of lattice gauge theories in 2D.
The idea of exploiting dualities for quantum simulation

of spin models and lattice gauge theories is not new;
see, e.g., Ref. [49]. It is well known since Ref. [26] that
in the magnetic basis the pure gauge Kogut-Susskind
Hamiltonian simplifies (it is the same duality that relates
Z2 gauge theory like the toric code to the Ising model
[50,51]) and allows one, e.g., to rewrite the Higgs-U(1)
Hamiltonian [52] as an extended Bose-Hubbard model [53]
(see also Refs. [54,55]). However, the duality we construct
here for the pure gauge U(1) spin-1=2 models (quantum
spin ice in the condensed matter language) has not been
exploited for a quantum simulation previously.
The paper is organized as follows. In Sec. II, we

introduce the Rokhsar-Kivelson Hamiltonian as a 2D
U(1) spin-1=2 gauge theory and derive the dual
Rokhsar-Kivelson (RK) Hamiltonian. First, after a brief

tutorial on lattice gauge theories, we review the phase
diagram of the RK Hamiltonian on the square lattice
without background charges as known in its original basis
(Sec. II A). Then, we define the duality transformation,
describe its properties, and illustrate the phase diagram in
terms of the observables of the dual spins on the full
square lattice and on ladder geometries (Sec. II B). In
Sec. III, we show how such dynamics can be naturally
realized in 2D Rydberg arrays. First, we engineer 2D
Ising models with tunable anisotropic interactions in
decorated arrays, obtained by arranging orientable pairs
of Rydberg atoms on 2D arrays (Sec. III A). The gauge
theory emerges in such models for properly chosen
arrangements (interactions) in the limit of small Rabi
coupling (¼ transverse field), i.e., in a generalized block-
ade regime (Secs. III B and III C). We show that such
Rydberg Rokhsar-Kivelson Hamiltonians host resonating
valence bond phases, and we propose a step-by-step
prescription to prepare and detect these phases in current
experiments (Sec. III D). Finally, in Sec. IV, we summarize
our results and discuss future steps and potential applica-
tions of our simulator based on controllable Rydberg arrays
to gauge theories and beyond.

II. RYDBERG GAUGE THEORIES: DUAL
FORMULATION IN TERMS OF
GENERALIZED BLOCKADES

In this section, we show how to formulate a relevant U(1)
gauge theory in terms of interactions that are natural for an
atomic system. Let us start by introducing the gauge theory
in simple terms. We focus on the situation in which the
gauge field evolves in a background of static charges
(possible extensions are discussed in the outlook).

A. Spin gauge theories and the Rokhsar-Kivelson model

The Hamiltonian of a gauge theory in two (or more)
dimensions is constructed in terms of electric and magnetic
interactions and of their coupling to charges. In continuous
Abelian U(1) gauge theories relevant in high-energy
physics like quantum electrodynamics (and similarly for
non-Abelian gauge theories like quantum chromodynam-
ics), the former are simply given by the square of the
electric and magnetic fields Eμ and B, respectively, with
Eμ ¼ ∂tAμ and B ¼ ∂xAy − ∂yAx defined (in the unitary
gauge) through the vector potential Aμ. Here, t, x, y are the
time and space coordinate in 2D, and μ ¼ x, y. Gauge
invariance, i.e., invariance of the Hamiltonian under local
phase (symmetry) transformations of the charges, follows
directly from the invariance of Eμ and B under
Aμ → Aμ þ ∂μθðx; yÞ. The electric field is sourced by the
charges through the Gauss law ∂μEμ ¼ 4πQ, where Q is
the charge density.
In gauge theories defined on the lattice [56], the charges

occupy the sites s ¼ ðxs; ysÞ of the lattice, while the
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electromagnetic field lives on its links l. The links are
oriented and can be denoted by their starting site and their
direction μ ¼ x, y, l ¼ ðs; μÞ. The electric interactions are
defined directly in terms of the electric operator Ês;μ, a
Hermitian operator of discrete spectrum acting on the links.
For each link, one further defines aWilson operator Ûs0;μ0 as
the lowering operator for the electric field: ½Ês;μ; Ûs0;μ0 � ¼
−Ûs;μδs;s0δμ;μ0 . The Wilson operator measures the phase
acquired by a unit charge moved along the link ðs; μÞ of
length a, i.e., Ûs;μ ∼ eiaAμðsÞ. The magnetic interactions are
given by (oriented) products of these Wilson operators on
the links around the plaquettes of the lattice. These
operators are used to construct the Kogut-Susskind
Hamiltonian [26]. In the limit of infinitely massive charges,
such a Hamiltonian contains no dynamics for the charges
and reads

HKS ¼
X
s

�
g2

2
ðÊ2

s;x þ Ê2
s;yÞ

−
1

2g2
ðÛ†

s;xÛ
†
sþx̂;yÛsþŷ;xÛs;y þ H:c:Þ

�
; ð1Þ

which reduces to the pure gauge U(1) Hamiltonian in the
continuum, H ¼ R ðE2 þ B2Þ, when the lattice spacing a is
sent to zero. The Hamiltonian (1) is gauge invariant, as it
commutes with the lattice version of the Gauss law

ðÊs;x þ Ês;y − Ês−x̂;x − Ês−ŷ;y − Q̂sÞjΦi ¼ 0; ∀ s;

⇔ jΦi ∈ fphysical statesg; ð2Þ
that determines what states are physical for a given
distribution of charges. Here, Q̂s is the operator measuring
the charge on the site s, and jΦi represents the state of the
whole lattice, including both links and sites. The electric
states, i.e., the eigenstates of the electric operators on the
links, form a convenient basis for the link degrees of
freedom. In particular, the physical states can be easily
identified in this basis via Eq. (2).
Since the electric field is unbounded, the number of

electric states on each link is, in principle, infinite.
However, it is possible to truncate it to a maximal value
and define consistently U(1) [and SU(N) [57,58] ] lattice
gauge theories with finite local Hilbert spaces (at the price
that the Wilson operator is no longer unitary). The simplest
U(1) gauge theories in 2D, known as gauge magnets, link
models, and Ising gauge theories [22–25], are obtained
by considering just two electric states per link; see Fig. 1.
The electric operator reduces to Ês;μ → Ŝzs;μ and the Wilson
operator to Ûs;μ → Ŝ−s;μ, with Ŝ� ¼ Ŝx � iŜy, and the
physical configurations and their dynamics follow from
Eqs. (2) and (1).

We can represent the physical configurations in the
(electric) Ŝz basis by coloring in red the links in j↑i

and not coloring the ones in j↓i. We use such notation in
Fig. 1(b) to illustrate the six configurations out of 16
allowed around a site without charges. All the physical
configurations of the plane are obtained by assembling the
local building blocks satisfying Eq. (2).
Since E2 is trivial [ðŜzÞ2 ¼ 1] in the retained states [59],

the Kogut-Susskind Hamiltonian (1) specialized to the
truncated theory contains only magnetic interactions
HKS → −

P
s Ŝs þ Ŝ†

s with

Ŝs þ Ŝ†
s ¼ Ŝ−s;xŜ

−
sþx̂;yŜ

þ
sþŷ;xŜ

þ
s;y þ H:c:; ð3Þ

(a)

(c)

(b)

FIG. 1. Spin gauge theories and the Rokhsar-Kivelson model.
(a) Spin-1=2 lattice gauge theories are the simplest gauge theories
with a continuous gauge symmetry group. The gauge degrees of
freedom are spins 1=2 that live on the oriented links of the lattice,
labeled as s, μ, where s is the starting site and μ is the direction,
e.g., x or y in a square lattice. They display the main features of
gauge theories in D > 1: (i) the Gauss law that determines the
allowed spin configurations on the links in terms of the charges
and (ii) the magnetic interactions acting on the links around a
plaquette. On a square lattice, these operators correspond to both
four-body spin operators indicated by the green and violet
rhombi, respectively. (b) In a system without charges, we depict
the effect of the Gauss law by coloring in red the links in j↑i and
not coloring the ones in j↓i that represent the electric states.
Physical states are a superposition of endless red strings going up
and right [see (c) and Fig. 2]. Such electric configurations
correspond to position states, and Ŝ†

s þ Ŝs acts as a kinetic term
on them. (c) The square of the plaquette operator ðŜ†

s þ ŜsÞ2 is
diagonal in the electric basis and plays the role of a potential term
that counts flippable plaquettes. The competition of the kinetic
and potential terms in the Rokhsar-Kivelson Hamiltonian (4)
gives rise to a rich phase diagram, with the resonating valence
bond solid (RVBS) phase separating two crystal phases, the Néel
and the columnar phases (see the description in the main text).
The resonant plaquettes are depicted by diagonal double arrows.
The alternated green and pink arrows reflect that the resonant
plaquettes are correlated within the same sublattice and anti-
correlated with the ones in the opposite sublattice.
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where we label the plaquette by its lower left site. As
shown in Fig. 1(b), Ŝs þ Ŝ†

s interchanges two electric
configurations of a plaquette, while it annihilates the
remaining (14) ones. In the following, we refer to these
two configurations as flippable and to Ŝs þ Ŝ†

s as the
plaquette operator. Notice that neighbor plaquette operators
are not commuting: Such a property is a consequence of the
electric field truncation and has important implications on
the dynamics. In fact, we can interpret the truncation as the
effect of a modified electric term; see the Appendix B.
Thus, the usual dynamical competition between electric
and magnetic interactions is retained and transformed from
a soft into a hard constraint.
The Hamiltonian considered so far is not the most general

one compatible with gauge invariance, i.e., commuting with
Eq. (2), that one can construct. If we regard the electric basis
as a position basis, we can interpret the sum of plaquette
operators as a kinetic term that acts on the electric configu-
rations by interchanging them. We can thus add potential
terms that are diagonal in the electric basis and weight the
different configurations. The resulting lattice models have a
rich phase diagram and are of direct interest in condensed
matter even without taking the continuum limit. A relevant
Hamiltonian in this class is the RK model [11]

HRK ¼ −J
X
s

½ðŜs þ Ŝ†
sÞ − λðŜs þ Ŝ†

sÞ2�; ð4Þ

where the potential term is given by the square of the
plaquette operator. Here, the potential term simply counts
the number of flippable plaquettes, and, therefore, λ plays the
role of a chemical potential for the flippable electric con-
figurations. The RKHamiltonian was originally proposed as
a simple model of close-packed quantum dimers that could
host short-range resonating valence bond [13–15] insulating
states. Quantum dimers are an effective description of
valence bonds, the singlets of valence electrons in a quantum
antiferromagnet. Originally, it was thought that in the
presence of doping [which implies the addition of kinetic
terms for dimers in Eq. (4)] the resonating valence bond state
would become a superconductor due to the condensation of
the vacancies (holon), such to provide a mechanism for high-
Tc superconductivity [61] in cuprates. Nowadays, it is still
expected that the pseudogap phases at moderate hole doping
are resonating valence bond phases although of a more
complex nature [62], and the properties of the latter are well
understood in terms of emerging gauge theories [63], as first
realized inRefs. [64,65]. Dimer configurations are equivalent
to electric configurations in the presence of a staggered
distribution of static charges �1, and their dynamics is
described by Eq. (4); see Appendix A for further details.

1. Phase diagram of the RK model

The RK Hamiltonian has a rich phase diagram in any
lattice geometry and charge distribution. At λ ¼ 1, known

as the RK point, the Hamiltonian (4) becomes a sum of
projectors and is semipositive definite by construction [11].
The equal superposition of all the allowed configurations is
the exact, zero energy ground state of HRKðλ ¼ 1Þ. This
state is a prototype of a quantum spin liquid [66]. In the
square lattice and with no charges [see Fig. 1(c)], the RK
point separates a columnar phase for λ > 1, from a
resonating valence bond solid (RVBS) phase [67,68] with
quasi-long-range order that extends from λc < λ < 1. For
λ ¼ λc ∼ −0.3, there is a weakly-first-order phase transition
[69,70] to a Néel phase. Both the Néel and the RVBS are
examples of order by disorder [71], where quantum
fluctuations resolve the classical degeneracy and select a
unique ground state. The RVBS is also a crystal order phase
but richer: Similarly to the plaquette phase [72] in the
quantum dimer model, it preserves the point symmetry of
the lattice and can be interpreted as the oscillation between
the two Néel states. Its correlation pattern [see Fig. 1(c)]
spontaneously breaks translational invariance while pre-
serving charge conjugation [73].
On frustrated lattices like the triangular and kagome

ones, the corresponding RK Hamiltonians for quantum
dimers [74] are expected to display a true spin-liquid phase
around the RK point, λ≲ 1 [75–77], while the overall
structure of the phase diagram is lattice dependent; see,
e.g., Fig. 17.8 in Ref. [12].
The multibody interactions in Hamiltonians like the RK

model (4) make experimental observations challenging,
both in condensed matter systems and in synthetic quantum
matter. The relevant Hamiltonian terms can, in principle, be
obtained as low-energy limits of antiferromagnets, for
instance, in the 2D pyrochlore lattice in the Ising limit
[76]. There, the dominating Ising spin-spin interactions
impose the Gauss law on the low-energy manifold, and the
plaquette interactions emerge in perturbation theory
through ring exchange [29,78]. Alternatively, one can
engineer both Gauss law and plaquette interactions by
adopting a digital approach [34,79] based on Rydberg gates
[80]. In both cases, the suppression of the energy scale or
complexity of the digital procedures makes the realization
of 2D gauge theories in experiments extremely hard.

B. Dual formulation of the RK model

We show here that it is possible to reformulate spin
gauge theories such that the plaquette interactions acquire a
simpler form. In particular, we find a dual formulation
where the multibody interactions have a natural realization
in atomic arrays with Rydberg interactions. For the sake of
concreteness, let us focus on the RK model on the square
lattice without charges (and fix the boundary conditions
compatible with the Néel state); see Figs. 1(c) and 2. For the
dual formulation, we consider a spin-1=2 system associated
with each plaquette of the square lattice. The physical states
of the original gauge theory are related to states of the
plaquette spins via the operator identification
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Ŝzp;x → −2ð−1ÞpŜzpŜzp−ŷ;
Ŝzp;y → 2ð−1ÞpŜzpŜzp−x̂; ð5Þ

where the Ŝzp acts on the spin 1=2 associated to the
plaquette p ¼ ðxp; ypÞ and ð−1Þp ¼ ð−1Þxpþyp distin-
guishes even (þ) and odd (−) plaquettes. Equation (5)
defines a one-to-one mapping between Hilbert spaces that
is well defined up to an overall Z2 identification of the
plaquette spins for periodic boundary conditions. For open
lattices, the Z2 degeneracy can be removed, for instance, by
choosing all the dual spins up on the boundary. Note that
the transformation (5) maps the Néel state into the
ferromagnetic states, jΩi ¼ Q

p∈even j⌜ip →
Q

p j↑ip; see
Fig. 2(a).
This mapping is appealing, because the Hamiltonian (4)

is particularly simple in this dual formulation. Since the
map (5) is quasilocal, it maps local operators into local
operators. In particular, as detailed in Appendix C, the
plaquette operator can be written as

Ŝp þ Ŝ†
p → ðP↑↑↑↑

p þ P↓↓↓↓
p Þ2Ŝxp: ð6Þ

Here, P↑↑↑↑
p ≡Q

p0∈hpið12 þ Ŝzp0 Þ denotes the projector onto
states where all spins neighboring to p are in the state j↑i

(and analogously P↓↓↓↓
p ). Even though the plaquette

operator is a multispin operator also in this dual represen-
tation, it has a simple form: It flips the spin of the associated
plaquette, conditional on the state of its nearest neighbors.
In particular, a single plaquette spin is flipped by the
plaquette operator only if all four spins on the neighboring
plaquettes point in the ↑ direction or if all point in the ↓
direction. The (dual) RK Hamiltonian is simply given by a
sum of such terms:

H�
RK ¼ −J

X
p

ðP↑↑↑↑
p þ P↓↓↓↓

p Þð2Ŝxp − λÞ: ð7Þ

Note that the map (5) and the Hamiltonian (7) are the
quantum version of the height formalism [81–83] applied
to the RK model without charges; see Appendix C. The
same map can be derived also for other charge sectors and
geometries [84], including frustrated lattices [85] (see
Sec. IV for further discussion).
To illustrate this duality further, let us consider the

repeated action of the plaquette operator on the fully
flippable state jΩi. Once the first plaquette operator ðŜp þ
Ŝ†
pÞ is applied, all spin on plaquettes p0 neighboring p can

no longer be flipped. This result reflects the gauge con-
straint (and the electric-field truncation) and manifests in

(a)

(b) (c) (d)

FIG. 2. Graphical illustration of the duality. (a) Definition of the link spins (blue dots) in terms of the dual plaquette spins (black dots),
as in Eq. (5). The dual spins live in the dual lattice formed by the centers of the plaquettes. The value of the link spin is determined by the
plaquette spins of the two plaquettes sharing the link, as indicated by the purple ellipses for the links p, x and p, y. The orientation of the
plaquette spins is chosen such that the fully flippable state jΩi is mapped in the dual basis into the ferromagnetic state (b). (b)–(d) We
represent the configurations that are relevant to understand the generalized blockade condition simultaneously in the original (above)
and the dual (below) basis. In the former, we represent the link spins with the color convention in Fig. 1. In the latter, we represent the
dual plaquette spins as arrows placed in the center of the corresponding plaquettes. (b) The reference state jΩi: We identify it with the
ferromagnetic state with all plaquette spins up. (c) After flipping one plaquette of jΩi, all the neighboring plaquettes are blocked.
(d) After flipping all its neighboring plaquettes, the plaquette p is flippable.
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the annihilation of the state by the corresponding plaquette
operator, ðŜp0 þ Ŝ†

p0 ÞðŜp þ Ŝ†
pÞjΩi ¼ 0 [see Fig. 2(c)]. In

the context of Rydberg physics, such conditional or
constraint dynamics is well known as the blockade effect.
However, in contrast to the standard blockade mechanism,
where a spin can be flipped only if all its neighbors are in a
single, specific configuration, here two distinct configura-
tions of its neighbors allow a spin to flip. We thus refer to
the present situation as the generalized blockade condition.
Specifically, if all of the remaining three spins on plaquettes
neighboring to p0 are flipped, then the spin p0 becomes
flippable again; see Fig. 2(d). It is easy to see that one can,
in fact, span all physical states—the states that satisfy the
gauge constraint—(and no other states) by repeated appli-
cation of plaquette operators.

1. Phase diagram of the RK model
in the dual formulation

We conclude by discussing the phase diagram and, in
particular, the RVBS phase in the dual picture (7); see
Fig. 3. There, we show also the corresponding structure
factors Sk½μ� ¼

P
p;p0 4=ðNxNyÞ2 exp½iðp − p0Þk�hŜμpŜμp0 i

calculated by the density matrix renormalization group
(DMRG) using ITensor library [87] on square lattices Nx ×
Ny up to 8 × 8. We ensure that the energy is minimized

only on accessible states from jΩi, for which the map is
defined (see Appendix E). The phase for λ < λc is
ferromagnetically ordered in each sublattice as expected
for the fully flippable phase. The boundary conditions
compatible with jΩi select the ferromagnetic order in both
sublattices as evidenced by a large value of Sk½z� for
k ¼ ð0; 0Þ, the blue curve in Fig. 3(b), which is the
dominant contribution to spin-spin correlations. The
RVBS for λc < λ < 1 is correlated along both z and x
within the two sublattices only. Such a structure is in
agreement with RVBS being even under charge conjuga-
tion, and it is signaled by both the equality of the Sk½z�
for k ¼ ð0; 0Þ and k ¼ ðπ; πÞ (in orange) and the raising of
the Sk½x� (in green); see Figs. 3(b) and 3(c). The “unflip-
pable” phase (it is reachable from jΩi only through the
boundary where the residual flippable plaquettes appear as
defects) for λ > 1 displays a characteristic strip order with
the plaquette spins aligning in the z direction along the
diagonals of the lattice, with an associated periodicity four
captured by Sk½z� for k ¼ ðπ=2; π=2Þ. In Fig. 3(a), we show
one of the possible configurations with two flippable
plaquettes (defects) on the boundary. For λ → ∞, we have
as many exactly degenerate configurations as allowed
positions for the defects. The degeneracy is only approxi-
mated at finite λ > 1 (the degeneracy is resolved): In
Fig. 3(a), we show the resulting configuration.

(a)

(b) (c) (d) (e)

FIG. 3. Dual RK model and its phases. (a) Phase diagram of the 2D RKmodel on the square lattice without background charges. In the
boxes, we plot the spin-spin correlations hSμpSμp0 i obtained via DMRG [87] on square lattices Nx × Ny ¼ 8 × 8 and for three values
of λ ¼ −1, 0, 2 that belong to the ferromagnetic (Néel), RVBS, and columnar phases, respectively. The correlations are represented
with respect to the center, p ¼ ð4; 4Þ, for varying p0. Note that in the λ → ∞ limit there are multiple degenerate unflippable states.
The particular configuration shown here in the right panel corresponds to one of them. (b),(c) Structure factors Sk½μ� ¼
4=ðNxNyÞ2

P
p;p0 exp½iðp − p0Þk�hŜμpŜμp0 i, μ ¼ x, z for Nx × Ny ¼ 8 × 8 [(b)] and for different system sizes N ¼ NxNy ¼ N2

x [(c)].
The raising of the structure factors Sðπ;πÞ½x; z� identifies the RVBS phase. In particular, Sðπ;πÞ½z� equals Sð0;0Þ½z� in the RVBS region.
(d),(e) Structure factors on the periodic ladder of Nx × 2 sizes, without background charges, with Nx ¼ 32 [(d)] and Nx ¼ 32,
64, 128 [(e)].
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2. Special cases: Ladder geometries

The dual RK Hamiltonian (7) is reminiscent of Rydberg
physics and of the PXP model [5,88,89], which can be
obtained from Eq. (7) by replacing the projector P↑…↑

p þ
P↓…↓
p with the simpler blockade conditionP↑…↑

p (or P↓…↓
p ).

It is noticed in Ref. [90] that the quantum dimer model on a
ladder can be mapped into a PXP-like model on a chain.
Indeed, if we restrict the Hamiltonian (7) to a chain
immersed in the background jΩi, only the blockade term
P↑↑
p ¼ ð1

2
þ Ŝp−x̂Þð12 þ Ŝpþx̂Þ survives. Precisely, the result-

ing Hamiltonian coincides with Eq. (3) in Ref. [88] for
ω ¼ J and U ¼ −2V ¼ −2λJ. It is not charge conjugation
invariant, and the corresponding phase diagram for varying
λ does not show any analog of the RVBS phase, which is
even under charge conjugation; see Fig. 6 in Appendix F.
Interestingly, the minimal geometry that preserves such

symmetry is a periodic ladder, i.e., a cylinder with a
circumference of two lattice sites. Since the dual lattice
of a periodic ladder is a periodic ladder, pþ ŷ ¼ p − ŷ, the
dual RK Hamiltonian takes the simple form

H�pl
RK ¼ −J

X
p

ðP↑↑↑
p þ P↓↓↓

p Þð2Ŝxp − λÞ; ð8Þ

where we restrict p to run over the sites of a square ladder,

p ¼ ðxp; ypÞ with yp ¼ ½0; 1�, such that P↑↑↑ð↓↓↓Þ
x;y ¼

½1
2
þ ð−ÞŜzx−1;y�½12 þ ð−ÞŜzx;yþ1�½12 þ ð−ÞŜzxþ1;y�. As shown

in Figs. 3(d) and 3(e), the phase diagram of Eq. (8)
has the same structure as the one of the 2D RK model
[Figs. 3(b) and 3(c)]. In particular, the RVBS phase is
signaled by the equality of the structure factors Sk½z� for
k ¼ ð0; 0Þ and k ¼ ðπ; πÞ.

III. RYDBERG GAUGE THEORIES: RK
HAMILTONIAN FROM DECORATED

RYDBERG ARRAYS

In this section, we discuss the implementation of the dual
RK Hamiltonian (7) (and of analogous expression for other
lattices) with Rydberg atoms. Our starting point is a 2D
array of atoms with tunable geometry, driven between their
ground jgi and Rydberg jri states, respectively, with Rabi
frequency Ω and detuning Δ (ℏ ¼ 1):

HRyd ¼
X
I

�
−ΩðjriIhgj þ jgiIhrjÞ þ ΔnI

þ 1

2

X
I0≠I

C6

jI − I0j6 nInI0
�
; ð9Þ

where nI ¼ jriIhrj and C6 is the van der Waals potential
energy at unit distance. We arrange the atoms by pairs such
to realize composite spins 1=2.

We first show in Sec. III A that under suitable conditions
HRyd becomes equivalent to an anisotropic Ising model for
the atom pairs with interactions and detuning determined
by the pair arrangement. Then, in Secs. III B and III C, we
achieve the generalized blockade from such a spin model
by properly choosing the pair arrangement in a similar
fashion as for ordinary blockade in Rydberg chains [5].

A. Tunable Ising models from decorated
Rydberg arrays

We consider an array of atom pairs (see Fig. 4) such that
the position of each atom I is given in terms of the pair
position p and atom displacement in the pair η, I ¼ pþ ση,
σ ¼ � 1

2
. We take jηj sufficiently small (i.e., the pairs

sufficiently far apart) such that Rydberg interactions
between the atoms in the pairs is the dominating inter-
action, ðC6=jηj6Þ ≫ Ω, ðC6=jIðpÞ − Iðp0Þj6Þ, p0 ≠ p. For a
sufficiently blue-detuned driving field (Δ < 0 such that
Ω ≪ −Δ), the low-energy sector consists of configurations
where exactly one atom per pair is in the Rydberg state and
the other atom is in the internal ground state. Thus, each
pair forms an effective pseudo spin-1=2 system, with the
identification [see the inset in Fig. 4(a)]

Ŝzpjgip−σηjripþση ¼ σjgip−σηjripþση: ð10Þ

The effective Hamiltonian (9) in this low-energy limit
becomes

HRyd ≈ −2J
X
p

Ŝxp þ
X
k

VðkÞ; ð11Þ

where J is the effective Rabi frequency, J ¼ Ω2(ð1=ΔÞ þ
ðjηj6=C6 − Δjηj6Þ), and VðkÞ is the van der Waals inter-
actions between Rydberg atoms in k-neighbor pairs.
Disregarding boundary and constant terms, VðkÞ can be
written as Ising interactions between the k spins plus a local
term (such a term appears because the distance between the
atoms in the Rydberg state in the pair-pair configurations
↑p↓p0 and ↓p↑p0 can differ):

VðkÞ ¼
X
p

Ŝzp
X

p0¼hpik
½Aðp − p0; ηÞŜzp0 þ Bðp − p0; ηÞ�; ð12Þ

where hpik denotes the k neighbors of p. The coefficients A
and B are determined by the geometry of the array: They
are symmetric and antisymmetric functions of the pair
separation and of the atom displacement in the pairs η:

Aðp; ηÞ ¼ C6

�
2

jpj6 −
1

jpþ ηj6 −
1

jp − ηj6
�
; ð13Þ

Bðp; ηÞ ¼ C6

�
1

jpþ ηj6 −
1

jp − ηj6
�
: ð14Þ
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Below, we show how to exploit their tunability for
achieving the dual RK Hamiltonian for various lattice
geometries. In such a construction, the pair-pair inter-
actions VðkÞ for k > 2 are negligible, and we consider
them to be zero.

B. RVBS phase on a decorated Rydberg ladder

As a preliminary exercise, we consider the implementa-
tion of the RK Hamiltonian on a periodic ladder (8). Here,
we parametrize the position of the pairs on the ladder as
p ¼ ðaxxp; ayypÞ, where ax and ay are the lattice spacing
along the legs and the length of the rungs, respectively; see
Fig. 4(a). For simplicity, we can express all lengths in units
of ax, ax ¼ 1.
Let us focus on the projector appearing in Eq. (8).

We can obtain it dynamically from the nearest-neighbor
(NN) pair interactions Vðk¼1Þ in Eq. (12) if we require
that

P
p0¼hpi1 Aðp − p0; ηÞ ¼ 0 ¼ P

p0¼hpi1 Bðp − p0; ηÞ.
By orienting the pairs along x, η ¼ jηjx̂, the constant

term B cancels out. The requirement on the NN Ising
couplings reduces to 2Aðx̂; ηÞ ¼ −Aðayŷ; ηÞ≡ −2GðjηjÞ,
which fixes the lattice spacing ay (more precisely, the ratio
ay=ax) in terms of jηj. With this choice, the Hamiltonian
(11) of a decorated Rydberg ladder becomes

HRyd ¼ Vð2Þ −
X
p

½2JŜxp þGŜzpðŜzpþx̂ þ Ŝzp−x̂ − 2ŜzpþŷÞ�

≈
J≪G

Vð2Þ − 2J
X
p

ðP↑↑↑
p þ P↓↓↓

p ÞŜxp; ð15Þ

as the nonflippable configurations are separated from the
flippable ones by a nonzero gap that is precisely equal toG.
Notice that the next-to-nearest-neighbor (NNN) pair inter-
actions Vð2Þ can be also written in terms of projectors over
NN spins. For η ¼ jηjx̂, Vð2Þ reduces to

Vð2Þ ¼
X
p

ΛðjηjÞðP↑↑↑
p þ P↓↓↓

p − P↑↓↑
p − P↓↑↓

p Þ; ð16Þ

(a)

(b) (c) (d) (e)

FIG. 4. RVBS in decorated Rydberg arrays. (a) Implementation of the RK Hamiltonian in decorated Rydberg arrays: Oriented pairs of
close-by atoms with blue-detuned Rabi oscillations between the ground jgi and Rydberg jri states are equivalent to oscillating spins 1=2
(see inset) with Ising interactions between them. By controlling the pair orientation relative to the lattice and the lattice geometry, we can
engineer the spin-spin interactions such to achieve the generalized blockade conditions and realize the RK Hamiltonian in the dual
formulation with a modified RK potential. We name such Hamiltonians as Rydberg-RK Hamiltonians. On the left we show the square
lattice construction and on the bottom right the implementation for a ladder. The same principle applies to a generic 2D lattice. (b),(c)
The phase diagrams of the Rydberg RK Hamiltonian on the square lattice (18) [N ¼ 8 × 8, (b)] and on the (periodic) ladder (15)
[N ¼ 32 × 2, (c)] as a function of λ, calculated via DMRG. The two phase diagrams differ qualitatively from the ones of the original RK
Hamiltonians shown in Figs. 3(b) and 3(c), respectively, for λ≳ 1. In particular, the ferromagnetic and the RVBS phases remain, while
the columnar phase is substituted by a “glassy” phase. (d) In order to compare the phase diagrams of the effective RK Hamiltonian with
the full spin description of the decorated Rydberg array, we compare the spin-spin correlations on a 6 × 2 decorated ladder, for
jηj ¼ 0.38ax and periodic boundary conditions, via exact diagonalization. The structure factors for the ground state of the effective RK
Hamiltonian and the corresponding eigenstates of the Rydberg array Hamiltonian (up to next-nearest-neighbor interactions) are shown,
respectively, as dashed and solid lines. We included a small detuning δ ¼ 0.1C6=a6x ≈ 0.11jΛj within the atoms of each pair to select a
specific ferromagnetic state as a reference. (e) Adiabatic preparation of the RVBS phase for the same parameters as (d). By smoothly
ramping up the Rabi frequency J (inset), we can enter the RVBS phase within the validity of generalized blockade condition, J ≪ G.
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with ΛðjηjÞ ¼ A½x̂þ ayðjηjÞ; η�=2 < 0. Thus, for J ≪ G,
the effective spin Hamiltonian (15) is equivalent to the RK
Hamiltonian with a generalized RK potential. We name it
as the “Rydberg RK” Hamiltonian on a periodic ladder.
As the original RK Hamiltonian (8), the Rydberg RK

Hamiltonian (15) displays a RVBS phase that is exper-
imentally accessible. We plot the phase diagram of Eq. (15)
for varying λ ¼ Λ=J, in Fig. 4(b) for the square lattice and
in Fig. 4(c) for the periodic ladder, and we compare it with
the one of Eq. (8). The extra potential term in Eq. (15)
modifies appreciably the phase diagram only for λ≳ 1;
cf. Fig. 3(c). In particular, the ferromagnetic and the RVBS
phases remain unchanged, as clearly evidenced by the
behavior of the structure factor. The Sð0;0Þ½z� dominates in
the ferromagnetic phase and coincides with Sðπ;πÞ½z� in the
RVBS phase. For λ > 1, the columnar phase is substituted
by a “glassy” phase, with a huge classical degeneracy
imposed by Vð2Þ. In the 2D case, the phase transition from
the ferromagnetic phase to the RVBS phase moves slightly
to the right, λc from approximately −0.6 to approximately
−0.5, as the additional potential term stabilizes the ferro-
magnetic phase for λ < 0. The phase transition from the
RVBS phase to the glassy phase still occurs around λ ¼ 1,
but the model at λ ¼ 1 is no longer integrable. In Fig. 4(c),
we test numerically the validity of the mapping from the
Rydberg Hamiltonian Eq. (11) to the effective Rydberg RK
Hamiltonian (15) for increasing values of J. For this test,
we consider a periodic ladder of Nx ¼ 6 × 2 atom pairs,
with periodic boundary conditions along the x axis, and
compare via exact diagonalization the ground state of
Eq. (15) with the corresponding eigenstate of Eq. (11).
We fix the displacement of the atoms in the pairs to be
η ¼ 0.38axx̂, and the distance of the pairs along y is
ay≈0.59ax. With such values, we obtain Λ¼−0.91C6=a6x
and G ¼ 15.71C6=a6x. We also consider a pinning
Hamiltonian δ

P
p S

z
p, with δ ¼ 0.1C6=a6x to compare

eigenstates of the two Hamiltonians consistently in the
presence of degeneracies (in particular, for J → 0, i.e.,
λ → −∞). The structure factors Sk½z� shown in Fig. 4(c)
show that the RVBS can be accessed within the regime of
validity J ≪ G of Eq. (15). In Sec. III D, we show how to
form such a state via adiabatic state preparation in an
experiment.

C. Rydberg gauge theory on the square
and other 2D lattices

We now apply the same strategy explained above to
engineer the 2D RK Hamiltonians defined on generic
lattice geometries, e.g., on triangular, square, and hexago-
nal lattices. Their dual formulation, respectively, on the
dual hexagonal, square, and triangular lattices can be
written in a unified fashion [84] as

H�
RK ¼ −J

X
p

ðP↑…↑
p þ P↓…↓

p Þð2Ŝxp − λÞ; ð17Þ

where the projectors P↑…↑ð↓…↓Þ ¼ Q
p0¼hpi1 ½12 þ ð−ÞŜzp0 �

involve the three, four, and six NN spins to the spin at
the site p, respectively. In order to engineer the generalized
blockade conditions associated with such projectors, we
exploit the NN Ising interactions arising from Vð1Þ, as in the
example of the periodic ladder. While the dynamical
implementation of the projectors for a dual hexagonal
lattice follows precisely the same path as for the periodic
ladder, the higher lattice coordination of square and
triangular lattices introduces new conditions. In the latter
case, it is not sufficient to ask that

P
p0¼hpi1 Aðp − p0; ηÞ ¼

0 ¼ P
p0¼hpi1 Bðp − p0; ηÞ as additional degeneracy can

arise. For instance, if the Ising couplings to two neighbor
spins at p1 and p2 are opposite, Ap−p1

¼ −Ap−p2
, we are

free to flip these two spins without paying any interaction
energy. Thus, the Ising interactions project at low energies
also on additional unwanted configurations. In practice,
in lattices with more than three neighbors, we have to
design the Ising couplings Aðp − p0Þ, p0 ¼ hpi1, such that
their sum for any subset fhpi1g of NN spins is nonzero.
The gap G is the modulus of the smallest sum, G ¼
min½jPp0∈fhpi1g Aðp − p0; ηÞj�.
For concreteness, we sketch here how to find the proper

array of atoms that avoids the unwanted degeneracies and
realize the Rydberg RK Hamiltonian on the square lattice.
The details of the calculation are presented in Appendix D.
For the construction on other lattices, we refer the reader to
Ref. [84]. In what follows, we consider a rectangular lattice
of pairs deformed by the relative displacement of its even
and odd sublattices, indicated in blue and red in the right in
Fig. 4(a). As shown in this figure, we displace the
sublattices along y by dyŷ while the pairs lie in the xz
plane, with the relative displacement of the atoms para-
metrized as η ¼ jηjðcos θx̂þ sin θẑÞ. We fix the lattice
spacing along x to ax ¼ 1, while the one along y is ay.
For any θ, dy, and ay, the constant detunings in Vð1Þ add up
zero. The Ising couplings to the left and right NN spins are
the same and positive, while for dy ≠ 0 the Ising couplings
to the top and to the bottom NN spins are different and
negative. By adjusting ay, we can make the sum of the four
couplings zero, while any sum of two or three of them is
not, and thus achieve the desired blockade condition with a
finite gap G to the unflippable configurations.
The effective Hamiltonian takes the RK form

HRyd ≈
J≪G

− 2J
X
p

ðP↑↑↑↑
p þ P↓↓↓↓

p ÞŜxp þ Vð2Þ; ð18Þ

with the generalized RK potential determined by NNN
interactions

Vð2Þ ¼
X
p

ΛðP↑↑↑↑
p þ P↓↓↓↓

p − P↑↓↑↓
p − P↓↑↓↑

p Þ; ð19Þ
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where we order the NN spins anticlockwise and
Λ ¼ Λðη; dyÞ.
We can use dy and θ to both maximize the gap G and

minimize the ratio jΛ=Gj. In particular, we can reduce the
latter arbitrarily such that the RK Hamiltonian (18) is valid
for J ≳ Λ=λc, and the driven Rydberg array supports a
RVBS phase.

D. Adiabatic preparation of the RVBS phase
in decorated Rydberg arrays

Above, we show how to engineer Rydberg arrays that
naturally realize dual RK Hamiltonians on different lattice
geometries. In particular, we show that the dual RK on a
square lattice displays a RVBS phase. Here, we discuss
how to prepare this phase and how to access the full phase
diagram of such Hamiltonians adiabatically in current
Rydberg experiments. The idea is to exploit the detuning
of the effective Rabi coupling for the spins as done in
several experiments [4–6,8,9]. We consider a driven array
of atom pairs as in Eq. (9), where the ground states of the
two atoms in the pair have an energy offset δ much smaller
than both the detuning and the van der Waals interaction in
the pair, δ ≪ −Δ; C6=jηj6, as produced, for instance, by an
optical lattice. In the spin language, the net effect of such a
term is to induce a detuning for the spins such that their
effective Hamiltonian in generic geometry reads

HRyd ≈
X
p

ð−2JŜxp þ δŜzpÞ þ Vð1Þ þ Vð2Þ

≈
X
p

½−2JðP↑…↑
p þ P↓…↓

p ÞŜxp þ δŜzp� þ Vð2Þ; ð20Þ

where in the second line we specialize to arrays that satisfy
the geometric requirements discussed in Secs. III B and
III C and take the effective Rabi coupling sufficiently
smaller than the gap G, J ≪ G. The presence of the
detuning does not change such geometric requirements,
as it is a diagonal term that commutes with Vð1Þ. This result
also implies that we can prepare adiabatically the ground
state (or the maximally excited state) of the emergent dual
RK Hamiltonian (20) for δ ¼ 0 in any phase accessible
within its regime of validity.
For concreteness, let us focus on the preparation of the

RVBS phase on the square lattice. We consider the
possibility to vary JðtÞ, for instance, via the Rabi frequency
ΩðtÞ, as a function of time. The idea is then to access the
phase from the ferromagnetic phase that is connected to the
product state with all the spin ups, with Jðt ¼ 0Þ ≪ jΛj.
The value of JðtÞ is then slowly increased to reach the final
state of the adiabatic state preparation. The procedure is
illustrated in the case of the periodic ladder in Fig. 4(e),
with a pulse JðtÞ ¼ J sin½πt=ð2tfÞ�, tf ¼ 40=J, shown in
the inset. We simulate the dynamics within Eq. (11) and for
the same parameters as Fig. 4(d). For the chosen value of

J ¼ C6=a6x, the system acquires a RVBS pattern at the final
time tf.
We expect the protocol to be able to form RVBS states

also for larger ladders that are beyond the capability of
classical computation. In realistic experimental setups, the
adiabatic preparation is limited by the finite coherence time
of the array due to spontaneous decay of the Rydberg states
and to their motion. The inverse of the coherence time sets
a minimal speed at which the parameters can change.
Such a minimal speed sets the minimal energy gap (at the
transition between the ferromagnetic and the RVBS phases)
compatible with adiabaticity. Thus, the coherence time
determines the maximal size of the ladder whose RVBS
phase can be prepared adiabatically. Our current protocol,
which is not optimized, requires a running time of 10 J−1,
while we estimate that the coherence time can be 10 times
larger. For instance, in the setup of Ref. [5] by setting
jηj ¼ 0.38ax ¼ 1 μm, we get J ¼ C6=a6x ∼ 20 MHz, such
that the overall coherence time of the Rydberg system
(estimated in Ref. [5] to be 7 μs) is of the order of 100 J−1.
A similar adiabatic protocol applies to the preparation of

the RVBS phase in a Nx × Ny lattice. We fix the displace-
ment of the atoms in the pairs to be η ¼ axð0.33x̂þ 0.38ẑÞ
and the displacement of the sublattices along y to dy ¼
0.07ax such that the average distance of the pairs along y is
ay ¼ 0.88ax. With such values, the (blue-detuned) driven
array is described by the Hamiltonian (18) with Λ ¼
−0.088C6=a6x and G ¼ 1.42C6=a6x. Since we get a similar
ratio Λ=G as in the periodic ladder, we expect the adiabatic
preparation to work in a similar way.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have shown that we can perform
scalable quantum simulation of 2D lattice gauge theories
with reconfigurable Rydberg arrays in current experiments.
As a prototype of gauge theory with magnetic (plaquette)
interactions, we have targeted the RK model, a spin-1=2 U
(1) gauge theory that it is relevant for quantum magnetism.
With the help of the electromagnetic duality, we have
evidenced that the dynamics of physical states has a
blockade character that it is realized by geometrically
tuned Rydberg arrays. We have detailed the engineering
of the dual RK Hamiltonian on the square lattice without
background charges, and we have computed its phase
diagram for varying Rabi couplings. We have shown
how to prepare and detect the RVBS phase in Rydberg
experiments with ladders and 2D arrays.
Our findings open several new possibilities for the

quantum simulation of lattice gauge theories and more
generally of many-body physics.

A. Generalized RK Hamiltonians

The relation we have established between the RK model
and driven Rydberg arrays through the duality extends also
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to other (i) lattice geometries and (ii) charge backgrounds
[84]. Furthermore, the Rydberg implementation may sug-
gest (iii) new mechanisms to achieve U(1)-spin liquid
phases in two dimensions.

1. Geometries

Contrary to the quantum dimer counterpart [12], the
phase diagram of the RK model without background
charges has not received much attention on other lattice
geometries than the square ones. The precise structure of
the phase diagram is generally unknown, and we may
expect surprises in the phase diagram especially for
frustrated lattices that are not bipartite. The first case to
examine is the RK Hamiltonian on a triangular lattice, as its
dual is realized by a properly deformed hexagonal deco-
rated Rydberg array [84].

2. Charges

Static background charges are especially interesting,
because they allow one to probe confinement in the gauge
theory and can lead to nested phases (see Fig. 6 in Ref. [70]).
In the dual RK model, static background charges can be
incorporated by modifying the map (5) and the blockade
condition governing the plaquette flip (6). For instance, if we
place a pair of two�1 charges at a distance, we must include
the effect of the string between the charges, which amounts
to flipping the link spins along the path (for a very recent
study on a special background, see Ref. [91]). Thus, the map
(5) acquires a minus sign along the path of string that
changes the projector in Eq. (6) along the string. Notice that,
by applying the same reasoning to the staggered distribution
of charges that leads to the quantum dimer model (see
Appendix A), one recovers the duality to the fully frustrated
Ising model first found in Ref. [86].
As a final remark, we notice that the dual approach con-

sidered here can be extended to simulate the Higgs mecha-
nism in the untruncated U(1) gauge theory considering larger
plaquette spins (see below) as in Ref. [92] and, perhaps, an
analog version of it for fermionic matter; cf. Ref. [93]. In
principle, the dual approach we consider here can be
extended from static (c-number) to dynamical charges.
The price to pay is that the tunneling of charges becomes
nonlocal in the charges, as in the 1D Schwinger model, and
in the plaquette spins. The implementation of such a term
would be possible in a digital, i.e., a Trotterized, approach of
the time evolution [79]. Whether such a term can be
conveniently engineered within present Rydberg technology
is under investigation. Alternative digital schemes that
include dynamical matter can be found in Refs. [36,37].

3. U(1)-spin liquids

It is well known that the Coulomb phase of compact U(1)
gauge theory is stable in three dimensions, while it is
unstable in two dimensions due to the instanton effect [20].

This continuum argument explains a posteriori why,
contrary to 3D [94,95], the RK point of the RK model
in 2D does not extend to a spin liquid phase on bipartite
lattices, which is instead replaced by a RVBS phase that is
confined. The absence of a deconfined “photon” excitation
that rules out the existence of a spin liquid phase can be
circumvented by breaking translational invariance as
happens with Cantor deconfinement [96–98]. It is very
interesting to explore whether in a similar spirit we can
break translational invariance such to induce and stabilize a
spin liquid phase in 2D, e.g., by considering additional
interaction terms to the dual RK model that are natural from
the Rydberg perspective. Alternatively, it is intriguing to
explore the realization of a 3D spin liquid phase or of
magnetic monopoles [99] in 3D Rydberg arrays.

B. New experimental probes

Our approach to quantum simulations of the dual RK
model allows one (i) to access experimentally quantum
correlations and (ii) to probe excitations’ spectrum and
thermalization of the RK model through quantum
quenches, beyond condensed matter experiments and
classical computations.

1. Quantum correlations

Contrary to traditional measurement schemes in con-
densed matter, Rydberg simulators allow for single-site
resolution to detect whether each atom is in the ground or
excited state. On the one hand, such a possibility allows us
to characterize the phase diagram for different values of λ
through the structure factor and the expectation value of the
generalized RK potential, which are experimentally acces-
sible observables. On the other hand, it allows us to access
nonlocal order parameters like the Wilson loop or to
measure directly the entanglement entropy by quantum
interference as in Ref. [100] or by random measurements as
in Ref. [101] (for the theory proposal, see Refs. [102–104]
and Ref. [105], respectively). An alternative promising
route to characterize quantum many-body states is to use
quantum machine learning techniques, e.g., for performing
quantum many-body state reconstruction efficiently as
proposed in Ref. [106] and experimentally realized in
Ref. [107], or to identify phases with an unknown, nonlocal
order parameter [108].

2. Dynamical probes

Static quantum correlations discussed above can be
potentially determined numerically, for instance, by
quantum Monte Carlo or by DMRG for sufficiently large
lattices such to approach the thermodynamic limit; see
Refs. [70,109] for recent calculations. A key advantage
of the quantum simulators is that is equally easy to study
the time evolution of the observables after a local or a
global quench [110]. These experiments could shed light
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on both the excitations above the ground state and the
thermalization properties in the gauge theory. In particular,
it would be very interesting to study whether the relation
between confinement and many-body quantum scars
[5,111,112], first noted for Rydberg chains and the 1D
Schwinger model [19], extends to 2D pure gauge theories
(for the dynamical phase transition in the Schwinger model,
see Ref. [113]). Recent numerical studies with exact
diagonalization in 2D spin-1=2 U(1) gauge theory without
charges in Ref. [114] and in the quantum dimer model and
Ref. [115] have found evidences on small lattices of
dynamical phase transitions (the emergence of kinklike
structures in the return amplitude to the original ground
state manifold) for quantum quenches from flippable to
RVBS phase and the emergence of glassy behavior (very
slow relaxation time) for quantum quenches from flippable
to the unflippable phase, respectively. The latter behavior
have been very recently confirmed and related to the
constraint dynamics of the dimers in Ref. [116].

C. Exotic spin models

The use of configurable Rydberg arrays of atom pairs
induces effective interacting spin-1=2 Hamiltonians with
tunable couplings between spins. This is precisely the
technique we have employed in the quantum simulation of
the RK model. Following a similar strategy and clustering
together 2Sþ 1 atoms in a macro-atom, we can form
composite spins S whose spin-spin interactions are still
controlled by the arrangements of the macro-atoms and
their relative displacements. Therefore, configurable
Rydberg arrays can be used for programable simulations
of exotic spin-S models with anisotropic interactions. We
expect the local competition between ferromagnetic and
antiferromagnetic interactions to lead to novel entangled
phases and behavior. Additionally, the generalized block-
ade conditions that emerge in the simulator can encode
known as well as novel “quantum” cellular automata [117].
The complexity generated by arranging driven Rydberg
arrays in clusters can be viewed as the dynamical counter-
part of quantum optimization for the maximum indepen-
dent set studied in Ref. [121]. We foresee that the
combination of clustering of the arrays with angular-
dependent Rydberg-Rydberg interactions and/or with more
complex Rydberg series such as those associated with
earth-alkali atoms [122–124] will open even more exciting
perspectives for quantum simulation.
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APPENDIX A: SPIN GAUGE THEORY
AS DIMER MODEL

In this section, we detail the relation between the spin-
1=2 U(1) gauge theory and the quantum dimer model on a
square lattice. First of all, we notice that by applying a Ŝx

transformation on the links at the bottom-left corner, ðs; xÞ
and ðs; yÞ, or on the links at the top-right one, ðsþ x̂; yÞ and
ðsþ ŷ; xÞ, the plaquette operator on the plaquette s
assumes a ring exchange form with alternated spin flips:

Ŝ†
s þ Ŝs ¼ Ŝþs;xŜ

−
sþx̂;yŜ

þ
sþŷ;xŜ

−
s;y þ H:c: ðA1Þ

As a consequence, the flippable plaquette configurations
become the ones with alternated spins, i.e., the ones with
parallel colored links; see Fig. 5(a). By extending the
transformation to the full 2D plane, for instance, by
reverting the bottom-left corner of the odd plaquettes
(= the top-right corner of the even ones), as shown in
Fig. 5(b), the RK Hamiltonian is still of the form (4), with
the plaquette operator given in Eq. (A1), while the Gauss
law (2) takes becomes

Ês;x þ Ês;y þ Ês−x̂;x þ Ês−ŷ;y þ ð−1ÞsQ̂s ¼ 0; ðA2Þ
where ð−1Þs ≡ −1mþn, where m, n are the Cartesian
coordinates of the site s ¼ mx̂þ nŷ. In Fig. 5(b), we show
that the background jΩi becomes a columnar state, the fully
flippable background in the new basis.
The quantum dimer model is obtained by considering the

physical states with staggered background charges. For
instance, by taking Qs ¼ ð−1Þs, to each site is attached
only one dimer that is identified by the colored link in j↑i,
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while the empty ones are in j↓i. In Fig. 5(c), we represent
one of the maximally flippable configurations of the
quantum dimer model: Only half of the plaquettes are
flippable. It can be visualized as the result of a special string
covering superimposed over jΩi. The string connecting the
charges block at least half of the plaquette and change the
physical states. Several properties distinguish the physical
states of the quantum dimer models from the physical states
without background charges. Although they share the same
Hamiltonian (A1), the different boundary conditions deter-
mine a different phase diagram and a different dual
Hamiltonian for the two models.

APPENDIX B: ELECTRIC TRUNCATION AS A
DYNAMICAL PROCESS AND RELATION WITH

KOGUT-SUSSKIND U(1)

We analyze here the dynamics of spin gauge theories in
comparison to the nontruncated U(1) gauge theory. For
simplicity, we explicitly discuss the pure gauge case, but the
analysis applies also in the presence of dynamical matter.
We start by rewriting the pure gauge Kogut-Susskind
Hamiltonian (1) in the rotating frame of the electric term:

H0
KSðtÞ ¼

−1
2g2

X
s

V̂†
s;xðtÞV̂†

sþx̂;yðtÞV̂sþŷ;xðtÞV̂s;yðtÞ þ H:c:;

ðB1Þ
where Vð†Þ

s;μðtÞ ¼ exp½ð−ig2=2ÞÊ2
s;μ�Ûð†Þ

s;μ exp½ðig2=2ÞÊ2
s;μ�,

μ ¼ x, y. Since Ûð†Þ
s;μ decreases (increases) the electric field

by one, the magnetic couplings between highly excited
electric states are fast rotating. Thus, in the rotating frame the
usual competition between the electric and magnetic trans-
lates in a soft constraint for the plaquette operator that
dynamically suppresses the coupling between highly
excited electric states.
We can obtain the truncated theory dynamically from

Eq. (B1) by deforming the electric term. For instance,we can
achieve the spin-1

2
link model Hamiltonian by first shifting

the electric eigenvalues by 1
2

[which is equivalent
to including a θ term equal to π in the U(1) Hamiltonian]
and then considering a rescaled electric term ðg2=2Þκ ×P

s ðÊ2
s;x þ Ê2

s;y − 1
2
Þ. In the limit of κ → ∞, the electric

states with jEj > 1
2
decouple, and the plaquette operator

reduces to Eq. (3). Such a modification is equivalent to
replacing the quadratic electric term with one of a box
potential form.Although the electric term acts as the identity
on the remaining electric state, its effect on the dynamics
persists: The plaquette operators on neighboring plaquettes
do not compute due to the truncation of the electric states.
The electric truncation in spin gauge theories is equivalent to
a hard version of the energy penalty due to the electric
interactions. The competition between electric andmagnetic
interactions that characterizes gauge theories in more than
one dimension survives in the truncated theories. The spin-1

2

link models we study here are, thus, the minimal instance of
such gauge theories with continuous gauge groups.

APPENDIX C: CONSTRUCTION OF
THE DUALITY

Without charges, all gauge-invariant electric states of the
U(1) Kogut-Susskind lattice gauge theory can be written as
combinations of closed electric loops, i.e., closed oriented
paths of links with a constant electric field (with respect to
the path orientation). With the exclusion of “large” topo-
logically nontrivial loops, every other loop configuration
and, thus, all physical states can be written as a combination
of elementary plaquette loops. The electric field of a loop
on the plaquette p (conventionally oriented anticlockwise)
assumes the meaning of a potential, and it is called height,
hp. In two dimensions, the electric field on each link is
given by the difference of the heights of the two plaquettes
sharing that link (according to the standard lattice orienta-
tion, it is the difference between the left and right heights).
Therefore, the electric field operator can be written as an
operator relation

Êp;x → ĥp − ĥp−ŷ;

Êp;y → ĥp−x̂ − ĥp; ðC1Þ
which defines the dual theory on the plaquette basis. The
heights can take any integer value, and there is a unique
identification between the heights and the electric states on
the links, up to the definition of the overall height origin.
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FIG. 5. Relation between gauge magnets and the quantum
dimer model. (a) By reversing the spins of the links at the bottom-
left (or at the top-right) corner of the plaquette, the plaquette
operator becomes a dimer move; see Eq. (A1). (b) In the dimer
basis, obtained by reversing the spins of the links at the bottom-
left corner of the odd plaquettes, the fully flippable background
jΩi appears as a columnar state. (c) The physical states of the
quantum dimer model are obtained for a staggered distribution of
static charges, Qs ¼ ð−1Þs. Such states can be constructed by
applying the plaquette operator on the maximally flippable
background depicted in the figure. It is obtained by super-
imposing a string covering associated to the charges on jΩi.
Because of the charges, only half of the plaquettes are flippable.
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The Kogut-Susskind Hamiltonian (1) in the dual basis
simplifies considerably as the plaquette operator Ûp þ
Û†
p ¼ Ûp;xÛpþx̂;yÛ

†
pþŷ;xÛ

†
p;y þ H:c: acts on the plaquette

p by raising and lowering the height hp by one:

½ĥp; Ûð†Þ
p � ¼ −ðþÞÛð†Þ

p : ðC2Þ
The height construction holds also in a truncated theory

like the spin-1=2 gauge theory described in Sec. II A, with
the only difference that the truncation limits also the
admissible height values. Since the value of the electric
field on the links and, thus, the difference between the
neighboring heights is limited to � 1

2
, the heights are

identified mod 2 and can be represented as components
of a spin 1=2. Thus, we can replace Eq. (C1) with Eq. (5)
given in Sec. II B.
Any allowed raising or lowering of the height is iden-

tified with a flip of the dual spin; thus, from Eq. (C2), we
have Ûp; Û

†
p → 2Ŝxp. Furthermore, we can write the

plaquette operator in the truncated theory as the Kogut-
Susskind one projected on the allowed electric states:

Sp þ S†
p ¼ 2Sxp

�
1

2
− Ŝzp;x

��
1

2
− Ŝzpþx̂;y

�

×

�
1

2
þ Ŝzpþŷ;x

��
1

2
þ Ŝzp;y

�
þ H:c: ðC3Þ

By expressing the projectors on the links in terms of the
plaquette spins through Eq. (5), we find Eq. (6).

APPENDIX D: DETAILS ON THE RYDBERG
IMPLEMENTATION

Here, we detail the implementation of the blockade
condition on the square lattice. For the array geometry
illustrated in the left in Fig. 4(a), we have by construction
that

P
p0¼hpi1 Bðp − p0; ηÞ ¼ 0. Indeed, from Eq. (14), it

follows that B½ðay � dyÞŷ; η� ¼ 0, because the displace-
ment is in the xz plane and η · ŷ ¼ 0, and
Bð−x̂� dyŷ; ηÞ ¼ −Bðx̂� dyŷ; ηÞ. The Ising couplings
to the left and right NN spins are the same,
Að−x̂� dyŷ; ηÞ ¼ Aðþx̂� dyŷ; ηÞ, while the ones to the
top and to the bottom NN spins are different,
A½ð−ay � dyÞŷ; η� ≠ A½ð−ay � dyÞŷ; η�, for dy ≠ 0. Thus,
we can achieve the desired generalized blockade condition
by solving

−2Aðþx̂þ dyŷ; ηÞ ¼ A½ðay − dyÞŷ; η� þ A½ðay þ dyÞŷ; η�;
ðD1Þ

for ay ¼ ayðη; dyÞ. The solution exists for a wide range of
the parameters jηj, θ, and dy. The function ayðη; dyÞ cannot
be written in closed form and has to be calculated numeri-
cally. Through ayðη; dyÞ, we can calculate both the gap

Gðη; dyÞ ¼ min½Af½ayðη; dyÞ þ jdyj�ŷ; ηg;
1

2
(Af½ayðη; dyÞ − jdyj�ŷ; ηg − Af½ayðη; dyÞ þ jdyj�ŷ; ηg)�;

ðD2Þ

which determines the regime of validity of the effective RK
Hamiltonian (18) and the coefficient of the modified RK
potential (19):

Λðη; dyÞ ¼ A½xþ ayðη; dyÞ; η�: ðD3Þ

The best-suited values of the free parameters jηj, θ, and
dy are obtained through the requirements that (i) the spin
effective description of the atom pair is valid, (ii) the gap is
maximal, such that the overall energy scale of the effective
Hamiltonian is as high as possible compared to the inverse
decoherence time, and (iii) the ratio Λ=G is sufficiently
small such that we can access the RVBS phase within the
validity of the effective Hamiltonian (18). Since the intra-
pair and outer-pair separation of the atoms strongly
depends on the modulus of the displacement jηj, the first
requirement sets an upper bound on jηj. This bound
depends weakly on θ and dy, and it is an increasing
function of the former and decreasing function of the latter.
Since the gap G strongly depends on dy, the second
requirement fixes an optimal value for dy that is weakly
increasing function jηj and θ. The value of Λ strongly
depends on θ: In fact, as it happens for dipolar interactions
there exists a magic angle for which it is exactly zero.
However, also the gap G depends θ in a similar way: In this
case, the magic angle is smaller. In other words, we can
diminish the ratio Λ=G and satisfy the third requirement by
choosing sufficiently large θ. An optimal compromise
between a large gap G and small Λ=G ratio is obtained
for jηj¼0.5ax, dy ¼ 0.07ax, and θ ¼ 0.85 rad, which gives
ay¼0.88ax, G¼1.42C6=a6x, and Λ¼−0.088C6=a6x. Thus,
at the price of reducing the overall energy scale (by an
order of magnitude in relative terms), we can achieve a
similar ratio Λ=G < ð1=16Þ as in the periodic ladder and
ensure the existence of an accessible RVBS phase. In
absolute terms, by considering the setup of Ref. [5]
and by setting jηj ¼ 0.5ax ¼ 1 μm and J ¼ 0.16C6=a6x∼
16 MHz, we estimate a coherence time (in Ref. [5] of 7 μs)
of the order of 80 J−1.

APPENDIX E: DETAILS ON THE
DMRG SIMULATIONS

Here, we provide details on the DMRG simulations that
were realized using the ITensor library. The 2D indices (ix,
iy) entering the constructing of matrix-product operators
are ordered as l ¼ iy þ ðix − 1ÞNy for mod ðix; 2Þ ¼ 1 and
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l ¼ Ny þ 1 − iy þ ðix − 1ÞNy for mod ðix; 2Þ ¼ 0. We
consider periodic boundary conditions along the y axis.
We used a small pinning field δ̃ ¼ 0.1J along the z

direction, on three sites ðix; iyÞ ¼ ð1; 1Þ; ð2; 1Þ; ð2; 2Þ to
favor one ground state in the case of degeneracies (in
particular, for λ → −∞). We also impose an energy penalty
term to select only ground states within the physical
subspace

Hpen ¼ E
X
p

ðP↓
pP

↓
pþxP

↑
pþyP

↑
pþxþy þ P↓

pP
↑
pþxP

↓
pþyP

↑
pþxþy

þP↑
pP

↑
pþxP

↓
pþyP

↓
pþxþy þ P↑

pP
↓
pþxP

↑
pþyP

↓
pþxþyÞ;

with P↑;↓
p ¼ ð1=2� SzpÞ. One can check that the states that

can be reached by the plaquette operators from the vacuum
jΩi, i.e., that satisfy the Gauss law in the dual formulation,
satisfy hHpeni ¼ 0. In our simulations, we use E ¼ 5J
and E ¼ 10J.
Finally, we achieve ground state convergence, below the

percent level with respect to spin-spin correlations, for
maximum bond dimensions D ¼ 256.

APPENDIX F: GROUND STATE OF
THE PXP MODEL

In this section, we show results for the ground state of the
1D PXP model

H1D ¼
X
p

P↑
p−x̂P

↑
pþx̂ð−2Sxp þ λÞ; ðF1Þ

calculated via the DMRG, with open boundary conditions,
and with a small pinning field δ̃ ¼ 0.1J on the first site. We
also impose the blockade constraint

P
phP↓

pP
↓
pþxi by

energy penalty.
The phase diagram in terms of structure factors is

represented in Fig. 6 and shows no signatures of a
RVBS phase.
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