Electric Power Systems Research 196 (2021) 107207

ELSEVIER

Contents lists available at ScienceDirect
Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

ELECTRIC
POWER

\ SYSTEMS
RESEARCH

Check for

Data source authentication of synchrophasor measurement devices based = [&&s

on 1D-CNN and GRU

Shengyuan Liu®", Shutang You”, Chujie Zeng ", He Yin ", Zhenzhi Lin®", Yuqing Dong ",

Wei Qiu”, Wenxuan Yao ", Yilu Liu >¢

& Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

b Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996 USA

¢ Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

ARTICLE INFO ABSTRACT

Keywords:

Synchrophasor measurement device (SMD)
Data authentication

One-dimensional convolutional neural network
(1D-CNN)

Gated recurrent unit (GRU)

FNET/GirdEye

Synchrophasor measurement devices (SMDs) have been widely deployed to support real-time monitoring and
control of power systems. In the meantime, data spoofing has emerged in recent years. Therefore, it is of great
importance to study data authentication algorithms for detecting and defending the data spoofing effectively. In
this work, a one-dimensional convolutional neural network (1D-CNN) is utilized to extract temporal signatures
hidden in frequency, voltage angle and amplitude data; then the gated recurrent unit (GRU) employs these
temporal signatures for data source authentication. In case studies, the performances of different algorithms are

tested in large-scale power systems with numerous SMDs for the first time, and comparisons among different
algorithms show that the proposed algorithm can achieve a higher accuracy of data source authentication with a

shorter time window.

1. Introduction

In the context of the smart grid industry [1], several technologies
such as data communication [2] and power management [3] have been
greatly developed in the Internet of Things (IoT)-environment. For
example, the real-time data such as frequency, voltage amplitude and
angle can be measured with the help of IoT devices, which allow oper-
ators to monitor the real-time situation of power systems and take
control measures in a timely manner. However, the measured data are
also valuable for intentional spoofing and attack, therefore, it is
important to perform data authentication for part of IoT devices in
power systems, i.e., synchrophasor measurement devices (SMDs) [4].

In fact, data spoofing can be divided into several types and this work
focuses on the model-free detection for data source mixing, which was
preliminarily studied by our previous research [5]-[8]. In [5], an L-level
Daubechies wavelet-based feature extraction method is employed for
electrical network frequency (ENF) and a feed-forward artificial neural
network (F-ANN) is utilized to identify the data source locations. In [6],
the mathematical morphology (MM) method is used to decompose the
ENF into several intrinsic components for time-frequency sparsity
analysis and a random forest-based algorithm is used for correlating the
correct data sources of SMDs. In [7], the multi-grained cascaded forest
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(gcForest) algorithm is further presented and combined with
time-frequency sparsity analysis to achieve better performance and
more detailed analyses and discussions are given as well. However, the
aforementioned algorithms require a relatively long-time window
segment for feature extraction and subsequent data authentication,
which would then delay data spoofing detection. Hence, a two-layer
ANN, whose input features are fed by ensemble empirical mode
decomposition (EEMD) and fast Fourier transform (FFT), is constructed
in [8]. The algorithm can achieve high accuracy with a 20-second
window and can be applied for SMDs located quite close to each
other. Nevertheless, the algorithm presented in [8] requires
high-reporting rate data (i.e. 1.44kHz) collected by advanced universal
grid analyzers (UGAs) which have not been widely deployed in the
current stage, and it cannot be applied directly for existing frequency
disturbance recorders (FDRs). Besides, all algorithms in [4]-[8] are
lacking testing for the situations with numerous SMDs and their per-
formance would decrease quickly if more SMDs are to be authenticated.

In light of this, this work proposes a one-dimensional convolutional
neural network (1D-CNN) and gated recurrent unit (GRU)-based algo-
rithm for data source authentication of FNET/GridEye. The contribu-
tions of this work can be summarized as follows.
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i) In the past, only frequency data are utilized for data authenti-
cation while 1D-CNN is employed in this work to extract the
measurement’s features from multiple data series constituted by
frequency, voltage angle and amplitude for the first time.

ii) The GRU network is utilized to authenticate the source of
measured data. Compared with traditional machine learning
methods such as ANN and gcForest, the proposed GRU network
can consider the temporal information embedded in the time
series data. Compared with other time series models, such as the
long short-term memory (LSTM) network, the GRU network is
more computationally efficient.

iii) The proposed 1D-CNN-GRU-based algorithm not only can deal
with the high-reporting rate SMDs such as UGAs located closely
to each other which is quite difficult for other algorithms to
distinguish, but also can deal with the large number of commonly
deployed FDRs in bulk actual power systems. Besides, the win-
dow required for the proposed algorithm is shorter than other
algorithms.

2. 1D-CNN-GRU-based data source authentication algorithm for
FNET/GridEye

FNET/GridEye is a power system monitoring system being deployed
worldwide [9] and can be regarded as a part of IoT in the smart industry.
The basic IoT devices (i.e., SMDs) in FNET/GridEye are FDRs with a
10Hz reporting rate and UGAs that can achieve a 1.44kHz reporting rate.
This work aims to authenticate the data source, in other words, to
identify which SMDs the data collected from. Therefore, this work aims
to extract the features of each SMD based on historical measurement
first, and then classify the online measured data into the different
sources of SMDs based on the extracted features. Therefore, the data
source authentication problem in this work can be abstracted as a su-
pervised classification problem and it is critical to find a suitable clas-
sification algorithm embedded with a feature extraction method, which
can minimize the final identification error (i.e., maximize the accuracy
of data source authentication). Due to its advantages in analyzing time
series data, 1D-CNN has been widely employed for sequence models
such as natural language processing and human activity recognition
[10]. Since the data of SMDs are also time-stamped, 1D-CNN is very
suitable for extracting inherent features from them. Generally, three
types of measurements, i.e., frequency, voltage angle and amplitude
data can be collected by FNET/GridEye, and they need to be filtered (i.e.
denoised) and detrended before feature extraction to improve extraction
effectiveness. It is assumed that the denoised and detrended measure-
ment data in a single time window can be denoted as Ps.y,,,, where
Nyata is the number of samples in a single time window. Then, the
1D-CNN can be employed for feature extraction as shown in Fig. 1.

In Fig. 1, the i" convolution kernel K; with size Lckg would slide from
samples 1 to Nyt to extract features and the 1™ feature graph Sl can be
output as
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Fig. 1. Illustration of 1D-CNN for feature extraction of measurement data.
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where f(-) is activation function, bf is the i bias for the I!" feature graph
and N¢g is the number of convolutional kernels used in this convolu-
tional layer. In this work, Ps,y,,, can be regarded as S, and the rectified
linear unit (ReLU) is usually selected as the activation function. Since
the features extracted by 1D-CNN follow the time series, the temporal
information embedded in measurement data is retained and would be
fed as inputs for GRU layers. GRU is developed from LSTM network and
both of them can mitigate the issues of gradient explosion and gradient
vanishing during the training process when compared with the tradi-
tional recurrent neural network (RNN) [11]. In fact, the motivations of
using GRU in this work are: i) GRU can remember the previous status
during training processes and fits well for time series analysis; ii)
compared with LSTM, GRU only has two gates (i.e. the update gate and
the reset gate), so using GRU is more computationally efficient and can
reach convergence much faster [11]. It is noted that the stochastic
gradient descent (SGD) method can help to improve the convergence of
neural network-based algorithms and minimize the loss function as
small as possible, so the SGD method is utilized for the proposed
1D-CNN-GRU-based algorithm. It is also worth mentioning that it is hard
to directly give a qualitative conclusion about the convergence and
optimality of a neural network-based algorithm since the activation
functions of the neural network-based algorithm are highly nonlinear
and nonconvex. However, the convergence and optimality of a neural
network-based algorithm can be reflected by the training time and ac-
curacy, and comparisons among different algorithms can also help to
describe the capacity of convergence and optimality indirectly. For
example, the results in Table 1 and Table 2 show that the proposed
1D-CNN-GRU-based algorithm can achieve general convergence and
best optimality when compared with other algorithms. The internal
structure of GRU is shown in Fig. 2; where x; denotes the input sequence
of GRU, which is obtained by reshaping the feature graph S% and h;
denotes the output sequence, which is the predicted value of GRU. Be-
sides, ry, 2;, and d; are the intermediate sequences and they are respec-
tively determined as

ro=0(Wx,+Uh,_, +b,) (2)
2z =06(Wx,+Uh,_,+b,) 3
d, = tanh[Wx, + U,(r, © h,_1) + b,] @
h=(1-2)0h_ +2z,0d, (5)

where 6(-) and tanh(-) denote the vector format of sigmoid and hyper-
bolic tangent functions, respectively. ® denotes the pair-wise operation.
W,, U,, W,, U,, Wy and U, are weight matrices to be trained, and b,, b,
and b, are the bias vectors to be trained, respectively. In this work, the
cross-entropy is selected as the loss function for training. In other words,
the optimization model of the proposed 1D-CNN-GRU-based algorithm
can be represented as

. R 1 Naaa Nsmp =" R
Minfio (yvy) e {*y/[ln <yﬁ> - (1 *y/[)1n<1 - yj,-ﬂ ©
aich 527 =

st.(1) = (5)

where y and y are the actual and predicted class matrices of SMDs,

Table 1
Authentication accuracy by different algorithms on testing set.
Algorithm DWT- MM- MM- EEMD- 1D- 1D-
BP [4] gcForest RFC FFT-BP CNN- CNN-
[6] [71 [8] LSTM GRU
Accuracy 68.5% 59.6% 60.1% 78.3% 84.6% 88.2%
Required 10min 20s 10s 10s
Window
Length
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Table 2
Authentication accuracy of different algorithms on the testing set and their
training time.

Algorithm DWT- MM- MM- EEMD- 1D- 1D-
BP [4] gcForest RFC FFT-BP CNN- CNN-
[6] [71 [8] LSTM GRU
Accuracy 42.5% 35.6% 46.5% 74.8% 78.9% 80.2%
Training 1,685s 408s 862s 1,436s 4,653s 2,751s
Time

Gy

Structure
-
B—Cn ©

. Update Gate
o

Reset Gate

o L ]
Fig. 2. Internal structure of GRU.

respectively; y; and yﬁ are elements of the matrices, respectively. Npatch
is the number of batches in the training process and Ngyp is the number
of SMD’s data sources to be identified. Finally, the sources of mea-
surement data can be identified by minimizing the loss function fioss(y,
y). In summary, the system model of the proposed 1D-CNN-GRU net-
works is shown in Fig. 3, where four 1-D convolutional layers, two
pooling layers, two GRU layers, two dropout layers, one reshape layer,
one fully connected layer and one softmax layer are utilized together.
The objective function of this work is fi,s(y,¥) and this work aims to
minimize it by optimizing the variables K; and bﬁ in (1) and W,, U,, W,,
U,, Wy, U,, b,, b, and by in (2)-(5).

3. Case studies

To demonstrate and compare the performance of the proposed 1D-
CNN-GRU-based algorithm for data source authentication of SMDs,
two cases with actual measurement data are illustrated in this section. It
should be mentioned that the sizes of all convolutional kernels are tuned
as Lcg=10 samples with experiences, thus the shape of each layer would
also be determined in order according to the given input data. The first
case is aiming to demonstrate the performance of the proposed algo-
rithm for SMDs with high-reporting rate located very closely, and the
second case is for demonstrating the situation of numerous SMDs in bulk
actual power systems. All tests are performed on the Windows 10 plat-
form with an Intel Core i7-9700 processor and 16GB RAM using Ten-
sorflow backend combined with Keras in Python environment.

GRU Layers DropoutLayers

r \ofmn\
Layer

ReshapeLayel Fully Connected Layer

Fig. 3. Structure of the proposed 1D-CNN-GRU networks.
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3.1. Case studies for high-reporting rate synchrophasor measurement
devices located closely to each other

UGAs can collect measurement data up to 1.44kHz although they are
not widely deployed currently. As mentioned in [8], there are three trial
UGAs deployed in Knoxville, TN, USA now, and they are located closely
to each other (with distances of 3.54km, 8.85km and 11.26km), which
means that they are quite difficult to be distinguished. To demonstrate
the algorithm proposed in this work, the measured data from
2019/07/17 to 2019/07/18 (i.e., 2 x 24 x 3600 x 1440 x 3~7.5 x 10°
points) are used for verifying and comparing the performances of
different algorithms, and the testing results are given in Table 1. It is
noted that the results are based on 5-fold cross-validation.

It can be seen that the proposed 1D-CNN-GRU-based and 1D-CNN-
LTSM-based algorithms achieve the highest and the second-highest ac-
curacies (i.e., 88.2% and 84.6%), which shows the effectiveness of the
1D-CNN feature extraction method and the importance of considering
inherent correlations among time-series data. The other four algorithms
can only obtain accuracies lower than 80%. Besides, the algorithms
based on DWT-BP, MM-gcForest or MM-RFC require a 10-minute win-
dow, and the EEMD-FFT-BP-based algorithm requires a 20-second
window. For the proposed algorithm, a 10-second window is selected
as the trade-off between accuracy and time delay of data authentication.
Therefore, it can be concluded that the proposed algorithm outperforms
other algorithms (i.e., higher accuracy and shorter window length) for
high-reporting rate SMDs even located very closely.

3.2. Case studies for numerous synchrophasor measurement devices in
large-scale power systems

Although the proposed algorithm shows good performance in Sec-
tion 3.1, the number of UGAs involved in testing is too small due to their
limited deployment. Therefore, case studies on FDRs, which are with a
relatively lower reporting rate (i.e., 10Hz) but deployed worldwide, are
employed here for further demonstrations. In this case, the measure-
ment data of 178 FDRs from 28 countries are available and this case aims
to authenticate the data sources concerning countries, which may have
potential applications for forensic analysis [12] across countries. The
performances of the proposed algorithm and the other algorithms are
given in Table 2 together for comparisons.

It can be seen that: i) The accuracies obtained by all algorithms
decrease with the increase of the number of FDRs required to be
authenticated, and the accuracy of the algorithms based on DWT-BP,
MM-gcForest, MM-RFC deteriorate sharply while the accuracies of the
other three ones are still acceptable; ii) The proposed 1D-CNN-GRU-
based algorithm outperforms the others with respect to accuracy (i.e.,
80.2%) although it spends the second-longest training time (i.e.,
2,751s). It should be clarified that the model training can be done in the
off-line stage, so the increase in training time has little impact on
practical applications as long as online authentication time is short
enough. In fact, all these algorithms require less than 0.1s for online
authentication. Therefore, it can be concluded that the proposed 1D-
CNN-GRU-based algorithm can be applied for large-scale power sys-
tems with numerous SMDs and performs better than other algorithms.

4. Conclusions

This work proposes a data source authentication algorithm for syn-
chrophasor measurement devices based on 1D-CNN and GRU, which can
be implemented in the IoT-environment for the smart industry and
achieve higher accuracy with a shorter time window compared with
existing algorithms. 1D-CNN is utilized for extracting the temporal
features contained in measured data and these features are fed as
sequence input for GRU network. Compared with previous data
authentication algorithms, the proposed one can achieve higher accu-
racy with the shorter window length.
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