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Abstract
We give an overview of some recent interactions between the geometry of K3 surfaces and
their Ricci-flat Kähler metrics and the dynamical study of K3 automorphisms with positive
entropy.

1 Introduction

K3 surfaces form a distinguished class of compact complex surfaces which has received
a tremendous amount of attention in several branches of mathematics. Our interest in K3
surfaces stems from the fact that they are 2-dimensionalCalabi–Yaumanifold andhence admit
Ricci-flat (but not flat)Kählermetrics, aswewill explain below.Thegeometry of thesemetrics
is still not completely understood, especially when families of such metrics degenerate. In a
seemingly unrelated direction, K3 surfaces have also been studied in holomorphic dynamics.
The theory of holomorphic dynamics in 1 complex variable (on the Riemann sphere) is of
course an enormous research area, and when one passes to 2 complex variables, it turns
out that the only dynamically interesting automorphisms exist on K3 and rational surfaces
(see [10] for the precise statement), and interesting K3 automorphism are relatively easy to
construct. The dynamical study of such automorphisms was initiated by Cantat [11], and we
refer the reader to the survey articles [12–14] and lecture notes [21] for a broader overview.

The goal of this article will be to give an introduction to both of these aspects related to
K3 surfaces and to explain some recent work by Filip and the author [22,23] that exploits
Ricci-flat metrics to prove results in dynamics and vice versa.

In Sect. 2wegive an introduction to K3 surfaces, including basic examples, the conjectures
of Andreotti and Weil and their solutions. In Sect. 3 we discuss Yau’s Theorem [54] on the
existence of Ricci-flat Kähler metrics on K3 surfaces. Section 4 gives an overview of the
dynamical study of automorphisms of K3 surfaces, including basic properties and examples.
Section 5 discusses the recent Kummer rigidity theorem of Cantat–Dupont [15] and Filip and
the author [23], with an emphasis on the application of Ricci-flat metrics to this result that
was found in [23]. In Sect. 6 we discuss applications of dynamics (in particular of Kummer
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192 V. Tosatti

rigidity) to the problem of understanding the behavior of Ricci-flat Kähler metrics on K3
surfaces when the Kähler class degenerates, following our work in [22]. Lastly, in Sect. 7 we
discuss a few related open problems.

2 K3 surfaces

2.1 Complexmanifolds

The main object of study in this article are K3 surfaces (over the complex numbers). Before
we get to the definition, let us briefly recall the basic definition of complex manifold. A
complex n-dimensional manifold is a real manifold X (of real dimension 2n) which admits
an atlas with charts with values in C

n ∼= R
2n whose transition maps are holomorphic (i.e.

complex analytic). We will implicitly assume that all our manifolds are Hausdorff, second-
countable and connected.

The first examples of complex manifolds are Riemann surfaces, which are 1-dimensional
complex manifolds. Some basic examples of compact complex manifolds include complex
tori X = C

n/�, where � ∼= Z
2n is a lattice in C

n , complex projective space CP
n =

(Cn+1\{0})/C∗ (acting diagonally), and smooth projective varieties X = {P1 = · · · =
Pm = 0} ⊂ CP

N , where the Pj ’s are homogeneous polynomials (and we assume of course
that X is a manifold). On the other hand, a compact complex manifold is called projective if
it admits a holomorphic embedding into CPN for some N , and thanks to a classical theorem
of Chow its image is cut out by finitely many polynomial equations, thus giving us a smooth
projective variety.

2.2 K3 surfaces

Complex tori X = C
n/� have a special property: they admit a never-vanishing holomorphic

n-form �, which is induced by dz1 ∧ · · · ∧ dzn on C
n (which is obviously translation-

invariant). It is a classical result in the theory of Riemann surfaces that when n = 1 the
property of admitting a never-vanishing holomorphic 1-form characterizes 1-dimensional
tori (elliptic curves) among compact Riemann surfaces. However, this is not true anymore
for compact complex manifolds of dimension n ≥ 2, and indeed our main object of study is
the following:

Definition 2.1 Acompact complexmanifold X of complex dimension 2 is called a K3 surface
if X is simply connected and it admits a never-vanishing holomorphic 2-form �.

The first examples of K3 surfaces were studied in the 19th century by Kummer, Cayler,
Schur and others, and later by the Italian school of algebraic geometry, in particular by
Enriques and Severi. After work of Andreotti and Atiyah in the early 1950s, these surfaces
were given their name by Weil [53], who in a grant report laid out four basic conjectures
about K3 surfaces, that were also independently formulated by Andreotti, and that shaped
the research in the field for the coming decades.

Before we get to that, let us give some basic examples of K3 surfaces. The reader is
refereed to the classic textbooks [1,24] and the more recent [30,32] for details.
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Ricci-flat metrics and dynamics on K3 surfaces 193

2.3 Examples

Example 2.2 (Quartic surfaces) Every smooth hypersurface X = {P = 0} ⊂ CP
3 with

deg P = 4 is a K3 surface. Perhaps the simplest quartic surface is the Fermat quartic given
by

z40 + z41 + z42 + z43 = 0.

Example 2.3 (Complete intersections in products of projective spaces) More generally, we
can consider smooth complete intersections in a product of k projective spaces,

X = {P1 = · · · = Pm = 0} ⊂ CP
n1 × · · · × CP

nk ,

where each Pj is amultihomogeneous polynomial (i.e. homogeneous separately in the homo-

geneous coordinates of each of the CPn p factors) of multidegree deg Pj = (d( j)
1 , . . . , d( j)

k )

so that we have
∑k

p=1 n p = m + 2 (hence X is complex 2-dimensional) and

m∑

j=1

d( j)
p = n p + 1,

for all 1 ≤ p ≤ k.
Some explicit examples are:

• The complete intersection of a quadric and a cubic in CP
4 (k = 1, m = 2, d(1)

1 =
2, d(2)

1 = 3)

• The complete intersection of three quadrics inCP5 (k = 1, m = 3, d(1)
1 = d(2)

1 = d(3)
1 =

2)
• Smooth hypersurfaces inCP2 ×CP

1 of multidegree (3, 2) (k = 2, n1 = 2, n2 = 1, m =
1, d(1)

1 = 3, d(1)
2 = 2)

• Smooth hypersurfaces in CP1 ×CP
1 ×CP

1 of multidegree (2, 2, 2) (k = 3, n1 = n2 =
n3 = 1, m = 1, d(1)

1 = d(1)
2 = d(1)

3 = 2)
• Complete intersections of two hypersurfaces of bidegrees (1, 1) and (2, 2) respectively

in CP
2 × CP

2 (k = 2, n1 = n2 = 2, m = 2, d(1)
1 = d(1)

2 = 1, d(2)
1 = d(2)

2 = 2).

Example 2.4 (Kummer surfaces) Here we start with a 2-torus T = C
2/� and consider the

involution ι of T which is induced by ι(z1, z2) = (−z1,−z2). The involution has 16 fixed
points, which become 16 singularities of the quotient Y = T /ι. These singularities are
rational double points (orbifold points with orbifold group Z/2Z) which can be resolved by
a simple blowup, to obtain π : X → Y where X is a smooth compact complex surface. It
is not hard to verify (see e.g. [1,24,30,32]) that X is K3, the Kummer surface associated to
T . The preimage under π of the 16 singular points of Y are 16 rational curves in X with
self-intersection −2.

2.4 The conjectures of Andreotti andWeil

As mentioned above, in the 1950s the study of K3 surfaces shifted its focus from specific
examples to a general theory. The following 4 basic conjectures were made independently
by Andreotti and Weil [53]:
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194 V. Tosatti

(I) All K3 surfaces form one connected (complex-analytic) family. In particular they are all
diffeomorphic the same smooth 4-manifold. This conjecture was proved by Kodaira [31]
in 1964.
It is interesting to remark that the family of projective K3 surfaces is 19-dimensional
(this is the same dimension as the space of smooth quartics in CP

3) while the family of
all K3 surfaces is 20-dimensional, so in a sense most K3 surfaces are not projective.
For every K3 surface X , the cohomology H2(X ,Z) equipped with the intersection form
is isomorphic to a fixed lattice�, which is the unique even unimodular lattice of signature
(3, 19). A marking on X is then a choice of isomorphism of lattices ι : � → H2(X ,Z).
Now on X the never-vanishing holomorphic 2-form � is unique up to scaling, and it
satisfies � ∧ � = 0 while � ∧ � is a smooth positive volume form on X , so that∫

X � ∧ � > 0. Thus, if we denote also by ι : � ⊗ C → H2(X ,C) the induced
isomorphism, then ι−1([�]) gives a well-defined point P(X , ι) in the period domain

D = {c ∈ P(� ⊗ C) | c · c = 0, c · c > 0}.
ThemapP that associates to a marked K3 surface (X , ι) its period pointP(X , ι) is called
the period map. The second conjecture is then:

(II) (Torelli Theorem) If two marked K3 surfaces (X , ι), (X ′, ι′) determine the same period
pointP(X , ι) = P(X ′, ι′), then X and X ′ are biholomorphic. This conjecture was proved
by Pjateckiĭ-Šapiro-Šafarevič [43] in 1971 for projective K3 surfaces and by Burns-
Rapoport [7] in 1975 in general.

To state the next conjecture, we need another basic definition. A Hermitian metric g
on a complex manifold Xn is a smoothly-varying family of Hermitian inner products
on the holomorphic tangent spaces T 1,0

x X , which in local holomorphic coordinates is
thus given by an n × n positive definite Hermitian matrix (g jk(x))n

j,k=1 which varies
smoothly in x . Every complex manifold admits Hermitian metrics, as can be seen for
example by patching together local Euclidean inner products using a partition of unity.
To a Hermitian metric g one then associates a smooth real (1, 1)-form ω which in local
coordinates is given by

ω = i
n∑

j,k=1

g jkdz j ∧ dzk,

and we say that g (orω) is Kähler if dω = 0. This can be viewed as a system of first-order
linear PDEs for the coefficients g jk , and the existence of a Kähler metric on a compact
complex manifold implies several nontrivial global constraints (for example the even
Betti numbers of X must be nonzero, and the odd Betti numbers must be even). The
restriction of a Kähler metric to a complex submanifold is still Kähler, and since CP

n

admits the explicit Fubini-Study Kähler metric, it follows that all projective manifolds
admit Kähler metrics.

(III) Every K3 surface admits a Kähler metric. This was proved by Siu [45] in 1983.
Combined with earlier work of Kodaira [31] and Miyaoka [41], this result implies that
a compact complex surface is Kähler if and only if its first Betti number is even. New
proofs of this result were later found by Buchdahl [6] and Lamari [34] independently.

(IV) (Surjectivity of the period map) Every point in D is the period point of some marked
K3 surface. This was proved by Kulikov [33] in 1977 for projective K3 surfaces and by
Todorov [47] in 1980 in general.
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Ricci-flat metrics and dynamics on K3 surfaces 195

Lastly, we mention that there is a refined Torelli Theorem, which is also proved in [7,43].
For a K3 surface X , the set CX of all cohomology classes of Kähler metrics is a cone
inside H2(X ,R). The refined Torelli Theorem then states that if two marked K3 surfaces
(X , ι), (X ′, ι′) determine the same period point P(X , ι) = P(X ′, ι′) and furthermore ι ◦ ι′−1

takes CX ′ to CX , then there is a unique biholomorphism F : X → X ′ such that F∗ = ι ◦ ι′−1.

3 Ricci-flat Kähler metrics

3.1 Ricci curvature

Thanks to the aforementioned theorem of Siu, every K3 surface admits a Kähler metric. As
we will now see, they admit rather special Kähler metrics.

Recall that given a Kähler metric g, one has the associated Ricci curvature tensor R jk ,
which as in Riemannian geometry is the trace of the Riemann curvature tensor. The fact that
g is Kähler implies that the Ricci tensor is Hermitian (i.e. R jk = Rk j ) and that the associated
real (1, 1)-form

Ric(g) = i
n∑

j,k=1

R jkdz j ∧ dzk,

is closed, d Ric(g) = 0, and it is locally given by

Ric(g) = −i∂∂ log det(g jk),

where d = ∂ + ∂ is the usual splitting of the exterior derivative on a complex manifold.

3.2 Ricci-flatness

Let X be a K3 surface. Since the never-vanishing holomorphic 2-form � is unique up to
scaling, we will assume from now on that it has been scaled so that the smooth positive
volume form dVol := � ∧ � satisfies

∫
X dVol = 1.

If ω is a Kähler metric on X , then its volume form ω2 can be written as ω2 = f dVol
for some smooth positive function f on X . In local holomorphic coordinates we can write
ω = ig jkdz j ∧ dzk (using now the Einstein summation convention) and � = hdz1 ∧ dz2,
where h is a locally-defined never-vanishing holomorphic function. It then follows that

det(g jk) = f |h|2,
and taking −i∂∂ log of this, and using that i∂∂ log |h|2 = 0 (an elementary computation),
we get

Ric(g) = −i∂∂ log f .

From this we see that if f is constant then Ric(g) vanishes identically, and the converse is
also true since if i∂∂ log f = 0 then the strong maximum principle implies that f is constant.
Thus, ω is a Kähler metric with vanishing Ricci curvature if and only if its volume form is a
constant multiple of dVol,

ω2 = c dVol, c ∈ R>0, (3.1)

and of course integrating this identity we see that c = ∫
X ω2.
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196 V. Tosatti

3.3 Yau’s Theorem

Now, if we start with a Kähler metric ω on a K3 surface X , and write ω2 = f dVol as above
(with f not necessarily constant), it is then clear that the conformally rescaled Hermitian

metric ω̃ = e− f
2 ω satifies ω̃2 = dVol, which is the equation we want, but it is easy to see that

ω̃ will not be closed (and so the corresponding Hermitian metric will not be Kähler) unless
f is a constant.
On the other hand, if ω̃ andω are twoKählermetrics on X , they define cohomology classes

[ω̃] and [ω] in H1,1(X ,R), the subspace of H2(X ,R) of de Rham cohomology classes which
admit a representative which is a closed real (1, 1)-form. The basic ∂∂-Lemma of Kodaira
shows that if [ω̃] = [ω] in H1,1(X ,R), then there exists ϕ ∈ C∞(X ,R), unique up to an
additive constant, such that

ω̃ = ω + √−1∂∂ϕ,

which in local coordinates translates to

g̃ jk = g jk + ∂2ϕ

∂z j∂zk
.

Thus, to find a Ricci-flat Kähler metric ω̃ with [ω̃] = [ω], it suffices to find ϕ ∈ C∞(X ,R)

such that

ω + √−1∂∂ϕ > 0, (ω + √−1∂∂ϕ)2 =
(∫

X
ω2

)

dVol, (3.2)

wherewe usedStokes’s Theorem
∫

X ω̃2 = ∫
X (ω+√−1∂∂ϕ)2 = ∫

X ω2. In local coordinates,
(3.2) becomes a fully nonlinear PDE of complex Monge-Ampère type

(

g jk + ∂2ϕ

∂z j∂zk

)

> 0 det

(

g jk + ∂2ϕ

∂z j∂zk

)

=
(∫

X
ω2

)

|h|2,

where h is a local never-vanishing holomorphic function as above. The fundamental result
is then:

Theorem 3.1 (Yau 1976 [54]) Let X be a K3 surface equipped with a Kähler metric ω, and
let � be the never-vanishing holomorphic 2-form on X normalized so that dVol = � ∧ �

has integral 1. Then there exists ϕ ∈ C∞(X ,R), unique up to an additive constant, such that
(3.2) holds. The Kähler metric ω̃ = ω + √−1∂∂ϕ is then a Ricci-flat Kähler metric on X,
the unique such metric with [ω̃] = [ω].

This is a special case of Yau’s solution [54] of the Calabi Conjecture [8], which solves an
equation analogous to (3.2) on arbitrary compact Kähler manifolds.

3.4 The Hyperkähler property

The Ricci-flat Kähler metrics g̃ that are produced by Theorem 3.1 are not explicit, as is
often the case for solutions of nonlinear PDEs. On the other hand, it is not hard to see
(see e.g. [2]) that these metrics have resticted holonomy: the holonomy group Hol(g̃) of
linear transformations of Tx X obtained by g̃-parallel transport along loops based at x (an
arbitrary basepoint) is precisely equal to SU (2) = Sp(1). This implies that the metric g̃ are
hyperkähler: the manifold X admits a triple of complex structures I , J , K , which satisfy the
quaternionic relations (I ◦ J = K , etc.) such that g̃ is Kähler with respect to I , J and K .
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Ricci-flat metrics and dynamics on K3 surfaces 197

This last condition means that g̃ satisfies the Hermitian property g̃(I ·, I ·) = g̃(·, ·) (and the
same for J , K ), and the Kähler form ω̃I (·, ·) = g̃(I ·, ·) is closed (and the same for J , K ). We
may assume that I is the same complex structure as the one that we had fixed earlier on X ,
so that with our notation we have ω̃ = ω̃I , and then if � is as before a holomorphic 2-form
on X (with the complex structure I ), then after suitable rescaling we have ω̃J = Re� and
ω̃K = Im�.

It follows immediately that g̃ is also Kähler with respect to all the complex structures of
the form aI +bJ +cK with a, b, c ∈ R, a2 +b2 +c2 = 1, which is an S2-worth of complex
structures called the twistor sphere of X . Passing from one of these complex structures to
another one is usually referred to as hyperkähler rotation, and while this changes the complex
structure and the Kähler form, it does not change the Hermitian metric g̃.

4 Dynamics of K3 automorphisms

4.1 K3 automorphisms

We now shift our attention to the group Aut(X) of automorphisms (i.e. biholomorphisms)
of a K3 surface X . This is in general a discrete group, in fact it embeds as a subgroup of the
orthogonal group of H2(X ,Z) equipped with the intersection form, but it can still be quite
large, as we will see later (cf. Examples 4.4 and 4.5).

First, let us make the following observation. Let T : X → X be an automorphism of a
K3 surface X , equipped with its normalized holomorphic 2-form �. Then the pullback T ∗�
is also a never-vanishing holomorphic 2-form on X , and so it must be a constant multiple
of �, T ∗� = c�, c ∈ C. But since dVol = � ∧ � is a positive volume form, and T is an
automorphism, we see that

∫

X
� ∧ � =

∫

X
T ∗(� ∧ �) = |c|2

∫

X
� ∧ �,

so |c|2 = 1, and therefore we see that

T ∗dVol = dVol,

i.e. the volume form dVol is Aut(X)-invariant.

4.2 Hyperbolic geometry

Since T is holomorphic, pullback by T gives a linear map T ∗ : H1,1(X ,R) → H1,1(X ,R),
which preserves the intersection pairing on H1,1(X ,R) (which has signature (1, 19)). Let us
consider the 2-sheeted hyperboloid

{c ∈ H1,1(X ,R) | c · c = 1}.
Then T ∗ preserves this hyperboloid, and it also preserves its two sheets. Let H be the sheet
which contains the cohomology class [ω]∫

X ω2 of some (and hence any) Kähler metric ω, then

H with its intersection form is a model of hyperbolic space H19 and T ∗ : H → H gives an
isometry of hyperbolic space.

Isometries of hyperbolic space can be divided into three classes: elliptic if they admit a
fixed point inH, parabolic if they admit a unique fixed point on the ideal boundary ∂H, and
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hyperbolic if they admit two fixed points on ∂H. We then have the following remarkable
result:

Theorem 4.1 (Cantat 1999 [11]) Let T : X → X be a K3 automorphism, and T ∗ : H → H
the corresponding isometry of hyperbolic 19-space. Then

• T ∗ is elliptic ⇔ T is of finite order (i.e. T k = Id for some k ≥ 1)
• T ∗ is parabolic ⇔ T is of infinite order and it preserves an elliptic fibration π : X → CP

1

Here an elliptic fibration on a K3 surface X is a surjective holomorphic map π : X → CP
1

with connected fibers and with generic fibers elliptic curves. Such elliptic fibrations have a
nonzero and finite number of singular/multiple fibers. An automorphism T of X is said to
preserve an elliptic fibration π if it maps every fiber of π to itself.

4.3 Hyperbolic automorphisms and entropy

It is then natural to ask what happens when T ∗ is hyperbolic. From the definition it follows
that T ∗ is hyperbolic if and only if the spectral radius ρ of T ∗ : H1,1(X ,R) → H1,1(X ,R)

is strictly larger than 1.
This spectral radius turns out to be related to a basic quantity in the study of the dynamical

behavior of iterates T n of T , n ≥ 1: the topological entropy. This can be defined as follows.
Fix any Kähler metric on X , denote by d its induced distance function on X , and for n ≥ 1
and ε > 0 we say that a subset A ⊂ X is (n, ε)-separated if for all distinct x, y ∈ A there is
some 0 ≤ j ≤ n such that d(T j (x), T j (y)) > ε. Since X is compact, every (n, ε)-separated
subset must be finite and we let r(n, ε) to be the maximal cardinality of an (n, ε)-separated
subset of X . We then define the topological entropy h(T ) of T by

h(T ) = lim
ε↓0 lim sup

n→+∞
1

n
log r(n, ε) ∈ [0,+∞).

It is clear that this does not depend on the choice of metric on X . Informally, h(T ) measures
the exponential growth rate of distinguishable orbits of T when we observe the dynamics
only up to n iterates. The quantity inside the limε↓0 is the same growth rate when we are
only able to make measurements with precision ε. If the entropy is strictly positive, there is
a very strong “dependence on the initial conditions”, and we will think of this as one of the
incarnation of a chaotic dynamical system.

The fundamental result is then the following:

Theorem 4.2 (Gromov 1976 [26], Yomdin 1987 [55]) Let T : X → X be an automorphism
of a K3 surface, and let ρ be the spectral radius of T ∗ : H1,1(X ,R) → H1,1(X ,R). Then
the topological entropy h(T ) of T equals

h(T ) = log ρ.

This theorem combines the inequality h(T ) ≥ log ρ due to Yomdin [55] in much greater
generality, and the reverse inequality by Gromov [26]. The theorem remains true for holo-
morphic self-maps T : X → X of any compact Kähler manifold Xn , with ρ now being the
maximum for 1 ≤ k ≤ n of the spectral radius of T ∗ on Hk,k(X ,R).

4.4 Examples

By the Gromov-Yomdin Theorem, hyperbolic automorphisms of K3 surfaces are exactly
thosewith positive topological entropy. Herewe give some examples of such automorphisms.
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Ricci-flat metrics and dynamics on K3 surfaces 199

Example 4.3 (Kummer examples) Let Y = C
2/� be a 2-torus with an automorphism TY

with positive topological entropy h(TY ) > 0. Note that the automorphism TY is induced by
an affine linear map on C

2. Then if X is the Kummer K3 surface associated to Y , then TY

lifts to an automorphism T of X , which satisfies h(T ) = h(TY ). We will refer to such (X , T )

as Kummer examples.
For an explicit construction, one can take � = (Z ⊕ iZ)2 the “square” lattice, and TY

induced by “Arnol’d’s cat map”

(
2 1
1 1

)

. Then one can compute that the spectral radius equals

ρ =
(
3+√

5
2

)2
, and so h(T ) ∼ 1.92.

Example 4.4 (Wehler [52]) Consider a K3 surface X which is a complete intersection of two
general hypersurfaces of bidegrees (1, 1) and (2, 2) in CP2 ×CP

2. The two projection maps
toCP2 exhibit X as a ramified double cover ofCP2, let σ1, σ2 be the two covering involutions,

and T = σ1 ◦ σ2. Then T is an automorphism of X with h(T ) = log
(
13+√

165
2

)
∼ 2.56 (see

[9]). It is shown in [52] that Aut(X) ∼= Z/2Z ∗ Z/2Z, the free product generated by these
two involutions.

Example 4.5 (Mazur [37]) Let now X be a K3 surface which is a generic hypersurface of
multidegree (2, 2, 2) inCP1×CP

1×CP
1. Nowwe have three projectionmaps toCP1×CP

1

(by forgetting one of the factors), which exhibit X as a ramified double cover ofCP1 ×CP
1.

The three covering involutions are now denoted by σ1, σ2, σ3, and T = σ1 ◦ σ2 ◦ σ3 is an
automorphism of X with h(T ) = log(9+ 4

√
5) ∼ 2.88 (see [11]). Together they generate a

subgroup of Aut(X) isomorphic to the free product Z/2Z ∗ Z/2Z ∗ Z/2Z.

Example 4.6 (McMullen [38]) Using the refined Torelli Theorem, and substantial work,
McMullen has constructed [38] examples of non-projective K3 surfaces X with automor-
phisms T with h(T ) > 0 which admit a Siegel disc: this is an open subset � ⊂ X preserved
by T and biholomorphic to the bidisc in C2, such that in � the automorphism T is holomor-
phically conjugate to an irrational rotation (z1, z2) �→ (az1, bz2) of the bidisc (which means
that |a| = |b| = 1 and a, b and ab are not roots of unity).

It is also worth remarking here that a result of Cantat [10] shows that the only compact
complex surfaces which admit automorphisms with positive topological entropy are K3,
Enriques, 2-tori, iterated blowups of these, and blowups ofCP2 at k points with k ≥ 10. The
dynamical study of such automorphisms on 2-tori is elementary, on Enriques surfaces it can
be reduced to the K3 surface that is its double cover, and on blowups of K3, Enriques and
tori it can be reduced to the base case. Thus, the only “interesting” cases are K3 surfaces
and blowups of CP2. See e.g. [9,40] and references therein for more on automorphisms of
rational surfaces.

4.5 Eigenclasses

From now on we assume that T : X → X is a K3 automorphism with h(T ) > 0. Since
T ∗ : H → H is a hyperbolic isometry, it has two fixed points on its ideal boundary ∂H,
which correspond to two nontrivial eigenclasses [η+] and [η−] ∈ H1,1(X ,R) which satisfy

T ∗[η±] = e±h[η±],
∫

X
[η±]2 = 0,
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200 V. Tosatti

and up to rescaling these classes if necessary we may assume also that
∫

X
[η+] ∧ [η−] = 1.

Using the Gromov–Yomdin Theorem h = h(T ) = log ρ, it follows easily that for any given
Kähler metric ω on X ,

lim
n→+∞

(T n)∗[ω]
enh

=
(∫

X
[ω] ∧ [η−]

)

[η+],

lim
n→+∞

(T −n)∗[ω]
enh

=
(∫

X
[ω] ∧ [η+]

)

[η−].

This implies that the classes [η±]belong to ∂CX ,where recall thatCX is the cone in H1,1(X ,R)

of cohomology classes of the form [ω] for some Kähler metric ω on X . These classes are
irrational in a strong sense, namely that the lineR.[η+] intersects H2(X ,Q) only in the origin
(and the same holds for [η−]).

4.6 Eigencurrents

Let us now look in more detail at the eigenclasses [η±]. Fix two closed real (1, 1)-forms α+
and α− with [α±] = [η±]. Every closed real (1, 1)-form β in the cohomology class [η+] can
therefore be written as β = α+ +√−1∂∂ϕ for some smooth function ϕ. We will write β ≥ 0
if β is Hermitian semipositive at every point. Given that the class [η+] is on the boundary
of the Kähler cone CX , and that classes inside this cone contain representatives which are
smooth and strictly positive, one might naively expect that the classes [η±] might contain
smooth semipositive representatives. This is in general not the case, as we shall see below
(cf. Theorem 4.7), however it is possible to find a semipositive representative if one is willing
to relax smoothness.

More precisely, a closed positive (1, 1)-current β in the class [η+] is a (1, 1)-form with
distributional coefficients which can be written as β = α+ + √−1∂∂ϕ where ϕ is quasi-
psh (i.e. in local charts it equals the sum of a plurisubharmonic function and a smooth
function), such that T ≥ 0 holds in the weak sense (which means that 〈β, iξ ∧ ξ〉 ≥ 0
for all smooth (1, 0)-forms ξ ). Such currents can be pulled back via T by defining T ∗β =
T ∗α+ + √−1∂∂(ϕ ◦ T ), and the pullback is a closed positive (1, 1)-current in the class
[T ∗η+]. We then have the following crucial result:

Theorem 4.7 (Cantat [11]) Let T : X → X be an automorphism of a K3 surface with
h(T ) > 0. Then

(a) The classes [η±] contain a unique closed positive (1, 1)-current η±
(b) These currents satisfy T ∗η± = e±hη±
(c) (Dinh–Sibony [20]) We can write η± = α± + √−1∂∂ϕ± where ϕ± is quasi-psh and

Cα(X) for some α > 0
(d) The wedge product μ = η+∧η− exists by Bedford–Taylor [3] and (c), and is a T -invariant

probability measure on X
(e) μ is mixing, hence ergodic, and is the unique measure of maximal entropy

Let us give a few explanations about this result. About part (c), the fact that ϕ± is continuous
was proved earlier in [11] when X is projective, see also [19] for a concise exposition of the
Hölder regularity result of Dinh–Sibony. In part (d), the wedge product of Bedford–Taylor [3]
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is defined as μ = η+ ∧ α− + √−1∂∂(ϕ−η+), which is well-defined since the distributional
coefficients of η+ are in fact measures and ϕ− is Hölder. About part (e), μ being mixing
means that for every f , g μ-measurable functions,

∫

X
f (T n(x))g(x)dμ(x)

n→+∞→
∫

X
f dμ

∫

X
gdμ,

which implies that μ is ergodic (every T -invariant μ-measurable subset of X has either zero
or full measure). Lastly, for every T -invariant (Borel) probability measure ν on X , one has
(see e.g. [42]) the Kolmogorov-Sinai entropy hν(T ) of ν, which is always bounded above
by the topological entropy h(T ). If hν(T ) = h(T ), then ν is called a measure of maximal
entropy. Ergodic measures of maximal entropy always exist in our setting by a general result
of Newhouse [42], and part (e) then asserts that there is only one such measure, μ. Part (e)
was proved in [11] for projective K3 surfaces, and in [18] in general.

5 From geometry to dynamics: Kummer rigidity

5.1 Two invariant measures

As discussed in the previous section, for an automorphism T : X → X of a K3 surface
with positive topological entropy, one obtains two natural T -invariant probability measures
on X , the “Lebesgue” measure dVol = � ∧ � (it is in fact equal to the Lebesgue measures
in suitable local coordinate charts) and the measure μ of maximal entropy. It is then natural
to ask about the relation between them.

We see from Example 4.6 that in general μ �= dVol, since μ is ergodic but in Example
4.6 the Lebesgue measure cannot be ergodic since T is a rotation on the Siegel disc. On the
other hand, it is not hard to check that if (X , T ) is a Kummer example (see Example 4.3)
then we do indeed have μ = dVol.

5.2 Kummer rigidity

Cantat [9, p.162] and McMullen [39, Conjecture 3.31] had conjectured the following:

Conjecture 5.1 Let T : X → X be a K3 automorphism with positive topological entropy.
Then μ � dVol if and only if (X , T ) is a Kummer example.

In other words, μ being absolutely continuous with respect to Lebesgue suffices to con-
clude that (X , T ) is a Kummer example, and then a posteriori μ = dVol. This “Kummer
rigidity” conjecture is analogous to a rigidity theorem for rational maps of CP1 of Zdunik
[56], and for general endomorphisms of CPn in [4,5], where the role of Kummer example is
played by Lattès maps.

Furthermore, McMullen [39] also formulated an extension of this conjecture to automor-
phisms with positive topological entropy of general compact complex surfaces (which are
necessarily Kähler), where the unique measure of maximal entropy μ still exists [18], and
he again conjectured that μ is absolutely continuous with respect to the Lebesgue measure
if and only if (X , T ) is a generalized Kummer example (which need not be a K3 surface).
Since this survey focuses on K3 surfaces, we refer the reader to [15] for more details.

Conjecture 5.1, together with the more general one for other surfaces, was settled by
Cantat–Dupont [15] when X is projective. In [23], Filip and the author gave a different proof
for K3 surfaces, which does not require projectivity, and uses the Ricci-flat metrics:
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Theorem 5.2 (Filip-T. [23], Cantat–Dupont [15] when X projective) Conjecture 5.1 is true,
and in fact the following are equivalent for K3 automorphisms with positive topological
entropy:

(a) μ � dVol
(b) μ = dVol
(c) The eigencurrents η± are smooth (or just continuous off a closed analytic subset)
(d) (X , T ) is a Kummer example

Combining the results in [15,23], one also obtains the proof of themore general conjecture
for arbitrary surfaces, since projective surfaces are covered in [15], and the only non-projective
ones which need to be dealt with are K3 for which [23] applies.

As a corollary of Theorem 5.2, it follows that in Example 4.6, the measure μ cannot be
absolutely continuous with respect to Lebesgue, since as we remarked earlier μ �= dVol. In
this case in fact it is easy to see that η± (and so also μ) vanish on the Siegel disc (see [38,
Theorem 11.4]).

5.3 Ricci-flat metrics and rigidity

Let us give a sketch of proof of (part of) Theorem 5.2. It is easy to see that (d) ⇒ (c) ⇒
(b) ⇒ (a), and we will discuss the proof that (b) ⇒ (d) under the extra assumption that X
contains no T -periodic curves. When X contains periodic curves, these can be contracted to
obtain an orbifold K3 surface with an induced automorphism with the same positive entropy,
and the arguments we will describe have to be applied on the orbifold. We will not discuss
here the implication (a) ⇒ (b), which involves other ingredients.

To start, let us look at the cohomology class [η+] + [η−]. It belongs to the closure of the
Kähler cone, and it satisfies

∫

X
([η+] + [η−])2 = 2

∫

X
[η+] ∧ [η−] = 2, (5.1)

so it is a nef and big class using terminology borrowed from algebraic geometry. Consider
the null locus of [η+] + [η−],

Null([η+] + [η−]) =
⋃

∫
C ([η+]+[η−])=0

C,

where the union is over all irreducible (complex) curves C ⊂ X with
∫

C ([η+] + [η−]) = 0.
By general results of Collins and the author [17] (which hold for nef and big classes on
arbitrary compact Kähler manifolds) the null locus is a closed analytic subset of X , and so it
consists of the union of finitely many irreducible curves.

In fact, Null([η+] + [η−]) is the same as the union of the T -periodic curves. Indeed, if
C ⊂ X is any irreducible curve, we have

∫

C
[η±] =

∫

T −N (C)

(T N )∗[η±] = e±Nh
∫

T −N (C)

[η±], (5.2)

for all N ∈ Z, fromwhich it follows that ifC is periodic (T −N (C) = C for some N ∈ Z\{0})
then

∫
C [η±] = 0 so C ⊂ Null([η+] + [η−]). Conversely, if C ⊂ Null([η+] + [η−]), then∫

C ([η+] + [η−]) = 0 and
∫

C [η±] ≥ 0 since [η±] belong to the closure of CX , and so∫
C [η±] = 0, and from (5.2) we get

∫
T −N (C)

[η±] = 0 for all N ∈ Z, so all the irreducible

curves T −N (C) are contained in Null([η+] + [η−]). Since this consists of finitely many
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irreducible curves, we get T −N (C) = T −M (C) for some distinct integers N , M , and so C
is T -periodic.

Going back to our main argument, since we assume that there are no T -periodic curves,
we have Null([η+] + [η−]) = ∅, which e.g. by [17] implies that the class [η+] + [η−] is
Kähler, and by Yau’s Theorem 3.1 we can fix a Ricci-flat Kähler metric ω on X in this class.
Thanks to (5.1), it satisfies

ω2 = 2dVol.

Then for N ≥ 1, we let

ωN = (T N )∗ω,

which is the unique Ricci-flat Kähler metric in the class

(T N )∗([η+] + [η−]) = eNh[η+] + e−Nh[η−],
and also satisfies

ω2
N = 2dVol.

For each N ≥ 1, define now a function λ(x, N ), which is continuous in x , so that the largest
eigenvalue of ωN (x) with respect to ω(x) is equal to e2λ(x,N ). Since ω2 = ω2

N , it follows
that λ(x, N ) ≥ 0 and that the smallest eigenvalue of ωN (x) with respect to ω(x) is equal to
e−2λ(x,N ), and so the trace of ωN (x) with respect to ω(x) equals

trωωN (x) = 2
ω ∧ ωN

ω2 (x) = e2λ(x,N ) + e−2λ(x,N ).

Before we continue with our arguments, we need the following crucial claim:

2
∫

X
λ(x, N )dVol(x) ≥ Nh, (5.3)

for all N ≥ 1. To see this, first note that λ(x, N ) = log ‖Dx T N ‖ω from which a standard
argument (see [23, §2.2]) shows that IN = ∫

X λ(x, N )dVol(x) is subadditive and so � =
limN→+∞ IN

N exists and satisfies

� ≤ IN

N
, (5.4)

for all N . The number� is in fact the largestLyapunov exponent of dVol, sincewe assume that
dVol = μ, andwe know that in generalμ is ergodic (Theorem4.7(e)). The Ledrappier–Young
formula [36] then gives that the topological entropy h, which equals the Kolmogorov-Sinai
entropy of μ = dVol (recall again Theorem 4.7 (e)), is equal to

h = � · dim+(μ) = 2�, (5.5)

since dim+(μ) (the dimension ofμ along the unstable directions) equals 2 becauseμ = dVol.
Combining (5.4) and (5.5) gives (5.3).

We now use (5.3) for our main computation as follows: by Stokes’s Theorem, the integral∫
X ω ∧ ωN can be compute in cohomology as

∫

X
ω ∧ ωN =

∫

X
([η+] + [η−]) ∧ (eNh[η+] + e−Nh[η−]) = eNh + e−Nh,
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and so using Jensen’s inequality

log(eNh + e−Nh) = log

(∫

X
ω ∧ ωN

)

≥
∫

X
log

(ω ∧ ωN

dVol

)
dVol

=
∫

X
log

(
2ω ∧ ωN

ω2

)

dVol

=
∫

X
log

(
e2λ(x,N ) + e−2λ(x,N )

)
dVol(x), (5.6)

but noting that t �→ log(et + e−t ) is convex and increasing for t ≥ 0, we can apply Jensen’s
inequality again and (5.3) to get

∫

X
log

(
e2λ(x,N ) + e−2λ(x,N )

)
dVol(x)

≥ log
(

e2
∫

X λ(x,N )dVol(x) + e−2
∫

X λ(x,N )dVol(x)
)

≥ log(eNh + e−Nh), (5.7)

which implies that all the inequalities in (5.6) and (5.7) must be equalities and so λ(x, N ) =
Nh
2 holds for all x ∈ X and N ≥ 1. Going back to the definition of λ(x, N ), this means
that we obtain two ω-orthogonal T -invariant line subbundles of T X , one expanded and one
contracted by T . By Ghys [25, Proposition 2.2], these give two holomorphic foliations on
X which are preserved by T , which is already enough to conclude that (X , T ) is a Kummer
example by Cantat [11, Theorem 7.4] (or [16, Theorem 3.1] which only needs one invariant
foliation). Alternatively, one can directly use these two invariant foliations to show that ω

must be flat, and then that (X , T ) is Kummer, see [23, §3.2]. This concludes our sketch of
the proof that (b) ⇒ (d) in Theorem 5.2.

6 From dynamics to geometry: limits of Ricci-flat metrics

In the previous section we saw an application of the Ricci-flat Kähler metrics on K3 surfaces
to dynamics. Here we go in the opposite direction, and use dynamics to prove results about
the Ricci-flat metrics.

Let X be a K3 surface. Recall that thanks to Yau’s Theorem 3.1 for every Kähler class
[α] ∈ CX ⊂ H1,1(X ,R) (an open convex cone in this cohomology group) there is a unique
Ricci-flat Kähler metric ω with [ω] = [α]. A natural question to ask is how do these metrics
behave as the class [α] varies. It is easy to see (either from Yau’s explicit estimates, or
using the implicit function theorem) that the Ricci-flat metrics vary continuously in the
smooth topology as long as their cohomology class is contained in a fixed relatively compact
subset of CX . We would then like to know what happens when we approach a limiting class
[α] ∈ ∂CX .

This is a problem that has received much attention recently, see for example the author’s
surveys [49–51] and references therein.Wewill just focus on the following basic setup: given
a class [α] ∈ ∂CX , and a fixed Ricci-flat Kähler metric ω on X , let ωt , 0 < t ≤ 1 be the
unique Ricci-flat Kähler metric on X cohomologous to [α] + t[ω]. What is the behavior of
ωt as t → 0?
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6.1 Noncollapsed limits

Suppose first that
∫

X [α]2 > 0. In this case, as discussed earlier, the null locus Null([α]) of
[α], which is the union of all irreducible curves which intersect trivially with [α], is a closed
analytic subset of X . Then, as shown in [17,48], the Ricci-flat metrics ωt converge locally
smoothly (as tensors) on compact sets away from Null([α]) to a Ricci-flat Kähler metric ω0

on X\Null([α]). See [51] for more information and higher-dimensional generalizations.

6.2 Collapsed fibrations limits

Suppose next that
∫

X [α]2 = 0 and that [α] = π∗[ω
CP

1 ] is the pullback of a Kähler class
on CP

1 via an elliptic fibration π : X → CP
1. Then, as shown in [28] when π has 24

singular fibers of type I1 and in [27,29] in general, the Ricci-flat metrics ωt again converge
locally smoothly (as tensors) on compact sets away from the singular fibers S ⊂ X (a closed
analytic subset of X ) to the pullback of a Kähler metricω0 onCP1\π(S). The limiting metric
ω0 is not Ricci-flat, its Ricci curvature is a Weil–Petersson semipositive form that measures
the variation of complex structure of the smooth fibers. See again [51] for more details and
generalizations.

It is also interesting to note that if 0 �= [α] ∈ ∂CX satisfies
∫

X [α]2 = 0 and [α] ∈
H2(X ,Q), then in fact [α] = π∗[ω

CP
1 ] for some elliptic fibration on X (see [22, Proposition

1.4]).

6.3 Enter dynamics

Based on the two previous results, the author had conjectured in [49,50] that for arbitrary
classes [α] ∈ ∂CX , the Ricci-flat metrics ωt should converge locally smoothly on compact
sets away from some closed analytic subset S of X . However, this turns out to be false, as
observed by Filip and the author [22]:

Theorem 6.1 Let X be a K3 surface with an automorphism T with positive topological
entropy such that (X , T ) is not a Kummer example (for example, those described in Exam-
ples 4.4, 4.5 and 4.6), let [α] = [η+] and ωt the Ricci-flat Kähler metric on X cohomologous
to [η+] + t[ω], 0 < t ≤ 1. Then as t → 0 the metrics ωt cannot converge in C0

loc on the
complement of any closed analytic subset of X.

Indeed, this is essentially a corollary of Theorem 5.2: by weak compactness of currents,
it is easy to show that the metrics ωt must converge in the weak topology of currents to
the eigencurrent η+ as t → 0 (here we use that η+ is the unique closed positive current in
its class by Theorem 4.7 (a)), so if ωt was also converging in C0

loc(X\S) for some closed
analytic subset S, then η+ would be continuous on X\S. Now, if this was true for both η+
and η−, then Theorem 5.2 would immediately give a contradiction (so Theorem 6.1 follows
if we allow perhaps replacing [η+] by [η−]). To show that just continuity of η+ on X\S is
enough to conclude that μ � dVol (and hence derive a contradiction by Theorem 5.2 again)
one needs to work just a little bit more, using [18,35], see [22, Theorem 3.3 (3)].
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6.4 Other boundary classes

To conclude, we discuss briefly what is expected to happen to the Ricci-flat Kähler metrics
ωt when their cohomology class approaches 0 �= [α] ∈ ∂CX which satisfies

∫
X [α]2 = 0

but does not come from the base of an elliptic fibration, and is not an eigenclass for an
automorphism with positive entropy.

We fix a smooth representative α of its class, which is a closed real (1, 1)-form. Since [α]
is a limit of Kähler classes, weak compactness of currents easily shows that there are closed
positive (1, 1)-currents β = α + √−1∂∂ϕ0 in the class [α], with ϕ0 quasi-psh normalized
by supX ϕ0 = 0 say. This is again expected to be unique, see the ongoing work of Sibony–
Verbitsky [44].

The Ricci-flat metrics ωt in the class [α] + t[ω], 0 < t ≤ 1, can be written as ωt =
α + tω + √−1∂∂ϕt , where ϕt are smooth functions which are uniquely determined if we
normalize them by supX ϕt = 0.

Conjecture 6.2 Let X be a K3 surface, α a closed real (1, 1)-form with 0 �= [α] ∈ ∂CX and∫
X α2 = 0. Let ω be a Kähler metric on X, and for 0 < t ≤ 1 let ωt = α+ tω+√−1∂∂ϕt be

the Ricci-flat Kähler metric in the class [α]+t[ω] with normalization supX ϕt = 0. Then there
is a closed positive (1, 1)-current β = α + √−1∂∂ϕ0 ≥ 0 with ϕ0 ∈ C0(X), supX ϕ0 = 0,
and

ϕt → ϕ0, (6.1)

uniformly on X as t → 0.

This conjecture is known in the case when [α] is an eigenclass for an automorphism
with positive entropy, since in this case ϕ0 is even γ -Hölder continuous for some γ > 0 by
Theorem 4.7 (c), and the convergence of ϕt to ϕ0 is easily seen to hold in Cγ (X).

Interestingly, this conjecture is not known when [α] comes from the base of an elliptic
fibration π : X → CP

1: in this case we do know that ϕ0 ∈ Cγ (CP1) for some γ > 0 (since
its Laplacian is globally in L p for some p > 1 [46, Corollary 3.1]), but the global convergence
in (6.1) uniformly on all of X (not just away from the singular fibers) is unknown.

And of course the most interesting case is when [α] is neither an eigenclass nor comes
from an elliptic fibration, in which case even the existence of a continuous ϕ0 as above is
unknown.

7 Some conjectures

In this last section we briefly discuss a few open problems related to the dynamics of auto-
morphisms of K3 surfaces that the author learned from S. Filip, see also Cantat’s ICM paper
[14] for many other problems.

7.1 Positive Lyapunov exponent

Let T : X → X be a K3 automorphism with positive topological entropy h > 0 and fix a
Ricci-flat Kähler metric ω on X . The largest Lyapunov exponent of dVol (which appeared in
Sect. 5.3 in the special case when dVol = μ) is then defined as

� =
∫

X

(

lim
N→+∞

h

2N
log ‖Dx T N ‖ω

)

dVol(x).
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This is easily seen to be finite, and if we let ωN = (T N )∗ω then log ‖Dx T N ‖ω is equal to
the quantity λ(x, N ) ≥ 0 defined in Sect. 5.3 (namely the largest eigenvalue of ωN (x) with
respect to ω(x) is e2λ(x,N )). This shows that � ≥ 0, and the major outstanding problem is
then (see also the discussion in Cantat’s thesis [9, Chapter 3]):

Conjecture 7.1 Let T : X → X be an automorphism with positive topological entropy of a
projective K3 surface. Then we have � > 0.

It would already be extremely interesting to show that in the setting of Conjecture 7.1
there is dense T -orbit. Furthermore, once � > 0 one expects more:

Question 7.2 Let T : X → X be a K3 automorphism with positive topological entropy and
suppose that � > 0. Does it follow that dVol is T -ergodic?

Recall that the measure of maximal entropy μ is always T -ergodic (even mixing), and it
also has positive Lyapunov exponent by the Ledrappier–Young formula [36], but in general
μ is quite different from dVol as shown in Theorem 5.2.

7.2 The support of�

Let again T : X → X be a K3 automorphism with positive topological entropy h > 0, and
let μ = η+ ∧ η− be the measure with maximal entropy from Theorem 4.7. By Theorem
5.2 we know that if (X , T ) is not a Kummer example then Supp(μ) is a Lebesgue null-set.
Nevertheless, this set should be quite fractal, and we expect that:

Conjecture 7.3 Let T : X → X be an automorphism with positive topological entropy of a
projective K3 surface. Then Supp(μ) has full Lebesgue measure.

Thanks to a result of Dinh–Sibony (see [13, Theorem 7.6]), an affirmative answer to this
conjecture would give a negative answer to [14, Question 3.4]. Note that this conjecture is
false when X is not projective, as shown by McMullen’s examples of K3 automorphisms
with Siegel discs in Example 4.6 (which are not projective): indeed, μ vanishes completely
on the Siegel disc. It seems quite likely that in fact the Siegel disc, when it exists, is rather
large:

Question 7.4 Let T : X → X be an automorphism with positive topological entropy of a
K3 surface which admits a Siegel disc � ⊂ X. What is the Lebesgue measure of Supp(μ)?
Could it be zero?

In other words, are there Siegel discs so that the Lebesgue measure of X\� is zero?
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