
CH11CH08_Dill ARjats.cls May 19, 2020 9:20

Annual Review of Chemical and Biomolecular
Engineering

How Do Cells Adapt? Stories
Told in Landscapes
Luca Agozzino,1,2 Gábor Balázsi,1,3 Jin Wang,1,2,4

and Ken A. Dill1,2,4
1The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook
University, Stony Brook, New York 11794, USA; email: dill@laufercenter.org
2Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794,
USA
3Department of Biomedical Engineering, Stony Brook University, Stony Brook,
New York 11794, USA
4Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, USA

Annu. Rev. Chem. Biomol. Eng. 2020. 11:155–82

The Annual Review of Chemical and Biomolecular
Engineering is online at chembioeng.annualreviews.org

https://doi.org/10.1146/annurev-chembioeng-
011720-103410

Copyright © 2020 by Annual Reviews.
All rights reserved

Keywords

landscape, adaptation, homeostasis, evolution, fitness

Abstract

Cells adapt to changing environments. Perturb a cell and it returns to a point
of homeostasis. Perturb a population and it evolves toward a fitness peak.
We review quantitative models of the forces of adaptation and their visu-
alizations on landscapes. While some adaptations result from single muta-
tions or few-gene effects, others are more cooperative, more delocalized in
the genome, and more universal and physical. For example, homeostasis and
evolution depend on protein folding and aggregation, energy and protein
production, protein diffusion, molecular motor speeds and efficiencies, and
protein expression levels. Models provide a way to learn about the fitness of
cells and cell populations by making and testing hypotheses.
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1. INTRODUCTION: CELLULAR DRIVING FORCES

Biological cells are adaptive. Change their environment and they respond. In homeostasis, a cell
returns to a stable state after it has been perturbed. In evolution, a population of cells becomes
better suited to new circumstances. Cell adaptations are reflections of biological driving forces,
often expressible as potential functions and visualizable on mathematical landscapes.

Here, we review recent modeling aimed at learning the adaptation code—that is, how adaptive
behaviors are encoded within the cell’s biomolecules and networks. This research objective is
sometimes called genotype to phenotype (G2P) or genotype to fitness (G2F). But here, we prefer
the term adaptation code, for it more broadly encompasses other important factors as wellsprings
of adaptive behaviors, beyond just genes and mutations alone (Figure 1):

� It incorporates a cell’s environment, not just its genes. Survival of the fittest expresses that
evolution aims toward matching an organism to its environment. Fitness and forces cannot
be understood without accounting for environmental conditions, such as food and nutri-
ent levels, other competing or cooperating organisms, or stressors such as heat or drugs.
Biological change can be driven by a changing environment.

� It incorporates a gene’s expression, not just its function. Cell fitness depends not only on a
protein’s efficacy of action but also on a protein’s abundance, which is dictated by messenger
RNA (mRNA) levels and gene regulatory networks.

� It incorporates a protein’s physics, not just its biology. Cell fitness depends on physical
properties—the folding and aggregation health of the proteome (called proteostasis), pro-
tein diffusion and transport, and cellular balances of energy. These physical properties are
relatively universal across the whole proteome, rather than particular to one protein or
another. But like protein biology, protein physics also contributes to adaptive forces of ho-
meostasis and evolution and plays a role in cellular growth laws and stress responses.

� It incorporates a cell’s fluctuations, not just its average properties. Inside a single cell, con-
centrations of a molecule can fluctuate, either because of small internal molecule numbers
or because a cell changes environments (oxygen levels, nutrients, temperature, or stressors).
A cell population can be highly diverse, even when its individual cells are genetically iden-
tical. Fluctuations can sometimes promote the average adaptive direction and sometimes
oppose it.

1

2

3

Protein
action

Protein
level
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Gene
network

mRNA
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Gene Protein
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Figure 1

Three ways a cell’s fitness is encoded in its proteins: (●1 ) its abundance in the cell, affected by messenger RNA (mRNA) levels; (●2 ) its
efficacy of biological action, affected by mutations; and (●3 ) proteostasis, its folding and aggregation health, controlled by protein
synthesis, degradation, and chaperoning.
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This review emphasizes mechanism-based modeling. The aim is to explain adaptive forces in
terms of underlying biomolecular actions and networks. We ask questions of “What if,” not just
“What is.” This way of knowing is different from that of sequence comparison studies (1), for
example. While some aspects of adaptation can be explained by this gene or that mutation, other
adaptations are less pinpoint. Even the simplest traits, such as human height, are correlated with
tens of thousands of genes. Sometimes cell fitness depends on a protein’s stability or its abun-
dance. A protein’s stability can be altered by uncountably many different mutations. A protein’s
abundance can be changed by many changes in a regulatory network. Metaphorically, there are
many ways to change traffic lights in a city that speed up traffic flow, but no one traffic light will
tell the story. Mechanistic models can help explain these adaptations.

New insights are coming not only from new modeling but also from new laboratory-scale
controlled experiments (2–5). On the one hand, evolution in nature has major sources of
unpredictability—environments are ever changing; competitors and cooperators come and go;
and genomic complexity, redundancy, and natural fluctuations are present. On the other hand,
new laboratory evolution experiments offer learning opportunities because internal and external
variables can be held constant (6, 7). New data are coming from vast inventories of DNA and pro-
tein sequences, from high-throughput -omics and gene editing (8–22), from single-cell methods
(23), and from controlled artificial gene networks (24–29) that can poke and probe cells or can
evolve (30–33) just like natural networks do (6, 7, 34, 35). Whereas yesterday’s advances gave fine
control over proteins, today’s give finer control over networks (36–38).

2. THE FORCES OF ADAPTATION AND THEIR VISUALIZATION
ON LANDSCAPES

The driving forces of nature can be expressed as principles of minimization of potential functions.
They are often illustrated on mathematical landscapes as balls rolling downhill. A ball experi-
encing gravity tends to a minimum of the gravitational potential energyU (x) as a function of the
ball’s spatial position x. The force on the ball is given by the local slope, f = −dU (x)/dx. Similarly,
molecules and materials tend toward thermal equilibrium states, which are at the minima of free
energy,�G(x), as a function of molecular or material degrees of freedom (DOFs), x. The slopes of
free-energy functions give the forces acting on molecules or materials. Landscapes can be hierar-
chical: They can describe single-molecule tendencies toward molecular conformational equilibria
or material tendencies toward multiple-molecule equilibria. Similarly, landscapes in biology can
express behaviors of single cells or whole populations.

Biology’s driving forces—in homeostasis and evolution—can seem different from those of
chemistry and physics. Biology’s forces seem purpose-like—acting to serve the well-being of the
organism. Even so, they, too, can be expressed in terms of forces, potentials, and landscapes at
the microscopic or macroscopic levels. Figure 2a shows a fitness landscape, which illuminates
Darwin’s principle of survival of the fittest—that is, the evolutionary tendency of a population
toward states of maximum fitness for its environment. What is fitness? It depends. At the macro-
scopic level, in simple cases, a cell population’s fitness may just be its growth rate. At the micro-
scopic level, cellular fitness can be the division rate of a cell. In real-world cases, what evolution is
optimizing can be complex and is seldom known, but plausible hypotheses can give useful insights.

Figure 2b shows an inversion of the fitness landscape, called the fitness potential (it is the
negative logarithm of the fitness), which we prefer here because it retains the downhill convention
of the metaphor of a ball rolling. Evolution happens in cell populations because DNA and protein
sequences mutate and undergo natural selection, leading to increased fitness, like a ball rolling
downhill on a fitness-potential landscape. Homeostasis uses similar terms, and similar math (but
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Figure 2

Evolution is described as populations moving on landscapes. This is represented in two different ways, as a
tendency toward either (a) maxima on a landscape of fitness or (b) minima on a landscape of fitness potential.
They are just different ways to visualize the same process.

different variables), and refers to single cells rather than to populations. How can we model the
purpose-like actions of single cells and cell populations in terms of the tendencies of biomolecular
processes and networks?

Before describing the math, we summarize a few principles of cellular adaptation landscapes.
(a) They are often high dimensional; there can be many DOFs. Even the simplest cells, like bac-
teria, have thousands of different types of proteins, each one of which is hundreds of amino acids
long; every amino acid comes from a 20-letter alphabet; and each protein’s abundance level is
controllable (38, 39). (b) Landscapes can be bumpy; rolling balls can get stuck or slowed down
by kinetic traps. Even so, at some level, landscapes also must be relatively smooth, at least along
some of the DOFs, or else adaptation would be impossible (40). (c) It is known from directed
evolution experiments that evolutionary landscapes are dense with biochemical functions. This
means that an enzyme can be switched to catalyzing a different reaction often with only a few
mutations (41). (d) Proteins can evolve through a relatively small number of complicated routes
along which contingencies can matter (42–44), with bottlenecks requiring permissive mutations
that stabilize local structures and maintain correct conformational energy balances (45), and some
of these routes may require high-order epistasis (i.e., interactions between three or more muta-
tions) (46). (e) Early stages of evolution can be dominated by single mutations, increasing fitness
steeply, whereas later stages can involve multiple competing mutations and epistasis, which can
be stochastic and slow to reach but then occasionally fast to evolve further (7). ( f ) Evolution of a
protein to a new function often begins without the loss of the previous function, making promis-
cuous proteins more evolvable (47). (g) While average tendencies can be toward adapted states,
stochasticity and fluctuations can sometimes tend to oppose that direction.

How do we model cell adaptation mechanisms? First, we choose whether the model is mi-
croscopic (the cell), macroscopic (the population), or both (multiscale). Then, we define (a) the
relevant DOFs, (b) the mathematical function that is being optimized, and (c) a mechanism for the
fitness as a function of the DOFs. These are rarely known. So, in the spirit of theoretical physics
and evolutionary biology, the learnings from modeling come in the reverse direction: First we
hypothesize these premises, and then we see and test what they predict against existing data or
new experiments.
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3. THE THEORY OF ADAPTIVE LANDSCAPES

3.1. Simple Homeostasis: The Basic Idea

We first illustrate the basics of simple homeostasis. What balance of processes can hold the con-
centration x of some particular biomolecule constant? Consider an mRNAmolecule that encodes
a protein. Its concentration x can be increased by an amount �x in time �t through a biochemical
network that (a) increases the mRNA synthesis (at rate Jsyn = ks) or (b) decreases its degradation
(at rate Jdeg = kdx, proportional to the concentration) (Figure 3):

�x
�t

= Jsyn − Jdeg = ks − kdx. 1.

Homeostasis is defined as the steady state where �x/�t = 0, that is, where Jsyn = Jdeg (see
Figure 3). Let us express the tendency to sustain the steady state as a biochemical potential,

φ(x) =
∫ x

x0

(Jsyn − Jdeg) dx′ = −ks(x− x0) + kd(x2 − x20)/2. 2.

The tendency toward homeostasis can be likened to a ball rolling downhill on this one-
dimensional landscape, where

force = �x
�t

= −dφ
dx

. 3.

In homeostasis, the force (net rate) is the slope of this biochemical landscape, which equals zero at
the well bottom. This force is a tendency to restore, resulting from an imbalance of flows. When
x is small, synthesis dominates, increasing x. When x is large, degradation dominates, reducing x.

This example shows how opposing processes of synthesis and degradation can result in ho-
meostasis, a fixed stable concentration. These flows can be expressed as a net tendency toward
the minimum of a biochemical potential. Such landscapes can also have multiple minima—that
is, multiple homeostatic concentrations (48–52). One main subpopulation of cells would have a

x

x0

Rates

x

x0

x0

Jsyn = ks

– Jdeg = – kd x

Δ t
Δx  

φ(x)

= net
change

Simulation number

Time 

Time 

x(t)

x(t)

a

3

21

b

c

Figure 3

Homeostasis is a tendency toward the minimum of a potential function. (a, top) Homeostasis is maintained
by a balance of two rates: synthesis (Jsyn), supplying material and increasing the concentration x, and
degradation (Jdeg), decreasing x. The sum is the net rate of change, �x/�t. (a, bottom) The integrated net
change rate is a potential φ(x). (b) After perturbation, x(t ) relaxes to x0 over time. (c) The noisy stochastic
version of this relaxation is shown, for example, for few-particle systems.
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stable concentration x∗
1, and another main subpopulation would have a biomolecule concentration

x∗
2.
Biochemical potential landscapes underlie cellular homeostasis, but they are not fitness land-

scapes. In constant environments, evolution drives the regulatory networks controlling synthesis
and degradation rates Jsyn = ks and Jdeg = kdx such that biochemical and fitness-potential minima
coincide. Since fluctuating environments imply fluctuating fitness-potential landscapes within dif-
ferent peaks, regulatory networks can also evolve to give rise to multiple biochemical potential
minima when environmental conditions fluctuate (2, 5).

This example is a useful deterministic and continuum approximation when fluctuations are
negligible. But in some cases, we also want to account for noise from the few-particle internal
fluctuations or from fluctuations of external origin. Internal fluctuations arise from the discrete
nature of individual molecules and can be expressed as birth and death events in a master equation
for the probability Pn to have exactly n molecules in a given cell at time t:

dPn
dt

= ksPn−1 + (n+ 1)kdPn+1 − (nkd + ks )Pn. 4.

Below, we generalize the mathematics to handle more complex systems and treat evolution
as well as homeostasis. It is easy to see how the math of homeostasis also applies to evolution;
in the latter case, the driving mechanisms are mutation and selection instead of synthesis and
degradation, but, as we show below, the dynamics of the two processes can be described in a
similar way.

3.2. General Dynamic Theory of Adaptive Behaviors

A more general way to treat the dynamics of the changing concentrations of genes and proteins
inside a single cell—or the changing allele frequencies in an evolving cell population—is through
the Fokker–Planck diffusion equation. We start with the ordinary differential equation

dx
dt

= F(x), 5.

where dx/dt is the rate of change of some concentration (or population or allele prevalence) with
respect to time t (seeFigure 4).When describing homeostasis, x could be the set of concentrations
of different proteins. When describing evolution, x is the collection of the frequencies of each
allele (i.e., populations of different forms of a gene or protein). Since each species (proteins or

Evolutionary
dynamics

Protein
level

Allele
frequency

Protein
interaction

Mutation
and selection

Intracellular
noise

Genetic
drift

Examples

Cellular
homeostasis

x F(x) ξ(x, t)

=

= + +kx
axdx

dt

dx w(x) – w0

dt w0

S + x
bS

S + y
ξ(x, y, t)

ξ(x, y, t)x m(y – x)

–

+ +

Figure 4

Homeostasis dynamics and evolutionary dynamics often use similar math, but with different variables. (Top
row) Gene module with two self-activating genes (x and y), mutually repressing each other (a and b are the
strengths of self-activation and mutual repression, respectively; S is the minimal concentration needed to
activate changes; and k is the degradation rate). (Bottom row) Allele frequency changes due to natural
selection and random mutation (22) (w is the fitness of allele x, w0 is the average fitness, and m is the
mutation rate between alleles x and y).
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genes) can have multiple values of concentrations/frequencies, say N , a network ofM species will
have a large number of states, NM . F(x) is the vector of driving forces for changing biochemical
concentrations. Equation 5 describes forces as velocities or rates (like Newtonian particles in an
overdamped regime, where acceleration terms are negligible).

Equation 5 is a fundamental equation for nonlinear dynamics (53). Such models are often
studied by identifying the fixed points and performing a linear stability analysis to figure out
the stability of each fixed point. However, this approach explores only small local changes
(metastability), and not the larger-scale dynamics (global stability) such as the transitions between
the fixed points. Moreover, Equation 5 does not account for intrinsic and extrinsic fluctuations.
For fluctuations, we need stochastic dynamics, not deterministic dynamics. Fluctuations can
be treated either through the master equation approach (Equation 4) or more simply by the
Langevin equation approximation (8–11),

dx
dt

= F(x) + ξ (x, t ). 6.

The function ξ (x, t ) is a fluctuating force in time, with a given probability distribution, that adds
to the deterministic model of the network dynamics. The statistical properties of the stochastic
force are taken to be 〈ξ (x, t )〉 = 0 and 〈ξ (x, t )ξT (x, t ′ )〉 = 2 ε D(x)δ(t − t ′ ), where ε is a scale
factor quantifying the fluctuation strength and D(x) is the diffusion matrix giving rise to the
fluctuation correlations (8–11). Since there are many components of the fluctuation sources, it is
generally assumed that the stochastic force follows a Gaussian distribution. Figure 4 shows how
this formalism can be applied to both cellular homeostasis and evolutionary dynamics.

Now, while Equation 6 describes the dynamics of the mean value and variance of x, we often
want to know, more generally, the dynamics of the whole probability distribution function P(x, t ).
This is given by the Fokker–Planck diffusion equation (8–11):

∂

∂t
P(x, t ) = −∇ · {

F(x)P(x, t ) − ε∇ · [D(x)P(x, t )]
}
. 7.

The content of the curly brackets can be defined as a function J(x, t ),

J(x, t ) = F(x)P(x, t ) − ε∇ · [D(x)P(x, t )], 8.

such that Equation 7 takes the form of a continuity equation, expressing the conservation of
probability

∂tP(x, t ) + ∇ · J(x, t ) = 0; 9.

therefore, the function J(x, t ) is the probability flux.
Equations 7 and 8 are linear (in P) and deterministic. So,while the individual trajectories them-

selves are not predictable, the dynamics of the statistical distribution is predictable. Furthermore,
these expressions give a global description of the system (not limited to local linear stability anal-
ysis around fixed points), and this allows us to comprehend all the basins on the landscape and
their connectivities.

This formulation illuminates an important principle of forces and flows. It says that there are
two types of driving forces (more mathematical details are given in the following paragraphs).
The first type is familiar; these forces can be computed from a slope on a potential landscape, as
befits the metaphor of a ball rolling downhill. The second type is less familiar; these are forces
that are not expressible as a slope on a landscape. The latter is a uniquely dynamical phenomenon.
Sometimes, when energy is flowing into a nonequilibrium system, it acts as a force to drive balls
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to roll around on perfectly level paths on landscapes, where the slope is zero. How do we distin-
guish between these two types of forces? For any system at steady state, by definition, ∂Pss/∂t = 0
(8–11), so according to Equation 9, ∇ · Jss = 0; this is called the zero-divergence condition. The
two types of forces correspond to the two different ways steady-state systems can achieve the
zero-divergence condition. First, zero divergence results when the steady-state flux itself is zero,
Jss = 0, implying no net flux in or out and implying that the system is at equilibrium and satis-
fies the principle of detailed balance (8–11). If we imagine rain falling into a well, steady state
is achieved only if water is hauled out in buckets at the same rate that rain is filling up the
well.

A second way to achieve zero divergence,∇ · Jss = 0, applies when Jss �= 0. In this case, Jss has a
rotational nature; its force lines typically circulate in loops (8–11, 16, 54, 55). This is called the curl
flux. Now, if we imagine that our water well has a horizontal ledge that forms a circular trough
located halfway down the well, the rainwater has another option: It can swirl. It pours into the
trough, converting vertical rain flow into horizontal flow around and around the ledge. This type
of flow, perpendicular to the well axis, never changes the level of water in the well, so it, too,
satisfies the requirement that the system be in steady state.

By rearranging the steady-state Equation 8,we find the driving force to have three components
(16, 22, 54–56):

F = −ε D · ∇U + Vss + ε∇ · D. 10.

Here,U = − lnPss can be defined as the potential landscape, and Vss = Jss/Pss is the flux velocity.
Thus, the driving force of nonequilibrium dynamical systems can be partitioned into three parts:
the gradient-like force of the potential landscape U , which is associated with the steady-state
probability distribution Pss; the rotational-like force Vss, related to the steady-state probability
flux Jss; and the fluctuation-induced force originating from the fluctuations, which vanishes when
D is independent of x. In systems at equilibrium, the net flux vanishes, and Jss = Vss = 0. In such
cases, the global minimum of the potential landscape defines the global stability of the system, and
the forces are given by the gradient of the landscape. But in nonequilibrium systems, where net
flux does not vanish and Jss and Vss are not zero, the nonequilibrium potential landscape can still
be used to quantify the system’s global stability together with the flux. The forces and dynamics of
the system are now determined by both the gradient of the potential landscape and the curl force
of the flux velocity.

In the zero-fluctuation (i.e., deterministic) limit, the driving force can be decomposed into an
intrinsic potentialU0 = limε→0(εU ) and an intrinsic flux velocity V0 (9, 22, 37, 55, 57, 58):

F = −D · ∇U0 + V0. 11.

The intrinsic potential always decreases along the deterministic trajectory; therefore, it can be
used to quantify the global stability of the deterministic nonequilibrium system. The underlying
dynamics of the deterministic nonequilibrium system is determined by both the intrinsic potential
landscape and the intrinsic flux velocity. The gradient of the intrinsic landscape is perpendicular
to the intrinsic flux velocity in the deterministic case. While we describe steady states above,
this formulation is readily generalized to handle transient dynamics, time-dependent external
conditions, multiple-state-transition mechanisms, and spatially extended systems (22, 55). In the
following sections, we discuss the important implications of curl-flux dynamics for homeostasis
and evolutionary dynamics.
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3.3. Static Fitness Landscapes Have Energy-Like and Entropy-Like Components

Like free-energy landscapes in thermodynamics, fitness landscapes have two components: One is
energy-like, and one is entropy-like. Imagine one cell behaviorA that can be achieved byNA differ-
ent sequences and another behavior B that can be achieved byNB different sequences. On the one
hand, evolutionmay tend toward B if those sequences have greater fitness.On the other hand, evo-
lution may also tend toward B simply if the B sequences are more numerous. This distinction can
be expressed in energy-like and entropy-like terms. The rate at which a protein molecule evolves
is given by the dependence on time t of the probability Pi(t ) that a protein sequence i becomes
fixed in a population by time t, through mutation and selection. The equilibrium distribution of
such probabilities is a Boltzmann-like exponential (59–63):

P∗
i = gi

e−λVi

Q
, 12.

where Vi is the fitness potential, a function of the different mutations of a given protein (40),
related to the fitness fi by Vi = − log fi (59); gi is the sequence degeneracy, that is, the number
of different sequences of a given fitness; λ is the selective pressure; and Q = ∑

i gie
−λVi is the sum

over the relative populations of the different sequences of the protein.
In short, like the equilibrium thermodynamics of materials, evolutionary changes can be

energy-like or entropy-like. Energy-like refers to cases where one sequence is preferred to an-
other because of the higher fitness of that specific sequence.Entropy-like refers to cases where one
whole category of sequences is preferred to another whole category of sequences simply because
the former category has more sequences in it than the latter has. Entropy plays this role: Some-
times a cell population will not converge to a single perfect (maximally fit) amino acid sequence
because there are so many alternative sequences that can achieve a sufficient (i.e., near-perfect)
fitness instead. Note that these energy-like and entropy-like components of evolution should not
be confused with the thermal energies and entropies of materials. In thermal materials, the balance
between energy and entropy is dictated by the temperature; in evolution, the balance of these ten-
dencies is dictated by the selective pressure. Apes can evolve into humans by selective pressures,
but not by a change in temperature. Equation 12 provides a general framework to address some
questions of protein evolution in the Sections 3.4 and 4.1–4.3.

3.4. Evolution Speeds Range from Days to Millions of Years

Evolution can happen over a wide range of timescales. Some evolutionary processes take millions
of years; others take weeks to months. What explains this broad range? Modeling shows that if
a landscape of fitness potential is flat, evolution is slow; if it is funnel shaped, evolution can be
fast. The term selection strength in evolutionary biology corresponds to the slope. Other factors
affecting the speed are the rate of mutations and the effective population size (64, 65). To study the
principle of how evolution speed depends on landscape shape, Equation 12 is combined with the
simplest nonflat landscape, which has a slope that is linear in the number m of mutations; V(m) =
constant×m away from the optimal sequence (63). The dynamics of this model is readily solved
analytically in the limit of low mutation rate and large population size to give the adaptation time,
τA, for a protein to reach its optimum sequence:

τA 	
(
1 + ze−λV0

)L
ω0L

, 13.
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Figure 5

Evolution happens over a large dynamic range of timescales, modeled with the simplest (linear) fitness
potential (inset), V(m) = constant ×m (63).

where z is the number of possible mutations a residue in the protein can have relative to its starting
sequence (z = 19), L is the total number of residues in the protein, ω0 is the average fixation rate
for a single point mutation, and V0 is the slope of the fitness potential. What explains the large
dynamic range in evolutionary adaptation is that τA is an exponential of an exponential function
in Equation 13 (Figure 5). All of this refers to a constant environment providing a constant land-
scape; changing environments can renew the driving forces of evolution.

4. PROTEIN FOLDING AS AN ACTOR IN HOMEOSTASIS
AND EVOLUTION

4.1. Changing the Temperature Changes Proteome Folding Stabilities

How do cells adapt when put into an unfamiliar temperature? For simple cells, the fitness can
be taken to be the growth rate. And the growth rate dependence on temperature is often known.
Simple cells grow fastest at the temperature of their natural environment. Figure 6b shows the
thermal growth law of Escherichia coli: Its growth rate as a function of its growth temperature has
a peak. If a cold cell is heated up, it grows faster. This resembles simple Arrhenius-like chemical
kinetics.

But if a cell is heated further, its growth rate slows down sharply.Why? The proposition of the
thermal proteome unfolding model is that the plummeting growth rate, and death, when cells are
too hot results from the denaturation of the proteome. In this model, the fitness potential V(T ) as
a function of temperatureT is taken to be proportional to the number of proteins that are folded:

V(T ) = − A exp(−�G/RT )
1 + exp(−�G/RT )

, 14.

where A is the protein abundance and �G(T ,L) = �H (L) + �Cp(L)(T − Th ) − T�S(L) −
T�Cp(L) ln(T/Ts ) is the free energy of folding as a function of chain length L in terms of known
enthalpy �H , entropy �S, and heat capacity �Cp and measured temperature constants Ts and Th
of average proteins (66–68).

Cooled cells (Figure 6a) grow faster when heated. This increasing function can be fit by an
Arrhenius temperature law, indicating that growth rates of cooled cells may be governed by one or
more key biochemical processes. Warmed cells (Figure 6b) slow their growth dramatically upon
heating and die. For many free-growing organisms, the peak point—that is, the temperature of
fastest growth—happens to approximately equal the temperature of the cell’s natural environment.
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(a) Fitness-landscape pathways for how cells evolve under changing temperatures. Route ●1 –●2 shows a (mesophilic) cell evolving to
adapt to a warmer climate. Route ●3 –●4 shows a (thermophilic) cell evolving to adapt to a colder climate. The thickness of the black
arrows shows the adaptation speed computed from the thermal proteome unfolding model, which predicts that cells can adapt much
faster to warmer climates than to colder ones (63). (b) Bacterial growth rates versus temperature. Panel b adapted with permission from
Reference 68.

What do we learn from the thermal proteome unfolding model? First, it shows how a cell-
level phenotype, its heat stress behavior, can be computed from physical properties of the cell’s
biomolecules—namely, its proteome unfolding behavior. The thermal parameters of proteome
unfolding are known from in vitro experiments on different proteins (67). Second,while thismodel
describes the behavior of a given cell under varying temperatures, it also gives insights into how
cell populations evolve under pressures to survive at different temperatures. A cell population can
evolve to grow rapidly at an unfamiliar temperature via mutations that change the stability profile
of the proteome’s average protein (see Figure 6).

Interestingly, individual cells may respond differently to temperature changes (69). In a popu-
lation of heat-shocked yeast cells, a subpopulation was observed to become resistant and continue
growing (albeit slower), while another subpopulation stopped growing completely and degraded
its own proteins (70). Thus, different subpopulations of cells can respond quite differently to tem-
perature, and possibly to other stresses.

4.2. Cells Acclimate Faster to Hotter Than Colder Environments

This growth law (growth rate versus temperature) is modeled through protein folding stability.
Now, this same mechanism can predict how rates of protein evolution depend on temperature.
How fast can a bacterial protein evolve when transferred into an environment of different tem-
perature? The prediction below is that bacteria can adapt much faster to a warmer climate than
to a colder climate. In Figure 6a, the mesophile that lives at 40◦C is at a ridge peak of fitness
because freestanding cells grow the fastest at the temperature of their natural environment. Sup-
pose the mesophile is now upshifted to live at 70◦C. Path ●1 indicates that, before any mutations
have occurred, this upshift causes the mesophile to grow slower. Path ●2 indicates that, over time,
mutations occur (30 are shown in the figure) that cause the protein to become well adjusted to the
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Proteins that are most abundant in the cell are slower to evolve; that is, they have a lower rate of amino acid
substitutions. A cell’s fitness is more affected by mutating an abundant protein than by mutating a less
abundant protein. There is a larger fitness cost to the cell for misfolding and aggregation, so the number of
viable mutant sequences is smaller. The model predicts the roles of misfolding (red line) and of aggregation
(blue line) for this anticorrelation between the evolution rate (given by the percentage sequence difference
between orthologous proteins of related species) and abundance (measured by relative microRNA
concentration) (63).

warmer environment. Alternatively, a thermophile that is preadapted to 70◦C adapts to a colder
environment following paths ●3 and ●4 . Adaptation is much faster (up to 5,000-fold) along path ●2

than along path ●4 (63).
What is the mechanism? Folded proteins are destabilized by heating, but not by cooling. A cell

with sicker proteins adapts fast (path ●2 ) because it is climbing a steep slope on a fitness landscape.
In contrast, cooling does not destabilize folded proteins, so cells are slower to adapt to cooling
(path ●4 ). In summary, cells should adapt to warm climates faster than to colder ones (63). This
prediction has not been tested, as far as we know, but experiments show that a mesophile can
successfully adapt to a warmer environment (71).

4.3. Proteins That Are Least Abundant in a Cell Are Fastest to Evolve

Through a cell’s evolution, the expression level of a gene (and thus the abundance level of its
protein) can change (Figure 7). Proteins that are abundant tend to evolve slowly (63, 72–80).
This is called the expression level–substitution rate anticorrelation. It has a simple explanation. If
a mutation diminishes the fitness of a given type of protein, then the more abundant that protein
is, the more deleterious that mutation is overall to the cell. If that mutation causes misfolding or
reduces folding stability, the cell’s fitnessV is reduced by the protein’s abundance A (Equation 14).
Or, if that mutation causes protein aggregation (79), then the effect on cell fitness is proportional
to A2 (63). Such protein folding contributions to fitness and evolution rates successfully predict
the mutational fitness effects in viruses and simple cells (63, 81).

4.4. Proteostasis Is a Well-Oiled Protein Homeostasis Machine

Here we describe a model of proteostasis, the homeostatic maintenance within a cell of the
folded states of cell’s proteins (collectively, its proteome). Folded proteins are maintained by
flows from protein synthesis and degradation and by an adenosine triphosphate (ATP)-driven
cellular machinery of chaperones that tip the cell’s kinetics in favor of folded states. This balance
in E. coli bacteria has been expressed in the hospital model of proteostasis (HMOP) (82). This
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a cb

Figure 8

The hospital model of proteostasis in bacteria. (a) The gray lane represents the pathway of protein folding, misfolding, and aggregation
without chaperones. The other arrows show the proteostasis trafficking through different chaperones. (b) Hospital model predictions of
proteostasis flows for a class II protein (mildly misfolded) indicate that it traffics mainly through the DnaK system. Heavy arrows show
the main flux. (c) Hospital model predictions of proteostasis flows for a class III protein (strongly misfolded) indicate that it traffics
mainly through the GroEl system.

name signifies how folding sick proteins entails decision-making like that in hospitals that treat
sick patients: (a) identify which protein is sick (misfolded or aggregated), and how sick it is, and
(b) send it to the right doctor (i.e., the right chaperone system) to fix its folding/aggregation
problem.

HMOP is composed of (a) prior biophysical models of spontaneous conformational change
(folded, unfolded, misfolded, aggregated) of different classes of proteins and (b) coupled ordinary
differential equations describing the trafficking flow of different proteins through different chap-
erones (see Figure 8). Nodes represent the different states of protein conformation and/or the
binding of proteins to chaperones. Edges represent traffic flows. HMOP is a deterministic model,
not including fluctuations, that has been applied to steady state to compute the steady-state aver-
age concentrations of all the node species and the fluxes between them. This modeling describes
how stable proteostasis states are encoded within this particular physicochemical network. And it
allows for studies of perturbations of these average states, either those that are imposed on a sin-
gle cell with given rate coefficients or those that are imposed on cell populations that can evolve
different values of rate coefficients.

Figure 8c shows one model prediction: Very sick proteins (stuck in deep misfolded kinetic
traps) trafficmostly through theGroEl chaperone system.Several matters of principle are resolved
by the model that had not been obtainable from experiments alone: (a) It shows how complex de-
cisions are encoded in this cell-wide asynchronous physicochemical network to find, identify, sort,
and fix sick proteins. (b) It shows that the central physical property of a client protein that defines
its trafficking is its dwell time in misfolded states. (c) It shows that this process is energy efficient,
as the sickest proteins use the most energy-expensive chaperones. (d) It shows that chaperone lev-
els are adaptive, increasing at very fast growth rates to prevent rapidly produced proteins from
aggregating and increasing at very slow growth rates to prevent protein degradation from costing
the cell energy when it is not growing.

5. SOME ADAPTATIONS ARE IN PROTEIN PHYSICAL PROPERTIES

5.1. Salt Growth Laws Depend on Protein Diffusion Rates

Cells grow slowly when put into media with high salt concentrations.This has been modeled as an
evolutionary adaptation of the protein density in the cell. Bacterial cells are densely packed with
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Adding external salt shrivels a cell osmotically, which increases internal protein crowding and slows protein
diffusion, thus slowing cell growth. In the protein transport rate model, added salt in the surroundings ( fp;
horizontal axis) reduces the cell growth rate (vertical axis) by densifying the proteins inside and slowing their
diffusional transport (68).

proteins, to a density of about 20% (68). In the protein transport rate model, adding external salt
increases the osmotic pressure and draws water out of the cell, densifying the cell’s contents and
squeezing together the proteins, which causes the proteins to diffuse more slowly due to crowding
(68). The evolutionary DOF is taken to be c, the crowding (i.e., the protein density in the cell).
The fitness proposition is that evolutionary changes can alter c and do so in a way that maximizes
the rates of transport of proteins within the cell. If a type of protein is too crowded, it diffuses
in the cell slowly; if a type of protein is too dilute, its net flux is small. This is described by the
diffusion expression

rate = cD(c) = kT
6πηa

[
c
(
1 − c

cxtal

)2
]
, 15.

where D is the diffusion constant of a protein (assumed to be spherical) in the cell, kT is Boltz-
mann’s constant times temperature, η is the solvent viscosity, a is the protein’s radius, and cxtal is the
maximum concentration achievable by sphere packing of the proteins.To predict themaximumfit-
ness, we take the derivative d(rate)/dc and set it equal to zero. This gives the value c = cxtal = 0.20,
which is consistent with the observed protein density insideE. coli. And Equation 15 gives the func-
tional form of the salt growth law shown in Figure 9. Figure 9 shows additional confirmation of
the protein transport rate model, namely, that added salt slows the diffusion of green fluorescent
proteins in single-cell experiments (68) by two orders of magnitude.

5.2. Energy Efficiency Is a Fitness Function for Protein Production
in Fast-Growing Cells

Simple cells grow and duplicate faster in media with more food. Added sugar leads to an upshifted
concentration, R, of ribosomes relative to the concentration, P, of nonribosomal proteins. Many
cell processes are involved in this global readjustment with growth rate.What cell fitness property
is being optimized in the evolution of the many microscopic parameters involved? One hypothesis
is that the cell simply aims at maximizing its duplication speed. But if so, cells ought to approach
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Figure 10

Bacteria trade off producing ribosomes versus nonribosomal proteins. This trade-off maximizes energy efficiency. (a) In the ribosomal
upswitch model, JATP is the rate of converting glucose to the nucleoside triphosphates, Jribo is the production rate of ribosomal
proteins, and Jprot is the production rate of nonribosomal proteins. These relative flows are determined by the abundance of glucose.
(b) In the predicted fitness landscape, the fast-growth energy efficiency is maximized when the fraction of nonribosomal proteins is
about 75% (83).

the ratio α = P/R → 0 in the limit of plenty of food. Instead, it is observed that P/R → 0.6 − 0.8
(Figure 10). The propositions of the ribosomal upswitch model (83, 84) are that the cell’s ratio
of P to R is determined by its concentration of ATP (A) and that the fitness function for well-fed
cells is energy efficiency ε, that is, doubling rate per ATP molecule. The steady-state limit of this
nonlinear model can be solved as a third-order polynomial for the fitness ε(α) as a function of
the evolutionary DOF α, as shown in Figure 10. The maximum fitness is computed by setting
dε/dα = 0 and gives a value of 0.72, which is consistent with the data.

5.3. Protein Motors and Pumps Can Trade Off Speed Versus Efficiency

Much of a cell’s energy is used by its motors, such as F0F1 ATPase (see Figure 11), and pumps. It
may have been evolutionarily advantageous to optimize speed, efficiency, or some other property.A
two-state kinetic model has been developed that describes a broad range of such motors by allow-
ing for evolutionary DOFs, such as where the kinetic barrier steps happen in the motor cycle (85).
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Figure 11

Fitness landscapes for (a) molecular motors and (b) ion pumps. A simple model asserts a fitness function for
biomolecular machines of power output per unit energy input. Panel a shows that five different motors (red
circles) appear to optimize their output work (for a given input chemical potential from ATP degradation) by
how the rate barriers are distributed through the kinetic cycle. Panel b shows the same for six different ion
pumps (red circles). The inset shows a diagram of the F0F1 ATPase motor. Figure adapted with permission
from Reference 86.
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By fitting these few parameters in simple models to nearly a dozen different biomolecular motors
and pumps, we can learn what, if anything, is optimized and might serve as a fitness quantity.

Figure 11 shows that there are indeed properties that appear to be optimized for molecular
motors and pumps. In these calculations, it is supposed that biomachines evolve only within a
restricted range of operating specifications: (a) Their input is restricted to a small range of chem-
ical free energies since their power is supplied by ATP. (b) Therefore, their output work per cycle
cannot exceed this amount either. This model creates the freedom to look at different possible
fitness functions and ask which such fitness function—if any—is maximized by the properties of
known motors and pumps. Figure 11 shows that the fitness function satisfying this condition is
the output power per unit input energy, where power is the work performed per unit time.

As a different mechanical adaptation, Schuech et al. (87) have shown that the shapes of
bacteria—from straight to curved rods—can be understood as evolutionary Pareto optima of three
properties: shapes that favor good swimming speeds, shapes (more rodlike) that give a better
signal-to-noise ratio in detecting chemical gradients (fundamental for chemotaxis), and shapes
that reduce the cost of cell construction.

6. PROTEIN ABUNDANCES ARE RESPONSIVE
TO THE ENVIRONMENT

6.1. Protein Concentrations Result from a Balance of Factors

The vignettes above focus on physical properties of proteins—stability, aggregation, diffusion, and
motor behaviors. Also important are protein abundances (concentrations) in the cell. Changing
a cell’s environment can lead to changing concentrations of the proteins inside it. Fitness appears
to be a Goldilocks balance. If a protein is too dilute, its effect on cell health is too feeble. If a
protein is too abundant, the cell has wasted energy by overproducing it and is evolutionarily
uncompetitive (88). Figure 12a shows experimental evidence for this latter contributor to fitness.
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Figure 12

Experimental cell fitness landscapes in systematically controlled environments. (a) Producing excess protein (LacZ) reduces cellular
fitness. The blue dots and line represent the fitness in the absence of the inducer isopropyl β-d-1-thiogalactopyranoside (IPTG), and
the purple dots and line correspond to the environment with 1 mM IPTG. The red dot is a control strain with a deleted lacY gene in
the presence of IPTG (89). (b) Increasing the concentration of an antibiotic drug in the medium diminishes bacterial fitness nonlinearly.
Drug-resistant cells are more tolerant, but they are also more sharply inhibited at high drug concentrations. Drug resistance is
measured by the activity of the the chloramphenicol-resistance enzyme chloramphenicol acetyltransferase. Lines of different colors
represent the shape of the fitness landscape at fixed values of drug resistance. Panel b adapted with permission from Reference 94. (c) In
fluctuating environments, cells evolve across a fitness moat to reach higher fitness in those complex environments. The variable E0 is the
expression level of an operon affecting the growth rate in the absence of IPTG; the colored dots represent different stages of adaptation
to reach the optimal fitness, progressing from green, to blue, to gray, to red. Panel c adapted with permission from Reference 4.
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Perfeito et al. (89) inserted the gene coding for the LacZ protein as an unnecessary gene in
E. coli. The figure shows that increasing its concentration reduces the cell’s fitness. Interestingly,
at sufficiently high protein concentrations, there is a sharp drop in fitness. This nonlinearity of
fitness is the consequence of a feedback loop: The production and the activity of Lac proteins
affect the growth rate, which, in turn, modulates the density of these molecules.

The costs of excess protein levels can arise not only from protein synthesis but also indirectly
through protein function (90, 91). In eukaryotes, the function of transcriptional activator proteins
is often costly (92) because they recruit general transcription factors that are needed cell-wide. If
such an activator protein is in excess, it will tie down the general transcription factors at particular
genes, depleting their presence elsewhere and indirectly lowering the expression of other impor-
tant genes. This is generally true for cellular resources such as ribosomes, polymerases, and global
regulators: If they are tied down somewhere, the cell will suffer due to their depletion (93).

6.2. Drugs Can Diminish the Fitness of a Cell, Sometimes Sharply

Bacterial growth slows down when antibiotic drugs are added to the media. Bacterial growth rates
reflect the fitness of bacteria for their environment, and bacteria are less fit for environments that
contain drugs. Growth speeds diminish in a sigmoidal way as drug concentrations increase (see
Figure 12b). Now, consider a multidimensional fitness landscape. What happens when we breed
drug-resistant cells? Figure 12b shows two consequences. First, by definition, we need higher
drug concentrations to slow the growth of drug-resistant cells than we need for wild-type cells.
Second, in highly resistant cells, the transition to zero growth rate is very sharp, showing a bista-
bility. The basis for this nonlinearity and bistability appears to be a positive feedback mechanism
generated by an innate global effect of drug-inhibited growth on gene expression: Translation-
inhibiting antibiotics reduce growth and thereby reduce gene expression, including expression of
genes conferring drug resistance, increasing the effect of the drug in a positive feedback loop (91,
94). The positive loop is responsible for bistability (49, 95).

6.3. Changing Environments Can Be Confusing; Cells Can Still Find
the Optimal States

Consider a cell that lives in an environment E1. Suppose a gene G1 encodes a protein P1 that
confers a benefit to the cell in E1. Then the cell will evolve its regulatory network to express
the optimal level of P1. Now, we see if we can confuse the cell. The cell cosynthesizes with P1
another protein P2 that confers a cost when the cell is in a different environment E2. Now, we
cause confusion by driving the environment to fluctuate between E1 and E2. Or we have both
genes turn on in E2 and turn off in E1, maximizing the cost of P2 and minimizing the benefit of P1.
Can the cell evolve a regulatory network that optimizes the levels of both P1 and P2 to handle this
fluctuating environment?Figure 12c shows that, indeed, the population adapts toward the optimal
solution in a genetic module subject to the lac repressor in E. coli (3, 4). Evolution of the regulatory
net proceeds during three cycles of mutation and selection. Evolution is delayed in crossing a
fitness moat of confusion, requiring a few rare mutations to reach the high-fitness state of the cell,
embodied by a new protein that responds inversely to the external inducer concentration.

6.4. Cell Enzymes Should Be Neither Too Dilute nor Too Concentrated

A cell’s fitness depends on its enzyme concentrations. Too little enzyme means too little metabolic
flux of a particular pathway to serve the needs of the cell. Too much enzyme means the cell
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overinvests in producing it, and the cell cannot compete with other cells that are more frugal. Each
enzyme should achieve a balance: neither too little nor too much to contribute to a biochemical
pathway that is properly balanced with other pathways. What determines how much enzyme is
too much? The enzyme concentration should be below the Km (Michaelis–Menten binding con-
stant) for the substrate, or else enzyme is wasted (96). In addition, the enzymes’ actions, and not
just their expression levels, should be under evolutionary pressure. The enzymes of an optimal cell
should have high catalytic efficiencies (97).

The levels of enzymes in a pathway depend on the efficiency of subsequent enzymes. This is
important to avoid the accumulation of toxic intermediate metabolites that can occur if an en-
zyme’s flux exceeds what the next enzyme can process. For example, excess lactose flux imported
into the E. coli cell can be toxic (98). To avoid this, cells regulate enzyme levels according to the
fluxes through metabolic pathways.

In Sections 6.5 and 6.6, we describe studies in which gene expression levels are controlled
through the insertion of synthetic gene circuits. Synthetic gene circuits can have adjustable ex-
pression levels and an expression-dependent fitness peak. That means that their protein levels can
be controlled to be more or less nonoptimal, adjusting how far a cell population is from the fitness
peak. Evolving such cells in the lab reveals whether they move toward the fitness peak in slow
steps or in jumps, as well as the mutations that mediate these fitness improvements (30).

6.5. Drug-Resistant Cells Can Survive Harsh-Drug Environments

Multidimensional drug fitness landscapes have been explored by using synthetic gene circuits. In-
creasing the concentration of an antibiotic drug (here, Zeocin) makes the environment harsher for
a bacterial cell. At the same time, a small inserted gene circuit (of two genes) can be used to vary
the cell’s drug resistance. The level of resistance can be controlled by adding an inducer (here,
anhydrotetracycline) in the medium (50). Figure 13 shows the observed fitness landscape that
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Figure 13

Population fitness landscape as a function of environmental factors. Each point on this landscape is the expo-
nential growth rate of a yeast cell population for a given (antibiotic drug, drug resistance) combination. Exper-
imentally measured values are indicated as colored dots. Abbreviations: atc, anhydrotetracycline; zeo, Zeocin.
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results from systematically controlling these two variables. It shows that harsher environments
cause cells to grow slower. It also shows that turning up the drug resistance to a certain point in
the cells increases the growth rate of the cell population in harsh environments.However, drug re-
sistance is costly: Turning it on alone, by adding inducer without antibiotic, slows the cell division
rate. This causes the growth rate to slow down even in antibiotic if drug resistance is turned up
too high, exceeding a certain Goldilocks point beyond which it becomes too costly. This creates
a crest in the landscape, given by the line connecting fitness peaks at each drug concentration.
In the section below, we describe additional important—but subtle—insights that come from this
experiment.

6.6. Protein Abundances Are Distributions, Not Single Numbers;
Some Are Bimodal

A population is the collection of its cells. Take a property such as protein abundance. In some
cases, the population property will have a unimodal single-peaked distribution, with a mean value
that reflects that of a typical cell. In other cases, the distribution will be multimodal, with multiple
peaks. In that case, the population average does not well reflect a typical cell. For a distribution
of greenish beads and reddish beads in a barrel, the average is not a yellow bead. It has recently
become possible to study subpopulations of cells systematically by using synthetic gene circuits. In
the following example, one variable is the environmental harshness, which, as above, is controlled
by the drug Zeocin. A second variable is the drug resistance of the cell, which is controlled by
the inducer concentration. Now, beyond the experiment described above, which measured the
whole-population response, we also examine the distribution of drug-resistance gene expression
over individual cells (50, 99). Figure 14 shows that single cells can have bimodal distributions,
with peaks labeled ON or OFF. Distinct protein levels in these bimodal distributions correspond
to distinct division rates of single cells, λc(xON) and λc(xOFF), according to their locations xON and

0.0
0

1

2
0

1

2

0.1

0.2

Antibiotic drug

(m
illigram

s zeo

per m
illiliter)

Drug resistance

(micrograms dox per millilit
er)

Population

fitness (h
–1)

Gene expression level Gene expression level

Ancestor

Mutant

22

er)

00

5050

100100

00

5050

100100

00

5050

100100

Po
pu

la
ti

on
Po

pu
la

ti
on

Ce
llu

la
r fi

tn
es

s 
(%

)
Ce

llu
la

r fi
tn

es
s 

(%
)

Figure 14

The Goldilocks balance that leads to a just-right level of protein: not too much and not too little. Population fitness is the result of
some microscopic factors: cellular fitness and gene expression. For a given cellular fitness landscape (colored shading), cellular gene
expression (black histograms) can be either unimodal (overlaid with the green fitness landscape) or bimodal (overlaid with the blue and
orange fitness landscapes). Each point on the macroscopic population fitness landscape (colored dots) results from weighted averaging of
cellular fitness values over the corresponding gene expression distribution. Cellular fitness landscapes predict the evolution of gene
expression changes: In constant environments, cells evolve toward unimodal gene expression located at the peak of each cellular fitness
landscape. Abbreviations: dox, doxycycline; zeo, Zeocin.
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xOFF on microscopic cellular fitness landscapes λc(x). The macroscopic cell population growth
rate 
 is then the weighted average of single-cell division rates λc(x), with weights taken from the
protein-level distribution p(x):


 =
∫ ∞

0
p(x)λc(x)dx ≈ λc(xON)pON + λc(xOFF)pOFF. 16.

This is how we obtain the macroscopic growth rate from microscopic single-cell division rates.
In multimodal distributions, it is not just the relative populations that matter. When gene ex-

pression is bimodal, individual cells can switch from one subpopulation to the other with rates
of transition rON→OFF and rOFF→ON. These switching rates can affect the properties of the whole
population. A simple model for the switching dynamics is

dNON

dt
=

[
λc(xON) − rON→OFF

]
NON + rOFF→ONNOFF,

dNOFF

dt
=

[
λc(xOFF) − rOFF→ON

]
NOFF + rON→OFFNON, 17.

where the Ns are the populations of the two states. The growth rate of the cell population is
computed from the largest eigenvalue of this set of equations, and the ON and OFF population
counts are computed from the corresponding eigenvector. The dwell time of a system in one
state or the other is called the memory; for example, τON = ln(2)/rON→OFF. This dwell time is
important because it affects the protein-level distribution, which affects the fitness in constant or
fluctuating environments (5, 51). The timescale of such cellular memory in a population can be
comparable to, or even longer than, the timescales of evolutionary events such as the fixation of
new genotypes.

A useful insight derives fromwhether the cells populate a unimodal or multimodal distribution.
If cells live in a constant environment, and if they have an initial bimodal distribution, they will
evolve toward a unimodal distribution because that maximizes the fitness over the whole popula-
tion. Mutant cells obeying this principle have indeed been observed experimentally (Figure 14)
in multiple environments, indicating the generality of this principle (99).

7. BIG ADAPTATIONS: DYNAMICS AND MULTISTABILITY

7.1. When Are Static Landscapes Not Enough? The Red Queen Effect

As noted above, the general dynamics of adaptation can be expressed as two types of forces (37):
potential-like forces, which are seen in systems that relax to equilibrium and are computed as
downhill slopes on a potential surface, and curl-flux forces, which apply to multidimensional sys-
tems that are out of equilibrium.Wright’s adaptive fitness landscapes did not account for the latter,
the dynamical forces. Below are examples of where curl-flux components matter.

The Red Queen effect (100) can be viewed as a consequence of the curl flux. The term Red
Queen comes from the Alice in Wonderland story. To paraphrase, sometimes you have to run
just to stay in place. It describes predator-prey effects, or coevolution: Predator chases prey, prey
evolves to escape the predator, and predator then evolves to better capture the prey, in a vicious
cycle. In this process, neither species is necessarily changing its own individual fitness for its en-
vironment. Rather, both species can now be linked in a two-body cycle (100, 101). Figure 15
illustrates the curl flux on a landscape that has the shape of a Mexican hat. The predator-prey pair
is attracted to the cycle valley, where the curl flux describes the chase around the ring (16, 22, 37).
Red Queen dynamics is a multiagent multidimensional property.
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a b

Figure 15

(a) Illustrating the Red Queen idea. Predator chases prey, and neither increases its own individual fitness in
the evolutionary chase. (b) Illustrating the curl-flux principle. The population flow on a landscape is not
directly down the gradient of a potential function; it also swirls if the system has an out-of-equilibrium
driving force.

The curl-flux component has profound implications for adaptation dynamics. It means that
the shape alone of an adaptive landscape is not always the whole story. This indicates that evolu-
tion does not always climb straight up fitness hills or act like balls rolling downhill into valleys of
fitness potential. In the conventional Wright–Fisher adaptive landscape theory, the mean fitness
(averaged over all the individuals in the population) is directly related to the equilibrium popula-
tion. In the old Wright–Fisher view, the largest population is of cells that have the highest mean
fitness, and the selection pressure is the slope of the landscape. In contrast, this new curl-flux per-
spective shows that evolutionary pressure is not equal to the gradient of the landscape. The state
of highest fitness is not necessarily that of the most fit predator or prey alone. Likewise, fitness
bottlenecks are not those of predator or prey alone either.Curl-flux effects arise not only in single-
locus and coevolving systems but also in multilocus, multiallele evolution. An example is epistasis,
where one gene affects another one. Protein 1 may affect cell fitness in a particular way, and then
protein 2 may compensate, leading to yet another change in protein 1. These are situations where
the simpler conventional adaptive landscapes of Wright and Fisher break down (37).

Curl fluxes apply when multiple actors are coevolving. However, there are many independent-
actor situations, as described throughout this review, where curl-flux dynamics is not needed.
Another example where curl-flux forces are important is in the cell cycle and differentiation, as
described in Sections 7.2–7.4.

7.2. Stem Cell Differentiation: A Bifurcating Homeostasis Landscape

During the early-stage development of an organism, a primary stem cell turns into a differenti-
ated cell. In the 1940s,Waddington described differentiation and development through his iconic
epigenetic landscape, shown in Figure 16 (19, 22, 102). Metaphorically, a ball rolls down a single
valley (the stem cell state), which bifurcates into two valleys (the differentiated state). This de-
scription is rather qualitative. Figure 16 shows the simplest quantitative realization, a two-gene
circuit for differentiation. The values x1 and x2 are the concentrations of the two proteins that
both self-activate and mutually repress each other’s gene expression. The dynamics is given by

dx1
dt

= axn1
Sn + xn1

+ bSn

Sn + xn2
− kx1 = F1,

dx2
dt

= axn2
Sn + xn2

+ bSn

Sn + xn1
− kx2 = F2, 18.

where S represents the threshold and n represents the cooperativity on the gene regulation.
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Figure 16

The Waddington landscape and the new curl-flux-based understanding of it. The stem cell state is
represented by the valley at the top of the landscape. The differentiated state is represented by the two
valleys at the bottom. Metaphorically, Waddington differentiation is like a ball rolling from the top valley to
the bottom ones. Two transcription factors can self-activate, other-repress, or degrade. The stem state is
strong for self-activation (top right); the differentiated state is strong for repression (bottom right). What is
new is our recent understanding of the curl-flux dynamics, showing how the stem cell state is also stable, why
reprogramming is difficult, and how differentiation requires induction and is not just caused by spontaneous
fluctuation (19). The full dynamical model shows that the stem cell state is stable, not unstable as in
Waddington’s static landscape. It shows that the reprogramming path is uphill. The dynamics model shows
that the reprogramming path is not identical to the differentiation path. In the static model, the stem cell
state (the hill) is not stable, so a small perturbation would allow spontaneous differentiation.

Each transcription factor has three actions: It can self-activate (at rate a), it can repress the
other (at rate b), and it can degrade (at rate k). In this model, the transition from a primary stem
cell to its differentiated state is a change from dominance of self-activation of the transcription
factor to dominance of other-repression.

Here is the updated perspective on Waddington’s static differentiation model, now account-
ing for the curl-flux dynamics, correcting some earlier inconsistencies (19, 20, 49, 103–109). The
process of human embryonic stem cell differentiation and reprogramming has been modeled
in terms of 50 key biomolecules (106; see also 17, 19, 20, 22, 108). The key genes and regu-
latory steps for differentiation/reprogramming have been identified by global sensitivity anal-
ysis based on the landscape topography—the barriers between basins of attractions of the cell
states.

Figure 16 shows two pairs of pathways: one for differentiation and the other for reprogram-
ming (reverse differentiation). There are important differences between the quantifiedWadding-
ton landscape with the dynamics-corrected model and the original picture. First, Waddington’s
stem cell should have been in a metastable state rather than an unstable state; its fitness potential
needed to be higher than for the bifurcated states. Second, the dynamics-corrected model shows
that differentiation processes are determined both by the induction driven by the programmed
regulation changes along development and by the fluctuations. Differentiation is not purely spon-
taneous, as implied by the Waddington picture. Third, the dynamics-corrected model shows that
the pathway from the multipotent to the differentiated state is different from the route of re-
programming from the differentiated state back to the stem state, in contrast to Waddington’s
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reversible paths. This is a signature of nonequilibrium and broken-detailed-balance contributions
to adaptation.

7.3. Understanding the Direction of Time’s Arrow in Adaptive Processes
Requires Accounting for Curl Fluxes

Fourth, differentiation is irreversible. The origin of the direction of time has been a puzzle in dif-
ferentiation/development. This is because common descriptions of differentiation/development
show no apparent signature of such direction (22, 110). Accounting for the curl flux resolves this
puzzle, because it shows how detailed balance, and hence time reversibility, is broken in these
nonequilibrium states. Time’s arrow points in the direction of a particular sequence of events on
the curl-flux-dynamics-corrected landscape, whereas there is no direction on detailed-balanced
landscapes (19, 108, 110). This dynamics-corrected picture is consistent with data from RNA se-
quencing experiments (111–115). In short, this modeling shows where static landscapes, and where
the balls-rolling-downhill picture, are too simple to capture key dynamical aspects of the biology
of differentiation and development (19).

7.4. Cell Cycles and Regulation Are Also Subject to Curl Fluxes

Curl-flux dynamics is also needed to account for cell cycle dynamics and cell regulation (16,
116). The cell cycle has states G1, S, G2, and M, which are landscape basins on the cycle
pathway. Cycle checkpoints are the transition states (locations of the barriers) between these
local basins that affect go/no go decisions (16, 116). The cell cycle pathway combines (a) a
Mexican hat landscape, where the system is stable anywhere along the hat brim, with (b) the
curl-flux dynamics of cell cycle oscillations (running around the brim). This has also been
described in the context of evolution with the group-help model (37). As a matter of principle
in evolution, the adaptation rate—when curl-flux dynamics is taken into account—is found to
be dependent not purely on the genetic variance but also on interactions between evolving
agents. This point is a generalization of Fisher’s fundamental theorem of natural selection
(37), which states that the rate of mean fitness increase of an organism at a specific time is
proportional to its genetic variance at that time (117). In short, even when evolution reaches
fitness maxima, where the fitness cannot increase more, evolution can still continue: Agents can
evolve further since the genetic variance is still driven by an intrinsic flux such as coevolution of
predator and prey (37), in contrast with the traditional view that only fitness differences can drive
evolution.

8. SUMMARY

Cells experience adaptive forces. Cells undergo homeostasis. Populations undergo evolution.
These adaptive actions can be expressed in terms of driving forces and landscapes. Here, we re-
view modeling that is quantitative, that is tested or testable, and that addresses more physical and
combinatoric properties of the genotype-to-phenotype mapping problem than sequence compar-
isons alone are likely to reveal. For example, adaptation depends on protein expression levels, on
folding and aggregation, and on physical transport and mechanical properties. Such properties are
often not explainable from pinpoints in the genome; they are delocalized and combinatoric. We
review how these forces contribute to cellular growth laws. Such models provide a way of know-
ing that is based on hypothesizing DOFs and fitness functions, making predictions, and testing
experimentally.
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SUMMARY POINTS

1. New models are emerging for cell adaptation—homeostasis and evolution.

2. Insights come from postulating how fitness depends on degrees of freedom, visualizing
them on landscapes, and testing them in experiments.

3. Adaptation has two kinds of forces: slopes of a potential function and curl fluxes. Curl
fluxes explain important dynamical multibody effects, such as predator-prey relations.

4. Learning the cell adaptation code requires knowing mechanisms, not just comparing
sequences, because fitness depends on high-order combinatorics, for example, in the
folding stabilities, aggregation, abundance levels, or diffusional transport of proteins in
the cell.
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