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A B S T R A C T   

Synchrophasor measurement devices (SMDs) have been widely deployed to support real-time monitoring and 
control of power systems. In the meantime, data spoofing has emerged in recent years. Therefore, it is of great 
importance to study data authentication algorithms for detecting and defending the data spoofing effectively. In 
this work, a one-dimensional convolutional neural network (1D-CNN) is utilized to extract temporal signatures 
hidden in frequency, voltage angle and amplitude data; then the gated recurrent unit (GRU) employs these 
temporal signatures for data source authentication. In case studies, the performances of different algorithms are 
tested in large-scale power systems with numerous SMDs for the first time, and comparisons among different 
algorithms show that the proposed algorithm can achieve a higher accuracy of data source authentication with a 
shorter time window.   

1. Introduction 

In the context of the smart grid industry [1], several technologies 
such as data communication [2] and power management [3] have been 
greatly developed in the Internet of Things (IoT)-environment. For 
example, the real-time data such as frequency, voltage amplitude and 
angle can be measured with the help of IoT devices, which allow oper
ators to monitor the real-time situation of power systems and take 
control measures in a timely manner. However, the measured data are 
also valuable for intentional spoofing and attack, therefore, it is 
important to perform data authentication for part of IoT devices in 
power systems, i.e., synchrophasor measurement devices (SMDs) [4]. 

In fact, data spoofing can be divided into several types and this work 
focuses on the model-free detection for data source mixing, which was 
preliminarily studied by our previous research [5]-[8]. In [5], an L-level 
Daubechies wavelet-based feature extraction method is employed for 
electrical network frequency (ENF) and a feed-forward artificial neural 
network (F-ANN) is utilized to identify the data source locations. In [6], 
the mathematical morphology (MM) method is used to decompose the 
ENF into several intrinsic components for time-frequency sparsity 
analysis and a random forest-based algorithm is used for correlating the 
correct data sources of SMDs. In [7], the multi-grained cascaded forest 

(gcForest) algorithm is further presented and combined with 
time-frequency sparsity analysis to achieve better performance and 
more detailed analyses and discussions are given as well. However, the 
aforementioned algorithms require a relatively long-time window 
segment for feature extraction and subsequent data authentication, 
which would then delay data spoofing detection. Hence, a two-layer 
ANN, whose input features are fed by ensemble empirical mode 
decomposition (EEMD) and fast Fourier transform (FFT), is constructed 
in [8]. The algorithm can achieve high accuracy with a 20-second 
window and can be applied for SMDs located quite close to each 
other. Nevertheless, the algorithm presented in [8] requires 
high-reporting rate data (i.e. 1.44kHz) collected by advanced universal 
grid analyzers (UGAs) which have not been widely deployed in the 
current stage, and it cannot be applied directly for existing frequency 
disturbance recorders (FDRs). Besides, all algorithms in [4]-[8] are 
lacking testing for the situations with numerous SMDs and their per
formance would decrease quickly if more SMDs are to be authenticated. 

In light of this, this work proposes a one-dimensional convolutional 
neural network (1D-CNN) and gated recurrent unit (GRU)-based algo
rithm for data source authentication of FNET/GridEye. The contribu
tions of this work can be summarized as follows. 
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i) In the past, only frequency data are utilized for data authenti
cation while 1D-CNN is employed in this work to extract the 
measurement’s features from multiple data series constituted by 
frequency, voltage angle and amplitude for the first time.  

ii) The GRU network is utilized to authenticate the source of 
measured data. Compared with traditional machine learning 
methods such as ANN and gcForest, the proposed GRU network 
can consider the temporal information embedded in the time 
series data. Compared with other time series models, such as the 
long short-term memory (LSTM) network, the GRU network is 
more computationally efficient.  

iii) The proposed 1D-CNN-GRU-based algorithm not only can deal 
with the high-reporting rate SMDs such as UGAs located closely 
to each other which is quite difficult for other algorithms to 
distinguish, but also can deal with the large number of commonly 
deployed FDRs in bulk actual power systems. Besides, the win
dow required for the proposed algorithm is shorter than other 
algorithms. 

2. 1D-CNN-GRU-based data source authentication algorithm for 
FNET/GridEye 

FNET/GridEye is a power system monitoring system being deployed 
worldwide [9] and can be regarded as a part of IoT in the smart industry. 
The basic IoT devices (i.e., SMDs) in FNET/GridEye are FDRs with a 
10Hz reporting rate and UGAs that can achieve a 1.44kHz reporting rate. 
This work aims to authenticate the data source, in other words, to 
identify which SMDs the data collected from. Therefore, this work aims 
to extract the features of each SMD based on historical measurement 
first, and then classify the online measured data into the different 
sources of SMDs based on the extracted features. Therefore, the data 
source authentication problem in this work can be abstracted as a su
pervised classification problem and it is critical to find a suitable clas
sification algorithm embedded with a feature extraction method, which 
can minimize the final identification error (i.e., maximize the accuracy 
of data source authentication). Due to its advantages in analyzing time 
series data, 1D-CNN has been widely employed for sequence models 
such as natural language processing and human activity recognition 
[10]. Since the data of SMDs are also time-stamped, 1D-CNN is very 
suitable for extracting inherent features from them. Generally, three 
types of measurements, i.e., frequency, voltage angle and amplitude 
data can be collected by FNET/GridEye, and they need to be filtered (i.e. 
denoised) and detrended before feature extraction to improve extraction 
effectiveness. It is assumed that the denoised and detrended measure
ment data in a single time window can be denoted as P3×Ndata , where 
Ndata is the number of samples in a single time window. Then, the 
1D-CNN can be employed for feature extraction as shown in Fig. 1. 

In Fig. 1, the ith convolution kernel Ki with size LCK would slide from 
samples 1 to Ndata to extract features and the lth feature graph Sl can be 
output as 

Sl = f

(
∑NCK

i=1

(
Sl−1 ∗ Ki + bl

i

)
)

(1)  

where f(⋅) is activation function, bl
i is the ith bias for the lth feature graph 

and NCK is the number of convolutional kernels used in this convolu
tional layer. In this work, P3×Ndata can be regarded as S0, and the rectified 
linear unit (ReLU) is usually selected as the activation function. Since 
the features extracted by 1D-CNN follow the time series, the temporal 
information embedded in measurement data is retained and would be 
fed as inputs for GRU layers. GRU is developed from LSTM network and 
both of them can mitigate the issues of gradient explosion and gradient 
vanishing during the training process when compared with the tradi
tional recurrent neural network (RNN) [11]. In fact, the motivations of 
using GRU in this work are: i) GRU can remember the previous status 
during training processes and fits well for time series analysis; ii) 
compared with LSTM, GRU only has two gates (i.e. the update gate and 
the reset gate), so using GRU is more computationally efficient and can 
reach convergence much faster [11]. It is noted that the stochastic 
gradient descent (SGD) method can help to improve the convergence of 
neural network-based algorithms and minimize the loss function as 
small as possible, so the SGD method is utilized for the proposed 
1D-CNN-GRU-based algorithm. It is also worth mentioning that it is hard 
to directly give a qualitative conclusion about the convergence and 
optimality of a neural network-based algorithm since the activation 
functions of the neural network-based algorithm are highly nonlinear 
and nonconvex. However, the convergence and optimality of a neural 
network-based algorithm can be reflected by the training time and ac
curacy, and comparisons among different algorithms can also help to 
describe the capacity of convergence and optimality indirectly. For 
example, the results in Table 1 and Table 2 show that the proposed 
1D-CNN-GRU-based algorithm can achieve general convergence and 
best optimality when compared with other algorithms. The internal 
structure of GRU is shown in Fig. 2; where xt denotes the input sequence 
of GRU, which is obtained by reshaping the feature graph Sl; and ht 
denotes the output sequence, which is the predicted value of GRU. Be
sides, rt, zt, and dt are the intermediate sequences and they are respec
tively determined as 

rt = σ(Wrxt + Urht−1 + br) (2)  

zt = σ(Wzxt + Uzht−1 + bz) (3)  

dt = tanh[Wdxt + Ud(rt ⊙ ht−1) + bd] (4)  

ht = (1 −zt) ⊙ ht−1 + zt ⊙ dt (5)  

where σ(⋅) and tanh(⋅) denote the vector format of sigmoid and hyper
bolic tangent functions, respectively. ⊙ denotes the pair-wise operation. 
Wr, Ur, Wz, Uz, Wd and Uz are weight matrices to be trained, and br, bz 
and bd are the bias vectors to be trained, respectively. In this work, the 
cross-entropy is selected as the loss function for training. In other words, 
the optimization model of the proposed 1D-CNN-GRU-based algorithm 
can be represented as 

minfloss

(

y, ŷ) =
1

Nbatch

∑Ndata

j=1

∑NSMD

i=1

[

−yjiln
(

ŷji

)

−
(
1 −yji

)
ln
(

1 −ŷji

)]

s.t.(1) −(5)

(6)  

where y and ŷ are the actual and predicted class matrices of SMDs, 

Fig. 1. Illustration of 1D-CNN for feature extraction of measurement data.  

Table 1 
Authentication accuracy by different algorithms on testing set.  

Algorithm DWT- 
BP [4] 

MM- 
gcForest  
[6] 

MM- 
RFC  
[7] 

EEMD- 
FFT-BP  
[8] 

1D- 
CNN- 
LSTM 

1D- 
CNN- 
GRU 

Accuracy 68.5% 59.6% 60.1% 78.3% 84.6% 88.2% 
Required 

Window 
Length 

10min 20s 10s 10s  
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respectively; yji and ŷji are elements of the matrices, respectively. Nbatch 

is the number of batches in the training process and NSMD is the number 
of SMD’s data sources to be identified. Finally, the sources of mea
surement data can be identified by minimizing the loss function floss(y,
ŷ). In summary, the system model of the proposed 1D-CNN-GRU net
works is shown in Fig. 3, where four 1-D convolutional layers, two 
pooling layers, two GRU layers, two dropout layers, one reshape layer, 
one fully connected layer and one softmax layer are utilized together. 
The objective function of this work is floss(y, ŷ) and this work aims to 
minimize it by optimizing the variables Ki and bl

i in (1) and Wr, Ur, Wz, 
Uz, Wd, Uz, br, bz and bd in (2)-(5). 

3. Case studies 

To demonstrate and compare the performance of the proposed 1D- 
CNN-GRU-based algorithm for data source authentication of SMDs, 
two cases with actual measurement data are illustrated in this section. It 
should be mentioned that the sizes of all convolutional kernels are tuned 
as LCK=10 samples with experiences, thus the shape of each layer would 
also be determined in order according to the given input data. The first 
case is aiming to demonstrate the performance of the proposed algo
rithm for SMDs with high-reporting rate located very closely, and the 
second case is for demonstrating the situation of numerous SMDs in bulk 
actual power systems. All tests are performed on the Windows 10 plat
form with an Intel Core i7-9700 processor and 16GB RAM using Ten
sorflow backend combined with Keras in Python environment. 

3.1. Case studies for high-reporting rate synchrophasor measurement 
devices located closely to each other 

UGAs can collect measurement data up to 1.44kHz although they are 
not widely deployed currently. As mentioned in [8], there are three trial 
UGAs deployed in Knoxville, TN, USA now, and they are located closely 
to each other (with distances of 3.54km, 8.85km and 11.26km), which 
means that they are quite difficult to be distinguished. To demonstrate 
the algorithm proposed in this work, the measured data from 
2019/07/17 to 2019/07/18 (i.e., 2 × 24 × 3600 × 1440 × 3≈7.5 × 108 

points) are used for verifying and comparing the performances of 
different algorithms, and the testing results are given in Table 1. It is 
noted that the results are based on 5-fold cross-validation. 

It can be seen that the proposed 1D-CNN-GRU-based and 1D-CNN- 
LTSM-based algorithms achieve the highest and the second-highest ac
curacies (i.e., 88.2% and 84.6%), which shows the effectiveness of the 
1D-CNN feature extraction method and the importance of considering 
inherent correlations among time-series data. The other four algorithms 
can only obtain accuracies lower than 80%. Besides, the algorithms 
based on DWT-BP, MM-gcForest or MM-RFC require a 10-minute win
dow, and the EEMD-FFT-BP-based algorithm requires a 20-second 
window. For the proposed algorithm, a 10-second window is selected 
as the trade-off between accuracy and time delay of data authentication. 
Therefore, it can be concluded that the proposed algorithm outperforms 
other algorithms (i.e., higher accuracy and shorter window length) for 
high-reporting rate SMDs even located very closely. 

3.2. Case studies for numerous synchrophasor measurement devices in 
large-scale power systems 

Although the proposed algorithm shows good performance in Sec
tion 3.1, the number of UGAs involved in testing is too small due to their 
limited deployment. Therefore, case studies on FDRs, which are with a 
relatively lower reporting rate (i.e., 10Hz) but deployed worldwide, are 
employed here for further demonstrations. In this case, the measure
ment data of 178 FDRs from 28 countries are available and this case aims 
to authenticate the data sources concerning countries, which may have 
potential applications for forensic analysis [12] across countries. The 
performances of the proposed algorithm and the other algorithms are 
given in Table 2 together for comparisons. 

It can be seen that: i) The accuracies obtained by all algorithms 
decrease with the increase of the number of FDRs required to be 
authenticated, and the accuracy of the algorithms based on DWT-BP, 
MM-gcForest, MM-RFC deteriorate sharply while the accuracies of the 
other three ones are still acceptable; ii) The proposed 1D-CNN-GRU- 
based algorithm outperforms the others with respect to accuracy (i.e., 
80.2%) although it spends the second-longest training time (i.e., 
2,751s). It should be clarified that the model training can be done in the 
off-line stage, so the increase in training time has little impact on 
practical applications as long as online authentication time is short 
enough. In fact, all these algorithms require less than 0.1s for online 
authentication. Therefore, it can be concluded that the proposed 1D- 
CNN-GRU-based algorithm can be applied for large-scale power sys
tems with numerous SMDs and performs better than other algorithms. 

4. Conclusions 

This work proposes a data source authentication algorithm for syn
chrophasor measurement devices based on 1D-CNN and GRU, which can 
be implemented in the IoT-environment for the smart industry and 
achieve higher accuracy with a shorter time window compared with 
existing algorithms. 1D-CNN is utilized for extracting the temporal 
features contained in measured data and these features are fed as 
sequence input for GRU network. Compared with previous data 
authentication algorithms, the proposed one can achieve higher accu
racy with the shorter window length. 

Table 2 
Authentication accuracy of different algorithms on the testing set and their 
training time.  

Algorithm DWT- 
BP [4] 

MM- 
gcForest  
[6] 

MM- 
RFC  
[7] 

EEMD- 
FFT-BP  
[8] 

1D- 
CNN- 
LSTM 

1D- 
CNN- 
GRU 

Accuracy 42.5% 35.6% 46.5% 74.8% 78.9% 80.2% 
Training 

Time 
1,685s 408s 862s 1,436s 4,653s 2,751s  

Fig. 2. Internal structure of GRU.  

Fig. 3. Structure of the proposed 1D-CNN-GRU networks.  
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