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Higher-order estimates for collapsing Calabi-Yau
metrics

HaNs-JoAacHIM HEIN* AND VALENTINO TOSATTI!

We prove a uniform C“ estimate for collapsing Calabi-Yau metrics
on the total space of a proper holomorphic submersion over the unit
ball in C™. The usual methods of Calabi, Evans-Krylov, Caffarelli,
et al. do not apply to this setting because the background geometry
degenerates. We instead rely on blowup arguments and on linear
and nonlinear Liouville theorems on cylinders. In particular, as
an intermediate step, we use such arguments to prove sharp new
Schauder estimates for the Laplacian on cylinders. If the fibers
of the submersion are pairwise biholomorphic, our method yields a
uniform C*° estimate. We then apply these local results to the case
of collapsing Calabi-Yau metrics on compact Calabi-Yau manifolds.
In this global setting, the C° estimate required as a hypothesis in
our new local C¢ and C*° estimates is known to hold thanks to
earlier work of the second-named author.

1. Introduction

The main object of study in this paper are Ricci-flat Kdhler metrics on
compact Calabi-Yau manifolds, and we wish to understand their behavior
in families when their total volume approaches zero. We will work on a fixed
Calabi-Yau manifold which admits the structure of a holomorphic fiber space
onto a lower-dimensional space (which, away from the singular fibers and
from the singularities of the base, is a proper holomorphic submersion), and
degenerate the Kahler class to the pullback of a Kéahler class from the base.
The Calabi-Yau theorem [59] assures the existence of Ricci-flat Kéahler met-
rics on the total space in the corresponding Kéhler classes, whose volume is
approaching zero. This setup has been much studied in recent years, starting
from the work of Gross-Wilson [25] on elliptically fibered K3 surfaces, and
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more recently in general dimensions in [23, 24, 30, 38, 46, 51, 53, 54] and
elsewhere. It is a very interesting problem with many different aspects, and
we refer the reader to [23, 25, 36, 51, 54] for further ramifications of this cir-
cle of ideas. From these previous works, we know that the Ricci-flat metrics
collapse to the pullback of a canonical Kéhler metric on the base, uniformly
on compact sets away from the singular fibers. The strongest topology in
which this collapse was known to happen is C° by [51], and C* when the
smooth fibers are tori or finite étale quotients of tori by [23, 30]. Our main
results in this paper substantially improve on these previous works. In par-
ticular, our main technical results are purely local on the base and do not
require a compact Calabi-Yau total space.

1.1. C*° estimates if the smooth fibers are pairwise
biholomorphic

Our results are strongest and easiest to state if all of the smooth fibers are
pairwise biholomorphic. To explain the setup, let Y be an n-dimensional
compact Kihler manifold with ¢;(Y) = 0 in H?(Y,R), equipped with a
Ricci-flat Kdhler form wy. Let B denote the unit ball in C™ (m > 1),
equipped with a Euclidean Kahler form wc. For each ¢ > 0 consider the
Ricci-flat product Kéhler form

(11) Wt = (U(Cm + e_tWY

on the product complex manifold B x Y. Further suppose that w; is some
Ricci-flat Kéhler form on B x Y (with respect to the product complex struc-
ture) that satisfies

(1.2) wp = wi + 100y,
for some smooth function ¢y, as well as the Monge-Ampere equation

m-+n

(1.3) (W)™t = ef'wmtn = ( )e_"Hng”m A wy-

n

for some fixed smooth function F' (which must be the pullback under prp of
a pluriharmonic function on B). Assume in addition that we have a uniform
estimate

(1.4) Clw < wp < Cuy

on B xY for all t > 0 and for a constant C' independent of ¢.
With these preparations, our first main result is the following.
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Theorem 1.1. For all compact sets K C B and all k € N, there exists a
constant Cr i, independent of t such that for all t € [0,00) we have that

(1.5) |w? lok (ks vw) < Ck k-

Observe that these estimates trivially imply uniform C* bounds on K xY
with respect to the fized product metric wem 4+ wy or indeed with respect to
any other product metric wem + @y . However, the collapsing C* norms in
(1.5) change by unbounded factors if we replace wy by wy unless V¥ @y = 0;
thus, in order for (1.5) to hold it is actually essential that Ric(wy ) = 0. Also
note that Theorem 1.1 would be false in general without the assumption
that Y is compact without boundary (cf. Remarks 1.7, 1.9), and indeed our
method of proof is fundamentally global on Y (cf. Remark 1.8).

Remark 1.2. If for each ¢ we are given a smooth function ¢, on 0B x Y
with ws +i00¢; > 0 there, then v uniquely extends to a solution of (1.3) on
B x Y. Indeed, by [2, Prop 7.10] we can first extend 1y to a smooth strictly
we-psh function on B x Y. Adding a large multiple of a smooth strictly psh
function on B that vanishes on 0B, we obtain a subsolution of (1.3). Then
a solution exists e.g. by [2, Thm A]. However, this solution may not satisfy
(1.4) with C independent of t.

The main application of this “local on the base” result is to compact
Calabi-Yau manifolds. Let now f : X — B be a surjective holomorphic
map with connected fibers (also called a fiber space), where X is a compact
Kahler Calabi-Yau manifold of dimension m +n and B is a compact Kéhler
space of dimension m (which is necessarily irreducible, and we assume is
reduced). The set of critical points of f (including by default the preimages
of singular points of B) will be denoted by S, and we will let X, = f~1(b)
be the smooth fiber over any b € B\ f(S), which is a Kéhler n-manifold
with ¢1(X3) = 0 in H?(X3,R) (i.e., also a Calabi-Yau manifold). Fix Kéhler
metrics wx,wp on X, B, with wx Ricci-flat, and put we = f*wp, which is
a smooth semipositive definite real (1,1)-form on X. For all ¢ € [0,00) let
w; be the unique solution of the complex Monge-Ampere equation

(1.6) (wf)™™ = (oo + € fwx + i00Y) ™" = cre ™MW, supyy =0,
X

whose existence is guaranteed by Yau’s theorem [59]. In other words, w; is
the unique Ricci-flat Kihler metric on X cohomologous to we, +e fwx . Here
the constant ¢; is defined by integrating (1.6) over X, and it has a positive
limit as t — oo. This is exactly the same setup which is studied for example
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in [23, 24, 30, 38, 46, 51, 53, 54]. A key result, conjectured in [35] and proved
independently in [13, 14], is that supy |[¢¢| < C, independent of ¢. In [46]
(after earlier results in [42] when n = m = 1) it was proved that 90y is
uniformly bounded on compact sets away from f~1(f(S)) (i.e., an analog of
(1.4) was proved on any such compact set), and in [51] it was proved that
in fact 100, has a well-defined limit in CP (X \ f71(f(9))). As a corollary

loc
of our main Theorem 1.1, we can improve this to uniform C* estimates for

1y on compact sets away from f~1(f(9)) if the fibers X, (b € B\ f(9)) are
pairwise biholomorphic to each other, thus resolving [47, Question 4.2] and
[48, Question 5.2] in this case.

Corollary 1.3. Assume that all the fibers Xy, (b € B\ f(5)) are biholomor-
phic to the same Calabi- Yau manifold Y. Over any small coordinate ball U
compactly contained in B\ f(S), use [17] to trivialize f holomorphically to
a product U XY — U. As before define Ricci-flat reference Kéhler forms on
UxY byw =wem + e twy. Then for any k € N, there exists a constant
Cu such that

(1.7) lw? lox (@ xvw) < Cuk

holds uniformly for allt € [0,00). In particular, given any compact set K C
X\ f7UF(9)) and any k € N, there exists a constant Ck . such that

(1.8) |t lok (rwyx) < Cr i

holds uniformly for all t € [0,00).

To see that such fiber spaces exist with S # (), let E be an elliptic curve
with the involution ¢ induced by z — —z, let Y be a K3 surface with a
nonsymplectic involution 7, and let X = (E x Y)/(0 x 7) be the quotient
by the diagonal action with its natural map f : X — B = E/o = CP!. If
7 is free (i.e., is the covering involution of an Enriques surface), then X is
smooth and f is a fibration of the required kind (with 4 double fibers that
are Enriques surfaces), although in this case wy comes from a product metric
on F x Y, hence is itself a product metric locally away from the singular
fibers. If 7 is not free (e.g., is the covering involution of a double sextic),
then X is singular, but replacing X by a blowup we again obtain a smooth
Calabi-Yau 3-fold fibered over CP! with all smooth fibers biholomorphic
(and with 4 reduced singular fibers that are normal crossing divisors in X);
cf. [1, 56]. Then wy is certainly not a product metric even locally away from
the singular fibers. However, it may still be possible to construct w; using a
gluing method in the spirit of [27, Problem 1.11]; cf. [10].
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It is worth remarking that in the setting of Corollary 1.3, assuming Y
is not a torus (or a finite étale quotient of a torus), then the Ricci-flat
metrics wy do not have uniformly bounded sectional curvature as ¢ — co on
f~YU) for any U C B\ f(95). Indeed, if the curvature of w does remain
bounded on f~1(U), then it follows from [53, Thm 3.1] that (Y,wy) must
be flat. Conversely, if Y is (a finite étale quotient of) a torus, then smooth
collapsing of the Ricci-flat metrics w; with bounded curvature was proved in
[23, 30], and this is the only case where (1.8) was known previously. In fact,
[23, 30] proved C*° estimates in the torus-fibered case without assuming
that the fibers are pairwise biholomorphic.

1.2. A general C“ estimate

If the smooth fibers are not necessarily biholomorphic to each other, we can
push our techniques to their limit and obtain the following “local on the
base” C“ estimate.

Let f: X — B be a proper surjective holomorphic submersion onto the
unit ball B = B1(0) C C™ such that the fibers of f are n-dimensional Calabi-
Yau manifolds. Suppose X is equipped with a Ricci-flat Kahler metric wx.
Applying Yau’s theorem fiberwise, it is easy to construct a smooth closed
real (1,1)-form wr = wy + i09p on X whose restriction to every fiber
X, = f71(2) is the Ricci-flat Kihler metric on X, cohomologous to wx|x.
(see Section 5 for details). Letting woo = f*wem, it is not hard to show
that up to shrinking B slightly and taking ¢ sufficiently large, the forms
Weo + € twp define Kihler metrics on X. Suppose w is a Ricci-flat Kéhler
metric on X which satisfies

(1.9) W = Weo + € lwp + 100,

for some smooth function v; together with

(1.10) (W)™ = e MO A W

for some smooth function G pulled back from B. Assume in addition that
(1.11) C™Hweo + e 'wr) < wf < Clwoo + ¢ twi)

holds on X for all ¢ > 0 and for some constant C' independent of .

Up to shrinking B again, there is a C'*° trivialization ® : B x Y —
X, where Y = f71(0) is viewed as a smooth real 2n-manifold, such that
Plioyxy : {0} X Y — Y is the identity. (Of course ® is never unique but
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our main result holds for every possible choice of ®.) For z € B let gy,
denote the trivial extension to B x Y of the pullback via ® of the Ricci-flat
Riemannian metric associated with wr|x,. We can then define a family of
collapsing product Riemannian metrics on B X Y by

gzt = gcm + e_th,z-

Each of these metrics is uniformly equivalent (with a constant independent
of t) to the metric obtained by pulling back the metric associated with
Woo + € 'wp via ®. Let further gf denote the Riemannian metric on B x Y’
obtained by pulling back the metric associated with w; via ®.

With these preparations, our second main result may now be stated as
follows.

Theorem 1.4. For all 0 < o < 1, there exists a constant C,, such that

4 _ ng,t ] / .
(1.12) Sup sup gt (z) v (97 (z ))|gz,t( )

< Ca
IZ(ZJJ)EB% (0)xY z'e Bt (x,3) 9=t (x,x’)a

holds uniformly for all t € [0, 00).

Here Pif . denotes the Riemannian parallel transport operator from z’ to
x associated with g, ;, and d9=* denotes the Riemannian distance associated
with g, . The estimate (1.12) is subtly weaker than a C“ bound for g with
respect to g,, for any fixed 29 € B; in fact, as we will see in Remark 5.3,
a C” bound of the latter kind cannot hold unless f is a local product or
the fibers are flat. However, by Remark 5.4, (1.12) does imply a uniform C'*
bound for g7 with respect to any t-independent product metric on B x Y.
With this in mind, we obtain the following direct application of Theorem
1.4.

Corollary 1.5. Given a fiber space f : X — B where X is a compact (m +
n)-dimensional Calabi-Yau manifold and B is an m-dimensional compact
Kadhler space, let w? be the Ricci-flat Kahler metrics on X defined by (1.6).
Then for any compact set K C X \ f~1(f(S)) and for any 0 < a < 1, there
ezists a constant C o such that for all t € [0, 00),

(1.13) lfllow (K wx) < Cra

As a consequence of the new uniform boundedness results of Corollaries
1.3 and 1.5, together with the results of [23, 30, 46, 53], we obtain the
following adiabatic limit theorem.
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Corollary 1.6. In the setting of Corollary 1.5, let wean denote the unique
weak solution of

(1.14) Wwh = (wp + i00v)™ = fBiwgbf*(w;’(”")

can e w?—i-n

with v € L=(B)NCX.(X\ f(S)), where fiber integration, fs, is defined only
on X\ f71(f(S)) but the right-hand side of (1.14) defines a unique measure
on B with LP density w.r.t. wg for some p > 1. Then the Ricci-flat metrics
wf converge to f*wean ast — oo in the topology of CL (X \ f~1(f(9))) for
all 0 < a < 1. Moreover, the convergence takes place in C2°(X \ f71(f(S)))
if the reqular fibers are tori or finite étale quotients of tori, or are pairwise
biholomorphic to each other.

The stated properties of wean are known thanks to [43], and (1.14) implies
that the Ricci curvature of weay, is equal to a certain Weil-Petersson form;
see [43, 46] for details. The main result of [51] is that wf — f*wean in
CR (X \ F7Hf(9))) (with weaker convergence established earlier in [46]).
In the case of torus fibers, C7°. convergence was established in [23, 30]. By
Corollaries 1.3 and 1.5, these results are now improved to C}. if the smooth
fibers are pairwise isomorphic, and to C}?_ in general. Since our proof does

not rely on [51], this also gives a new proof of the main result [51, Thm 1.3].
1.3. Previous work

Partial results in the direction of Corollaries 1.3 and 1.5 had been proved
earlier. If f is an elliptic fibration of a K3 surface with 24 singular fibers
of Kodaira type I;, Gross-Wilson [25] obtained a complete asymptotic de-
scription of w; using a gluing method. In the general setting, a CS)C estimate
was proved in [46]. Certain components of the first derivative were bounded
in [46, Thm 2.3] and [51, Prop 4.8]. An even stronger partial estimate was
proved in [53, Thm 3.1]: the restriction of e‘w? to f~1(U) (for U a small ball
in B\ f(S)) converges in the pointed C*° Cheeger-Gromov topology (i.e.,
modulo “stretching” diffeomorphisms applied to the base directions) to the
product of a flat C™ with a fiber of f equipped with its preferred Ricci-flat
metric. However, it is not clear how to use these ideas even to prove a full
(. estimate because in this paper we do not allow any reparametrization by
diffeomorphisms, and the ellipticity of (1.6) degenerates as t — oo, so that
the methods of Calabi-Yau [5, 59], Evans-Krylov [55], Tian [45], Caffarelli
[4], and Wang-Wu [57] cannot be applied directly.
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The only known exception to this statement is the case when X, is
finitely covered by a torus (even without assuming that all smooth fibers
are pairwise biholomorphic). As mentioned above, if X} is a torus, (1.8) was
proved in [23] if X is projective and in [30] in general, and the case of finite
quotients of tori was pointed out in [53, p. 2942]. It turns out that in this
case the standard methods can be set to work after all using the following
idea: take any ball U C B\ f(S) and pull back the Ricci-flat metrics wy
to the universal cover of f~1(U), which is biholomorphic to U x C"; then
stretch the coordinates on C" by a factor of e*/? to make (1.6) uniformly
elliptic, and apply the standard theory. To make this rigorous, a construction
of semi-flat reference metrics on f~1(U) is required [22, 23, 25, 27, 30, 54].
In fact, in [23, 30], (1.7) was proved with w; replaced by these (collapsing)
semi-flat metrics. See also [21] for analogous estimates for the Kéhler-Ricci
flow on B x T, where T is a torus and ¢;(B) < 0.

Also, if S = 0, i.e., if f is a submersion, then global C*° estimates are
implied by the more general work of Fine [15, 16] on cscK metrics, but the
assumption that S = () is very strong if X is Calabi-Yau because it implies
that f is a holomorphic fiber bundle (cf. [52], [54, Thm 3.3]). If S # (), then
the methods of [15, 16] can still be used to some extent, but they only give
us one particular family of solutions of (1.6) with good C*° bounds on each
tube f~1(U), and because of local non-uniqueness (cf. Remark 1.2) there is
then no reason why this good family would agree with w?|s-1 (.

In [47, Question 4.2] and [48, Question 5.2] it is conjectured that (1.8)
should still hold without the assumption that all smooth fibers are pairwise
biholomorphic (i.e., that (1.13) can be improved to C* for all k). This is
known only if the smooth fibers are flat [23, 30, 53] or if f is a submersion
[15, 16]. In Remark 4.1 we discuss why our current method is not sufficient
to prove this conjecture.

1.4. Overview of the proofs (part 1)

What allows us to go beyond the known partial estimates is a systematic use
of iterated blowup-and-contradiction type arguments. Ultimately the reason
why we get a contradiction in the end (“solutions of polynomial growth on
C™ x Y that are not polynomials on C™”) is separation of variables. At the
linear level, this amounts to a Fourier decomposition along Y of harmonic
forms or functions on C™ x Y. In particular, our results are fundamentally
local on the base but global on the fibers. Our purpose in this subsection is
to clarify this point.
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Remark 1.7. The fact that Y has no boundary is crucial for the estimates of
Theorem 1.1 to hold. In fact, the corresponding local result (where Y would
be a ball in C") is false even if we shrink Y on the left-hand side of (1.5). We
are grateful to A. Figalli and O. Savin for the following counterexample in the
real setting. Consider the convex function u; on the unit square [0, 1] x [0, 1]
given by

z}+e a3

2

where § > 0 is small and w is an x1-periodic perturbation by O(¢) of

—t t
ug(x1,22) = + e ow <x162,x2> ,

w'(z1, 22) = sin(27z1)e™.

We choose the perturbation w such that ug solves the Monge-Ampere equa-
tion det(D?ug) = 1 on the unit square. This is possible for § small because w’
is harmonic, so taking w = w’ solves the linearized Monge-Ampere equation.
Then u; is smooth and convex and solves det(D?u;) = et on [0, 1] x [0, 1],
and D?u; is uniformly equivalent (with constants independent of t) to

/10
gt = 0 eft .

Thus, u; satisfies the appropriate analogs of (1.3) and (1.4). Nevertheless,
for all k > 3,

| DRy, ~ e 23 5 0 as t — o0
a.e. in [0, 1]x 0, 1]. A similar counterexample for the complex Monge-Ampere
equation is given by

(21, 20) = |21 > + e Y22 + e ow (xleé,:rz)

in the unit polydisc in C? with coordinates zj = x; + 1y;, where w is the
same as before.

Remark 1.8. Let us conversely explain why it is more reasonable to expect
higher order estimates if Y has no boundary. First of all, if we modify the
example of Remark 1.7 by replacing [0,1] x [0,1] by [0,1] x S! (so that the
fibers S! = R/Z are now compact without boundary), the harmonic function
sin(27z1)e™ used above is ruled out, but e** sin(27x2) is not. Unlike above,
the latter does not remain uniformly bounded if we replace 1 by z1e"/2, so
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we now need to pick § small relative to e=*/* rather than just absolutely

small. Then D?u; ~ g; as before, but for all k >3 and 0 < e < %,

L ,
sup | DMy, < Ck7€e—se2€(k—2)§ = Oc(1) as t = oo.
le,1—¢]x ST

Now even at the linear level the question remains as to how to go about
proving that this behavior is in fact universal. For example, why would a
solution v to Agev+e!Ayv =0 on B xY (with B the unit ball in R? and Y
a compact manifold without boundary) satisfy uniform interior estimates?

If Y is a torus, one can simply pass to the universal cover. Let ¢ de-
note the lift of v to the universal cover, and let (z,y) denote fixed linear
coordinates on the universal cover. Then 9(z,y) = 9(z, ezy) is harmonic on
B x B and the resulting standard interior estimates for ¥ translate back into
precisely the right interior estimates for v on B x Y. In a nutshell, this is
the philosophy of [23, 30], where a C'* version of Corollary 1.5 was proved
by an analogous covering trick if the regular fibers X are tori. In fact, these
papers establish a close analog of Corollary 1.3, where the collapsing product
metrics wy get replaced by carefully constructed collapsing semi-flat metrics
22, 23, 25, 27, 30, 54].

If Y is not a torus, this covering trick is no longer available. The philoso-
phy of the present paper is to instead use separation of variables, expanding
(Aga+ef Ay )-harmonic functions v on B x Y according to the eigenfunctions
of Ay on each fiber {z} x Y. This suggests that we might expect that

o
sup ]Dkv\gt < C’kﬁef)‘gmek% sup |v|
Bi_.xXY BxY

for all k € Nand 0 < € < 1, where A > 0 and A? denotes the first positive
eigenvalue of Ay. This idea is the basic source of all the new estimates in
this paper, but a great deal of technical work is required to make this idea
sufficiently precise even at the linear level (cf. Section 1.5).

Remark 1.9. We can also compare Theorem 1.1 to a formally identical
equation that arises naturally in Kahler geometry where 0Y # (), and where
(1.4) and higher order estimates fail even though the C*! norm of the po-
tential remains bounded. Indeed, let (X", w) be a closed Kéhler manifold.
Let 3 be a closed annulus in C, with coordinate z. Let w : X x ¥ — X be
the projection, and let g, ¢1 be two w-psh functions on X. For € > 0, an
e-geodesic connecting g and (7 is a smooth function ¢, on X x 3 such that
T*w +eidz A dZ 4+ 100D, > 0, O, is equal to ¢y on one boundary component
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of X x X (where (g is taken to be constant on the S! factor) and to ¢; on
the other, and it solves

(1.15) (T*w + gidz A dZ +i00®.)" T = en*w" Aidz A dZ.

These e-geodesics always exist thanks to [9] (see [2] for a good exposition),
and formally this equation is the same as (1.3) where € corresponds to e,
the Y factor is replaced by ¥ and C™ by X. Since the boundary data is
S1 invariant, a maximum principle argument shows that so is ®., and so in
the ¥ factor it only depends on r = |z|. However, unless @9 — ¢1 = const,
in general only the C'! norm of ®. remains uniformly bounded as ¢ — 0,
while higher order derivatives blow up, see [12] and references therein. But in
this situation the analog of (1.4) already fails: we claim that if it is satisfied
uniformly in €, then ¢y — ¢1 = const. Indeed, it is enough to just assume
that

(1.16) W + gidz A dZ + 100D, > C ' rtw,

on X x X for some C independent of £, which is much weaker than the analog
of (1.4). Observe that it follows from (1.16) together with (1.15) that

0 < (*w + gidz A dZ + i009. ) | <5 < Ceidz A dz,
for all z € X and ¢ > 0. Thus,

sup || < Ce,
X

where dots denote derivatives with respect to r, so the Ch! limit & =
lim,_,o ®, satisfies d = 0 a.e. and hence is a trivial geodesic, which implies
that ¢ and ¢ only differ by a constant.

It is perhaps worth remarking that this failure of (1.16) appears to be a
genuine “boundary” issue. Indeed, note that in the setting of Corollary 1.5,
the analog of (1.4) or (1.16) is (1.11), and was proved in [46, Lemma 3.1]
(cf. [42]) using a Yau Schwarz lemma argument [60]. If we try to imitate the
same computation in the e-geodesic setting, aiming to prove (1.16), we get

(1.17) A% (log tr*s (m*w) — AD.) > tr¥* (7*w) — C,

where A, C' are uniform constants (A is sufficiently large) and we have set
we = T'w+eidz ANdZ+i00P.. Now suppose that ¢g— 1 # const, so that the
estimate tr¥s(m*w) < C (which is equivalent to (1.16)) cannot possibly hold
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with a uniform C, as shown above. Since supy s |®:| < C by [9], the max-
imum principle applied to (1.17) tells us that sup x5 (log tr*= (7*w) — Ad,)
must eventually be achieved on the boundary (and then sup y, g5, tr*s (7*w)
must of course blow up as ¢ — 0).

1.5. Overview of the proofs (part 2)

As we already said, Theorems 1.1 and 1.4 will be proved by contradiction,
and in the previous subsection we explained the source of the contradic-
tion (separation of variables, relying on the fact that the fibers have no
boundary). We will now explain the structure of the blowup argument more
carefully. If the desired estimates do not hold, we obtain a sequence of so-
lutions where the desired quantity blows up to infinity. We then distinguish
three cases according to whether this quantity blows up faster than the
“natural” parameter e!, at the same rate, or slower. Rescaling our setting
appropriately, we obtain as blowup limit spaces C"™*™ C™ x Y and C™ in
the three cases respectively, and our Ricci-flat metrics converge in a suit-
able sense to Ricci-flat metrics on these spaces which are not “trivial” but
are uniformly equivalent to the obvious model metrics in each case. (The
fact that the limit metric is Ricci-flat is not obvious in the C™ case but
was already proved in [46].) This contradicts certain Liouville theorems for
Ricci-flat Kéhler metrics, which are standard on C"™*" and C™ [40], but in
the C™ x Y case were only proved relatively recently in [28, 37].

In [11] the usual Liouville theorem for Ricci-flat Kithler metrics on C¢
was used to prove the Evans-Krylov estimate for the complex Monge- Ampere
equation on a ball in C¢ by blowup and contradiction. This corresponds to
the rapidly forming case with blowup limit C™™" in our setting, although
here we are happy to assume Evans-Krylov to simplify matters. The “nat-
ural” case with blowup limit C™ x Y is then reasonably similar to the first
case, given the new Liouville theorem on C™ x Y from [28, 37]. Thus, for us,
almost all of the difficulty is concentrated in the slowly forming case with
limit C™.

More specifically, it is a priori unclear in this case how to prove that the
collapsing Ricci-flat metrics pass to the limit in a sufficiently strong topol-
ogy to ensure that their limit is not flat. We overcome this issue using a
combination of two arguments. First of all, we prove a sharp new Schauder
estimate for the Laplacian on balls of arbitrary radii in C" x Y. This is itself
proved by blowup and contradiction in the spirit of [29, 41], where again the
same three cases arise as in the overall nonlinear argument. (The collapsing
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case with limit space C™ is again the hardest case here and suffers from sim-
ilar “weak convergence” issues as the collapsing case in the overall nonlinear
argument. However, these issues are less severe in the linear setting, which
prevents a logical cycle.) The use of this Schauder estimate is to slightly
improve the regularity of the collapsing Ricci-flat metrics. But since this im-
proved regularity is itself measured with respect to a collapsing rather than
a fixed reference metric, there is no obvious version of the Ascoli-Arzela
theorem for tensors that would imply convergence in a sufficiently strong
topology. Our second key argument (after the linear Schauder estimates)
overcomes this final issue by exploiting the Kéahler property of the metrics
wy in a delicate manner (precisely, the fact that they can be written as the
derivative of another tensor after subtracting a suitable reference metric).
In essence, this is also what is needed to pass to a contradictory limit on
C™ in the collapsing case of the linear Schauder theory. See Lemma 3.3 and
Proposition 5.5 for this crucial “exactness” argument.

This outline covers both Theorems 1.1 and 1.4. However, whereas the
proof of Theorem 1.1 follows this outline rather closely, the proof of Theorem
1.4 is more involved. Most importantly, if the complex structure is not a
product, it turns out that there is no clean way to isolate the required linear
Schauder theory as a separate step; instead, the three cases of the linear
blowup argument must be carried out as a nested sub-step within the third
case of the nonlinear blowup argument.

Remark 1.10. As in [18, 51] (see also [49, §5.14]), we expect that the
methods we introduced in this paper in the elliptic context (including the
Schauder estimates of Section 3) will adapt to the parabolic context, with
the aim of proving analogs of Corollaries 1.3 and 1.5 for the Kahler-Ricci
flow on compact Kéhler manifolds with semiample canonical bundle and
intermediate Kodaira dimension.

Remark 1.11. In this direction, let us also point out that Theorems 1.1 and
1.4 do not rely on the Ricci-flatness of wy in any deep differential-geometric
way. All we use in the proofs is that the fibers of f are Calabi-Yau man-
ifolds and that the Kéhler metrics wy satisfy the Monge-Ampere equation
(1.3) (resp. (1.10)) with the function F' (resp. G) pulled back from B. This
does not in general imply that w; is Ricci-flat (it does imply that its Ricci
curvature is a pullback from B), but in our arguments these properties suffice
to conclude that the limit metrics obtained after blowup (on C™*" C™ x YV
or C™) are in fact Ricci-flat, contradicting the appropriate Liouville theo-
rems for Ricci-flat metrics. Since our main geometric applications concern
Calabi-Yau manifolds, we will not belabor this point.
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1.6. Organization of the paper

Section 2 gathers some local estimates and Liouville theorems for Ricci-flat
metrics from the literature and adapts them slightly to fit our needs. The
first new technical ingredient, proved in Section 3, is a Schauder estimate
on balls in Riemannian cylinders R? x Y (here Y is an arbitrary closed
manifold), with sharp dependence of the constants on the radius of the
ball. For convenience, and to highlight exactly what the ingredients are,
we prove this estimate in a general framework in Theorem 3.8, which we
then specialize to i00-exact real (1, 1)-forms in Theorem 3.13 and to scalar
functions in Theorem 3.14. Theorem 1.1 is proved in Section 4, via a blowup
argument and using the local estimates and Liouville theorems of Section
2 and the Schauder estimates of Section 3. Section 5 contains the proof of
Theorem 1.4, which is similar in spirit to the proof of Theorem 1.1 but
requires new ideas because of the varying fiberwise complex structures. In
particular, instead of using the ready-made Schauder Theorems 3.13 or 3.14,
we will go back to the general Schauder Theorem 3.8 and use the key steps of
its proof as ingredients of the overall proof of Theorem 1.4. Lastly Corollaries
1.3 and 1.5 are quickly derived from Theorems 1.1 and 1.4 respectively in
Section 6.
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2. Local estimates and Liouville theorems for Ricci-flat
metrics

In this section we gather together some known results and adapt them
slightly to our purposes.
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2.1. Local estimates

To start, we recall the following local C*° bounds for Ricci-flat Kéhler
metrics, which go back to [59] and appear explicitly e.g. in [30, Sections
3.2, 3.3] and [53, Lemma 2.2]. These can be proved using the methods of
[4, 5, 45, 55, 59, 57] and of elliptic bootstrapping.

Proposition 2.1. For all d,k € N>; and A > 1, there exists a constant
Cr = Ci(d, A) such that the following holds. Let B1(0) denote the unit ball in
C? together with the standard Euclidean Kdhler form wea. If w is a Ricci-flat
Kahler form on B1(0) such that

(2.1) Ail(,U(Cd <w < Awgad,
then it holds for all k € N>y that

(2.2) lwoller (85,400 < Cre

We also need a uniform version of these estimates for mildly varying
families of complex structures. For this and also for some later purposes,
a version of the Newlander-Nirenberg theorem is required. We follow the
approach of [31, §5.7], which in turn originated from [34, §12].

Proposition 2.2. For all d,k € N1 and 0 < o < 1, there exist kg =
ko(d,a) > 0 and Cy = Ci(d,«) such that the following holds. Let J be a
complex structure on the unit ball B1(0) C C? with

(2.3) | — Jeallora(py o)) < &

for some k € (0,kq). Then there exist J-holomorphic coordinates 3',. .., 34
on Bs;,(0) such that

(2.4) 129 — zj||cz,a(33/4(0)) < Cik forall j € {1,...,d},

where 2%, ..., 2% are the standard coordinates on C*. Moreover, if we assume

in addition that
(2.5) 17 = Jeallcre(pioy < A

for some k > 2 and some constant A, then these coordinates may be chosen
to also satisfy

(26) ”2?J - Zj|’0k+1,a(B3/4(0)) < CkA fOT’ all j S {1, cee ,d}



698 Hans-Joachim Hein and Valentino Tosatti

Proof. First of all, a simple local calculation [50, p. 443] shows that for any
C? function u we have

(2.7) 10’8 u = (D*uv)’” + J ® DJ ® Du,

where (D?u)” is the J-invariant part of the coordinate Hessian of u and
® is a tensorial contraction. It follows that if J and Jgca« are sufficiently
C! close (depending at worst on d), then the function |z|? is still strictly
J-psh on Bi(0). Thus, by using Hérmander’s L? estimates (cf. [31, proof
of Thm 5.7.4], and in particular [31, Lemma 5.7.1]), we obtain functions
w € W,-2(B;(0)) such that

1 2.2 (B o (0)) < O
and 97 (27 +u/) = 0 holds in the weak sense. Now consider the operator
L(u) = tr*c (107 07 ).

This is elliptic because of the C° closeness of J and Jga. In fact, the second-
order coefficients of L are close to the identity in C1*, and the first-order
coefficients of L are small in C%, by (2.7). Moreover, by construction, the
distribution L(u/) = —L(27) lies in C® with

IL(W) || co (B (0)) < Ck-

The second-order part of L can be written in divergence form without loss
because its coefficients are close to the identity in C1®. By [39, Thm 5.5.3(b),
p. 153] with ¢ = 2 (see [39, p. 151] for definitions), v/ € CL:*(B1(0)) for any
p € (0,1), allowing us to absorb the first-order terms of L(u?) into the
right- hand side. By [19, Thm 5.20], v/ € C%%(B1(0)). Thus, by any version

loc
of Schauder theory,

(L)oo (B o)) + 16 | L (B, s (0)))
K+ Cllw! || LB, 5(0))-

[0 [|c2.0 By, 40)) < C
<C
Finally, by [20, Thm 8.17] (which is implicit in the above references to [19,
39)),

167]] Lo (B, 5 (0)) < CllU || 128y 10(0)) < C-

In particular, the functions 2/ = 2/ + «/ are indeed coordinates because
their gradients are pointwise linearly independent. This proves the first part
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of the statement. If we assume in addition that (2.5) holds, it follows that
the same functions u/ as above satisfy || L(u?)||cr-1.0(p,(0)) < CA and that
the coefficients of L are bounded in C**, so the claim again follows from
Schauder theory. O

With these preparations, we can now easily prove the required uniform
local estimate for Ricci-flat Kéhler metrics with respect to a mildly varying
family of complex structures.

Proposition 2.3. For all d,k € N>, 0 < o < 1, and A > 1, there exist
constants kg = ko(d,a) > 0 and Cy = Ci(d,a, A) such that the follow-
ing holds. Let B1(0) denote the unit ball in C? together with the standard
Euclidean metric gca. Let J be a complex structure on By1(0) such that

(2.8) ||J— J(Cd”Cl,a(Bl(O)) < ko and ||J— J(cdHCk,a(Bl(O)) < A.

If g is a Ricci-flat J-Kdahler metric on B1(0) that satisfies

(2.9) A7 gea < g < Ages,

then it holds for the same k as in (2.8) that

(2.10) 19]lor.a (B, 2(0)) < Ch-

Proof. Proposition 2.2 yields J-holomorphic coordinates on Bs,4(0) close to
the standard ones in C%® (as close as we like if we are willing to decrease
ko), and differing from them by a bounded amount in C¥*1®, We can then
simply apply Proposition 2.1 in these new coordinates to get C* bounds for
g for all £ > 1 and translate these bounds back to the standard coordinates
to get (2.10). O

2.2. Liouville theorems

Recall the following well-known Liouville theorem (cf. [40, Thm 2]).

Theorem 2.4. Let w be a Ricci-flat Kahler form on C™ such that
(2.11) C twem < w < Cwem

for some constant C' > 1, where we s the standard Kdhler form on C™.
Then w is constant.
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Proof. For convenience, here is a simple proof. Let § = |[V¢" g|£2]7 where
VC™ is the covariant derivative of the Euclidean metric wen. Choose a
cutoff function p which is supported in Bspg, is identically 1 on Bpg, and
has \V‘Cmp@m < C/R? and A% (p?) > —C/R?. Thanks to (2.11), similar
bounds hold if gcm is replaced by g. A well-known calculation using Calabi’s

C3 estimate (see e.g. [30]) gives

C

AI(pS) > SAI(p?) — 8S|VIpf2 > — 8.

On the other hand, using Yau’s C? estimate calculation and again (2.11),
AY(tr9m g) > C718.

It follows from this that

¢ gem
AI (pZS + ﬁtrgc g) >0,
so supg, S < C/ R? by the maximum principle, and hence S = 0 by letting
R — oo. Il

Instead of the Calabi-Yau C? and C? computations [5, 59], one can also
prove Theorem 2.4 by using the theories of Evans-Krylov [55] or Caffarelli
[4]. An elegant new proof of Theorem 2.4 that does not rely on any of
these methods was very recently given in [37]. In fact, combining this new
approach with the blowup argument of [11] leads to a new way of proving
the Evans-Krylov estimate for the complex Monge-Ampere equation which
is completely independent of [4, 5, 55, 59].

In [53, p. 2937] the following straightforward generalization of Theorem
2.4 was proved.

Theorem 2.5. Let (Y,wy) be a compact Ricci-flat Kahler manifold without
boundary. Let wem be the standard Kdhler form on C™. Let w = wem +wy +
i00u for some smooth function u be a Ricci-flat Kihler form on C™ x Y
such that for some C > 1,

(2.12) C_l((.U(Cm +wy) < w < Clwem + wy).

If wlgzyxy = wy for all z € C™, then w is the product of a constant Kdhler
form on C™ with wy .
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Proof. By assumption, (i85U)|{Z}XY = 0 for all 2 € C™, s0 ul{yxy is a
constant (depending on z), so u is the pullback of some smooth function on
C™. Then & = wem + 100u is a Kahler form on C™ and w = & + wy is a
product Kihler form. Clearly & is Ricci-flat, and it satisfies C~twem < & <
Cwem by (2.12). Thus, @ is constant by Theorem 2.4. O

More recently, the first-named author proved the following stronger re-
sult [28]. A simpler proof was given slightly later in [37], using the same
elegant idea that led to a new proof of Theorem 2.4.

Theorem 2.6. Let (Y,wy) be a compact Ricci-flat Kdhler manifold without
boundary. Let wem be the standard Kdahler form on C™. Let w be a Ricci-flat
Kahler form on C™ X Y that satisfies

(2.13) C Y wy 4+ wen) < w < C(wy + wen)

for some C' > 1. Choosing wy suitably, we may assume that w is d-cohomo-
logous to wem + wy . Then, after changing w by a biholomorphism, w is the
product of wy and a constant Kdhler form on C™. The biholomorphism is
the identity if and only if w is i00-cohomologous to wem + wy, and w is
parallel with respect to wem + wy even before applying the biholomorphism.

It is instructive to see why the proof of Theorem 2.4 breaks down in
the situation of Theorem 2.6. The fundamental reason is that in the Calabi-
type calculation for the Laplacian of | V9™ T9v glg, there are some new terms
coming from the Riemann curvature tensor of gy if Y is not flat that destroy
the maximum principle argument above. As observed in [53, Thm 1.1] (cf.
[51, Prop 4.8]), partial bounds on V9" T9v g can be obtained by stretching
out the base directions. In particular, this method controls the “all fibers”
component of this tensor, but is unable to prove a uniform bound for the “all
base” component. Now one might suspect that there are ways of improving
the Calabi C® quantity by taking the holomorphic product structure of
C™ x Y into account, but some bad terms remain. Specifically, if we let
‘P denote the projection operator onto the base tangent directions, and let
wp = wem + wy, then we might for instance consider the quantity S = ]\I/\f],
where W is the tensor obtained by composing V97¢g with P in all three
arguments. Bounding S would indeed bound the “all base” component of
V97 g. However, A9S still contains some bad terms due to the fact that VIP
need not vanish.

Nevertheless, in the setting of compact Calabi-Yau manifolds of Corol-
laries 1.3 and 1.5, it follows from the main theorem of [51] that after applying

a base stretching diffeomorphism, the metrics e'w! converge smoothly to a
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Ricci-flat metric on C™ x Y that does satisfy the hypotheses of Theorem 2.5,
and therefore must split as a product (this was observed in [53]). In the local
setting of Theorems 1.1 and 1.4, the global techniques of [51] do not apply,
so Theorem 2.6 must be used instead to recover the conclusions of [53]. The
basic idea of the present paper is that by pushing this approach to its limit,
full higher-order estimates for collapsing Calabi-Yau metrics can be proved
without using any Calabi-type calculations whatsoever (except for the stan-
dard local ones, or their counterparts in [4, 55|, that lead to Proposition
2.1, although again even these can be avoided by using [11, 37]), hence in
particular without using any of the results of [51] (which only apply in the
compact setting anyway).

3. Schauder estimates on cylinders
3.1. Technical preliminaries

Definition 3.1. Let (X, g) be a complete Riemannian manifold. Let £ — X
be a vector bundle on X with a fiber metric h and an h-preserving connection
V. If z,2/ € X and if there is a unique minimal g-geodesic v joining x to
x', then we let PY , denote V-parallel transport on E along 7. If there is
no unique minimal g-geodesic v from z to 2/, then PY_, is undefined. Let
BY(p, R) be the g-geodesic ball of radius R > 0 centered at p € X. Then we
define

B o(z) = P5(0(2") @)
(Tlce 5oy, = sup (2, 7)° :

(3.1)

xx’

r,7' € BI9(p,R), x #2', P?_, is deﬁned}

for all sections o € C{ .(BY(x,2R), E). Here we implicitly used the simple
fact that if v is a minimal g-geodesic connecting two points z, 2’ € BI(p, R),
then 7 is contained in BY(p,2R).

Our notation (3.1) suppresses h and V, but in practice (E,h,V) will
be derived from (T'X, g, VY) in some natural way, so that the C* seminorm
(3.1) is actually completely determined by ¢. In a small number of special
cases we will slightly modify (3.1) by replacing BY(p, R) by some open set U
which is not a g-ball but is g-geodesically convez; in these cases, it is enough
for o to be defined and C}}, on U, and we will write [0]ca(y,) to indicate
the dependence of the seminorm on g.
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Remark 3.2. We will use several times the simple observation that if
[0]ca(B) = 0 for some geodesic ball B C X, then o is parallel on B, so
in particular ¢ is smooth on B and Vo =0 on B.

The following lemma is one of the cornerstones of the whole paper.

Lemma 3.3. Let Y be a compact Riemannian manifold without boundary.
Let E be a metric vector bundle over Y with a metric connection V. Then
for all k € Nxq, a € (0,1) there exists a constant Cy, = Ci(Y, E, o) such
that for all o € CH*(Y, E),

(3.2) Vol =) < Cr[VFo] ey

Proof. 1t is enough to prove this for k = 1. Indeed, if this is known for £ = 1,
then for all £ > 2 and j € {1,...,k}, the k = 1 case applied to the section
Vi~lg of (T*Y)®U~1 @ E tells us that

V70| vy < Cj[VI0]ga(y).-
Moreover, for all j € {1,...,k — 1} it is easy to see that
[VI0]gayy < Cill Vo | oo vy

The claim then follows by iteration, and it remains to prove the base case
k=1.

To this end, define P = {0 € CY*(Y,E) : Vo = 0}. Then dim P < oo
and P C C*(Y, E). Let 7 be the L2-orthogonal projection onto P. Suppose
the lemma fails for £ = 1. Then there exists a sequence o; € C1*(Y, E) with
[Voiloavy < %HVO'iHLoo(y). Replacing o; by 0; —7(0;), we may assume that
o; € kerm. Dividing o; by [|[Voil|p=(y) > 0, we may further assume that
Vil L vy = 1.

Claim. There exists a constant C' such that ||oy[[z(y) < C for all 4.

Proof of the Claim. Suppose that this is false. Then we may assume that
ol > i. Dividing o; by |[[oil|1=(y), we may further assume that
loillL=ny = 1, IVoillp=vy < %, and [Voilca(yy < #. By passing to
a subsequence, we may then also assume that o; converges to some o €
C1(Y, E) in the C1¥ sense for all 8 < a. By construction, this limit satis-
fies [0 vy =1, Vo = 0, and o € ker 7. By the second and third of these
properties, o € P Nkerm = {0}, which contradicts the first. O
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Given the claim, and passing to a subsequence if needed, we may now
assume that o; converges to some o € C*(Y, E) in the C1# topology for
every B < a. By construction, this limit o satisfies the following properties:
[Volcey) = 0, Vol ey =1, and o € kerm. The first property implies
that o is smooth with VVo = 0. Thus, relying crucially on the fact that
Y =1,

/YVUP :/Y<a,v*va> _ —/Y<a,tr(vva)> _

This implies that Vo = 0, which contradicts the second property of 0. [

Next, we have the following iteration lemma, which will also be used
many times over.

Lemma 3.4. For all0 < e <1, f1 < ... < By, and v1 < ... < Ym, there
exists a constant C such that the following holds. Let fi,..., fr :[0,T] = R
be bounded nonnegative functions such that

m

k k
33) D (R=p)"fi(p) <ed (R—p)" f;(R)+ Y AR —p)"
7=1

J=1 {=1

for some Aq,...,Am = 0 and for all0 < p < R T. Then for all0 < p <
RLT,

m

k
(3.4) S (R-p)"fi(p) <CD AR p).
7j=1 /=1

Proof. This is a minor extension of [19, Lemma 8.18]. Observe that by multi-
plying (3.3) and (3.4) by (R—p) ™%, we may assume without loss of generality
that 81 = 0.

Given 7 € (0,1), define pg = p and pi+1 = p; + 7(1 — 7)(R — p) for all
i € N. Also define

k
Pi=) [ =1)(R - p)” f;(pi), ZAe (1—=7)(R—p)]".
7=1

Applying (3.3) with p;, p;+1 in place of p, R, we get

P <er PP+ Qi < 0Pyt + Q
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for any fixed § € (g,1), provided that 7 > (g/8)Y/% if B, > 0. Thus, by
iteration,

k
(L=7)"> (R—=p)" f;(p) < Py
7j=1

< liminf (6™ Py 4+ Qo + 0Q1 + -+ + 5'Qy).
1— 00
The sequence Pj11 is bounded because each f; is bounded and 8; > 0. On
the other hand,

O'Qi < (@TM) (1 =7 Y AR —p)"
=1

which is summable provided that 7 > 6/l if 5, < 0. O

The following lemma provides a precise interpolation inequality on Rie-
mannian cylinders.

Lemma 3.5. Let (Y, gy) be a compact Riemannian manifold without bound-
ary. Let E —'Y be a metric vector bundle with a metric connection V. Fx-
tend E trivially to RY x Y and extend V by adding VX', Let gp = gra + gy
on R x Y. Then for allk € N>1, a € (0,1) there is a Cy = Cy(a) such that

k
(3.5) Y (B = pY IVl e (or (p,p))
7j=1

< Cr((R = p)* (V¥ 0] a(or (o.r)) + |0l L (Bor (0.R)))

forallpeRI*xY,0<p<R, and o € Cfff(BgP(p, 2R), E).

Proof. Aiming to apply Lemma 3.4, for j € {1,...,k} define 8; = j and
fi(p) = IV || L (Bor (p,p))- In order to prove an inequality of the form (3.3),
consider the following three cases.

Case 1: R—p < inj(Y). Fixany j € {1,...,k} and write 7 = V/~lo. Fix any
x € B9%(p,p). Let v be a unit tangent vector at = maximizing the quantity
|(VwT)(z)] among all unit tangent vectors w at z. Let y(t) = exp$’ (tv).
This curve is the unique length minimizer between any two of its points as
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long as [t| < R — p. Let 2’ = ~(¢) for £ = e(R — p) and € € (0,1). Then

J4
@) = PL) = [ 5P (=) d

l
—— [P (Vs = )]
We can rewrite the last integrand as (V,7)(x) 4+ ¢ (t), where for all ¢ € [0, £],
|w(t)| < [v’;]C'C‘(BgP (x,é—t))(g - t)a for all ‘7:7
VAT oo (Bor (z,0—1)) (€ — 1) forall j < k.

Here we have used the definition of the C'% seminorm and the fact that
V474 = 0. This leads to

Itafyyi «(Bap f 117
avﬂ(x)\<rT<x>r+Pia<r<x’>>\+{” V2olon ey forall g

C€2||V2THLOO(BQP(p7p+€)) for all j < k.
Taking the sup over all x € B97(p, p), we deduce that

C’gl—’_a[vjo-:lCa(BgP(p’p_’_Z)) for all j,

(3.6) Lfi(p) < Cfj_1(p+10) + {ijﬂ(p ) for all j < k.

Thus, working backwards from j = k to j = 1, decreasing and renaming &
in each step,

& k

Z R—p Jf] Z jf]

7j=1
+ 5(R — p)k+a [VkU]CQ(BgP(p,R))
+ Celloll Lo (Bor (p,R))-

(3.7)

This is the desired inequality of type (3.3). Here ¢ € (0,1) is arbitrary.

Case 2: R—p € [inj(Y), 10 diam(Y")]. This case can be reduced to Case 1. Let
R’ = p+3inj(Y) and apply Case 1 to the pair of radii (p, R) instead of (p, R).
In (3.5) with R replaced with R’, notice that trivially B9 (z, R') C B9 (x, R)
and (R’ — p)¥** < (R — p)**%, so in order to obtain (3.5) as written we
only need to observe that (R’ — p)? > (inj(Y)/20diam(Y))’(R — p)’ for
j=1,... k.
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Case 3: R — p > 10diam(Y'). Using the same idea as in Case 1, we can
prove that (3.6) still holds with £f;(p) replaced by €|V, V? 1o || (5 p)) on
the left-hand side. (Here and below, a subscript b and f denotes covariant
derivatives in the base and fiber directions, respectively.) This is because we
can take 7 to be a horizontal line in this case, which is then the unique length
minimizer between any two of its points. On the other hand, by Lemma 3.3,
for all x € B9 (p, p),

(VeVI~Lo)(z)] < C[VE 7'V 1 0] ey, gv) < CIVR0l0a(Bor (n.1)):

where Y, denotes the fiber through x, and Y, C B9 (p, R) because R — p >
diam(Y’). Proceeding as in Case 1 (working backwards from j = k and
making use of the safety factor 10), we get

k k
Y (R=0)fi(p) <& (R—p) fi(R) + Co(B — p)* [V 0] (Bor (o)
7j=1 Jj=1

+ Cello|| Lo (Bar (p,r))-

Notice that unlike in (3.7), the constant in front of the [V¥o]ca term is C.
rather than e.

Lemma 3.5 now follows from Lemma 3.4. O

Our final lemma allows us to compare Holder norms with respect to
different metrics. One key point here is that C“ seminorms are rarely ever
uniformly comparable, but the full C'“ norms often are.

Lemma 3.6. For all d,q € N, A > 1, a € (0,1) there exists a constant
C =0C(d,q,A,a) > 1 such that the following holds. Let g be a Riemannian
metric on the unit ball B9 (0,1) C R? such that

(3.8) A7 gpa < g < Agpa,
V9% gl g + (V39 glg, < A

Then for all tensors T of rank q defined on B%+(0,1) and for all z,2' €
BI(0,071),

T(@) ~ Pa(T@lg)  ,T(@) — PT(T(2))
(3.10) dd(z, z")e = d9=a (z, x')®
+ C|T|| o (B2 (0,1))

|gea (2)
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Moreover, for all x,z' € B9%(0,C~2), a similar estimate holds with g and
gra interchanged and with the L™ norm of T over BI(0,C~1) on the right-
hand side. In particular, it follows that

(3.11) || Tllcepost0,0-2)) < ClTllcaBs(o,0-1)) < C2lIT | oo (poa 0,1))-

Proof. Choose C so large that B9 (0,C~2) C BY(0,C~') c B%(0,1) and
BY(0,C~1) is convex with respect to g. The latter is possible thanks to [7,
Thm 5.14] combined with [8, Thm 4.3], noting that all the relevant quantities
of [7, 8] are suitably bounded thanks to (3.8), (3.9). Then pick any two
distinet points z, 2’ € B9(0,C~1). By our choice of C there exists a unique
minimal g-geodesic v from 2’ to x, and + is contained in BY(0, C~1). In order
to compare the g-Holder difference quotient of T at x,xz’ to the standard
Euclidean one, it suffices to estimate the quantity

[P(T (")) — PF(T(a"))

|gea (@)
d9xd (z, /)™ ’

(3.12)

Expressing T in terms of the standard coordinates on R? and writing T
for the Christoffel symbols of g with respect to these coordinates, we can
obviously bound the numerator of (3.12) by

d9(z,x")
/ dpmt (09, (T())dl
0

gga (@)

9y /)
< [T O (T Dl .

Using (3.8), (3.9), and the fact that P9 is a g-isometry, it readily follows that
(3.12) is bounded by C' times the L> norm of T over B9 (0, 1). This proves
(3.10). The proof of the analogous inequality with g and gg« interchanged
is the same (note that the restriction that x,2’ € BY%(0,C~2) is artificial
and simply serves to make the statement of (3.11) more symmetric). O

Remark 3.7. We will also often use the following remark, which is related
to Lemma 3.6 but is easier and slightly more standard. If a sequence of Rie-
mannian metrics g; converges to a limiting metric goo in C*, if T} are tensors
converging uniformly to T, if z;, ) are points converging to o, 2, and
if z;, 2, can be joined by a unique minimal g;-geodesic +;, then v; converges
to a minimal g.-geodesic Yoo (this is clear) and P T converges to P§x T
(this is true because we have a sequence of ODEs on a convergent sequence
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of time intervals, with convergent initial values and with coefficient functions
that converge uniformly). If in addition z, 2., can be joined by a unique
minimal geodesic with respect to g, then of course v is that geodesic and

Pi*Ty = Pgi: e Too-
3.2. An abstract Schauder estimate on cylinders

Throughout this section, (Y, gy') will denote a compact Riemannian manifold
of dimension e without boundary. We consider the cylinder R? x Y endowed
with the product metric gp = gra + gy. (Formally d, e = 0 are possible.) As
usual, r denotes a Euclidean radius function on R% or R%+¢. Given a metric
g, we define LY = d + ¢9 acting on ¢-forms of some fixed degree q. We will
use the intrinsic Definition 3.1 of the Holder seminorms.

With these conventions understood, our main result may be stated as
follows.

Theorem 3.8. Let k € N>; and 0 < a <1 be given. Let S be a presheaf of
vector spaces of q-forms of class CF:% on R x Y such that the following two
properties hold.

(1) IfU; is an exhaustion of RYxY by open sets and if n; € S(U;) converge
t0 Moo € C(RE X Y) in CEP for some B < «, then N € S(RY x Y).

(2) Ifn € SRIxY), |VF9rq|,, = O(r®), and V¥=197 L971 is gp-parallel,
then VFEThory =0,

Then there exists a C > 0 such that for allp € R*xY, 0 < p < R, and
n € 8(B (p,2R)),

(V597 0] g (Bar (po)) < CVF 197 LIP ] g (Bae (. 1))
(3.13)
+

(R = p) "0l L~ (Bor (o,R)))-

For clarity we isolate the main step of the proof of Theorem 3.8 as a
separate proposition.

Proposition 3.9. Under the assumptions of Theorem 3.8, for alle > 0 there
exist 69, C > 0 such that for allp € R x Y, R >0, n € S(B9 (p,2R)), and
0 < d <9,

[vk,gpn]Ca(ng (p,5R)) g €[vk,9Pn]C“(BHP (P,R))

(3.14) + C[Vkil’gPLan]ca(B.qp(p7R))

k
+ Z CRFH =797 || Lo (or (s R)) -
j=0
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Theorem 3.8 follows quickly from this.

Proof of Theorem 3.8. Fix an € € (0, ;5] and obtain § = min{5,d} and
C from Proposition 3.9. Let z,2’ € B9 (p,p) have a unique gp-minimal
geodesic connecting them. If d97 (z,2") < §(R — p), then Proposition 3.9
(applied to B97 (z, R — p) instead of B97(p, R)) allows us to estimate the C*
difference quotient of V*97y at x,z’. If d97 (x,2") > §(R — p), we estimate

this difference quotient trivially, at the expense of an additional term
- k
2(6(R = p)) " “IV®I || oo (Bor (p,p))

on the right-hand side. Thus, for all 0 < ¢ < 1—10 there exist §,C > 0 with
0 < % such that

(V™97 0o (gor p,p0) < EIVE N 0n(or o, my) + CIVETH9 L] co(por (5, )
k

+ Z C(R = p) V997 || oo (Bor (p.pt-5(R—p)))
=0

forallp € RIxY,0 < p < R, and n € S(B9 (p,2R)). Lemma 3.5 (with p, R
replaced by p+8(R—p), p+(5+6")(R—p) for some &' € (0, ;5] small enough
so that C(6')* < €) lets us remove the || V7977~ terms with j > 0 from
the right-hand side, and then Theorem 3.8 follows from Lemma 3.4. U

We will now prove Proposition 3.9, thereby completing the proof of The-
orem 3.8. We write AYX for the bundle of ¢-forms on a manifold X and AX
for the space of C{Zf sections of A?X.

Proof of Proposition 3.9. Suppose that the statement is false. Then there
exists an ¢ > 0 such that there exist sequences p; € R x Y, R; > 0,
n; € S(BI (pi, 2R;)), and 0 < §; < 1 such that

(3.15) 1= [V 0] ce(por (psir)) > EIVTI" 0] o (Bor (oo, R2)

(3.16) +A[VETRI LI o (par )
k
(3.17) + Y AR TN 0 e (e (o 6,10
=1

(We can always make the left-hand side of (3.15) equal to 1 by dividing 7;
by [Vk’ng]ga( Bor (ps,siRy)) > 0 if necessary.) Select x;,x; in the closure of
B97 (p;, §; R;) such that the supremum in the definition of the seminorm on
the left-hand side of (3.15) is attained at x;, z).
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It turns out to be very useful for the sake of deriving a contradiction to
pass from 7; to a certain modified sequence 7}, which we will now define. Let
L=1{neSRxY):Vklory =0}. Given a form 7 on a neighborhood of
z;, define its k-jet at x; by JEn = (n(z;), (VIPn)(2;), ..., (VF9Pn)(x;)), and
define its partial k-jet LJFn to be the gp(x;)-orthogonal projection of JFn
onto the space Jik (£). As Jf is injective on L, there exists a unique 775;t el
with an? = EJZ-kn? = LJFn;, and we can use this to define 1, = n; — 17? €
S(B97(p,2R;)). The idea of defining and using this partial k-jet comes from
[29]. The following claim states the key properties of 7,.

Claim 1. There exists a constant C' such that after passing to a subsequence,

(3.18) 1= V590 ca(Bor (p5,1) > (VP70 0n (Bor (o, 1)
[V LI G (or (. 1)
(3.19) the supremum on the LHS of (3.18) is attained at z;, ) as above,

k
(3.20) DIV i) @) gy < C.
=0

(In all of the following arguments, it will be necessary to pass to subsequences
or diagonal sequences many times, but we will often not mention this again
explicitly.)

Proof of Claim 1. Notice that (3.18), (3.19) are trivial from (3.15), (3.16) and
the definition of z;, 2} because 1, = n; —n;, where VkH’an? = 0 and hence
Vk’_lvg’)(Lgf’nf) = 0. Also, (3.20) is trivial from (3.17) as long as R; < C
because the orthogonal projection map onto JZ-’“(E)L is norm nonincreas-
ing. Thus, passing to a subsequence, it suffices to prove (3.20) under the
assumption that R; — oo.

Then let us assume that R; — oo, and assume for a contradiction that
k: .
(3:21) i =Y 1V 0 (@) gy () — 00

J=0

Now (3.18) implies in particular that

(3.22) (V97 1] o (Bor (2o (1-60) Re)) < [VF97 i) o (Bor iRy < 1/
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Thus, after translating the R%-factor if necessary, we may assume that z; —
Too € RYxY and that 7 = pu; 'n} converges to some g-form i, € C’llzca (R4 x
Y) in the C|] ”B sense for all 5 < a. Then
o VF9rj! is gp-parallel by (3.22) (so in particular, 7., is smooth),
o7l € S(Rd X Y) by Assumption (1) of Theorem 3.8, and

o > io (V7974 )(ﬂfoo)lgp@w) = 1by (3.21).

In particular, it follows that 7, € £, and that LJE 7. = JE 7/ # 0 in the
obvious sense. However, EJZ”€ n; = 0 by construc‘mon, hence EJan; = 0 and
LJE A = 0. This is a contradiction. O

Let \; = d9% (x;,2}) ™1 > (26; R;)7*, rescale gp = )\;2@, =1 k= “nt,
and write p;, &;, &, instead of p;,x;, 2} to emphasize that these should be
viewed as points in rescaled spaces. Then

(3.23) = [VR90] oo 8o (g r m)) > €IV PP 0w (B3 (. A R))
[V LI e o 5,0 R))
(3.24) the LHS of (3.23) is attained at Z;, 7} with d% (&;, %)) = 1,
k
(3.25) D NI ) (#) 5,0, < C-
§=0

We would now like to take a pointed limit of the pointed spaces X; =
(R x Y, G, ;). Up to passing to a subsequence, one of the following three
cases must occur.

Case 1: \; — 0o. X; converges to (R gga:c,0) in the C>* Cheeger-
Gromov sense.

Dem’vmg a contradiction in Case 1. We aim to use (3.23) to get a limit
€ CFo(R4€) with 7, — 7., in CF? for all B < a. If this is possible, then
[Vk~ Jearatey < C thanks to (3.23) and Remark 3.7, so that |V*i | =
O(r®) at infinity, but also [V* L. ] cagese, = 0 by (3.23) and Remark 3.7,
where L now denotes the Euclidean d+ 6. In particular, the tensor V*~1L#’
is constant. Applying L to this equation, commuting L and V*~!, and using
the fact that L2 = A, it follows that A7’ = 0 if k = 1, and that A7 is
a polynomial of degree at most k — 2 if £ > 2. Thus, after subtracting a
polynomial of degree < k if k > 2, all coefficients of 7, are entire O(rF+e)
harmonic functions on R%*¢, hence are themselves polynomials of degree < k
by Liouville. This implies [vk’f]éo]Ca(Rd+e) = 0, in contradiction to the fact
that [VF7 ] e (ra+e) = 1 which follows from (3.24) by using Remark 3.7.
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The problem with this argument is that the e-term on the right-hand
side of (3.23) controls only the C*-seminorm of VkIiql (on BI (5;, \iRi) D
BI:(%;, (1 — 6;)A\;R;) D B9 (%;, %) for i > 3) rather than the full C**norm
of 7. Thus, we lack uniform bounds for |(VF9:41) (2;) 5@y 1T (F0) g, (30)
and the partial bounds of (3.25) are not enough for this. To ﬁx this, we will
use (3.25) to construct a new sequence 7]’ with the same good properties as
i, but with (V&94)(%;) = 0,...,7(Z;) = 0. Then it will be clear (thanks
to Lemma 3.6, which allows us to compare Holder norms with respect to a
fixed and a mildly varying metric) that the above argument applies to 7/ in
place of 7.

To construct 77, let x! ,x% ¢ be normal coordinates for gp centered
at x; such that

o9
‘ yx|2 min{27} for x| <2, 0<j <k+1.

@(QP(X)ab dab)| <

100

(Thanks to the compactness of Y, this can be achieved by rescaling gy by a
fixed constant if needed.) Define X/ = \;x7, so that X!, ...,%%" are normal
coordinates for g; centered at I; with

9i o max{2.5} S
< i S|12—min{2,5}
(3.26) a7 9P Rav = da)| < =55 IX]
for |x] <2X\;, 0<j<k+1.

Then let (7})f € A9(B%(i;, \;)) denote the k-th order Taylor polynomial
of 7} at Z; with respect to the coordinate system %! ..., %% and define
i = — (M) € AYBI (&4, \i))-

Claim 2. There is a C such that for all R > 0 there is an i € N such that
for all i > ip,

(VR34 oo 3.,m)) < (1/2) + C(N/R)*
[Vh- lgnglnz}Ca(Bg @) < (1/8) + C(Ni/R)*,
(V537 ) (@) = PL 5 (VP95 ()] 5.5 — 11 < CASTY,
(V]’g"m”)(fi) =0 forall j €{0,1,...,k}.

Proof of Claim 2. (3.30) is clear from the definition of 7'. We will now derive

(3.27), (3.28), (3.29) for ¢ > i from (3.23), (3.24) by using the auxiliary
estimates (3.25) and (3.26).
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The seminorms in (3.23) give control over
B9 (]51, AlRl) > BY: (i‘i, (1 - 52))\1RZ) > B9 (.%i, %)

for i > 3. Thus, as long as i > 3R, it makes sense to try to use (3.23) to
prove (3.27), (3.28) and (3.29). Since we are going to use (3.26), we also
need to choose i so large that ¢ > ig implies \; > max{2,2R}.

Since 7! = 7. — (7)), (3.27), (3.28), (3.29) would follow from (3.23),
(3.24) if we knew that

[VE9 (i) o (o1 (20,0 < C(Ni/p)*

for all p < A;/2. But this is fairly straightforward to prove by noting that
(V59 () ] o (B 31.))

a k+1 1 a|ﬂ‘n
R Ji
(8~ +F ( )) Be%’;re 5' ax/g (
1BI<k

< (2p)' 0 %:)°

%

’>?

Lo=(B (2,,2p))

and estimating the big L* norm by C)\Z.O‘*l, as follows.

(1) Schematically VT' = (0 +T')°T' = > 9™ ---9%I", where a; + - - - +
ag + ¢ = a+ 1 by counting the total number of ds and I's in each term of
a complete expansion of the left-hand side. Now 9°T' = O(\;"~1) by (3.26)
(we can do better for b = 0 but this is not useful), so VT = O(\;*"1).

(2) Writing 7, = 1, we have 0%y = (V — ')y = S Vil ... VoI . Ve
with by + - 4 by + £+ ¢ = b. Evaluating at X; and using Step (1) above and
(3.25), we get (3'n)(%;) = O(AF+o0),

(3) The expression we care about can be expanded to

(0 + D) 1((0°n) (%) (% — %)7) = (0Pl (3:) 30T - 0T - 0P (% — )",

where a1 + -+ ag+ £+ b=k + 1 again by counting the number of ds and
I's. The desired estimate now follows using that (91n)(%;) = O()\iﬁa_'m)
by Step (2) and 9°T = O(\; * 1) by (3.26). O

Remark 3.10. In the proofs of Schauder estimates by contradiction in
[29, 41], it was important that subtracting a possibly unbounded Taylor
polynomial changes neither [n] nor [Ln]. For example in [41] this meant that
the blowup argument could be applied only to constant coefficient operators.
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The idea of Claim 2 (that subtracting unbounded Taylor polynomials does
change [n] and [Ln] in general, but the errors may actually be manageable
in good cases) is taken from the proof of [44, Thm 2.8].

Case 2: \; = A\ € RT. X; converges to (R? x Y, )2 gp, (0,7s)) in the
standard C'*° sense.

Deriving a contradiction in Case 2. In Case 2, we have that the quanti-
ties |(V™90)(%:)|5,0)» - - - » |7(%:)|5,(7,) are uniformly bounded already by
(3.25), so we require no additional modifications of the 7. Thus, using
(3.23), (3.24), and N\;R; > i/2, we can pass to a limit 7., € ¢*(R? x Y)

with 7 — 7 in G52 for all 8 < a, [V Jcaixy gy # 0, [VF970 g, =

loc

O(r®), and [VF=19r LI e (RixY,gp) = 0 (here we also need to again apply
Lemma 3.6 and Remark 3.7 the same way we did in Case 1). In particu-
lar, 7, is in fact smooth by elliptic regularity, so that 7., € S(R? x Y) by
Assumption (1) of Theorem 3.8. Taken together, these properties obviously
contradict Assumption (2).

Case 3: )\; — 0. X; converges to (R?, ggs,0) in the Gromov-Hausdorff
sense.

Deriving a contradiction in Case 3. We begin by replacing g;, 7;, pi, Zi, Z; by

their pullbacks under the diffeomorphism (z,y) — (A;'z,y). Then (3.23),

(3.24), (3.25) remain unchanged, but we now have the useful property that

Gi = gra + A2gy — gra smoothly as tensors on R? x Y. Also, we can assume

as usual that #; — . € R? x Y by translating the R%factor if necessary.
Let us write 77, = Y _(7)" according to the decomposition

MR xY)= P MR @ AYY.
s+t=q

Let (7])t = A;*(77})!. We would now like to translate (3.23), (3.24), (3.25) into
analogous statements with respect to the fized reference metric gp = gra+9gy
for each rescaled component (7})".

The decomposition of 7, is g;-orthogonal at each point, and is invariant
under g;-parallel transport. Moreover, V9 = V97 (because the Levi-Civita
connection of a Riemannian product metric is invariant under scaling the
factors), and g; < Cgp. Thus, it follows directly from (3.23), (3.25) that

(3.31) [VE97 (@) T (Bor (31, 1) < C
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k
(3.32) DN () (@) o) < C
j=0
forallt € {0,...,e} and for all large enough i. Notice carefully that all norms

here are understood to be measured with respect to gp. To prove (3.31),
(3.32), one also needs to decompose V = V}, + V¢, where V = V9 = V9#
and the subscripts b and f denote base and fiber directions, respectively.
The lengths of Vi, (7})! and Vg(77]) scale differently when passing from §; to
gp, but in (3.31), (3.32) this is actually helpful because we only care about
upper bounds.

The following claim is needed to deal with (3.24) and with the LJ-part
of (3.23).

Claim 3. There exists a C such that \V?i VIiThai|s < C)\f_j+o‘ on B (Z;, 1)
forall j € {1,...,k} and for all large 4. In particular, since b and f covariant
derivatives commute, every j-fold covariant derivative of 7, with at least one
subscript f is locally O(/\f_j Y with respect to ;.

Proof of Claim 3. If i is large enough, then 7~ (w(B%(3;, 1))) C B%(;, 3)
where m : R? x Y — R? is the projection. Then for all z € m(B%(Z;, 1)),
viewing VI~ 1L.g: i1, as a section of the restriction to {z} x Y of an appropriate

vector bundle over R? x Y,

Mgy i 15 ~
Hv AV 179177;||L°° ({2} xY,\2gy)
ar—k— A2gy
< C)\k I Ve Ty gL M Co (23 x Y N 2gy)
< C')\k Itargkdig il (B (2, )

k—
<ONTITe

To see this, apply Lemma 3.3 on ({2} x Y, gy ), rescale the metric by A\?, and
use (3.23). O

Given Claim 3, we are now able to rewrite (3.24) in terms of gp and
the individual (7})’s. Indeed, it follows easily from (3.24), (3.25), and Claim
3 that there exists some index ¢, € {0,...,e} (which we may assume is
independent of i) such that for all i,

1

(3.33) (V827 ) ) @ goar) > 7 — OXF
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(3.34) Ch <o (&, 1) < C.

(Without Claim 3, due to the different scaling behaviors of V}, and Vg, we
would not be able to rule out that |(V*97 (7)")(])],,z) < CA for all ¢,
and then there would be no contradiction as i — co. Even with Claim 3, the
same problem arises if we do not consider each (7;)" separately.)

It remains to deal with the L9 -part of (3.23). For this it turns out to be
convenient to first pass to a limit. Thanks to (3.31), (3.32), we can assume
that (7)) converges to a CF:* section (74, )" of the bundle A9"“R? @ Al*Y

loc
on R? x Y, with convergence taking place in the C*# topology for all 8 < a.
Since |V (7)) ]y, = O(AFT®) locally uniformly by Claim 3, it follows that
V{7 (k) = 0. This lets us view (7)),)" as a section (still denoted by the
same symbol) of the bundle A9~*R? ® P! over R, where P! denotes the

space of all gy-parallel ¢-forms on Y. By (3.31)—(3.34),
0 < [V*E(#)"Jcorey < C.

The preceding equation will contradict Liouville’s theorem once we deduce
from (3.23) that

E—1R% r R4/ o . _
[VF R LR () 1o (ray = 0,
proving that each component of (7, )% is the sum of a harmonic function
and a polynomial of degree < k with values in P!-. To this end, fix z # 2 in

Re Fix y € Y and let z = (z,y) and 2’ = (2/,y). Then for all large enough
i it follows from (3.23) and Claim 3 that

> (V5 LE @) @) = PLLIVE L (1)) @)
t=0

(3.35) i)

1
< ;‘Z — Z,‘]%d + C)\Za,

where L% denotes the part of L9 that only involves §-covariant derivatives
in the base directions. Now L%' (unlike L9') sends sections of A°R? @ A'Y
to sections of A*R% @ A'Y for every t, so that the terms of the sum on the
left-hand side of (3.35) are g;(x)-orthogonal. Thus,

(T R (2) — (V55 LR ) (2
= lim (V597 L () ) () = PTG )@ g o

= lim (VLR () — PR I(VE L8 (7)) (&)

1—00

gi(x)
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< liminf ((1/4)]z — 2|« + CAY) =0,
1—00
as desired. In the second step we have used once again that V97 = V9. [

3.3. A Schauder estimate for i90-exact 2-forms

Let Y be a compact Kéhler manifold without boundary, let d = 2m, identify
R? = C™, and let S be the presheaf of i90-exact real (1,1)-forms of class

C{Zf‘ on C™ x Y with respect to the product complex structure, where k €
N>1, a € (0,1). The following two propositions show that Assumptions

(1)-(2) of Theorem 3.8 hold in this setting.

Proposition 3.11. Let U; be an exhaustion of C™ x Y by open sets. Let
n; € CE(U;) be a sequence of 100-exact (1, 1)-forms. If n; converges to some

loc

2-form neo € C22(C™ X Y) in the C° topology for some 8 < «, then s is

/X loc loc

again i00-exact.

Proof. The proof is similar to the arguments in [53, p. 2936-2937]. The limit
Moo 18 closed (1,1) because the convergence takes place in C’{Zf . We would
like to show that 7, is in fact i00-exact. For all z € C™ the restriction
7’]00|{z}><y is d-exact because Y is compact without boundary and this form
integrates to zero against every d-closed form. By the Kiinneth formula, 7.,
is d-exact on C™ x Y. Thus, there exists a smooth real 1-form ¢ on C™ x Y
such that

Moo = d¢ = 9¢% +9¢0L, 9¢™t = 0.

The Leray spectral sequence computing the Dolbeault cohomology of C" xY
via projection onto the C™ factor degenerates at the first page, giving

HYY(C™ xY) =2 HY (V)2 HY(C™, Ocn),

where we use the fact that H%!(C™) = 0 by the d-Poincaré lemma. (The
tensor factor H°(C™, O¢w ) is missing in [53]. Here we correct the arguments
of [53] to account for this term. We thank Y. Zhang for some very helpful
discussions regarding this point.) Choosing d-closed (0,1)-forms 6; on Y
whose cohomology classes are a basis of H%!(Y'), we obtain

Ot => 00, +0h

for some holomorphic functions o; on C™ and a smooth C-valued function h
on C™ xY. We can pick the 6; to be harmonic, so in particular also d-closed,
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which gives
Moo = 2Re Y _ doj A 05 + 2i00Im h.

On U;, write n; = i00v;, and let u; = v; — 2Im h, so that i00u; converges
to 2Re > do; A 0; in C}P as i — oo. In particular, restricting this to any

loc

fiber {z} x Y (2 € C™), we see that i00u;|(.;xy — 0. Let u; be the Ci2
function on C™ obtained by averaging w; over these fibers. Then i@gﬂ has
uniform local C*# bounds. The functions u; — u; thus have fiberwise average
zero, and the forms i99(u; — u;) have uniform local C*# bounds and their
fiberwise restrictions go to zero in C*#. Thus, u; — u; converges to zero
locally uniformly on C™ x Y, hence locally in C***7 for all v < (. It follows
that 190(u; — u;) — 0 locally in C*7, so the form 2Re Y do; A 0;, which is
the limit of the i00u;, is also the limit of the iaéﬂ . But the iﬁgﬁ are forms
on C™, so 2Re ) doj Ab; is also the pullback of a form on C™. This is only
possible if doj = 0 for all j, and so 1, = 2i00Im h, as required. O
Proposition 3.12. Let ) be an i00-ezact (1,1)-form in C{Z’f‘(@m xY) such
that [V*97n|,, = O(r®) and V*=197§97y is gp-parallel. Then n = i0dp for
some real polynomial p of degree < k+ 2 on C™.

Proof. In this proof we will omit all sub- and superscripts gp for simplicity.

By assumption, n = ddu for some real function © on C”™ x Y, which
is necessarily C{f;za. Then dn = ddd°u = —dd°du = d°ddu = —d°Au by
the Kahler identities. Thus, V*Au is parallel, so u is smooth with Au = ¢
for some real polynomial ¢ of degree < k on C™, so u = h + ¢', where h is
harmonic on C™ x Y and ¢ is a real polynomial of degree < k + 2 on C™.
In particular, |V*(i00h)| = O(r®).

Decompose h = h + (h — h), where h denotes the smooth function on
C™ obtained by averaging h over every fiber. It is easy to see that h is
harmonic with |V*(i00h)| = O(r®). Since every coefficient function of the
tensor V¥(i00h) is harmonic, it follows from Liouville’s theorem that the co-
efficients of the closed (1, 1)-form @ = i90h are (harmonic) real polynomials
of degree < k.

Cliu'm 1. There exists a real polynomial A’ of degree < k + 2 such that
i100h = w.

Proof of Claim 1. This is proved by induction on k. For k = 0, notice
that every constant (1,1)-form @ on C™ can obviously be written as i00
of a quadratic polynomial. For the inductive step, let @ be a closed (1, 1)-
form on C™ whose coefficients are real polynomials of degree < k + 1. The
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degree < k part of w is still closed (1,1), so by the inductive hypothesis
we can assume that w is (k + 1)-homogeneous. Then the usual proof of the
d-Poincaré lemma produces a real 1-form ¢ with d( = @w whose coeflicients
are (k + 2)-homogeneous polynomials. Then 9¢%! = 0 as usual, so we only
need to find a homogeneous polynomial ¢ of degree k 4+ 3 with 9¢ = (%!
and put A’ = 2Im ¢. To this end, write

c‘“:i S AL,

|B]+|vI=k+2

where Ag7 € C. The condition 9¢%!' = 0 translates into

0 . =v—e 7T e
,YGN’VTL ,YGN’VTL
Bl+1vI=k+2 Bl+1vI=k+2

for all p € N™ with |B] < k+ 2 and all 4,/ € {1,...,m}, where ¢; € N
denotes the i-th unit vector. Using this, a straightforward computation shows
that 9¢ = (%! as desired, where

m
L7 Bt
¢:Z Z h,H_lABWZ Z'z.

¢=1 BreNm
Bl +]vI=k+2

Claim 2. The function w = h — h is identically zero.

Proof of Claim 2. By the above, w is harmonic on C™ x Y with |V*(i00w)| =
O(r®). The latter implies that [i00w| = O(r*+®), so the fiberwise Lapla-
cian of w is also O(r**%). Since w has fiberwise average zero, fiberwise
Moser iteration or the fiberwise Green’s formula give |w| = O(r**+%), and
hence |Viw| = O(rkt®) for all i € N by standard local estimates for har-
monic functions on a manifold of C* bounded geometry. Now define Q(r) =
I5.xv |Vwl|?. Since Aw = 0, it follows that

0= [ 5 < [, () (f10er)”

1 o 1dQ(r)
<= — =\
S /\/aBer‘vw‘ x dr
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where A > 0 and A? is the first eigenvalue of Y. Here we have used once
again that w is orthogonal to the constants on each fiber. Thus, the quantity
e~ Q(r) is nondecreasing, but is also O(rMe=*") as r — oo with M =
2k + 2.+ 2m by what we said before, so that Q(r) = 0 for all r. O

The desired statement now follows with p = 2h’ + 2/'. O

We conclude by stating the application of Theorem 3.8 to this setting
as a separate theorem.

Theorem 3.13. Let (Y,gy,Jy) be a compact Kdihler manifold without
boundary. Given m € N, equip C™ x Y with the product Kdhler structure
gp = gcm+gy and Jp = Jem +Jy. Then for allk € N>1 and o € (0,1) there
exists a constant Cy = Ci(«) such that for allp € C™ xY and 0 < p < R,

[VE9 e (or (o)) < Cr([VE 19709 ] (e (o, 1))

(3.36) Cha
+ (R —p) 71| o (Bor (p,R)))

for all real 2-forms n € Cﬁf(BgP (p,2R)) that are i00-exact with respect to
Jp. Here 697 denotes the formal adjoint of d with respect to gp, and the
Holder seminorms are the ones of Definition 3.1.

3.4. A Schauder estimate for scalar functions

We now use the abstract Schauder Theorem 3.8 to derive a Schauder esti-
mate for scalar functions on cylinders.

Theorem 3.14. Let (Y,gy) be a compact Riemannian manifold without
boundary. Given any d € N, equip R? x Y with the product Riemannian
metric gp = gra + gy . Then for all k € Nso and o € (0,1) there exists a
constant Cy = Cy(a) such that for allp € R x Y and 0 < p < R,

(V592 floa(por (pp)) < Cr([VF7297 A" fl o (por (p,R))

(3.37) o
+ (R —p) | fll Lo (Bor (p,R)))

for all scalar functions f € C{Z’?(BQP (p,2R)).

In fact, thanks to [28, Prop 3.2], Theorem 3.14 implies Theorem 3.13
(even a version for k = 0, with V™14 = tr). Nevertheless, we find it valuable
to have the abstract Theorem 3.8 and derive Theorem 3.13 directly from
it, since this is the right direction for what we will need to do in Section 5.
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There, it will not help to work at the level of Kahler potentials because the
complex structure is not a product, and part of the proof of Theorem 5.1
will closely parallel the proof of Theorem 3.8.

Proof of Theorem 3.14. This follows from Theorem 3.8 applied to the pre-
sheaf S of d-exact real 1-forms of class C{Z;l’a on R? x Y once we verify
that S satisfies Assumptions (1)—(2). Indeed, we can apply Theorem 3.8 to
n = df with p, R replaced by p, R = p+ 1(R — p) to obtain

(V597 fleaBor () < Ce([VE 7297 A9 fl e (gor (5,2
+ (R = p) | or (o))

and then use Lemma 3.5 with p, R replaced by R, R+ k(R — p) (k € (0, %))
to estimate

KR = p)df| e or g < O (R = )T IVH7 fle(on )

+ | fll Lo (Bor (n,R)))-

Combining these two estimates yields

[VR97 £l ca(Bor (p.p)) < Crts™ TV™I7 £l ca(Bor (,R)
+ Cu([VF7292 A9 fl e (por (p,R))
+ 5N R = p) TN fll L (o (n,R))-

If we fix k € (0, %) such that CprF~1te %, then an application of Lemma
3.4 gives (3.37).
It remains to verify that S satisfies Assumptions (1)—(2) of Theorem 3.8.
For (1), let U; be an exhaustion of R? x Y by open sets. Let 1; € S(Uj;)
converge t0 1o € C2(R?x Y) in the C¥."# topology for some 3 < a. Write

n; = df; with f;(0,p) = 0 for some fixed p (we may assume that (0,p) € U; for
all 7). Using the fundamental theorem of calculus, we see that the functions

fi are uniformly bounded in C’{Zf , SO passing to a subsequence they converge
to foo € Ck’ﬁ(]Rd X Y) and 7o = df. It follows that fo is in fact smooth,

and so nooloec SR xY).

For (2), let n € S(R? x V) with |[V¥~197y|, = O(r®) and VF=297 L7y
parallel. Then n = df and L9%n = §9°df = A7 f, so AIP f = {, where £ is a
polynomial of degree < k—2 on R%. In particular, f is smooth and f = h+¢,
where A is harmonic on R? x Y and ¢ is a polynomial of degree < k on R%.

This gives |V*=197dh|,, = O(r®). Decomposing h = h + (h — h), where h
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denotes the smooth function on R? obtaining by averaging h on each fiber,
we see that h is harmonic and |V*~!dh| = O(r®). By the Liouville theorem
in R? we obtain that h is a polynomial of degree < k.

A similar argument as in Claim 2 in the proof of Proposition 3.12
then shows that w = h — h = 0. Indeed, w is harmonic on R% x Y with
|VE=L9r dw|,, = O(r®), so |w| = O(r*¥+®), and |Vi97w|,, = O(r¥+) for
all 7 € N by local estimates for harmonic functions, so we may conclude as
before that Q(r) = [ B.xY [V97wl|?, is identically zero. We thus obtain that

VFk9rdf =0 as desired. O

Remark 3.15. It is an interesting problem for future study to find other
geometrically meaningful presheaves S of forms to which Theorem 3.8 ap-
plies.

4. Higher order estimates in the product case

In this section we prove Theorem 1.1.

From now on, let wy = wem + e fwy. This is a product Kéhler form on
B xY uniformly equivalent to wy (independent of ¢). Its Chern connection is
independent of ¢ and equals the Chern connection of wp = wy = wem + wy'.
Given any k > 0, we aim to show that

(4.1) sup pugs < Cy
BxY

independent of ¢, where for all x € B x Y we define
(4.2) P () = d% (2, 0(B x Y))F|(V*9 g7) (2) g, )-

To prove (4.1) we proceed by induction on k, the case k = 0 being our
assumed C° bound (1.4) on the collapsing metric. By induction we may
assume that £ > 1 and that

(4.3) Zuj,t < Cy.

If (4.1) does not hold, then limsup, .. supgyy prs = oo. For simplicity
of notation, we will not pass to subsequences, and will instead assume that
lim¢_, o0 SUP gy ikt = 00. Choose points x; € BxY such that the supremum
of ¢ is achieved at x¢, and define real numbers A\; by

AF = (V9 g2) (@) g0 (20 -
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Then \; — oo as t — oo because otherwise pi;, ; would be uniformly bounded
(since the gi-diameter of B x Y is uniformly bounded). Consider then the
biholomorphisms

Uy : By, xY = BxY, U(z,y) = (\'2,y),
and let
= AV Ge=NVigr = gon + NeTlgy, B =0y (w).
We know from (1.4) that on By, x Y we have
(4.4) C™g: < 37 < Cr.
Note also that V9 = V97 and

AP = [(VF9g2) (@) gy ()
= A2 (VR0 90) (20) | ws g0 (a0)
= AUV 30) (20) 5, (2)-

We have therefore showed that

(4.5) (V*998) (@) 5,20 = 1.

Also for all 0 < j < k and for all Z € By, x Y we have

(4.6) i (We(£)) = d9(&,0(By, x Y)Y [(V7947)(2)]5,(2,)-

Using (4.3) this implies that for 0 < j < k (this is vacuous for k = 1) we
have

(4.7) sup |VI9ge|s = A7 sup (V79 g2, < o7 0.
Bl XY

xY
A

Using similar arguments, we can also show the following properties, which
are crucial for passing to a pointed limit with basepoint Z;. First, for all
T E€B A, X Y,

(4.8) 1 (We(2)) = d%(2,0(By, x Y)*|(VE9G8)(&)]5,(2) -
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Using (4.5) and the fact that sup pr; = pre(ze) = we(Ve(2)) — o0, we
obtain that

(4.9) d% (&, 0(By, x Y)) — 0.

This tells us that if we pass to a pointed limit with basepoint Z;, then
the boundary moves away to infinity and the limit space will be complete.
Moreover, using the fact that the quantity in (4.8) is maximized at & = &,
(and the triangle inequality), we learn that for all & € By, x Y,

i (@,0(By, xY))!

d9 (24, 7) -
(4.11) S (1  d9(34,0(B), x Y))> '

Thus we have a uniform upper bound on |V*9:g® 4. on gs-balls of fixed radii
centered at ;. We can therefore study the possible complete pointed limit
spaces (B, XY, §i, ) as t — oco. Up to passing to a subsequence, and modulo
translations in the C™ factor, we may assume that z; = (0,9) € C™ x Y
and that §; — Yy € Y. Define

(4.10) |(V™9g7)(%)

5t = )\te_% .

Up to passing to a subsequence once again, we then need to consider three
cases according to whether (1) §; — oo, (2) §; remains uniformly bounded
away from zero and infinity (without loss converging to some § > 0, and
again without loss § = 1), or (3) §; — 0.

4.1. Case 1: the blowup is C™*t"

Here we assume that §; — co. We fix a chart on Y centered at yo, given
by the ball B, € C", and in the induced product coordinates on C™ x By
we pull back g¢ by the biholomorphism (z,y) — (2,9 + 6; 'y), defined
on C™ x Bs, with image C™ x Bi(9:) C C™ x By. After this pullback,
the new Ricci-flat metrics are uniformly equivalent to Euclidean thanks to
(4.4), and their k-th covariant derivative (with respect to the pullback of
g¢) at the origin has norm 1 (also measured with respect to the pullback
of ;). Thanks to Proposition 2.1, these metrics have uniform C*° bounds
on compact subsets, and so a subsequence converges locally smoothly to
a limit Ricci-flat Kihler metric on C™™ which is uniformly equivalent to
Euclidean and is not constant. If £ = 1, this is impossible because of the
Liouville Theorem 2.4. If k£ > 1, it immediately contradicts (4.7).
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4.2. Case 2: the blowup is C" X Y

In this case we have that §; — 1, without loss of generality. Then the metrics
gi converge smoothly uniformly on compact sets of C™ x Y to the product
metric gp. Thanks to (4.4), we can apply Proposition 2.1 and obtain local
uniform C*° bounds for gf. By Ascoli-Arzela (again up to passing to a
subsequence t; — 00) we have that g converges smoothly to a Ricci-flat
Kéhler metric g5 on C™ x Y, which is uniformly equivalent to gp and
satisfies

(4.12) VI =0 (0< <), sup [TErGEl,. = 1.
7n><

If £ = 1, then the Liouville Theorem 2.6 tells us that g3, is parallel with
respect to gp, contradicting (4.12). If £ > 1, then (4.12) is again plainly
self-contradictory without any Liouville theorems.

4.3. Case 3: the blowup is C™

Here we finally assume that 6; — 0. For any fixed radius R > 0, we have
thanks to (4.4), (4.7), (4.10) that for all t > 0,

(4.13) 19 lox (Brxv,g) < C(R).

This trivially implies a uniform C*(Bg x Y, gp) bound. Thus, by Ascoli-
Arzela, for all & € (0,1) the metrics g converge in Cy."* (modulo sub-

loc

sequences) to a CF " tensor g5, on C™ x Y which is the pullback of a

loc

Cp b Kéhler metric g3, on C™, uniformly equivalent to Euclidean. Note
that for k& = 1 the C% . form @3, is only weakly closed, but this suffices for
our subsequent discussion.

Pulling back the complex Monge-Ampere equation (1.3) we obtain
(4'14) (wto)m+n — )\?m+2n\112<(eF(w(Cm + eftwy)m+n) — (5t2n€Ftwg+n7

where F; = FoW, is a pluriharmonic function which depends only on z € C™.
Note that if 2; — zo as t — oo (as it has to, up to passing to a subsequence,
after slightly shrinking the original tube B x Y'), then F; converges to the
constant F'(zs) smoothly on each bounded cylinder B x Y.

A contradiction will be derived in three steps. Using some arguments
from [46], what we have said so far is sufficient to conclude that (03 )™ =

cws, for some constant ¢ > 0. Then standard arguments show that @3, is
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smooth and hence constant by Theorem 2.4. All of this will be explained and
proved in Claim 3 below (cf. Section 4.3.3). In fact, for £ > 1 the conclusion
that @2, is constant is actually obvious from (4.7). The main difficulty is to
derive from (4.5) that w3, is not constant.

As usual, one key step towards this goal is to slightly improve the given
regularity (4.13) of gf. In fact, by linearizing the Monge-Ampere equation
(4.14) at the product model metric w; and bringing in the linear Schauder
theory of Section 3, we will prove in Claim 1 (Section 4.3.1) that the C*(Bgx
Y, §;) norm in (4.13) can be replaced by the C**(Bg x Y, §;) norm for any
0 < a < 1. Now typically such an upgrade would be sufficient to pass to a
limit in (4.5) thanks to the Ascoli-Arzela theorem. However, there seems to
be no obvious version of Ascoli-Arzela (for tensors, with respect to collapsing
metrics) that accomplishes this immediately. In Claim 2 (Section 4.3.2) we
will exploit the Kéahler property of wy to deduce from Claim 1 that @3, is not
constant, by using Lemma 3.3 to show that the equality in (4.5) is essentially
already attained by the “all base” component of the tensor V*9:ge.

4.3.1. Claim 1. For all o € (0,1) there exists an e > 0 and a C > 0 such
that for allt > 0,

(4.15) 19 lone (B xv,g) < C-

Having this strengthening of (4.13) only for one particular value R = ¢
suffices for our purposes. In fact, the case of a general R could be proved
along similar lines using also a covering argument, but we choose to omit
these additional arguments in order not to clutter notation.

Proof of Claim 1. For simplicity, let us change notation by viewing § =

)\tefé — 0 as a new parameter replacing t. Replacing ¢ with a suitable

sequence t; — 0o, we may assume that ¢ is a strictly decreasing function of

t, so that we can (and will) effectively view ¢ as a function of § as well.
Introduce a new stretching map

Os5: Bs-1 XY — By xY, ®5(z,9) = (0z,y),
as well as new scaled and stretched metrics
i = 0720537,
Gs = 0 @53 = gp-
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Then (4.4), (4.7), (4.10) imply that on Bs-: x Y,

(4.16) C~'gp < g5 < Cyp,
(4.17) Vie {1, ... k—1}: V99738, < CoN
(4.18) \VFarge|,. < O,

The basic idea is that (4.16), (4.17), (4.18) allow us to linearize the Monge-
Ampere equation satisfied by &§ at the product metric wp on the whole
cylinder Bs-: X Y, and to use the linear Schauder theory of Section 3 to im-
prove the regularity of @§. However, (4.16), (4.17), (4.18) are still compatible
with w§ approaching some Kahler form at bounded but nonzero distance to
wp. As a preliminary step, we show that the true limit of &} differs from wp
at worst by some harmless automorphism of C™.

Indeed, thanks to (4.16) we can apply Proposition 2.1 and obtain uni-
form C°° bounds for the Ricci-flat metrics g§ on compact sets, so that after
passing to a subsequence they converge locally smoothly to a limiting Kahler
metric g3, on C™ x Y, which thanks to (4.18) (if k = 1) and (4.17) (if £ > 1)
is parallel with respect to gp. Recall that wj and wp are i00-cohomologous.
Thus, by Proposition 3.11 and (4.16), (4.17), (4.18), @3 = wp + Neo, Where
Noo is 100-exact, of bounded gp-norm, and gp-parallel. Proposition 3.12 ap-
plied with k& = 0 then tells us that 75, = i00p for some quadratic polynomial
p on C™. (Technically Proposition 3.12 only applies for £ > 1 because in
Section 3.3 we have set k > 1 by definition, but the proof goes through
without any changes for k£ = 0.) It follows that @3, differs from wp by a lin-
ear automorphism of C™. There is no reason to expect this automorphism
to be Idem, but we can simply pull back our whole setup by the same au-
tomorphism and in this way assume without loss that g — gp. (A much
more technical version of this argument will appear at the analogous stage in
Section 5; cf. the construction of a modified reference metric &Jf after (5.39).)

Pulling back (4.14) by ®5 we obtain

(4.19) (@)™t = eFrwmtn,
where Fj is the pluriharmonic function on Bs-1 defined by
Fs5(2) = Fi(62) = F(z + A\ 102).

Note that F5 — F(zs) smoothly on compact subsets of C™ and that for all
k>1,

(4.20) O*Fs = O(6%)



Higher-order estimates for collapsing Calabi-Yau metrics 729

uniformly on the entire cylinder Bs-1 x Y. Dropping the subscript 9§, let us
write w§ = wp + 7, where 7 is i00-exact. Let us also agree that all metric
operations and (semi-)norms in the rest of this proof are the ones associated
with gp, and that all balls are gp-geodesic balls centered at z; = (0, 3;). By
linearizing (4.19) and bringing in Theorem 3.13 we will prove that

(4.21) Vonlces,, 1) < O

for some uniform constant ¢ € (0,1). This clearly implies (4.15) up to re-
naming .
To prove (4.21), we first note that it follows from (4.19) that

m+n—1 ~
(4.22) 097y = Z (n®---®n) ®Vn + Vels,
i=1 v

1 factors

Here ® denotes a tensorial contraction that may also involve the metric gp.
This is easy to derive from the usual identities expressing *n in terms of
wp and n A wHtT" 1] the latter being controlled thanks to (4.19). Indeed, a
standard calculation (cf. [32, Prop 1.2.31]) gives

*1 = <( ) nAwp wm+n71

+ T
m+n—1)> " (m+n-—2) wp"
1

(m+n—2)

and therefore

1 1 nAwptrl tno1
d = d m—+n
(x) ((m+n1)!+(m+n2)!> < wiptr Nwp ’

while from the Monge-Ampere equation (4.19) we have

B m+n
(m+n)n Awp 1t = (e — Dt — Z <m + "

i m+n—i
> N ANwp ,
1=2

)

proving (4.22). Differentiating (4.22) k — 1 times, we get

m+n—1

(4.23) MARUESDY (Z Vi@ V’“’“ﬁ) + Vkefs,
=1
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where the inner sum runs over all (ki,..., k1) € Nt such that kg +--- +
ki1 = k. Let ¢ € (0,1) to be determined. Then for any 0 < p < R < (20)*
using (4.23) and (3.36),

[VFnlee(p.,)
m+4n—1

(4.24) <C Z <Z V0l ce (5 IVl L= (B ) "HkaIWHLw(BER))

(4.25) + C[V*eP]cup.) + CER = p) 0l e (5.0

The inner sum in (4.24) again runs over all (ki,...,k;11) € Ni*! with & +
ot ki1 =k
To proceed, we begin by estimating

[vkl 77]0@ (Ber) < (2€R>1ia H vk1+1n||L°° (Bz2er)

except when k1 = k and ke = ... = k;y1 = 0; in the latter case, we keep
the [V*1n] term in (4.24) as is. The ||[V¥*1p|| terms thus introduced for
k1 < k—1, as well as the || V¥ip|| terms appearing in (4.24) for 2 < j <i+1
and k; > 1, can be bounded by the appropriate power of § using (4.17),
(4.18). This leaves us with those terms of (4.24) where 2 < 7 < i+ 1 and
k;j = 0. To control these terms, and also the ||| term in (4.25), we use the
following idea: because g§ — gp smoothly on compact sets, we may assume
that |n(Z+)| < &; and combining this with (4.17), (4.18) we get that |n| < 2¢
on Bs-1. Lastly, the [V¥Fes] term in (4.25) is easily controlled using (4.20).
The upshot of all of this is that

(8 5) = max 81 a6k1+a52j>2:kj>lk?jg#{j>2:kj:0} _ O(&k—&-a)'
’ 1<i<m4n—1
ki <k—1,k1++ki1=k

Fixing ¢ = (2C)~! and applying Lemma 3.4, we get [an]ca(BEp) < Okt
C(R — p)~%=2. Finally, choosing R = (26)~! and p = R/2, and renaming e,
we get (4.21).

This completes the proof of Claim 1.

Remark 4.1. In the proof of Claim 1 it was important that the decay rate
of the term Ve!s in (4.22) improved by a factor of § upon differentiation,
arbitrarily many times. In the setting of Corollary 1.5, if the smooth fibers
X, are neither flat nor biholomorphic to each other, one encounters new
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terms on the right-hand side of the analog of (4.22) that do not improve in
this way upon fiber differentiation. (Roughly speaking, these terms are due
to the variation of complex structure of the fibers.) In fact, in this case one
cannot expect to obtain uniform C*® estimates for the Ricci-flat metrics wy
with respect to a shrinking family of product metrics even for k£ = 0; see
Remark 5.3.

4.3.2. Claim 2. We have

(4.26) VP25 (0)lgen = 1.

Proof of Claim 2. We will work in local holomorphic product coordinates.
We will denote any complex (1,0) “base” C™ direction by a subscript b
and any complex (1,0) “fiber” Y direction by a subscript f. Since gp is a
Riemannian product metric, gp-covariant derivatives in the base directions
commute with gp-covariant derivatives in all other directions. Using the
product shape of gp and the fact that gf is Kéhler with respect to the
product complex structure, we also have that

(4.27) Vi (905 = Vi (0)bp: Vi (00)er = Vi (97 )ps-

From now on we will drop the superscript gp on covariant derivatives for
simplicity.

To prove Claim 2, we first of all remark that by definition, the pointwise
norm |V*§|;, is uniformly equivalent (with constants independent of ¢) to

k+2

(4.28) > IVFar{ie

Jj=0

where V32 {j} contains all the components of V¥§? with j fiber indices and
k+ 2 — j base indices and the absolute value signs indicate the length of this
tensor in our fixed coordinate system. The goal is to show that all the terms
with 7 > 0 in (4.28) go to zero as §; — 0, so that only the terms with j =0
survive and (4.26) follows from the fact that |[V*gp (#¢)]g,(2,) = 1, together
with the C%® (B, x Y, gp) convergence trivially implied by Claim 1. The full
strength of the g;-bound (as opposed to gp-bound) of Claim 1 is precisely
the key to proving that the j > 0 terms in (4.28) go to zero.

Thus, let us consider any component of V¥3#{j} with j > 0. To clarify,
what this notation means is that we allow k& covariant derivatives of g7 with
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respect to all possible combinations of b, b, f, and f indices, where at least
one of the derivative indices, or one of the tensor indices of §f, is an f or f
one. If one of the derivative indices is an f or f one, we can commute the
left-most index of this type past all the b and b indices that precede it,
obtaining a term of the form

(4.29) VeVETlge VevETlge.

Otherwise all the derivative indices are of type b, b. Since the absolute values
in (4.28) are invariant under complex conjugation, and since gy is Hermitian,
we are left with terms of the form

(430)  Vyg (V@) Vg (Vo) Vg (Volae) -

Here the notation V7' means that we allow any combination of k — 1
derivatives in directions b or b. Using (4.27), the first two of these types can

be reduced to (4.29) by commuting the f derivative past the preceding b, b
ones. Thus, in addition to (4.29), we need to deal with terms of the form

(4.31) Vi 5000 ue-

For terms of the form (4.29), we fix any z € C™ with |z| < ¢ and
apply Lemma 3.3 on {z} x Y with metric gy. More precisely, for all ¢ €
{0,1,...,k+ 1} we consider the section

o=V {0 yxy

of the bundle E = (T*C™)®*+1-0 o (T*Y)®! ® C over {2z} x Y, equipped
with the product metric gp induced by gcm and gy. In this way we obtain
that

sup oy [Vee(V 108 {0)lgs

[vf,?(vk_lﬁf{f})]m({z}xY,gy)

ST 38 v (. xvig0)

<C
<C
which is O(§f+1+°‘) thanks to (4.15). This shows that the original term
|VEGe{j}|6,”7 in (4.28) that we had reduced to the form (4.29) in fact decays
like 65, and in particular goes to zero as §; — 0.

Terms of the form (4.31) require a different argument. Recall that, by
assumption,

(;.Jt. = C:Jt + z85go
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for some smooth ¢-dependent function ¢ on By xY". Denote by ¢ the fiberwise
gy-average of ¢, which is a smooth t-dependent function on By. Then we
have a well-defined function

27n+k—1)

Y=VEsp—9): Bixy -l

the complexified k-th derivative of ¢ — ¢ in the base directions. Clearly, for
all z € By,

A (Pl zyv) = Vi 507 (55 21xv))-

This is a contraction of a tensor of the same form as the second term in
(4.30) (or its conjugate), so as above it follows from Lemma 3.3 that

sup A% (¢ gyv)| < CF
{z}xY

for some uniform constant C' independent of ¢t and z. Since the gy-average
of ¢ over {z} x Y is zero by construction, standard L” elliptic estimates and
the Sobolev-Morrey embedding give

sup |V (98 )pglor < C sup [V (9 (yy)lgy < C677
{z}xY ’ {z}xY

On the other hand, Claim 1 in particular gives us
V(Vi g (0D)pp)on(B.xvgr) < Ot
Thus, finally, bringing in Lemma 3.5,
HV(VEE(gg)b?)HLoo(ng(@h%)) < C(StHa

as long as §; < € (and the estimate is trivial otherwise). This tells us that
the term (4.31) decays like 6,7 when evaluated at the basepoint ;. Thus,
at &y, the corresponding term

k ~® —
|Vb7g(gt)bf|5t !
appearing in (4.28) with j = 1 decays like 6¢, hence in particular goes to

zero as 0 — 0, as desired.
This completes the proof of Claim 2.
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4.3.3. Claim 3. The C*5% Kihler form &2, on C™ is parallel with re-

spect to the Euclidean metric.

This is already obvious from (4.7) if £ > 1, so in the proof we will assume
that k = 1.

Proof of Claim 3. Recall that on By, x Y we have

(4.32) QO = wem + Swy + 100y,

(4.33) (@) = §nelhymtn

where ¢; = )\%Q/Jt oW, and F; = F o ¥;. Moreover, as we already said, by
(4.13) and Ascoli-Arzela, @ converges subsequentially in Cf} . (C™ xY) to the
pullback of a (1, 1)-form w3, from C™. Then w3, is obviously weakly closed,
hence has a global i09-potential of regularity C%* on C™. (If one generalizes
the stronger bound (4.15) from B. x Y to Br x Y for an arbitrary R, then
Weo 18 & priori seen to be of class C'* and closed in the classical sense, with

loc

a C¢ potential.) The crucial point of the proof of Claim 3 is to derive from

loc

(4.32), (4.33) that w2, satisfies

oo

(4.34) (@)™ = el .

A standard bootstrapping argument then shows that @2 is smooth, and
hence Ricci-flat. Since w2, is moreover uniformly equivalent to wem thanks
0 (4.4), Claim 3 then follows from Theorem 2.4.

The derivation of (4.34) is similar to the proof of [46, Thm 4.1], multi-
plying (4.33) by a test function pulled back from the base and using (4.32)
to integrate by parts. Write &%, = wem + 109y for some ¢ € CZ*(C™),
and also write ¢ for the pullback of ¢ to C™ x Y, so that in particular
100 — 100y in Cf,.. As in [46], let ¢ denote the function on C™ (as well
as its pullback to C™ x Y') obtained as the fiber average of ¢; with respect
to wy-. Fix a smooth function 7 on C™ with compact support K and also

write 7 for its pullback to C™ x Y. Fix ¢ large enough so that K C B,,.
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Then, from (4.33),

Fy m+n
/ ne 'wp
CmxY

1 L
= 52n / n(wem + 5?&1}/ + Z@@gpt)m'm
t CmxY
1

= s n((wem + i00p;) + (67wy +i00(py — @r)))m
t CmxY

1 flaxg m+n
51&2n/m><Ynj2:;< J >( . ﬂ)
(0fwy +100(py — @)™ .

Observe that wem + 100y, is pulled back from C™, hence can be wedged
with itself at most m times, so all terms in the sum with j > m are zero.
Next, we claim that all the terms with j < m go to zero as t — co. To see
this, start by observing that any such term can be expanded into

m+n—j .

1 /fm+n Z m-+n—j 99 \j

" < J ) < i ) /meyn(w(cm +i002)" N
i=0

(8Fwy)™ 37 A (100 (01 — 1))’

The term with ¢ = 0 is easily seen to go to 0 because the integrand is
O(5f(m+n_])) and j < m, while for each term with i > 0 we can rewrite the
integral as

/ (¢t — ©1)i00 A (wem +i00p1) A
CmxY

(67wy )™ I A (1001 — 1))

(4.35)

Work in local holomorphic product coordinates on the total space. The form
i00n A (wem + 10094 )7 is pulled back from C™, so in the coordinate repre-
sentation of (§Zwy )™ I=¢ A (i00(¢r — y))' !, each summand is a wedge
product of 2(m — j — 1) basis 1-forms pulled back from C™ and 2n basis
1-forms pulled back from Y. Multiplied together, the fiber contributions
are O(02") because the ones coming in pairs from (§Zwy )™+ "~7~% have an
explicit factor of §2, while (4.4) implies that for all 2z € K,

(4.36) (1031 — )|y = 110900)] v ] < 2,
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which shows not only that the contributions coming in pairs from (i99(p; —
#1))|{1xy are again O(62) but also, thanks to the Cauchy-Schwarz inequal-
ity with respect to the Riemannian metric gy, that the mixed base-fiber
components of i99(¢; — @) are O(6;). Thus, every term

i00n A (wem + i@gﬂ)j A (5t2wY)m+”_j_i A (100 (pr — ﬂ))i_1

in (4.35) is O(62"). To see that the whole integral in (4.35) is o(62"), as
desired, it then suffices to note that supy .y ¢ — @i < C2, which follows
from (4.36) by inverting the Laplacian on each fiber.

We are then left with only the term with j = m, which is

(5% / n(m + n) (wem + Z@gﬁ)m A (5,52(.01/ + iag(gpt — ﬂ))"

t JCmxy m

1

“5
1

5t CmxY T

m+n aYA) m n
77( ) (wem + zaﬁﬂ) A ((53&)3/)
CmxY m

The second term is zero because i907 is pulled back from C™. Altogether,
we obtain that

(4.37) / neftwhtm = <m + n> / n(wer +i100p)™ A wi.
CmxY m CmxY

Now observe that i@gﬁ — i00¢, and hence wem + iaéﬁ — W, in Cf .
thanks to the identity

100(pt — ) = (Prem )« <z’65(% — Q) A fjig)

and to the fact that by assumption i09¢; — i09¢ in C2 . Expanding w?fr"
in (4.37), letting ¢ — oo and integrating out the Y factor yields the weak
form of (4.34), as desired.

This completes the proof of Claim 3, hence of Case 3 and of Theorem

1.1. |

Remark 4.2. It seems plausible that the method of proof of Theorem 1.1
can be combined with the methods of [23, 30] to obtain a generalization
of the C™ estimates of Theorem 1.1 to the setting of proper holomorphic
submersions f : X — B with Calabi-Yau fibers over the unit ball B ¢ C™
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(as in Theorem 1.4) such that the simply-connected Beauville-Bogomolov-
Calabi factors of the fibers of f are all biholomorphic (while the torus factors
may vary). The idea is that even though in this setting the natural collaps-
ing semi-Ricci-flat Kahler reference metrics on X are no longer Riemannian
products, they still satisfy very good estimates with respect to certain Rie-
mannian product metrics.

5. C“ estimates in the non-product case

Let B = B1(0) denote the unit ball in C™ and let f : X — B be a proper
surjective holomorphic submersion with n-dimensional Calabi-Yau fibers.
Let wx be a Ricci-flat Kéhler form on X. For each z € B we use the Calabi-
Yau theorem to find a unique Ricci-flat Kahler metric wr, on X, in the
class [wx|x.]. Writing wr, = wx|x. + i00p., we may choose the functions
p- to depend smoothly on z (for example by normalizing them to have wx-
fiberwise average zero), and so to define a smooth function p on X. We can
then define a closed real (1,1)-form wr on X by wr = wx + i09dp, so that
the restriction of wp to X, equals wr .. (In the product case that we treated
earlier, we could simply take wrp = wy. It was recently shown in [6] that
wp is in general not semipositive definite on X, see also [3], but this will be
irrelevant for us.) We further define a family of closed real (1,1)-forms on
X by

] —t
Wy =W +€ "Wwp,

where we, = f*wem. In general, the forms wE are not positive for all ¢ > 0.

However, it is easy to see (using Cauchy-Schwarz for the base-fiber terms of
wp, which come with a good factor of e, cf. (5.6)) that given any compact
subset K C X there is a tx such that wE is positive on K for all t > tg.
In particular, by shrinking B slightly, we can assume that wf is positive on
X for all ¢ > 1, and without loss even for all ¢t > 0. We are concerned with
the behavior as ¢ — oo of Ricci-flat Kahler metrics wy on X which satisfy

wp = wE +i00v; together with the complex Monge-Ampere equation
(5.1) (W)™ = e ™Me%Wm A WP,

where ¢; is a constant that has a positive limit, and G is a smooth function
pulled back from B.

By Ehresmann’s theorem f is a C* fiber bundle, and (up to shrinking
B again) we may choose a smooth trivialization ® : B x Y — X, where
Y = f71(0) is viewed as a smooth real 2n-manifold, such that the restriction
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Qlioyxy 1 {0} x Y — f~10) = Y equals the identity map. We then equip
B x Y with the complex structure J? induced by the one on X via ®, so
that ® becomes a biholomorphism and prem is a J 1-holomorphic submersion.
Let Jy . denote the restriction of J% to the Ji-holomorphic fiber {z} x Y.
Note that ®*wp, is a Ricci-flat Jy ,-Kéhler metric on {z} x Y. Denote
the associated Riemannian metric on {z} x Y by gy., extend it trivially
to the C* product C™ x Y, and define the Riemannian product metric
gzt = gom + e gy, which is Kéhler with respect to J, = Jem + Jy,,. By
abuse of notation we will identify wp and wf, gE with their pullbacks to BxY
under .

The following is a restatement of Theorem 1.4, and is the main result of
this section.

Theorem 5.1. For all C' and « € (0,1) there exists a C' independent of t
such that if

(5.2) C7lgi < gt < Cgf on BxY,

then it holds that

(5.3) wup wp 9@~ P

— gzvt(x) < C/.
v=(2,y)€By XY @€ B (x,1) d9=+(x, ')

We begin with some remarks to clarify the nature of this estimate.

Remark 5.2. Theorem 5.1 holds with respect to any C*° trivialization ®.
In fact, if (5.3) holds with respect to one choice of ®, then one can prove
directly that it also holds with respect to any other choice. This is similar
to the proof of Lemma 3.6 but longer (using also Proposition 5.5 below).

Remark 5.3. Estimate (5.3) is weaker than a uniform bound on

[g;]ca (Bl/4><Y79zo,t)

for a fixed zg € B, which is what one would naively expect after our results
in Theorem 1.1 in the product case. However such a bound is false except in
the product or torus-fibered cases. Indeed, assuming it were true, scale all
distances by e!/2 (which has the effect of multiplying our assumed Holder
bound by e~/ 2), stretch the base directions accordingly, and pass to a
pointed limit based at some generic point z € B\ {20}. Thanks to [53, Thm
3.1], the scaled and stretched g; converges locally smoothly to gcm + gy.-,
while the scaled and stretched g.,; obviously converges to gcm + gy, It
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follows that the former is parallel with respect to the latter, which is false
except in the special cases mentioned above. This argument also shows that
(5.3) provides an effective estimate on the rate of convergence in [53, Thm
3.1].

Remark 5.4. Estimate (5.3) does imply a uniform C* bound for g with
respect to a fized metric on B x Y. Indeed, notice that P%' = P%° and
d9=(z',x) < d9=° (', ) and |T|y_ ,(z) = Ty, ,(z) for any contravariant ten-
sor T', so (5.3) trivially implies a uniform bound on the g, o-Hdlder quotient
of gf at z,2’. By Lemma 3.6, this implies a uniform bound on the Holder
quotient of ¢gf at x,2’ with respect to any fixed metric smoothly and uni-
formly comparable to g, o. Thus, Theorem 5.1 implies the Holder estimates
stated in Corollaries 1.5 and 1.6 in the case of compact Calabi-Yau mani-
folds. These results in particular recover, and greatly strengthen, the main

result of [51].

Before we start the proof of Theorem 5.1, we make a simple observation
which will be very useful in the proof. Fix a smooth complex coordinate
chart (y!',...,y") on Y. Then (z!,...,2™ y' ... y") is a smooth complex
coordinate chart on B x Y. Schematically, and ignoring the distinction be-
tween these complex coordinates and their complex conjugates, we may then
write

(5.4)  (J" = L)y = A20,2,y) ® dz @ Oy + B(20,2,y) ® dy @ 9y,

where A, B are smooth matrix-valued functions with B(zo, z0,y) = 0. There
are no dz ® 0, or dy ® 0, terms in this formula because prgm is holomorphic
with respect to both (J%, Jem) and (J,,, Jom). The absence of such terms is
crucial for us because they behave poorly with respect to diffeomorphisms
of the form (z,y) — (Az,y) with A — 0. Given (5.4), the definition of wE
implies that

(gE — Gz0.t) | (20) = H(C(20,2,y) ® dz @ dz + D(20,2,y) ® dz @ dy

(5.5)
+ E(ZO7 Zay) ® dy 2 dy)a

where C, D, E' are smooth matrix-valued functions with E(zo, z0,y) = 0.
Formulas (5.4) and (5.5) will usually be applied as follows. We would
like to prove that J% becomes asymptotic to Js,, and gg becomes asymptotic
t0 ¢2,.¢, after pulling back by a diffeomorphism of the form (z,y) — (Az,y)
with A — 0 and passing to a pointed limit centered at (A~'zg,yo). This
follows from (5.4), (5.5) by observing that dz gains a factor of A under



740 Hans-Joachim Hein and Valentino Tosatti

pullback, hence becomes negligible, and that the dy terms also go to zero
locally uniformly by Taylor expanding B, F¥ around z = zj.

We will use (5.4) and (5.5) several times below, often to derive estimates
which are global in the Y factor. For example, we will be interested in es-
timates on the difference of J# — Jy, or gE — gzt at two arbitrary points
(z,y) and (2/,9') such that y and y' do not necessarily belong to the same
coordinate chart. In such a situation we will cover Y by finitely many co-
ordinate charts as above, apply (5.4), (5.5) in each of these charts, and use
the triangle inequality.

We also note here that there is a constant C such that for all z € B and
t € [0,00) we have

(5.6) Cg. < ¢ < Cgay.

This easily follows from (5.5) and Cauchy-Schwarz because the dz®dy terms
come with a coefficient of e~* rather than e~%/2. Note that this observation
was already used in the setup of Theorem 5.1.

We are now ready to start the proof of Theorem 5.1.

Proof of Theorem 5.1. We begin with a preliminary reduction. Define a func-
tion uy on B X Y by

() = p(z,y) = d9=*(x,0(B x Y))“ -

(5.7) wp ne(2) = P (ne(2)]g. ()

z / ’
@' €B9%t (z,1d%%t (,0(BXY))) d9=t(z, x')>

where n; = wy — wg = i00v;. This quantity is more convenient for us than

the analogous one involving g7 because all of our key analytic arguments
work at the level of i00-exact (1,1)-forms.

Claim. Theorem 5.1 can be deduced from the statement that

. <C.
(5.8) max iy < ¢

Proof of Claim. Note that for all tangent vectors v, w we have
9! (v, w) = g (v, w) + (v, Jw).

We denote the last term by hi(v, w). From (5.2) and (5.6), and using the
fact that J? has fixed length with respect to gg because gf is Ji-Hermitian,
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we deduce that for all z € B,

(5.9) sup (|hilg. , +|J°
BXY

9. +1nelg..) < C.

Then for all z = (z,y) € Byyy x Y and 2’ = (¢,y) € B9%*(x,1/8) we
estimate

oor() <62 (@) = PL(GH ). ()
+ [he(x) — P% (ha(a”)) g -

97 () = Po; (g7 ()

(5.10)

For the first term in (5.10), we clearly have

195(x) — PL2(gR @y, o) = (97 — 920)(x) = PL2 (97 — 920) (@) (25

which we aim to estimate by C'd%*(x,2’) using (5.5) and the covering argu-
ment indicated after (5.5). This is easy for the C, D terms in (5.5) because
there is a factor of e* in front while the g, ;-lengths of dz and dy are O(1)
and O(e!/?) respectively. For the E term, using the fact that E(z, z,y) = 0
for all y, we see that its contribution is O(]z — 2|) = O(d%*(x,z’)). Thus,
as desired,

(5.11) |95 (x) — P2 (g (2'))

() < Cd9= (z,2).

For the second term in (5.10), we bound

(@) = P (ha (")) . (o)
(5.12) < (sup el )IT*(2) = PL (T5 ()l ()
+ C(sup |J*

g...) (max py)d? (z, "),
where the sup and max are taken over B x Y. We have

¥ (x) = P (J3(2)

gt = [(JF = L) (@) = PL((J° = J)(2"))

gz,t(a;)’

which we again aim to estimate by Cd9%(x,z") using (5.4). This is again
easy for the A term in (5.4) because the g, ;-length of 8, is O(e~*/?), and for
the B term, using the fact that B(z, z,y) = 0, we see that its contribution
is O(|]z — 2/|) = O(d%*(x,2’)). This gives

(5.13) |5 (z) — PS5 (T8 (2))) < Cd9% (z,2').

lg. . (@)
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Plugging this together with (5.8), (5.9), (5.13) into (5.12) gives

(5.14) () = P (ha(2"))

grate) < CP (2,2

Taken together, (5.11) and (5.14) allow us to appropriately bound the right-
hand side of (5.10), proving (5.3). Thus, Theorem 5.1 follows from (5.8), as
claimed. 0

Thanks to the above claim, it suffices to prove (5.8), which we do by
contradiction.

If (5.8) is false, then limsup,_,. maxpxy 4t = oo. For simplicity of
notation we will assume that limy_, o maxpxy g = oo (usually this will be
true only along some sequence t; — 00). Choose x; = (z,y:) € B X Y such
that the maximum of yu; is achieved at x;, and define \; by

e () — PLL! (mi(2')
/)a

AY = sup gz.+(®1) )

2 €B9=tt (3, 1d%% - (2, D(BXY))) d9=ct (zt, x
Let us note for later purposes that after passing to a subsequence,
(5.15) 2% = Zo0 €E B, Yp = Yoo €Y.

Now A; — oo since otherwise maxpxy ¢ would be uniformly bounded be-
cause the g, ;~diameter of B x Y is uniformly bounded independent of z and
t. Let us also choose any point

vy = (2 44) € Bos(ay, e+ (0, O(B x Y)))
realizing the sup in the definition of A\;. Consider the diffeomorphisms
U, : By, xY = BxY, (2,9) =U(2,9) = (\ '2,9),
and define
Je =i, g =A0lg.,,, Ji=UlJ0 OF = AWl
=Ny, @ =0y (2), @) =7 ().

Then §; is a Ricci-flat J-Kéhler product metric, d}f is a semi-Ricci-flat jf—
Kahler form, &} = (IJE + 7 is a Ricci-flat jth—Kéihler form, and we have the

following basic properties:

(5.16) Gt = gom + N2 gy, OF = wem + A2e D Wy,
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(5.17) C g < g < Cgy.

Here (5.16) is obvious and (5.17) follows from (5.2) and (5.6).
The following properties are crucial for our proof. First note that

() = P ()

)\a gzt:f/(wt)
t = 7
d9=et (x4, )

< Urge v n /n
_ 7 (1) — Pﬁfi ' t(nt(x£)>‘\1/rgzt,t(£%t) A2
f— d\I/zg‘th (.,i.t,i.;)a t

(&) — PFs, (0e(@) g,
- AN A2,
A9+ (T, })

which implies that

1 (2 — P ()5,
(518) |77t( t) B xixt(f’t( t))|gt( t) —1
dgt(ﬁt’ﬁg)a

Since the numerator is uniformly bounded thanks to (5.17), it follows in
particular that

(5.19) d% (i, 2) < C.

Now recall that &} was chosen to maximize the difference quotient of (5.18)
among all points

. 1 .
i e Bgt(i‘t, ngt (Ii‘t, 8(B,\t X Y)))

Moreover, if we define

(5.20) G20 = AUSgap = gor + Ae gy (2= N '2)

for all 2 € B), (so that gs,; = g by definition), then the point &; itself
maximizes the quantity

pe(Ue(2)) = d9(2,8(By, x Y))* -

sup
#'€BI2t (2,1d%2:t (£,0(Bx, XY)))
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among all z = (2,9) € By, x Y. Together with the fact that max p — oo,
these properties yield

(5.21) d% (&, 0(By, X Y)) — o0.

This tells us that if we pass to a pointed limit with basepoint Z;, the bound-
ary moves away to infinity and the limit space will be complete. We also
learn that for all z = (2,y) € By, XY,

gz,¢(2)

. i(2) — P ()
f/GBﬁé,t(j,idﬁé,t(j’a(BM xY))) d9z (.C&, ik
o (3, 0(By, x Y))

9z (2,0(By, X Y))

Using the fact that C71g; < gz < Cg: by (5.20), the triangle inequality
for d%, and (5.21), we deduce that there exists a C such that for all R > 0
there exists a tg such that for all t > tg,

(5.22) sup ( sup mt(i‘) - P?;; (ﬁt(i‘/)”gt(i))

LT <C.
#=(%,9)€ B3 (#,,R) \ &' €B9(2,,R) doe(z,2')~

The quantity on the left-hand side of (5.22) is subtly weaker than the
C%(B9 (&4, R)) seminorm of 7; because the parallel transport from ' to & is
performed with respect to gz ¢, where & = (2, 7). In fact, the C*(B% (34, R))
seminorm of 7; may well be unbounded. However, (5.22) is sufficient for us.

We are now in a position to study the possible complete pointed limit
spaces of

(B)\t X Y7 gt) é}t)
as t — 0o0. Modulo translations in the C™ factor, we may assume that
= (0,9¢) € C™xY. Recall here that ¢y — o € Y by (5.15). Abbreviating
6 = \e "z,

we read from (5.16) that again up to passing to a subsequence, three cases
need to be considered: (1) d; — oo; (2) 0y — § € (0,00), and without loss
of generality 6 = 1; and (3) §; — 0. Observe that thanks to (5.15), (5.4), it
holds in all three cases that

(5.23) Jis P = Jom + Jy. in CR2(C™ X Y).
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5.1. Case 1: the blowup is C™*t"

In this case we assume that §; — oco. We fix a Jy,,_-holomorphic chart
(9%,...,9™) on Y centered at yo, with range the ball By C C". We may
assume without loss that ¢; € By for all ¢, and ¢ — 0 as t — oo. Then the
map (2,9) — (2,9 + 6; *§) with domain C™ x By, is a diffeomorphism onto
its image C™ x By (i;) C C™ x Ba. Let us pull back Jy, g, JF, &F, Ay, &1, &)
under this map, obtaining new objects J, Gt jf,&f,ﬁt,it, Z;. Then 7 = 0
and by (5.5), (5.16), (5.23),

(524) jt, jtu — J(Cmﬁ—n, gt’gtu — g(Cmﬁ—n ln Cl%%(cm—i_n)

We write wp = (DE +1); for the pullback of our Ricci-flat jth—Kéihler form, which
is of course jth—Kéihler. Thanks to (5.24), (5.17), (5.18), (5.19) we have that

(5.25) C™gomin < g < Cgomn,
&P (0) — PL (@8 ()15 00)

5.26 —t - =1 1

( ) dgt (O, j;)a ) + 0( )7

(5.27) d?(0,2;) < C.

(Note that the o(1) term in (5.26) comes from the contribution of (I)E to
@y. This is indeed o(1) thanks to (5.24) combined with Remark 3.7.) Using
(5.25), Proposition 2.3 now yields uniform C§2,(C™*") bounds for w!. Even
the CL.(C™") or C2 (C™*") estimate for any 3 > a applied to the numer-
ator of (5.26) (combined with Lemma 3.6 to compare Holder norms) then
tells us that

d%(0,1}) > Cc~1.

Thus, without loss, &} converges to ., # 0, and @f converges in C72 (C™1™)
to some Ricci-flat Kéhler form @2, on C™ which is uniformly equivalent
to wem+n by (5.25) but satisfies w3 (0) # 0% (Z5,) by (5.26) (using Remark
3.7). This is impossible because of the Liouville Theorem 2.4.

5.2. Case 2: the blowup is C™ X Y
In this case we have that §; — 1, without loss of generality. The argument

here is closely analogous to Case 1 but slightly easier, so we will sketch it
more briefly. The main simplification is that there is now no need to apply
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an additional diffeomorphism and pass from J; to Jy, ete. Indeed, we now
have that

jt, jtﬂ — J(Cm + Jy7zw, gt,ﬁf — gcm —&—gy,zoo n Cfo.oc(cm X Y)

Thanks to (5.17), we can apply Proposition 2.3 on small balls to obtain
> (C™ x Y') bounds for @f, hence (after passing to a further subsequence)
> (C™ x Y) convergence to a Ricci-flat Kéhler metric w3 on C™ x Y

uniformly equivalent to gp = gcm + gy,.._. Because of these CP° (C™ x Y)

bounds (and using Lemma 3.6 to compare Hélder norms), the two points

& = (0,9) and &} have g-distance uniformly bounded away from zero.

Thus,

68 G0) = PE (@3 ¥ lgno0) _ |
d9? (Zoo, T") ’

after passing to a subsequence so that &, — 2/ # Z~. (Here we again use
Remark 3.7. Note that 4., is some minimal geodesic connecting 2o, and Z._;
there may very well be others but for the subsequent contradiction this is
irrelevant.) This contradicts the Liouville Theorem 2.6.

5.3. Case 3: the blowup is C™

We finally assume that 6; — 0. This is the hardest case. We begin by ex-
plaining the strategy. Fix any R > 0 such that R > d%(&,4}) for all t.
Recall that 2; = (0,%:) and 9y — Joo € Y. Then (5.17), (5.22) imply that
M, and hence @7, have uniformly bounded C“ norm with respect to any
fized (i.e., non-collapsing) reference metric on B9 (i, R), using Remark 5.4.
Thus, by passing to a diagonal sequence, we can assume that @} — w3, in
the CIBOC((C’” x Y') topology for all § € (0,«), where w3, € C (C™ xY)
satisfies the following properties:

(1) @3, is a section of prg.,. (AMLC™), uniformly equivalent to pri.. (wem).
(2) @3, is gy,...-parallel in the fiber directions.
(3) wg, is weakly closed.

Here (1), (2) follow by passing to the limit in (5.17), (5.22), respectively
(using Remark 3.7). For (2), notice in particular that if we fix any 2 € B C
C™ and recall that z = z + )\t_lé, then gy, — gy,... as t — 0o because
2t — Zoo and |z — 2| < A7'R. (3) is clear since w3, is a uniform limit of closed
forms. Together, (1), (2), (3) imply that @2, is the pullback under pre.. of
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a weakly closed (1,1)-form of class C. on C™, uniformly equivalent to
wem . Abusing notation, we denote this form, which is in particular a Kéhler
current with a global potential of class CIQOS‘ (C™), by ws, as well.

As in Section 4.3.3, it is not hard to see by adapting an argument of [46]
that the complex Monge-Ampere equation (5.1) satisfied by wf implies that
WS, has volume form cwf’,.. Given this, it follows from a standard elliptic
bootstrap that w3, is smooth, and is therefore constant by Theorem 2.4. All
of this will be proved in Claim 3 below (Section 5.3.3). The main difficulty
of this section consists in deducing from (5.1), (5.17), (5.18), (5.22) that w3,
is not constant on C™, contradicting Claim 3.

For this we first need to rule out that d% (iy,#;) — 0. This will be
done in Claim 1 (Section 5.3.1). One way to prove this would be to improve
the C* type bound (5.22) for 7; to a C” type bound for some 3 > a,
by linearizing the Monge-Ampere equation as in Section 4.3.1 and using a
Schauder estimate. It seems possible but cumbersome to prove a version of
Theorem 3.13 that accomplishes this. Instead we will argue by contradiction:
if d9%(#,4}) — 0, then by mimicking the proof of Theorem 3.8 we can
produce a harmonic (1, 1)-form contradicting Liouville’s theorem on C™*™,
C™xY,orCm

Second, we need to show that the nontrivial difference quotient (5.18)
passes to the limit. Currently we have w) — &% in ¢ (C™ x Y) for all
B < a, but this convergence is too weak because (5.18) may be due to base-
fiber or fiber-fiber components, which go to zero in ¢ _(C™ x V). In Claim
2 (Section 5.3.2) we will prove using the i00-exactness of 7, that (5.18) is
entirely due to base-base components. In fact, the same argument is already
needed to treat the C™ subcase of the blowup proof of Claim 1, but we defer
this argument to Claim 2 because it is long and involved.

Claims 1, 2, 3 imply a contradiction, which completes Case 3, hence the
proof of Theorem 5.1.

5.3.1. Claim 1. There exists an € > 0 such that for all t it holds that
A% (34, 3}) > e.

Proof of Claim 1. If this was false, then, since &; # &} for all ¢, there would

exist a sequence t; — oo such that dy, = d%:(Zy,, a%) — 0. As usual, we will

pretend that d; = d9% (&, &}) — 0.

Consider the diffeomorphisms

@t : Bdtfl)\t XY — B)\t X va (éay) = (H)t(gvg) = (dt'g?g)
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Pull back J, i, 95,4, J, &8, A, &F, &1, & under ©;, multiply the metrics and
2-forms by d; 2 and denote the resulting objects by the same letters with
each hat replaced by a tilde. Then first of all

Gzt = gom + €2gy. (60 = d7 0, 2 = diA12),

h_

(5.28) i .
wt — CL)(Cm + gt @t \I]t(.UF.

Secondly, thanks to (5.1),
(5.29) (@F 4 )™ = cpeCtHe (gfymin,

where the constants ¢; have a positive limit and

wiin A (6707 iwp)"

5.30 G, =0'VG, H =1 .
( ) t ¢ t t Og (W(Cm + 5%6:\11:(,0}7‘)”14‘”

Next, from (5.17), (5.18), (5.22),

(5.31) lelg. < C,
< (&) ~ PLs (m(:z:’))!gt(@) < car

(5.32) sup
F=(2,)€B (&1,d; V)

Sup —
& €B (Ty,d; ") o (z, )"
7(Z) — Pz, (1(2) g, 20)
dfh (.’i‘t, .'i’g)a

(5.34) d% (Z¢,2,) = 1.

(5.33)

_ o
_dtv

Roughly speaking, (5.31), (5.32) say that 7, is asymptotic to a parallel form
as t — o0o. The remainder of this section is concerned with proving that after
subtracting this parallel form and dividing by df, we can extract a limiting
(1,1)-form on C™*" C™ x Y, or C™ that is harmonic thanks to (5.29) and
contradicts Liouville’s theorem thanks to (5.33), (5.34).

The first step is to subtract the parallel part of 7; in the C™-directions
(this is already enough when the blowup is C™ x Y or C™, but a further
subtraction will be required when the blowup is C™"). More precisely,
decompose 7j; = ﬁE + 7, where ﬁf is the unique g-parallel (1, 1)-form pulled
back from C™ such that f]ﬁi (Z¢) is the g(&;)-orthogonal projection of 7;(Z;)
onto pri. (AM1C™)|z,. Notice that ﬁf is trivially i00-exact (on C™, hence
on C™ x YY), and is parallel with respect to all the metrics gz ;.



Higher-order estimates for collapsing Calabi-Yau metrics 749

Subclaim 1.1. There exists a C' such that for all £,
(5.35) | () 13,3, < Cef'

Proof of Subclaim 1.1. Assume the statement is false, i.e., without loss of
generality, that

o1 = &; “ldi “(#1) 13,3, — °°-

Consider the diffeomorphism
Iy : Bs-1y, XY = By, XY, (2,9) =1L(Z,9) = (&2, 9).
Define new reference product metrics
gzi =& Migzs = gom + gv.z (F=e12), G =, 1} = gem + gz
as well as a new 2-form
i = oy tey PTOTL(dy ).

Then by definition and by (5.32), using the fact that ﬁf is gz ¢-parallel for
all z,

(5.36) (@) g, 20) = 1,
(5.37) sp sup 171(2) — PLs (7 ()], )
F=(5,9)€ Bt (20,5, 1) \ &€ B (2.5, 1) dd (&, ')

< Cot,
where iy = IT; ' (&) = (0, 7). Now (5.36), (5.37) first of all imply that
(5.38) (&), < 1+ Coptd% (3, 3)°

for all &' € B9 (i, 6; '), i.e., 7, is locally uniformly bounded on C™ x Y.
Moreover, since the metrics §s; are non-collapsing and hence uniformly
smoothly equivalent to each other, it follows from (5.37), (5.38) that 7; is
locally uniformly bounded in C* on C™ x Y (using also Lemma 3.6). Thus,
by Ascoli-Arzela, up to passing to a subsequence, 7, — 77, in C{fm(cm xY)
for all 8 < a. By (5.36), 1., # 0. By (5.37) and Remark 3.7, 7 is parallel
with respect to oo = gcm + gy,..., hence in particular smooth. Moreover,
i, is i00-exact with respect to Jem + Jy,... by the same arguments as in
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Proposition 3.11 (some of the i09-operators must now be understood with
respect to J¢ = IT;©;¥;.J%, but this does not affect the arguments because
Ji — Jcm + Jy,.., locally smoothly). In particular, 75, |¢s)xy is harmonic
and exact for all # € C™, hence zero, so that any global i90-potential of 7
must be pulled back from the base. Thus, 77, is a nonzero parallel (1, 1)-form
pulled back from C™, contradicting the fact that (7., ) (&) is orthogonal to
the values of all such forms at Z,, by construction. O

The role of (5.35) together with (5.32), (5.33), (5.34) is to pass d; 7, to
a limiting i00-exact (1,1)-form on C™*" C™ x Y, or C™ that is O(r®) at
infinity and not parallel. (In the C™*™ case, (5.35) is not sufficient for this
and further subtractions are required.) On the other hand, we will deduce
from (5.29) that this limit form has constant trace, contradicting Liouville’s
theorem.

Before entering into the three cases of the blowup argument, we first
prove some important partial estimates that will help us establish the con-
stant trace property in all cases.

Fix any R > 0. It follows from (5.35) and (5.32) that

(5.39) |75, < O + Cd?R* on BY (i, R).

Note that, crucially, the right-hand side goes to zero as t — oo for R fixed.
Define (Z}f = (Dg + ﬁg Since (Df = @y — 17;, we can see using (5.6), (5.39), and
the fact that

[ Jilg < ClJf|; < C,

that there exists a tp such that CDE is a Kéhler form on BY% (%, R) for all
t > tg, with associated metric uniformly equivalent to g;. This allows us to
expand the Monge-Ampére equation (5.29) as

m+n B\m4n—i - . (~EymAn
(5 40) trw,nt + Z m + n (nt) ( ) Gi+H, (wt) _1.
(@) (@f)men

Write c;eXt — 1 for the right-hand side of (5.40).

Subclaim 1.2. There is a C, and for all R there is a tg, such that for all
t >tg and &’ € B9 (i, R),

(5.41) Vi >2:d; (i) (@) — PL () (@)]5., < COF + dfR*)R®,
(5.42) dy |} (#) — Py, (@ ﬂ@)ﬂ < CdION R,
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(5.43) @) _ K@) < ogl-opT IR,

Proof of Subclaim 1.2. To prove (5.41) we take out a factor of (7})(%;) —
P ((7)(2")) and estimate it using (5.32). For the remaining factor we
only need to estimate the length of 7, using (5.39). (As a side remark, note
that (5.41), which effectively allows us to drop the nonlinearities of the
Monge-Ampere equation, is the only place in the proof of Claim 1 where we
use our assumption that d; — 0.)

To prove (5.42) we pull gy, @E, djf, Ji, jtu, 7y, 7' back by the diffeomorphism
(2,9) = (e+2,9) as in the proof of Subclaim 1.1 above. In addition we mul-
tiply all metrics and 2-forms by ¢, 2 If we denote the resulting objects by a
check instead of a tilde, the advantage of this construction is that

©F (#) — P, (@F (@)lgue) =

since ﬁf is gi-parallel, but that g; = gcm + gy,., is now essentially fixed.

From the definition of JJE, and using (5.4), (5.5) and the covering argument
indicated after (5.5), we can rewrite this as

(544) \[Ut(O, :I.]t) U (Etdt /)] (Etdt )df ® (Etdtktil)df
(545) + [V}/( ) V; (Etdt " Z /)] (Etdt )dé ® dy
(5.46) — W (ewdiN 2, ) ® dy ® dijlg, z,)

Here Uy, Vi, V/, W/ are smooth matrix-valued functions depending precom-
pactly on ¢ in all C* norms (the primes indicate the effect of gy, -parallel
transport in the fiber directions), with W/(0,7) = 0 for all § € Y. Note that
there is no W; term in (5.46) because we used (5.5) where E(z, z,y) = 0.
Recall that (2/,7) = (e:2',9) € B9 (&4, R), where R is fixed, so || <
Ce;'R. To estimate the terms in (5.44)(5.46), first note that e;di\; ' =
5\t = e7¥/2. Taylor expansion in the z-variables allows us to bound (5.46)
by Ce;'Re™'/? = Cdi\;'R. For (5.45), notice that Vi(0,%:) = V/(0, %),
so (since we are working in a fixed small chart in Y where gy .,-parallel
transport enjoys smooth dependence) we can again use Taylor expansion,
as follows. In the z-variables the contribution to (5.45) (including the form
part) is bounded by C'di A, LRe=%/2, while in the y-variables it is bounded by
|J: — ' le~*/2. The latter expression is in turn bounded by Ce~*? because
3¢, 7 lie in a fixed chart, and by Ce; ' Re™"/2 because ' = ¢/ lies in a metric
ball of radius R centered at § = §; with respect to g = gcm + €igy.s,-
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The line (5.44) can be estimated in exactly the same way and even has an
additional helpful factor of e~*/2. Thus, we may estimate (5.44)(5.46) by

C(dA7 'R +min{l,£; 'R})e™ 2 + Cdy\; 'R.

The estimate (5.42) now follows by noting that e=*/2 < d;A\;'Rif e, 'R > 1.
Finally, there are three contributions to (5.43): from Gy, from Hy, and
from (@E)””” / (@f )™+ The latter is easily controlled using (5.42), the fact

that gf is uniformly comparable to g;, and the fact that ﬁg is gi-parallel and
uniformly bounded thanks to (5.31), (5.39). Next, notice that

|Gi(31) — Ge(F)] = |G(0) — G(deN\712)| < Cd\T'R

by (5.30) and because G is pulled back from the base. The H; contribution is
more complicated but can be treated using the same method as in the proof
of (5.42) above. Indeed, writing (2,7) = II;(2,9) = (2, y), multiplying all
2-forms by ¢; 2 and denoting the new objects by a check, we have

e t —

B <<m + n) N mzl (m + n> wé,n A (O Wwp)mtn—J > -1
m )Ty ) T R me e )

Writing wp as a block matrix (4 B) with smooth entries in the original

coordinates (z,y), we see that W A (I} O; Viwr)™ is equal to the pullback
of det D, while all the terms w,. A (II;©; ¥jwp)™ "7 are multiplied by a
factor of (e;dsA\;1)? = e~ thanks to our pullback maps. Thus,

- In!
H, m.n: - * OV KTy %
e :m‘i‘Q th@t\IltUt

for some smooth function U; depending precompactly on ¢ in all C* norms,
and hence

fegt(jt) — @) = U0, 3¢) — Ur(eedid; 125 |e ™.

The latter term can be bounded in analogy with our estimate of (5.44)
above. O
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As a direct consequence of Subclaim 1.2 together with (5.40), we see
that there exists a C', and for all R there exists a tg, such that for all t > tg
and ¥’ € B% (%, R),

(5.47)  d (¥ i (7) — 0¥ (&) < C((6% + d®R*)R™ + d " °\, ' R).

We are now in position to derive a contradiction on each of the three pos-
sible blowup spaces. Subcase B shows the key idea without any technical
complications, while A and C are more involved.

Subcase A: ¢; — co. The limit of (B,-1,, x Y, g,y is cmtn,

Deriving a contradiction in Subcase A. The complication of this case com-
pared to Subcase B is that (5.35) does not provide a uniform bound on
\d;aﬁl’f(a}t)]gt(ft). To fix this, recall that g = gem + 5?gyyzt, where gy ., —
gy,-.. smoothly. Let x?m+l . x?m+27 he normal coordinates for gy, cen-
tered at y;. Viewed as a map from Y to R?" these depend on ¢, but we prefer
to instead pull back our setup to R?” under the inverse map. In this sense
we may then assume without loss that
J
aaj(gy2,( Yab — Oap)| < 1(1)0|X|2 J for |x| <2 and j=0,1.

This is possible thanks to the compactness of Y and compact dependence of
gy,z, on t, after rescaling all metrics gy ., by the same large constant if nec-
essary Define %X/ = ;x7, so that x?™+1 ... %?"*+2" are normal coordinates
for e7gy.,, centered at y;. Formally also write x!,...,%*™ for the standard
real coordinates on C™. Then %!, %?m+2n are normal coordinates for g
centered at T; with

o < &t -

(5.48) @(gt(i)ab—é )| < 100|x]2 J for || <2 and j =0,1.

Then let (7,)* € A?(B9(%;,¢;)) denote the 0-th order Taylor polynomial of
7, at &; with respect to the coordinate system x!,...,%?"*2" and define

i =i, — (7)* € A2(BI (%4, e4)).

Subclaim 1.8. There is a C, and for all R there is a tg, such that for all
t > tRa

(5.49) dy “7} (&) = 0,



754 Hans-Joachim Hein and Valentino Tosatti

(5.50) sup ( sup dy el (%) — PL: (i ('))|gt(i))<a

5=(2,§)€ Bt (#:,R) \ & €Bit (#1,R) o (z,3")"
(5.51) 21 (F) — P [ ()5, — 1 < Cep ™,
(5.52) d9 (24, 7)) = 1,
(5.53) dy ° (%0 (&) — ¥ (7)) <

C((6& + d*RY)R® +d} N 'R+ 27 'R),
where in the last equation ' € B (%, R) is arbitrary.

Proof of Subclaim 1.3. (5.49) is clear by definition and (5.52) is copied from
(5.34). We will now derive (5.50), (5.51), (5.53) from (5.32), (5.33), (5.47)
by using (5.35), (5.42), (5.48).

Equations (5.32) and (5.47) give control over BY (%, R) provided that
t > tp is large enough. Thus, it makes sense to apply (5.32), (5.33), (5.47)
to prove (5.50), (5.51), (5.53). Since we are also going to use (5.48), we
moreover need to choose tg so large that t > tg implies €, > max{2,2R}.

The following is the key point: if ¢t > tg, then for all , 7’ € B9 (i, R),
Z = (2,7), it holds that

(5.54) d; (i) (&) = PLA(GI)HE)) 5.) < Cef ™ d% (&, ).

To prove this, note that gy, will be at bounded distance to gy, in C1(Y)
if t > tg. Thus,

(5.55) V9 Gz 4|5 < Ceyt on B9 (34, 2R).

Moreover, once t > tp is sufficiently large, there will be a unique gz ;-minimal
geodesic joining # to ', and this geodesic will be contained in B (%, 2R).
Bound the left-hand side of (5.54) by integrating the gz ;-covariant derivative
of d; *(};)* along this geodesic. We have 9k (7,)f = 0, the Christoffel symbols
satisfy |95 | < Ce; ! by (5.48), (5.55), and |d; U (Te) g,z < Cef by (5.35).
This implies (5.54).

(5.50) is clear from (5.32) and (5.54), and (5.51) is clear from (5.33) and
(5.54). To prove (5.53), we combine (5.47) and (5.54). Specifically, thanks
o (5.47), to prove (5.53) it suffices to prove that

(5.56) (0 ()H(E) — u¥ (@) () < O} A R+ ¢ IR).
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Using the fact that gf is uniformly equivalent to g;, we can bound the left-
hand side of (5.56) by

CHE) = P, (1)) g,
+ 1) (#0502 i |@F (@) — PL (@F(3) 50 20)-

Using (5.54), we can further bound the first term by Cef_lR. On the other
hand, by (5.35),

|()F(Z0)|5,(2) = T(E)g. 2y < CFF < C,

and this and (5.42) allow us to control the second term by Cd;~*A 'R, as
desired. n

Thanks to Subclaim 1.3 we are able to say that d, “7;’ converges to some
2-form 7, € C (C™*") in the topology of C} ((C””") for every 8 < a such
that 7, is O(r®) at infinity and not parallel with respect to gem+» (using
Remark 3.7, but also Lemma 3.6 to compare the C[3_ topologies with respect
to a fixed and a mildly varying metric). Also, 777, is clearly (1, 1) with respect
to J(Cm+n.

On the other hand, we may assume that f]f — gg:mM locally smoothly,

where g(ﬁcmﬂ is a constant Kédhler metric on C"™*" (possibly different from

gem+n but this is not relevant). Then it follows from (5.53) that 77, has
constant trace with respect to w(ﬁcmﬂ,.

Notice that 77 is weakly closed (as a locally uniform limit of smooth
closed forms). Thus, 7% is a closed (1,1)-current of class C{ (C™"), hence

has a global potential of class CZ¥(C™+"). This and the constant trace
property imply that 772, = id0¢ for some smooth function ¢ on C™*" with

'
AYcm+n g = const.

Thus, ¢ = ¢ + h, where / is a real polynomial of degree < 2 on C™*" and
h is harmonic on C™*" with |i00h| = O(r®). Liouville’s theorem now tells
us that the coefficient functions of {00k are constant, which contradicts the
fact that 7 is not parallel. O

Subcase B: ¢, — 1 (without loss). The limit of (B,:,, X Y, g, 1) is
C™ xY.

Deriving a contradiction in Subcase B. Thanks to (5.39) together with (5.32),
(5.33), (5.34) and Remark 3.7 (using also Lemma 3.6 in order to compare
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the mildly varying C}¥_ topologies) we are able to say that d, “7; converges

to some 2-form 7., € C{ (C™ x Y') in the topology of C}, (C™ x Y) for all
B < « such that 77, is O(r®) at infinity and not parallel with respect to
gcm + gy,-. - It is also clear at this point that 7, has type (1, 1) with respect
to Jom + Jy,z -
On the other hand, we may clearly assume that Qf — ggm +9y,... locally
8

smoothly, where g¢.. is a constant Kéhler metric on C™ (possibly different
from gcm but this is irrelevant). Then it follows from (5.47) that 7, has
constant trace with respect to w(ﬁcm +wy, -

Finally, notice that 7., is weakly closed (as a locally uniform limit of
smooth closed forms). Thus, 7., is a closed (1, 1)-current of class C{.(C™ x
Y), hence has local potentials of class C%®. Together with the constant trace
property, this implies that 77 is actually smooth. Now the same arguments
as in Proposition 3.11 (see also the proof of Subclaim 1.1 above) give that
i, is globally i00-exact. Thus, 7, = 100y for some smooth function ¢ on
C™ x Y with

#
AJemTIv.200 9 = const.

Thus, ¢ = ¢ + h, where { is a real polynomial of degree < 2 on C" and
h is harmonic on C™ x Y with [i00h| = O(r®). Now the end of the proof
of Proposition 3.12 can be used to prove that 7, = i0dp for some real
polynomial of degree < 2 on C™, contradicting the fact that 7, is not
parallel. O

Subcase C: ¢; — 0. The limit of (Bdt—lAt XY, G, &) is C™.

Deriving a contradiction in Subcase C. It follows from (5.39) and (5.32) that
d, “n; converges to some 2-form 7., € C.(C™ x Y) in the Cﬁc(Cm xY)
sense for all 8 < «, using Remark 5.4. Moreover:

1) i is a section of pr,. (ALIC™).

2) 7 is gy, -parallel in the fiber directions.
3) 1., is weakly closed.

4) 7., is O(r®) with respect to gcm at infinity.

Py

Here (1) and (2), (4) follow by passing to the limit in (5.39) and (5.32),
respectively (cf. Remark 3.7). For (2), note that if we fix Z € B,..C C™,
then gy, — gy,... ast — oo because z; — 2o and |z — 2| < A" (3) is clear.
Together, (1), (2), (3) imply that 7, is the pullback under pre. of a weakly
closed (1,1)-form of class C{ . on C™, growing at worst like O(r%) by (4).

loc
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Abusing notation, we denote this form, which is a closed (1, 1)-current with
a global potential of class C’Q’O‘(Cm), by 77, as well.

loc
Unfortunately Cfic(Cm x Y') convergence is too weak to conclude from

(5.33), (5.34) that 7, is not constant, or to conclude from (5.47) that 7.,
has constant trace. The issue with both of these points is that (5.33) or
(5.47) may be due to base-fiber or fiber-fiber components of d; “7;, which
go to zero in Cl'ic((Cm x Y). However, it turns out that the id0-exactness
of d; “n, can be used to enhance (5.39), (5.32), proving that the base-fiber
and fiber-fiber components of d, “7j; actually go to zero with respect to the
collapsing reference metric g;. A precise statement is given in Proposition
5.5, which we defer to the next section because this is also the key to Claim
2 and its proof is long and involved. It is then clear from Proposition 5.5
and (5.33), (5.34), (5.47) that 7’ is nonconstant, of constant trace.

A contradiction to Liouville’s theorem can now easily be derived as at
the end of Subcase A. g

Claim 1 has been proved by deriving a contradiction in all three subcases
A, B, and C, modulo the use of Proposition 5.5 below in Subcase C.

5.3.2. Claim 2. There exist points z,2" € C™ such that ©3,(2) # &3 (Z').

(C™ x Y) limit of the jf—Kéihler
forms wy = @E + 17, and is the pullback of a Kéhler form with CZ¢ potentials

loc

Proof of Claim 2. Recall that @3 is the ¢f

loc

on C™. Moreover, (IJE converges in C(C™ x Y) to the degenerate Kahler
form wem pulled back from C™. Thus, in order to prove Claim 2, thanks
to (5.19), Claim 1, and Remark 3.7, it suffices to prove that there exists an
€ > 0 such that for all ¢,

(5.57) 170 (&) — PL 4, (00 (3)5,a0) = €

Here, as in Section 3.2 (proof of Proposition 3.9, Case 3), if n is any 2-form
on the smooth manifold C™ x Y, we write n = n° + n' + n? according to
A2(C™ xY)=AC™ @ (A'C" @ AY) ® A%Y. Now (5.18) and Claim 1 tell
us that (5.57) is indeed true if we replace 7Y by 7;. Unfortunately we only
know that A}, 7?2 go to zero with respect to a noncollapsing reference metric
on C™ x Y, which is too weak to conclude that their contribution to (5.18)
goes to zero (which would prove (5.57)).

The following proposition exploits the i00-exactness of 7; with respect
to jth to resolve this issue, as well as an analogous issue at the end of the
proof of Claim 1, Subcase C above. Thus, by proving this proposition we
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will not only prove (5.57), hence Claim 2, but also complete the proof of
Claim 1.

Proposition 5.5. Let B = B(0) C C™ be the unit ball. Let (Y, gy, Jy)
be a compact Kdhler manifold without boundary. Fix o € (0,1). Let J; be a
sequence of complex structures on B X Y such that

(1) the projection prem is holomorphic with respect to J;, Jem for all i;
(2) J; = Jom +Jy in CY¥(B xY) as i — oo.

Let {gy,,i}-cp be fiberwise J;-Kdhler metrics on B XY such that

(3) {gv.zitzeB = {9v}:eB in CY(B xY) as i — oo, with uniformly
bounded C? norm.

For a sequence of positive real numbers \; — 0 define Riemannian product
metrics g, ; = gcm —i—)\%gy’m on C™ x Y. Letn; be a sequence of real 2-forms
on B XY such that

(4) m; is i00-exact with respect to J; for all i;
(5) there exists a C' such that for all i,

squ 7 (@) go. . (2) +

z€BX
(5.58) ni(x) = P (0i(2")) lgo . (2)
sup sup <G
dgoi (z, x")
a=(29)EBXY \#/EBXY !

Split n; = Zfzo(m)t according to A2(C™ xY) = D, AC™ @AY . Then
(5.59) |(0:) go. = 0 and [(1:)°]g,.. — 0

in CP(B xY) as i — oo for any B < a.

Proof. For 0 < t < 2 define ()" = A\ *(m:)* and #; = Zfzo(ﬁi)t. Also
abbreviate g.; = gcm + gy,zi» i = gom + Afgy, and § = gem + gy. Then
Assumptions (3) and (5) tell us that

sup [7i(z)|g(2) +
reEBXY

(5.60) ( i) — P <m<x'>>|g(m>>

sup sup < C.

i /
z=(z,y)€EBxY \2'€BXY d9i (z, z')*
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Now assume (5.59) was false. Then there would exist a sequence of indices
going to infinity such that at least one of the two sequences of (5.59) is
uniformly bounded away from zero in C%(B x Y) along this sequence of
indices. Then thanks to (5.60) we can pass to a further subsequence of the
f); converging to some limit 9o, € C*(B x Y') in the topology of C#(B x Y).
(We will pretend that this subsequence is actually the entire sequence.) Also,
if z, 2’ lie on the fiber over z € B, then

i (x) — P (1:(2")) gy < Cd¥ (w,2')* < CAT = 0.

Since gy.i — gy in CH*(Y) by Assumption (3), Pif; converges to P,
by Remark 3.7. Thus, in the limit we get that 7, is gy-parallel in the Y-

directions, i.e.,
(5.61) V00 = 0.

The key point of the following arguments is that (5.61) together with As-
sumption (4) contradicts our standing assumption that for some ¢ > 0 and
for all 4,

(5.62) 1) g0, llos By + 10162 1go, leamxyy = €.

We will first prove that the (1;)? term in (5.62) goes to zero. Assumption
(4) implies in particular that n; is d-exact. This implies for all z € B that
(m:)?| {(z}xy integrates to zero against all gy-parallel 2-forms on {z} x Y.
(Note that this is a nontrivial constraint because (Y, gy) is Kéhler.) The
same is true for (;)2 = A\;?(m;)? restricted to {z} x Y, and since (7;)?
converges t0 (fjos)? in CP(BxY), it is true for (oo )? as well. But (fleo)?[ {23 xy
is itself gy-parallel by (5.61), so (ﬁw)2|{z}xy = 0. Since this holds for all
z € B, it follows that (fjs)? = 0 on B x Y. Thus,

1) | (Bxv) — 0.

The claim now follows by using Lemma 3.6 (which is possible because go; —
g in CY%(B x Y), with bounded C? norm) and the fact that |(9;)%|;,, =
‘ (771)2 |gO,i .

Next, we treat the (;)! term in (5.62). As in the previous step, our goal
is to prove that (s)! = 0 on B x Y. Because of (5.61), this is actually
trivial when b!(Y) = 0 because a nonzero parallel 1-form on Y represents
a nonzero class in H'(Y'). Thus, the following steps, which rely on the full
strength of Assumption (4), are needed only to treat the case b'(Y") # 0. This
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is reminiscent of [26, Section 4.2], where a divisor D with holomorphically
trivial normal bundle did not necessarily move in a pencil if b'(D) # 0,
leading to technical difficulties of a similar nature as the ones below.

For j € {1,...,m} let Z; denote the obvious extension to C™ x Y of the
j-th complex coordinate vector field on C™. The key step towards proving
that (i)' = 0 on B x Y is the following Subclaim A. Based on this,
Subclaim B below will then prove that (fs)' = 0 on B x Y, as desired.

Subclaim A. For all j € {1,...,m} and z € B we have that
(5.63) (Zj () izyxy = 0(Zi(00)|(zyxy) + €2

Here the O-operator is the one associated with the complex structure induced
by J; on {z} x Y (which makes sense by Assumption (1)), ¢; is an arbitrary
i00-potential for n; with respect to J; on B x Y, and €2, is uniformly O(A?)
on {z} x Y (independent of the choice of ¢;).

Observe that any two choices of ¢; differ at most by the pullback of a
pluriharmonic function on B under prew, so the function Z;(¢i)|(.)xy in
(5.63) is actually well-defined up to a constant.

Proof of Subclaim A. Fix z € B and j € {1,...,m}. Notice that
(Zj 5 () 2y = (Zg am) | zpxy -

Thanks to Assumption (4) we have 1, = i90p; for some function ¢; on
B x Y, where here and below, all operators 9,0 are with respect to .J;.
Let (2',...,2™) denote the complex coordinates on C™. Fix any y € Y
and a Jy-holomorphic chart (y',...,y") on Y near y. Assumptions (1)—(2)
and Proposition 2.2 allow us to find a J;-holomorphic chart of the form
(21, ., 2™ g}, ..., 9") in a definite neighborhood of (z,y) in B x Y that
converges to (z1,..., 2™yt ..., y") in C>% as i — co. The key property of
a “fibered” chart of this type is that if y” denotes the restriction of §¢ to
{z} x Y, then

Al
{z}xY oy

9p

.64

for all local functions ¢. Thus, expanding 7; = i00¢p; in terms of this chart,

-~ 0 0p; ) _
5.65) (Zjami)lgzyxy =1 55\ 5 a;
(5.65) (Zj ami)lzxy Za%’(@z? Chxy

p=1
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(5.66) +ii<[% Z;(9; )]d‘p {%Z@?)}dyf).

p,g=1

This is straightforward to check. Observe that in the product case (J; =
Jem + Jy) we may choose ¢ equal to the trivial extension of y? from Y
to B x Y; then the terms in (5.66) vanish and in addition 8/027 = Z;, so
that the right-hand side of (5.65) is globally d-exact, proving (5.63) with
€24 = 0. Also note that in general there is no reason for Z; to be of type
(1,0) (let alone holomorphic) with respect to J;, which is directly related to
the presence of the dy! terms in (5.66).

In order to control the errors of (5.66), observe that ! — 3¢ in C*“ on
some definite neighborhood of (z,y), so that Z;(g}), Z; (y?) — 0in Cb®

this neighborhood. Moreover,
o 0
= |0)*| 595 55 )| < CN
o (a7 27| <

by (5.60) and because the coordinate vector fields attached to the chart
(yl,...,y?) converge in CH®. This proves that the errors of (5.66) are uni-
formly o(A?), as desired.

Making the right-hand side of (5.65) globally d-exact up to small errors
is slightly more subtle. By Assumption (1), the (0, 1)-part of Z; with respect
to J; is a section of T*Y ®C, and (5.64) says that T*Y ®C is generated by the
vector fields 9/0yP and their complex conjugates Thus, if we expand Zj in
terms of our chart, there will be no 9/9z* components. Since dz*(Z;) = 5k
it follows that

9 " 9 9
. Ti= — — p Y o p 9
(5.67) =5 ; <aN o+ b ayf)

for some smooth local functions a (2,00, b?l(z ;) that go to zero in 2.
Thus,

0 [ 0p;
(5.68) E)—y]l?(sz

82(301' ’{Z}XY)
Ay} oy

)

0 "/ 9al, 9(il iy )
— ——(Zi (i)l _ g
{z}><Y> 8ﬂf( J(‘P )‘{ }><Y) q;( 8@? ayq

ob%; Ol ¢ (il % (il
(5.60) + 2% (¢ |{_q}xy) o, (@_}l){ }(>1<Y) "y (SD_IID{ EY))-
oY, 97; * 0y, 9y; * Oy 0y;
The coefficient functions involving a? ., b? . on the right-hand side of (5.68)—

3,87 75,8

(5.69) all go to zero in C?. Moreover by standard elliptic estimates applied
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to the differential inequality
1i00(il 2y xv) lce < CAZ,

which follows from (5.60) and Lemma 3.6, the derivatives of ;). y fea-
turing on the right-hand side of (5.68)—(5.69) are all uniformly O()\?). (Note
that for this it is crucial that (5.67) contains no 9/9z" components.) In
conclusion, (5.63) has been proved with ¢, ; uniformly o(A\?) on {z} x Y. O

As discussed before Subclaim A, the following suffices to complete the
proof of Proposition 5.5.

Subclaim B. We have (fjxo)! =0 on B x Y.

Proof of Subclaim B. Fix z € B and j € {1,...,m}. Integrate (5.63) against
any harmonic (0,1)-form (; of L?norm 1 with respect to the J-Kihler
metric gy.; on {z} x Y. The globally d-exact part goes away and the re-
mainder is o(\?). Multiply by ;! in order to pass from (n;)* to (;)'. It
follows that the L2-inner product between (7);)! and ¢; goes to zero. Since
gy,zi — gy in C1(Y), and since the Hodge number h%!(Y, J;|y) is equal to
hOL(Y, Jy) for all i sufficiently large (thanks to our assumption that these
manifolds are Kéhler), it is a standard fact from Hodge theory with param-
eters (cf. the proof of [33, Thm 5]) that every gy-harmonic Jy-(0,1)-form ¢
of L?-norm 1 can be written as the C%(Y') limit of a sequence ¢; of gy, ;-
harmonic J;-(0, 1)-forms ¢; as above. Thus, passing to a limit, we learn that
(Zj 4 (ﬁoo)l)’{z}xY; which is gy-parallel thanks to (5.61), hence gy-harmonic,
is L?-orthogonal to ¢. This leaves the possibility that (Z; (f]oo)l)]{z}xy is
nonzero of Jy-type (1,0); but this possibility is easily ruled out by inte-
grating the J;-(1,0)-part of (Z; 4 (ﬁoo)l)]{z}xy against (5.63) with respect
to gy,z:, multiplying by /\,L»_l, and passing to the limit.

In conclusion, (Z; 1 (fso))|(z3xy = 0 for all z € B and j € {1,...,m}.
Since (floo)! is a real 2-form, the complex 1-forms Z; 1 (floo)! and Z; 1 (fioo)!
are complex conjugates of each other. Moreover, these 1-forms are sections
of T*Y ® C, hence are determined by their restrictions to {z} x Y for all
z € B. Tt follows that Z; 1 (fleo)! = Z; 1 (lxo)! = 0 on B x Y, and hence that
(7700)1 =0. O

Proposition 5.5 has been proved. O
This completes the proof of Claim 2.
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5.3.3. Claim 3. The C* Kdhler current w3, on C™ is parallel with respect
to the Euclidean metric.

Proof of Claim 3. It suffices to prove that (w3,)" = cwi for some constant
¢ > 0. Indeed, since w3, has potentials of class 0120’?, it follows from this
by a standard elliptic bootstrap that @2

. . ne
3o is smooth. Since w2 is uniformly

comparable to wem, Claim 3 then follows from Theorem 2.4.

The proof of the fact that (&2 )™ is standard is very similar to the proof
of the corresponding fact in Section 4.3.3. Recall that on B), x Y we have

(5.70) QO = wem + 02T wr + 100y,

(5.71) (@)™ = 02 e N (W A W),

where G’t = GoVy, and where here and in the rest of this claim the operators
9,0 are understood to be with respect to jth Also recall that as t — oo we
have that

JH = Jom 4 Jya
\I/;ka — )

[)\?m\ll;* (W AwWg)] = witm Awy,_,

all of these locally smoothly on C™ x Y. The goal is to show that with

Coo = limy oo cp > 0,

(5.72) (m; n) (@)™ = cooel =),

First of all, we can write ©% = wem + i00yp for some ¢ € C%(C™).
We also write ¢ for the pullback of ¢ to C™ x Y, so that in particular
i0dpy — 100y in Cf,.. As in [46], let ¢, denote the function on C™ (as well
as its pullback to C™ x Y') obtained as the fiber average of ¢; with respect
to Wiwi. Fix a smooth function n on C™ with compact support K and also

write 7 for its pullback to C™ x Y. Fix ¢ large enough so that K C B,,.
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From the Monge-Ampere equation (5.70)—(5.71) we have

" / DG I (W A W)
CmxY

1
=
07" Jemxy
1
=
07" Jemxy

n(wem + 62U wr + i0dpy) ™™

n((wem + i@gﬁ) + (82 W wr + 100 (py — ﬁ)))mﬂl

1/ %LWH_”( 40D A
= — wqem (3
T Jony 2 g ) e 00
(67 Ui wr + iy — 1))
Observe that wem + i@gﬂ is pulled back from C™, hence can be wedged
with itself at most m times, so all terms in the sum with j > m are zero.

Next, we claim that all the terms with 7 < m go to zero as t — oco. To see
this, start by observing that any such term can be expanded into

m+n—j .
1 fm+n m—l—n—j/ RS
— m +100p)’ A
(") 2 (M) L e s e

1=0
(67 UFwp)™ A (i00(pr — 1)

The term with ¢ = 0 is easily seen to go to 0 because the integrand is
O(6f(m+n_J)) and j < m, while for each term with i > 0 we can rewrite the
integral as

/ (pr — ﬁ)i@gn A (wem + if)gﬂ)j A
CmxY

(6 L3wr)"™ "I (100 (00 — 1)

(5.73)

Work in local jf—holomorphic product coordinates on the total space. The
form i00n A (wem + i00¢)? is pulled back from C™, so in the coordinate
representation of (62Wiwp)™ " =I=4 A (i00(¢r — ¢1))' !, each summand is a
wedge product of 2(m—j—1) basis 1-forms pulled back from C™ and 2n basis
1-forms pulled back from Y. Multiplied together, the fiber contributions are
O(6?™). Indeed, the fiber- fiber components of 67 ¥} wy have an explicit factor
of 62, and its base-fiber components have a factor of 67 as well where &; would
be enough. Moreover, (5.17) implies that for all z € K,

(5.74) (100(¢1 — )|y xv| = 10800)| (v ] < O,
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so the fiber-fiber components of i99(¢; — ¢¢) are again O(67), and its base-
fiber components are O(d;) thanks to the Cauchy-Schwarz inequality with
respect to gy. Thus, every term

(wem +i09pe) A (07T Fwp)™ I A (100 (0r — 1))

in (5.73) is O(62"). To see that the whole integral in (5.73) is o(67"), as
desired, it then suffices to note that sup gy ¢ — @i < C2, which follows
from (5.74) by inverting the Laplacian on each fiber.

We are then left with only the term with j = m, which is

1 /m+n
(5?” m
1 /fm+n
:(516%

1 — _
+ =5 / 100N A (wem + 1009)™ AT
o;" Jemxy T

) / n(wem + i@gﬁ)m A ((5t2lllpr +i00(py — o))"
Cmxy

) / n(wem + i@gﬁ)m A (5t2\IlIwF)"
m CmxY

The second term is zero because i00n is pulled back from C™. Altogether,
we obtain that

o [ S A
(5.75) ey

m—+n AYaY m * n
= < ) / n(wem +i00p0)™ N (Viwr)".
m CmxY

Now observe that because Vjw} is closed and of jth—type (n,n), we have the
identity

_ . W n
19301 — 9) = (pren)s (z‘aa«o Pyl F) -
= © ' fy ‘I’th

Because i00p; — i00p in CZ, it follows that i@gﬁ — 100y, and hence
wem 4+ 100p; — WS, in C%

o ho (.. Letting ¢ — oo in (5.75) and integrating out

the Y factor yields the weak form of (5.72), as desired.
This completes the proof of Claim 3, hence of Case 3 and of Theorem
5.1. O

6. The case of compact Calabi-Yau manifolds

Let us first derive Corollary 1.3 from Theorem 1.1.
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Proof of Corollary 1.3. Let f : X — B be as in Corollary 1.3. By [17], f
is a holomorphic fiber bundle over B\ f(S). Fix any small coordinate ball
in B over which this holomorphic fiber bundle is trivial. Replacing B with
this ball and f with the product map, we may assume that B is a ball
in C"™ and f : BxY — B is the projection, with Y = X}, a compact
Calabi-Yau manifold. In order to be able to apply Theorem 1.1 we first
need to apply a gauge transformation. By [28, Prop 3.1] (cf. [23, Prop 3.1],
[25, Lemma 4.1], [27, Claim 1, p. 382], [53, p. 2936-2937], and the proof
of Proposition 3.11), we can find a biholomorphism 7" of B x Y (over B)
such that T*wyx = wy + 100u,; for some smooth real function w;. Note that
[28, Prop 3.1] is stated with B = C™, but the proof applies also if B is
a ball in C™. Let us also note for later purposes that 7T takes the form
T(z,y) = (z,y + 0(z)), where o is a holomorphic function from B to the
space of gy-parallel (1,0)-vector fields on Y, and where the addition y+o(z)
has the same meaning as in [28, (1.1)]. Fix a smooth real function us on B
such that wee = wem + 100us. Then setting

Py =0T+ e tug + us,
we have that
wem 4 e twy + 1000 = wee + e T wy + T 100 = T wy,
and
(wem + e fwy + z'a&;t)m” = ctefmT*cu;?"“" = ctefnwagm A wy,
where we define

*, m+n
r_ TMwy

[ =
m n’
w(cm/\wy

so that F' is the pullback of a pluriharmonic function on B. The constants
¢ approach a positive limit as ¢ — 0o, so up to a global rescaling we may
assume that the metrics T*w} precisely satisfy (1.3). In [46] (cf. [23, Lemma
4.1]) it is proved that there is a constant C' such that on B x Y we have

(6.1) C™Hweo + e twy) < w! < Clweo + e wy).

This clearly implies the bound (1.4) for T*w;, so applying Theorem 1.1 we
deduce that

(6.2) 1T*w? llox (K xyw) < Ckk
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for all compact sets K C B, with w; = wem + e fwy . We will now show that
the wy-norm in (6.2) can be replaced by the T*w;-norm, which then clearly
implies (1.7) and (1.8), proving Corollary 1.3.

For k = 1, since S; = V1'% — V9% is a tensor and thanks to (6.1), it
suffices to prove that [S¢g, < C on B x Y for some constant C' which is
independent of ¢. By multiplying all metrics by e’ and pulling back by the
diffeomorphism (z,%) — (e %2z, y), this is seen to be equivalent to proving
that

Trgp gp -
|Viedr — V97 [g, < Ce 2 on B 4 XY,

where gp = gem + gy and Ty(z,y) = (z,y + o(e"/22)). But in fact we have
an even stronger estimate (with e~ rather than e~*/2 on the right) because
V97 (T¥gp)|gr < Ce on Bey» x Y. The case k > 1 can easily be treated
by induction. The essential point is that T}"gp improves by a factor of e /2
upon gp-covariant differentiation because o takes values in the gy-parallel
vector fields on Y. O

Lastly, we derive Corollary 1.5 from Theorem 1.4.

Proof of Corollary 1.5. The proof is analogous to the one of Corollary 1.3.
Recall that we have fixed a Kéhler metric wp on B (in the sense of analytic
spaces), to solve (1.6), and on X \ f~1(f(S)) we have constructed in Section
5 a smooth function p such that the (1,1)-form wp = wx + i0dp restricts
to a Ricci-flat metric on all regular fibers X, and such that wi A wZ is
a strictly positive volume form on X \ f~1(f(S)). Fix any coordinate ball
in B which is compactly supported in B\ f(S), and replace B with this
ball, so now f : X — B is as in the setting of Theorem 1.4. We can write
wp = wem + 100u for some smooth function w on B. Thus, if we define

i =i —ep+u,
Weo = f*(.U(Cm,
. w7)7(1+n
<= W N Wk
(so that G is in fact the pullback of a function from the base, cf. [46, p.
445]), then

Wi = Weo + € "W + 100y,

(wto)ern _ ctefntw;?-i-n _ ctefntJrngno A w?‘.
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As recalled above, it is proved in [46] (cf. [23, Lemma 4.1]) that
C™Hweo + e Mwy) < wp < Cwoo + e twy).

Up to increasing the uniform constant C, this implies
C™ N woo + e twr) < wf < Clweo + e fwp),

which is (1.11). We are now in the setting of Theorem 1.4, so we ob-
tain (1.12), which as explained in Remark 5.4 implies that (1.13) holds on
f~1(B). This completes the proof of Corollary 1.5. O

Remark 6.1. If one is only interested in the setting of Corollaries 1.3 and
1.5 of a global fiber space with total space a compact Calabi-Yau manifold
(as opposed to the local settings of Theorems 1.1 and 1.4), then the proofs
above can be modified to avoid using the more advanced Liouville Theorem
2.6 of [28, 37], replacing it instead with the easier Liouville Theorem 2.5
together with the main result of [51]. Indeed, the result of [28, 37] was only
used in Sections 4 and 5 in Case 2. If we are in the setting of Corollary 1.3
(say in Case 2 of Section 4), we can then appeal to [51, (1.10)] to see that
the restrictions W3 |r.1xy (2 € C™) are in fact all equal to wy, while the
argument of [53, p. 2936-2937] (cf. the proof of Proposition 3.11) shows that
w3, is 100-cohomologous to wem +wy on C™x Y. The easy Liouville Theorem
2.5 then shows that @3, is the product of wy and a constant metric on C™,
which contradicts (4.12). The same argument works in Case 2 in Section 5
for Corollary 1.5.
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