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a b s t r a c t

Estimating causal effects under exogeneity hinges on two key assumptions: unconfound-
edness and overlap. Researchers often argue that unconfoundedness is more plausible
when more covariates are included in the analysis. Less discussed is the fact that
covariate overlap is more difficult to satisfy in this setting. In this paper, we explore
the implications of overlap in observational studies with high-dimensional covariates
and formalize curse-of-dimensionality argument, suggesting that these assumptions are
stronger than investigators likely realize. Our key innovation is to explore how strict
overlap restricts global discrepancies between the covariate distributions in the treated
and control populations. Exploiting results from information theory, we derive explicit
bounds on the average imbalance in covariate means under strict overlap and show
that these bounds become more restrictive as the dimension grows large. We discuss
how these implications interact with assumptions and procedures commonly deployed
in observational causal inference, including sparsity and trimming.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Accompanying the rapid growth in administrative databases and online platforms, there has been a push to extend
methods for estimating causal effects under exogeneity to settings with high-dimensional covariates (Belloni et al., 2014;
Farrell, 2015; Athey et al., 2018). These studies typically require a pair of identifying assumptions (Rosenbaum and Rubin,
1983; Imbens, 2004): unconfoundedness, also known as selection on observables, in which the treatment assignment
mechanism depends only on observed covariates; and overlap, also known as positivity or common support, in which
all units have a non-zero probability of assignment to each treatment condition.

A key argument for high-dimensional observational studies is that unconfoundedness is more plausible when the
analyst adjusts for more covariates (Rosenbaum, 2002; Rubin, 2009). Setting aside notable counter-examples to this
argument (Pearl, 2011; Wooldridge, 2016), the intuition is straightforward to state: the richer the set of covariates, the
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more likely that unmeasured confounding variables become measured confounding variables. This intuition, however,
has the opposite implications for overlap: the richer the set of covariates, the closer these covariates come to perfectly
predicting treatment assignment for at least some subgroups.

We formalize this curse of dimensionality argument and demonstrate that there are strong implications of overlap
when there are many covariates. In particular, we focus on the strict overlap assumption, which asserts that the propensity
score is bounded away from zero and one with probability one. While this appears to be a local constraint, we show
that strict overlap implies global restrictions on the discrepancy between the covariate distributions in the treated and
control populations. To do so, we re-frame strict overlap as bounding a likelihood ratio, which is a well-studied problem in
information theory (Hellman and Cover, 1970). Adapting results from Rukhin (1997), we derive explicit bounds on various
types of covariate imbalance, and show that these bounds become more restrictive as the dimension of the covariates
grows. For example, we show that as the dimension of the covariates grows, strict overlap implies that the covariates
must either be highly correlated, or that their means must become arbitrarily close to balance on average. To put these
results into context, we discuss how the implications of strict overlap intersect with common modeling assumptions, and
how our results inform the common practice of trimming in high-dimensional contexts.

We contribute to a growing literature on the critical role of overlap in observational settings. In the context of
semiparametric estimators, several papers show that the convergence rate critically depends on the level of overlap (Khan
and Tamer, 2010; Hong et al., 2018; Ma and Wang, 2019); see Busso et al. (2014) for relevant simulation evidence.
Recognizing this, one common approach is to trim units that have extreme values of the propensity score (Dehejia
and Wahba, 1999; Crump et al., 2009; Petersen et al., 2012; Yang and Ding, 2018). An alternative is to instead propose
estimators and inference methods that have additional robustness to overlap violations (Chen et al., 2008; van der Laan
and Rose, 2011; Chaudhuri and Hill, 2014; Rothe, 2017; Armstrong and Kolesár, 2018; Sasaki and Ura, 2018). Finally, our
results are especially relevant for recent efforts to incorporate machine learning into estimating causal effects, partly to
exploit rich covariates (see Chernozhukov et al., 2019; Athey and Imbens, 2019, for recent reviews). On the one hand, by
using machine learning to perform covariate adjustment, these methods can achieve parametric convergence rates under
extremely weak nonparametric modeling assumptions. On the other hand, the cost of this nonparametric flexibility is that
these methods are highly sensitive to poor overlap. Thus, understanding the implications of overlap with high-dimensional
covariates is therefore critical across many open research areas.

The paper proceeds as follows. Section 2 sets up the problem and defines key notation. Section 3 gives the main results
on implications of strict overlap. Section 4 discusses the role of assumptions on the outcome model, such as sparsity, as
well as trimming. Section 5 offers some discussion. In separate work, we address possible remedies and methodologies
for assessing overlap in this setting, but believe that characterizing the implications of overlap remains of independent
interest.

2. Preliminaries

We focus on an observational study with a binary treatment. For each sampled unit i, (Yi(0), Yi(1)) are potential
outcomes, Ti is the treatment indicator, and Xi is the set of covariates. Let {(Yi(0), Yi(1)), Ti, Xi}

n
i=1 be independently and

identically distributed according to a superpopulation probability measure P . We drop the i subscript when discussing
population stochastic properties of these quantities. We observe triples (Y obs, T , X) where Y obs

= (1−T )Y (0)+TY (1). We
would like to estimate the average treatment effect

τATE
= E{Y (1) − Y (0)},

though our results immediately extend to other estimands like the Average Treatment Effect on the Treated.
The standard approach in observational studies is to argue that identification is plausible conditional on a possibly large

set of covariates (Rosenbaum and Rubin, 1983; Imbens, 2004). Specifically, the investigator chooses a set of p covariates
X1:p ⊂ X , and assumes unconfoundedness.

Assumption 1 (Unconfoundedness). (Y (0), Y (1)) ⊥⊥ T | X1:p.

Assumption 1 ensures

τATE
= E

[
E{Y (1) | X1:p} − E{Y (0) | X1:p}

]
= E

[
E{Y obs

| T = 1, X1:p} − E{Y obs
| T = 0, X1:p}

]
. (1)

Importantly, the conditional expectations in (1) are non-parametrically identifiable only if the following population
overlap assumption is satisfied. Let e(X1:p) = P(T = 1 | X1:p) be the propensity score.

Assumption 2 (Population Overlap). 0 < e(X1:p) < 1 with probability 1.

Assumption 2 is sufficient for non-parametric identification of τATE, but is not sufficient for efficient semiparametric
estimation of τATE, a fact we discuss in further detail in the next section. For this reason, investigators typically invoke
a stronger variant of Assumption 2 (e.g., Hirano et al., 2003; Khan and Tamer, 2010), which we call the strict overlap
assumption with bound η.
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Assumption 3 (Strict Overlap). For some constant η ∈ (0, 0.5), η ≤ e(X1:p) ≤ 1 − η with probability 1.

Strict overlap is integral across a range of settings. Without any restrictions on the outcome distribution, strict overlap is
a necessary condition for the existence of regular semiparametric estimators of τATE that are uniformly n1/2-consistent over
a nonparametric model family (Khan and Tamer, 2010). This necessity may not hold if other conditions, e.g., conditional
moment conditions and smoothness conditions, are imposed on the potential outcomes (e.g., Chen et al., 2008; Hirshberg
and Wager, 2017; Ma and Wang, 2019). Technically, we can relax Assumption 3, but this will involve non-standard
asymptotic analyses (e.g., Hong et al., 2018; Ma and Wang, 2019) and it is difficult, if not impossible, to conduct uniform
inference on τATE (e.g. Khan and Nekipelov, 2013). Nevertheless, a large body of literature assumes strict overlap, even in
the presence of outcome restrictions, as it facilitates theoretical analysis; see, for example, van der Laan and Rose (2011)
and Chernozhukov et al. (2019). Moreover, as Khan and Nekipelov (2013, Section 4.1) observe, it is not clear how to
conduct uniform inference without strict overlap conditions, except in corner cases. Indeed, Khan and Nekipelov (2013)
prove that neither bootstrap inference nor pivotal inference is asymptotically valid without this assumption. Ma and Wang
(2019) shed some light on the possibility of uniform inference under assumptions on tail behaviors of inverse propensity
scores though they do not provide a complete recipe. In general, a lack of uniform inference is problematic in practice,
even if we can characterize the limiting behavior for every data generating distribution in a model, because the correct
choice of inferential procedure will depend on the unknown truth. See, e.g., Romano and Wolf (1999), Andrews and Cheng
(2012, 2013), and Chen et al. (2011) for discussion in other contexts.

3. Implications of strict overlap

3.1. Framework

In this section, we show that strict overlap restricts the overall discrepancy between the treated and control covariate
measures, and that this restriction becomes more binding as the dimension p increases. Formally, we write the control
and treatment measures for covariates, for all p, as:

P0(X1:p ∈ A) := P(X1:p ∈ A | T = 0),
P1(X1:p ∈ A) := P(X1:p ∈ A | T = 1).

For the remainder of the paper, we will assume that the marginal probability that any unit is assigned to treatment,
π := P(T = 1), is bounded by η ≤ π ≤ 1−η. With a slight abuse of notation, we define the marginal probability measure
on covariates, implied by the superpopulation distribution, as P = πP1 + (1 − π )P0, a mixture of the condition-specific
probability measures P0 and P1.

We write the densities of P1 and P0 with respect to the dominating measure P as dP1/dP and dP0/dP . We write the
marginal probability measures of finite-dimensional covariate sets X1:p as P0(X1:p) and P1(X1:p), and the marginal densities
as dP1/dP(X1:p) and dP0/dP(X1:p). When discussing density ratios, we will omit the dominating measure dP .

By Bayes’ Theorem, Assumption 3 is equivalent to the following bound on the density ratio between P1 and P0, which
we will refer to as a likelihood ratio:

bmin ≤
dP1(X1:p)
dP0(X1:p)

≤ bmax, (2)

where

bmin :=
1 − π

π

η

1 − η
, bmax :=

1 − π

π

1 − η

η
. (3)

Implications of bounded likelihood ratios are well-studied in information theory (Hellman and Cover, 1970; Rukhin,
1993, 1997). Each of the results that follow are applications of a theorem due to Rukhin (1997), which relates likelihood
ratio bounds of the form (2) to upper bounds on certain divergences measuring the discrepancy between the distributions
P0(X1:p) and P1(X1:p). We include an adaptation of Rukhin’s theorem in the Appendix, as Theorem 2. We also derive
additional implications of this result in the Appendix.

In the subsequent, we explore the implications of Assumption 3 when there are many covariates. To do so, we set up
an analytical framework in which the covariate sequence X is a stochastic process (X(k))k>0. For any single problem, the
investigator selects a finite set of covariates X1:p from the infinite pool of covariates (X(k))k>0. Importantly, this framework
includes no notion of sample size because we are examining the population-level implications of an assumption about
the population measure P . Our results are independent of the number of samples that an investigator might draw from
this population.

Remark 1 (Strict Overlap and Gaussian Covariates). While we focus on the implications of strict overlap in high dimensions,
this assumption also has surprising implications in low dimensions. For example, if X is one-dimensional and follows a
Gaussian distribution under both P0 and P1, strict overlap implies that P0 = P1, or that the covariate is perfectly balanced.
This is because if P0 ̸= P1, the log-density ratio log dP0/dP1(X) diverges for values of X with large magnitude, implying
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that e(X) can be arbitrarily close to 0 or 1 with positive probability. Similar results can be derived when X1:p is multi-
dimensional Gaussian. Thus, for Gaussianly distributed covariates, the implications of strict overlap are so strong that they
are uninteresting. For this reason, we do not give any examples of the implications of the strict overlap assumption when
the covariates are Gaussian.

3.2. Strict overlap implies bounded mean discrepancy

We now use these bounds to derive concrete implications of strict overlap. Here, we show that strict overlap implies
a strong restriction on the discrepancy between the means of P0(X1:p) and P1(X1:p). In particular, when p is large, strict
overlap implies that either the covariates are highly correlated under both P0 and P1, or the average discrepancy in means
across covariates is small.

We represent the expectations and covariance matrices of X1:p under P0 and P1 as follows:

µ0,1:p := (µ0,(1), . . . , µ0,(p)) := EP0 (X1:p), Σ0,1:p := varP0 (X1:p),
µ1,1:p := (µ1,(1), . . . , µ1,(p)) := EP1 (X1:p), Σ1,1:p := varP1 (X1:p).

We use ∥ · ∥ to denote the Euclidean norm of a vector, and ∥ · ∥op to denote the operator norm of a matrix.

Theorem 1. Assumption 3 implies

∥µ0,1:p − µ1,1:p∥ ≤ min
{
∥Σ0,1:p∥

1/2
op · B1/2

χ2(1∥0)
, ∥Σ1,1:p∥

1/2
op · B1/2

χ2(0∥1)

}
, (4)

where bmin and bmax are defined in (3), and

Bχ2(1∥0) = (1 − bmin)(bmax − 1), Bχ2(0∥1) = (1 − b−1
max)(b

−1
min − 1)

are free of p.

The proof is included in the Appendix. Theorem 1 has strong implications when p is large. These implications become
apparent when we examine how much each covariate mean can differ, on average, under (4).

Corollary 1. Assumption 3 implies

p−1
p∑

k=1

⏐⏐µ0,(k) − µ1,(k)
⏐⏐ ≤ p−1/2 min

{
∥Σ0,1:p∥

1/2
op · B1/2

χ2(1∥0)
, ∥Σ1,1:p∥

1/2
op · B1/2

χ2(0∥1)

}
. (5)

The mean discrepancy bounds in Theorem 1 and Corollary 1 depend on the operator norms of the covariance matrices
Σ0,1:p and Σ1,1:p. The operator norm is equal to the largest eigenvalue of the covariance matrix and is a proxy for the
degree to which the covariates X1:p are correlated. In particular, the operator norm is large relative to the dimension p if
and only if a large proportion of the variance in X1:p is contained in a low-dimensional projection of X1:p. For example,
in the cases where the components of X1:p are independent, or where X1:p are samples from a stationary ergodic process,
the operator norm scales like a constant in p. On the other hand, in the case where the variance in X1:p is dominated by
a low-dimensional latent factor model, the operator norm scales linearly in p. We treat these examples precisely in the
Appendix.

Corollary 1 establishes that strict overlap implies that the average mean discrepancy across covariates is not too large
relative to the operator norms of the covariance matrices Σ0,1:p, and Σ1,1:p. When p is large, these implications are strong.
To explore this, let (X(k))k>0 be a sequence of covariates such that for each p, X1:p ⊂ (X(k))k>0. When the smaller operator
normmin(∥Σ0,1:p∥op, ∥Σ1,1:p∥op) grows more slowly than p, the bound in (5) converges to zero, implying that the covariate
means are, on average, arbitrarily close to balance. On the other hand, for the bound to remain non-zero as p grows large,
both operator norms must grow at the same rate as p. This is a strong restriction on the covariance structure; it implies
that all but a vanishing proportion of the variance in X1:p concentrates in a finite-dimensional subspace under both P0
and P1.

Remark 2. Theorem 1 bounds the mean discrepancy of X1:p, which is a special case of a bound on any functional
discrepancy of the form

⏐⏐EP0{g(X1:p)} − EP1{g(X1:p)}
⏐⏐ for any function g : Rp

↦→ R that is measurable and square-integrable
under P0 or P1. This result is of independent interest, and is included in the Appendix.

3.3. Strict overlap restricts general distinguishability

In addition to bounds on mean discrepancies, strict overlap also implies restrictions on more general discrepancies
between P0(X1:p) and P1(X1:p). In this section, we present two additional results showing that strict overlap restricts how
well the covariate distributions can be distinguished from each other.

First, we show that Assumption 3 restricts the extent to which P0(X1:p) can be distinguished from P1(X1:p) by any
classifier or statistical test. Let φ(X1:p) be a classifier that maps from the covariate support X1:p to {0, 1}. We have the
following upper bound on the accuracy of any classifier φ(X1:p) when Assumption 3 holds.
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Proposition 1. Let φ(X1:p) be an arbitrary classifier of P0(X1:p) against P1(X1:p). Assumption 3 implies the following upper
bound on the accuracy of φ(X1:p):

P(φ(X1:p) = T ) ≤ 1 − η.

Proof. Let

φ̃(X1:p) = I{e(X1:p) ≥ 0.5} (6)

be the Bayes optimal classifier. The probability of a correct decision from the Bayes optimal classifier is

P(φ̃(X1:p) = T ) = E
[
P{φ̃(X1:p) = T | e(X1:p)}

]
= E

[
I{e(X1:p) ≥ 0.5}e(X1:p) + I{e(X1:p) < 0.5}{1 − e(X1:p)}

]
= E

[
max

{
e(X1:p), 1 − e(X1:p)

}]
.

Assumption 3 immediately implies P(φ̃(X1:p) = T ) ≤ 1 − η. The conclusion follows because the Bayes optimal classifier
φ̃(X1:p) has the highest accuracy among all classifiers based on the covariate set X1:p (Devroye et al., 1996, Theorem 2.1). □

Asymptotically, by Proposition 1, strict overlap implies that there exists no consistent classifier of P0 against P1 in the
large-p limit.

Definition 1. A classifier φ(X1:p) is p-consistent if and only if P(φ(X1:p) = T ) → 1 as p grows to infinity.

Corollary 2 (No Consistent Classifier). Let (X(k))k>0 be a sequence of covariates, and for each p, let X1:p be a finite subset. If
Assumption 3 holds as p grows large, there exists no p-consistent test of P0 against P1.

We can characterize the relationship between the dimension p and the distinguishability of P0(X1:p) from P1(X1:p) non-
asymptotically by examining the Kullback–Leibler (KL) divergence. The following result is a special case of Theorem 2,
included in the Appendix.

Proposition 2 (KL Divergence Bound). Assumption 3 implies

KL(P1(X1:p)∥P0(X1:p)) ≤ BKL(1∥0), KL(P0(X1:p)∥P1(X1:p)) ≤ BKL(0∥1),

where

BKL(1∥0) :=
(1 − bmin)bmax log bmax + (bmax − 1)bmin log bmin

bmax − bmin
,

BKL(0∥1) := −
(1 − bmin) log bmax + (bmax − 1) log bmin

bmax − bmin

are free of p, with bmin and bmax defined in (3).

In the case of balanced treatment assignment with π = 0.5, BKL(1∥0) and BKL(0∥1) have a simple form:

BKL(1∥0) = BKL(0∥1) = (1 − 2η)
⏐⏐⏐⏐log η

1 − η

⏐⏐⏐⏐ .
Proposition 2 becomes more restrictive for larger values of p. This follows because neither bound in Proposition 2

depends on p, while the KL divergence is free to grow in p. In particular, by the so-called chain rule, the KL divergence
can be expanded into a summation of p non-negative terms (Cover and Thomas, 2005, Theorem 2.5.3):

KL(P1(X1:p) ∥ P0(X1:p)) =

p∑
k=1

EP1

{
KL(P1(X(k) | X1:k−1) ∥ P0(X(k) | X1:k−1))

}
. (7)

Each term in (7) is the expected KL divergence between the conditional distributions of the kth covariate X(k) under P0
and P1, after conditioning on all previous covariates X1:k−1. Thus, each term corresponds to the discriminating information
added by X(k), beyond the information contained in X1:k−1. In the large-p limit, strict overlap implies that the average
unique discriminating information contained in each covariate X(k) converges to zero.

Corollary 3. Let (X(k))k>0 be a sequence of covariates, and for each p, let X1:p be a finite subset of (X(k))k>0. As p grows large,
Assumption 3 implies

p−1
p∑

k=1

EP1

{
KL(P1(X(k) | X1:k−1) ∥ P0(X(k) | X1:k−1))

}
= O(p−1), (8)

and likewise for the KL divergence evaluated in the opposite direction.
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By Corollary 3, strict overlap implies that, on average, the conditional distributions of each covariate X(k), given all
previous covariates X1:k−1, are arbitrarily close to balance. In the special case where the covariates X(k) are mutually
independent under both P0 and P1, Corollary 3 implies that, on average, the marginal treated and control distributions for
each covariate X(k) are arbitrarily close to balance.

4. Strict overlap and modeling assumptions

4.1. Treatment models: Strict overlap with fewer implications

In this section, we discuss how the implications of strict overlap align with common modeling assumptions about the
assignment mechanism. We show that certain modeling assumptions already impose many of the constraints that strict
overlap implies. Thus, if one is willing to accept these modeling assumptions, strict overlap has fewer unique implications.

We will focus specifically on the class of modeling assumptions that assert that the propensity score e(X1:p) is only a
function of a sufficient summary of the covariates b(X1:p). In this case, overlap in the summary b(X1:p) implies overlap in
the full set of covariates X1:p. Models in this class include sparse models and latent variable models.

Assumption 4 (Sufficient Condition for Strict Overlap). There exists some function of the covariates b(X1:p) satisfying the
following two conditions:

X1:p ⊥⊥ T | b(X1:p),
η ≤ eb(X1:p) ≤ 1 − η,

where eb(X1:p) := P(T = 1 | b(X1:p)).

Here, the variable b(X1:p) is a balancing score as in Rosenbaum and Rubin (1983). The propensity score is the coarsest
balancing score in the sense that there exists some h(·) such that e(X1:p) = h(b(X1:p)). Thus, b(X1:p) is a sufficient summary
of the covariates X1:p for the treatment assignment T , and overlap in b(X1:p) is a sufficient condition for overlap in the
entire covariate set X1:p.

Proposition 3 (Sufficient Condition Statement). Assumption 4 implies Assumption 3.

Proof. The conclusion follows from e(X1:p) = P(T = 1 | X1:p) = E{P(T = 1 | X1:p, b(X1:p)) | X1:p} = E{P(T = 1 | b(X1:p)) |

X1:p} = E{eb(X1:p) | X1:p} = eb(X1:p). □

Assumption 4 has some trivial specifications, which are useful examples. At one extreme, we may specify that
b(X1:p) = e(X1:p). In this case, Assumption 4 is vacuous: there are no restrictions on the form of the propensity score;
and strict overlap overall is equivalent to strict overlap with respect to b(X1:p). At the other extreme, we may specify
b(X1:p) to be a constant, i.e., we assume that the data were generated from a randomized trial. In this case, the overlap
condition in Assumption 4 holds automatically.

Of particular interest are restrictions on b(X1:p) between these two extremes, such as the sparse propensity score model
in Example 1. Such restrictions trade off stronger modeling assumptions on the propensity score e(X1:p) with weaker
implications of strict overlap.3

Example 1 (Sparse Propensity Score). Consider a study where the propensity score is sparse in the covariate set X1:p, so
that for some subset of covariates X1:s ⊂ X1:p with s < p,

e(X1:p) = e(X1:s).

This implies

X1:p ⊥⊥ T | X1:s,

and e(X1:s) is a balancing score. In this case, strict overlap in the lower-dimensional X1:s implies strict overlap for X1:p.
Belloni et al. (2013) and Farrell (2015) propose a specification similar to this, with an ‘‘approximately sparse’’ specification
for the propensity score. The approximately sparse specification in these papers is broader than the model defined here,
but has similar implications for overlap.

Example 2 (Latent Variable Model for Propensity Score). Consider a study where the treatment assignment mechanism is
only a function of some possibly multivariate latent variable U , such that

X1:p ⊥⊥ T | U .

3 These specifications exclude cases such as deterministic treatment rules or treatment assignment in a Regression Discontinuity Design: even
when the covariates are high-dimensional, the information they contain about the treatment assignment is upper bounded by the information
contained in b(X1:p).
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For example, such a structure exists when treatment is assigned only as a function of a latent class or latent factor. In
that case, the projection of e(U) := P(T = 1 | U) onto X1:p is a balancing score:4

X1:p ⊥⊥ T | bU (X1:p), (9)

where bU (X1:p) := E{e(U) | X1:p}. Due to (9), strict overlap in the latent variable U implies strict overlap in bU (X1:p), which
implies strict overlap in X1:p by Proposition 3. Athey et al. (2018) propose a specification similar to this in their simulations,
in which the propensity score is dense with respect to observable covariates but can be specified simply in terms of a
latent class.

4.2. Outcome models: Identification and estimation with weaker overlap

The average treatment effect can be identified and estimated under weaker overlap conditions if one is willing to make
structural assumptions about the data generating process. For example, if one assumes that the conditional expectations
of outcomes E[Y (0) | X1:p] and E[Y (1) | X1:p] belong to a restricted class, Hansen (2008) established that τATE can be
estimated under Assumption 1 and the following assumption.

Assumption 5 (Prognostic Identification). There exists some function r(X1:p) satisfying the following two conditions

(Y (0), Y (1)) ⊥⊥ X1:p | r(X1:p), (10)

η ≤ er (X1:p) ≤ 1 − η, (11)

where er (X1:p) := P(T = 1 | r(X1:p)).

Modifying Hansen (2008)’s nomenclature slightly, we call r(X1:p) a prognostic score. The assumption of strict overlap
in a prognostic score r(X1:p) in (11) is never more stringent than Assumption 3 with the same η.5 van der Laan and Gruber
(2010) and Luo et al. (2017) propose methodology designed to exploit this sort of structure.

One can also weaken overlap requirements by imposing modeling assumptions on the outcome process via the
conditional average treatment effect τ (X1:p) := E[Y (1) − Y (0) | X1:p]. If τ (X1:p) is assumed constant, for example, in
the case of the partial linear model (Belloni et al., 2014; Farrell, 2015), then estimation of τATE only requires that strict
overlap holds with positive probability, rather than with probability 1.

Assumption 6 (Strict Overlap with Positive Probability). For some δ > 0,

P(η ≤ e(X1:p) ≤ 1 − η) > δ.

Here, Assumption 6 is sufficient because the constant treatment effect assumption justifies extrapolation from
subpopulations where the treatment effect can be estimated to other subpopulations for which strict overlap may fail.
The constant treatment effect assumption can also be used to justify trimming strategies, which we turn to next.

4.3. Trimming

When Assumption 3 does not hold, one can still estimate an average treatment effect within a subpopulation in which
strict overlap does hold. This motivates the common practice of trimming, where the investigator drops observations in
regions without overlap (Dehejia and Wahba, 1999; Crump et al., 2009; Petersen et al., 2012; Yang and Ding, 2018). In
general, trimming changes the estimand unless additional structure, such as a constant treatment effect, is imposed on
the conditional treatment effect surface τ (X1:p).6

Our results suggest that trimming may need to be employed more often when the covariate dimension p is large,
especially in cases where overlap violations result from small imbalances accumulated over many dimensions. In these
cases, trimming procedures may have undesirable properties for the same reason that strict overlap does not hold. For
example, in high dimensions, one may need to trim a large proportion of units to achieve desirable overlap in the new
target subpopulation. The proportion of units that can be retained under a trimming policy designed to achieve overlap
bound η̃ is related to the accuracy of the Bayes optimal classifier in (6) by the following proposition.

Proposition 4. For an overlap bound η̃ ∈ (0, 1/2), we have

P
(
η̃ ≤ e(X1:p) ≤ 1 − η̃

)
≤

[
1 − P

(
φ̃(X1:p) = T

)] /
η̃.

4 The scalar bU (X1:p) := E{e(U) | X1:p} is a balancing score because it is equal to the propensity score e(X1:p) := P(T = 1 | X1:p). Specifically,
e(X1:p) = P(T = 1 | X1:p) = E{P(T = 1 | X1:p,U) | X1:p} = E{P(T = 1 | U) | X1:p} = E{e(U) | X1:p} = bU (X1:p).
5 By the law of iterated expectations, if η ≤ e(X1:p) ≤ 1 − η, then er (X1:p) = P(T = 1 | r(X1:p)) = E{P(T = 1 | X1:p, r(X1:p)) | r(X1:p)} = E{P(T = 1 |

X1:p) | r(X1:p)} ∈ [η, 1 − η].
6 An alternative strategy is to estimate a weighted average of the conditional treatment effect, e.g., τw

= E{w(X1:p)τ (X1:p)} with w(X1:p) ∝

e(X1:p){1− e(X1:p)} (Crump et al., 2006; Li et al., 2018). This estimand downweights the units with propensity scores close to zero and one, and can
be viewed as a smooth version of trimming. We anticipate that our argument extends to this weighting case as well.
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Proof. Define the event A := {η̃ ≤ e(X1:p) ≤ 1 − η̃}. The conclusion follows from

P(φ̃(X1:p) ̸= T ) ≥ P(A)P(φ̃(X1:p) ̸= T | A) ≥ P(A)η̃. □

When large covariate sets X1:p enable units to be more accurately classified in treatment and control, the probability
that a unit has an acceptable propensity score becomes small. In this case, a trimming procedure must throw away a
large proportion of the sample. In the large-p limit, if the Bayes optimal classifier φ̃(X1:p) is consistent in the sense of
Definition 1, then the expected proportion of the sample that must be discarded to achieve any η̃ approaches 1.

5. Discussion

In this paper, we have shown that the strict overlap assumption has strong implications in settings with high-
dimensional covariates. In particular, we show that the strict overlap assumption implies that the information distin-
guishing the treated and control covariate distributions must remain fixed — even as the dimension of the covariates
grows. This results in binding, population-level restrictions on the data-generating process. Importantly, techniques such
as regularization do not avoid these restrictions, though they are often necessary for estimation with high-dimensional
covariates.

Our results suggest that overlap assumptions should be carefully considered when adjusting for rich covariates. First,
strict overlap is a testable assumption in the sense that, for any fixed bound η, one can construct finite-sample exact
tests (Lei et al., 2020). We explore this in separate work and suggest that such empirical validation should be standard
practice in these settings. In addition, in cases where the unconfoundedness assumption is violated, overlap appears to
play a key role in bias amplification phenomena that result from adjusting for covariates, such as instruments, that are
highly predictive of treatment assignment but not of the outcome (Myers et al., 2011; Pearl, 2010; Ding et al., 2017). As
the dimensionality increases, appropriately accounting for these complications is important both from a population and
finite-sample perspective.

Appendix A. Strict overlap implies bounded f -divergences

Here, we adapt a theorem from information theory, due to Rukhin (1997), to derive general implications of strict
overlap. The theorem states that a likelihood ratio bound of the form (2) implies upper bounds on f -divergences between
P0 and P1. f -divergences are a family of discrepancy measures between probability distributions defined in terms of a
convex function f (Csiszár, 1963; Ali and Silvey, 1966; Liese and Vajda, 2006). Formally, the f -divergence from some
probability measure Q0 to another Q1 is defined as

Df (Q1(X1:p) ∥ Q0(X1:p)) := EQ0

[
f
(
dQ1(X1:p)
dQ0(X1:p)

)]
,

f -divergences are non-negative, achieve a minimum when Q0 = Q1, and are, in general, asymmetric in their arguments.
Common examples of f -divergences include the KL divergence, with f (t) = t log t , and the χ2- or Pearson divergence,
with f (t) = (t − 1)2. Here, we restate Rukhin (1997)’s theorem in terms of strict overlap and the bounds defined in (2).

Theorem 2. Let Df be an f -divergence such that f is convex and has a minimum at 1. Assumption 3 implies

Df (P1(X1:p) ∥ P0(X1:p)) ≤
bmax − 1

bmax − bmin
f (bmin) +

1 − bmin

bmax − bmin
f (bmax), (A.1)

Df (P0(X1:p) ∥ P1(X1:p)) ≤
b−1
min − 1

b−1
min − b−1

max
f (b−1

max) +
1 − b−1

max

b−1
min − b−1

max
f (b−1

min). (A.2)

Proof. Theorem 2.1 of Rukhin (1997) shows that the likelihood ratio bound in (2) implies the bounds in (A.1) and
(A.2) when f has a minimum at 1 and is ‘‘bowl-shaped’’, i.e., non-increasing on (0, 1) and non-decreasing on (1, ∞).
The ‘‘bowl-shaped’’ constraint is satisfied because f is convex. □

Appendix B. Proof of Theorem 1

B.1. Strict overlap implies bounded functional discrepancy

The proof of Theorem 1 follows from several steps, each of which is of independent interest.
Here, we apply Theorem 2 to show that strict overlap implies an upper bound on functional discrepancies of the form

⏐⏐EP0{g(X1:p)} − EP1{g(X1:p)}
⏐⏐ (B.1)

for any function g : Rp
↦→ R that is measurable under P0 and P1. This result plays a key role in the proof of Theorem 1,

but is general enough to be of independent interest.
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We establish this bound by applying Theorem 2 to the special case of the χ2-divergence

χ2(Q1(X1:p) ∥ Q0(X1:p)) := EQ0

[(
dQ1(X1:p)
dQ0(X1:p)

− 1
)2

]
.

Strict overlap implies the following bound on the χ2-divergence.

Corollary 4. Assumption 3 implies

χ2(P1(X1:p) ∥ P0(X1:p)) ≤ Bχ2(1∥0), χ2(P0(X1:p) ∥ P1(X1:p)) ≤ Bχ2(0∥1), (B.2)

where

Bχ2(1∥0) := (1 − bmin)(bmax − 1), Bχ2(0∥1) := (1 − b−1
max)(b

−1
min − 1).

In the case of balanced treatment assignment with π = 0.5, Bχ2(1∥0) and Bχ2(0∥1) have a simple form: Bχ2(1∥0) =

Bχ2(0∥1) = {η(1 − η)}−1
− 4.

We now apply Corollary 4 to show that strict overlap implies an explicit upper bound on functional discrepancies of
form (B.1). Below we let ∥g∥P,q :=

[
EP {|g|

q
}
]1/q denote the q-norm of the function g under measure P .

Corollary 5. Assumption 3 implies⏐⏐EP1 [g(X1:P )] − EP0 [g(X1:p)]
⏐⏐ ≤ min

{
var1/2P0

(g(X1:p)) · B1/2
χ2(1∥0)

, var1/2P1
(g(X1:p)) · B1/2

χ2(0∥1)

}
. (B.3)

Proof. By the Cauchy–Schwarz inequality,

|EP1 [g(X1:p)] − EP0 [g(X1:p)]| =

⏐⏐⏐⏐EP0

[
(g(X1:p) − C) ·

(
dP1(X1:p)
dP0(X1:p)

− 1
)]⏐⏐⏐⏐ (B.4)

≤ ∥g(X1:p) − C∥P0,2 ·

√
χ2(P1(X1:p) ∥ P0(X1:p)), (B.5)

for any finite constant C . A similar bound holds with respect to the χ2-divergence evaluated in the opposite direction.
Let C = EP0 [g(X1:p)] then apply (B.5) and Corollary 4. Do the same for C = EP1 [g(X1:p)].
Corollary 5 remains valid even when varP0 (g(X1:p)) = varP1 (g(X1:p)) = ∞; in this case, inequality (B.3) holds

automatically. □

B.2. Proof of Theorem 1

Theorem 1 is a special case of Corollary 5. In particular, let g(X1:p) := a′X1:p, where a := (µ1,1:p−µ0,1:p)/∥µ1,1:p−µ0,1:p∥

is a vector of unit length, and apply Corollary 5. varP0 (a
′(X1:p − µ0,1:p)) is upper-bounded by ∥Σ0,1:p∥op by definition, and

likewise for P1. The result follows.

Appendix C. Other implications of strict overlap

The decomposition in (B.4) can be used to construct additional upper bounds on the mean discrepancy in g using
Hölder’s inequality in combination with upper bounds on χα-divergences (Vajda, 1973). These bounds give a tighter bound
in terms of η, but are functions of higher-order moments of g(X1:p). Formally, χα-divergences are a class of divergences
that generalize the χ2-divergence (Vajda, 1973):

χα(P1(X1:p) ∥ P0(X1:p)) := EP0

[⏐⏐⏐⏐dP1(X1:p)
dP0(X1:p)

− 1
⏐⏐⏐⏐α] , (α ≥ 1).

The χα divergence in the opposite direction is obtained by switching the roles of P0 and P1.
Theorem 2.1 of Rukhin (1997) implies that, under strict overlap with bound η,

χα(P0(X1:p)∥P1(X1:p)) ≤ Bχα (0∥1), χα(P1(X1:p)∥P0(X1:p)) ≤ Bχα (1∥0),

where

Bχα (0∥1) := (bmax − 1)(1 − bmin)
(1 − bmin)α−1

+ (bmax − 1)α−1

bmax − bmin
,

Bχα (1∥0) := (b−1
min − 1)(1 − b−1

max)
(1 − b−1

max)
α−1

+ (b−1
min − 1)α−1

b−1
min − b−1

max
.
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Applying Hölder’s inequality to (B.4), we obtain

|EP1{g(X1:p)} − EP0{g(X1:p)}| ≤ min
{
∥g(X1:p) − C∥P0,qα · B1/α

χα (1∥0), ∥g(X1:p) − C∥P1,qα · B1/α
χα (0∥1)

}
,

where qα := α/(α − 1) is the Hölder conjugate of α. Setting C = EP0 [g(X1:p)] establishes a relationship between the qαth
central moment of g(X1:p) under P0 and the functional discrepancy between P0 and P1. For small values of η, this bound
scales as η−1/α , whereas (B.3) scales as η−1/2.

Appendix D. Operator norm

The behavior of the bounds in Theorem 1 and Corollary 1 depends on the operator norm of the covariance matrix under
P0 and P1. Heuristically, this operator norm is large whenever there is high correlation between the covariates X1:p under
the corresponding probability measure. Thus, these bounds on mean imbalance become more restrictive as the dimension
grows. Because all points in this discussion apply equally to Σ0,1:p and Σ1,1:p, we will refer to a generic covariance matrix
Σ1:p, which can be taken to be either Σ0,1:p or Σ1,1:p.

In this section, we give several examples of covariance structures and the behavior of their corresponding operator
norm as p grows large. In the first two examples, the operator norm is of constant order; in the third example, the
growth rate of the operator norm can vary from O(1) to O(p).

Example 3 (Independent Case). When the components of (X(k))k>0 are independent, with component-wise variance given
by σ 2

k , ∥Σ1:p∥op = max1≤k≤p σ 2
k . Thus, if the covariate-wise variances are bounded, the operator norm is O(1).

Example 4 (Stationary Covariance Case). When (X(k))k>0 is a stationary ergodic process with spectral density bounded by
M , ∥Σ1:p∥op ≤ M (Bickel and Levina, 2004). For example, when (X(k))k>0 is an MA(1) process with parameter θ , it has
a banded covariance matrix so that all elements on the diagonal σk,k = σ 2 and all elements on the first off-diagonal
σk,k±1 = θ . In this case, the spectral density is upper bounded by σ 2(1 + θ )2/(2π ), so the operator norm is O(1).

Example 5 (Restricted Rank Case). If (X(k))k>0 has component-wise variances given by σ 2
k and Σ1:p has rank sp, then

∥Σ1:p∥op ≥ s−1
p

∑p
k=1 σ 2

k , because the maximum eigenvalue of Σ1:p must be larger than the average of its non-zero
eigenvalues. Thus, if sp = s is constant in p and the component-wise variances are bounded away from 0 and ∞, the
operator norm is O(p). In the special case where s = 1, the covariates are perfectly correlated. On the other hand, if sp is
a non-decreasing function of p, then the operator norm grows as O(p/sp).

Each example shows that if the covariates X1:p are not too correlated, so that ∥Σ1:p∥op = o(p), strict overlap implies
that the mean absolute discrepancy in (5) converges to zero, and the covariate means approach balance, on average, as p
grows large.
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