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Bergman–Einstein metrics,
a generalization of Kerner’s theorem and
Stein spaces with spherical boundaries

By Xiaojun Huang at New Brunswick and Ming Xiao at La Jolla

Abstract. We give an affirmative solution to a conjecture of Cheng proposed in 1979
which asserts that the Bergman metric of a smoothly bounded strongly pseudoconvex domain
in Cn; n � 2, is Kähler–Einstein if and only if the domain is biholomorphic to the ball. We
establish a version of the classical Kerner theorem for Stein spaces with isolated singularities
which has an immediate application to construct a hyperbolic metric over a Stein space with
a spherical boundary.

1. Introduction

Canonical metrics are important objects under study in Complex Analysis of Several
Variables. Since Cheng and Yau proved in [6] the existence of a complete Kähler–Einstein
metric over a bounded pseudoconvex domain in Cn with reasonably smooth boundary, it has
become a natural question to understand when the Cheng–Yau metric of a bounded pseudo-
convex domain is precisely its Bergman metric. S. Y. Cheng conjectured in 1979 [5] that if the
Bergman metric of a smoothly bounded strictly pseudoconvex domain is Kähler–Einstein, then
the domain is biholomorphic to the ball. Cheng’s conjecture was previously obtained by Fu and
Wong [15] and Nemirovski and Shafikov [26] in the case of complex dimension two. There are
closely related studies on versions of the Cheng conjecture in terms of metrics defined by other
canonical potential functions. The reader is referred to work of Li [19–21] and the references
therein on this matter. There are also many other characterizations of the unit ball in terms of
various geometric properties of the domains. See, for instance, [27] and [8].

This paper is twofold. One is to present a solution of the Cheng conjecture in any dimen-
sions. The other is to use this opportunity to generalize the classical Kerner theorem [18]
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and the Chern–Ji theorem [8] to Stein spaces with singularities, whose original version is
a fundamental tool to obtain the Cheng conjecture. The generalization of the Kerner theo-
rem to singular space might be of independent interest in its own right and may find other
applications.

In Section 2, the first part of this paper, we answer affirmatively the Cheng conjecture [5],
based on deep works of many mathematicians in the past 40 years:

Theorem 1.1. The Bergman metric of a smoothly bounded strongly pseudoconvex
domain in Cn .n � 2/ is Kähler–Einstein if and only if the domain is biholomorphic to the
ball.

To verify the Cheng conjecture, we first show that the Einstein property of the Bergman
metric over a bounded strongly pseudoconvex domain � forces the boundary à� to be spher-
ical. Namely, at each point of à� there is a small open piece of à� that is CR-diffeomorphic
to an open piece of the sphere of the same dimension. To prove that, we will fundamentally
make use of the work done by Chern and Moser [9], Fefferman [11, 12], Christoffers [10], Fu
and Wong [15], etc. Once this is known, as in the work of Nemirovski and Shafikov [25], one
can use the classical Kerner theorem [18] or the Chern–Ji extension theorem [8] to prove that
� is a ball quotient. Then the proof of Theorem 1.1 follows from the Cheng–Yau uniqueness
theorem of complete Kähler–Einstein metrics [6] and the classical Qi-Keng Lu theorem [22].

In Section 3, the second part of the paper, we establish a Kerner-type theorem for Stein
spaces even with isolated complex singularities. Before stating our next main theorem, we
explain needed notations and terminologies:

Let � be a Stein space of complex dimension at least two with possibly isolated sin-
gularities and connected compact strongly pseudoconvex boundary M D à�. Write Reg.�/
for the set of smooth points in � and Reg.�/ D Reg.�/ [M . We say .f;D/ is a contin-
uous CR map element over M into CN if D is a simply connected open piece of M and
f W D ! CN is a continuous CR map for a certain N . Similarly, we say .g; U / is a holomor-
phic map element over Reg.�/ into CN if U is a simply connected open subset of Reg.�/
and g W U ! CN is a continuous map that is holomorphic in U \�. We say .f;D/ admits
a holomorphic continuation along � W Œ0; 1� ! Reg.�/ with �.0/ 2 D if there exists a collec-
tion of holomorphic map elements ¹.fj ; Uj /º

k
j D0 on Reg.�/ such that f0 D f in a neigh-

borhood of �.0/ in U0 \D and there is a partition 0 D t0 < t1 < � � � < tkC1 D 1 such that
�.Œtj ; tj C1�/ � Uj for all 0 � j � k with fj D fj C1 on Uj \ Uj C1 for 0 � j � k � 1. Here
.fk; Uk/ is called a (holomorphic) branch of .f;D/ obtained by holomorphic continuation
of .f;D/ along � . Let .f;D/ be a CR map element over M as above and fix a plurisubhar-
monic function  W CN

! R such that  .f / � 0 on D. Let �� be an open connected subset
of Reg.�/ containing D. We say .f;D/ admits holomorphic continuation with  -estimate
in �� along curves if .f;D/ can be continued holomorphically along any curve 
 in �� with

.0/ 2 D and for each branch .g; U / with U �

�� obtained through holomorphic continuation
of .f;D/ along a curve 
 in �� with 
.0/ 2 D, we have  .g/ � 0 in U . Similarly, for a posi-
tive constant C �, we say .f;D/ admits C �-uniformly bounded holomorphic map continuation
along curves in �� if for any branch .g; U / of .f;D/ with U �

��, we have jgj � C � over U .
One similarly defines the notion of continuous CR map continuation of .f;D/ along a curve
in M , continuous CR map continuation of .f;D/ with  -estimate along curves in M and the
notion of C �-uniformly bounded CR map continuation along curves in M .
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Theorem 1.2. Let � be a Stein space of complex dimension at least two with possibly
isolated singularities and connected compact strongly pseudoconvex boundary M D à�. Let
.f;D/ be a continuous CR map element into CN over M and  W CN

! R a plurisubhar-
monic function such that  .f / � 0 on D. Then the following conclusions hold:

(1) Suppose that dimC.�/ � 3 and .f;D/ admits continuous CR map continuation with
 -estimate along each curve inside M starting from a point in D. Then .f;D/ admits
holomorphic continuation with  -estimate along any curve in Reg.�/ starting from
a point in D.

(2) Suppose that dimC.�/ D 2 and .f;D/ admits C �-uniformly bounded CR map continu-
ation with  -estimate along each curve insideM starting from a point inD. Then .f;D/
admits C �-uniformly bounded holomorphic map continuation with -estimate along any
curve in Reg.�/ starting from a point in D.

Moreover, in both cases, assume there is a holomorphic branch .h; U / of .f;D/ in Reg.�/
such that .h.p// D 0 at some point p inU nM . Then .g/ � 0 for any holomorphic branch
.g; V / of .f;D/. In particular,  .f / � 0 on D.

We mention that in Theorem 1.2, one does not have in general the extension of .f;D/
along a curve through the singular points, as Example 3.1 shows, even if the singularities are
normal. This is very different from the classical Hartogs extension theorem. This also partially
demonstrates that the method of the proof in Kerner’s paper does not apply to the singular
Stein space case. Indeed, Kerner [18] proved that the envelope of holomorphy �Y of the uni-
versal cover Y of a domain D0 over a Stein manifold X is the universal cover of the envelope
of holomorphy �D0 of D0. (Here, �Y ; Y; �D0 are domains over X .) Once this is established,
the multiple-valued Hartogs extension theorem follows as an immediate consequence, for the
multiple-valued map becomes single-valued map in the universal covering space. Example 3.1
shows that when a complex manifold is a domain over a singular Stein space, the envelope of
holomorphy of its universal cover is in general no longer the universal cover of its envelope
of holomorphy.

For the proof of Theorem 1.2, we will employ a different but in fact more elementary
and self-contained argument than those used in [18] and [8]. Ours is based on the Lewy and
Baouendi–Treves extension theorem [2], Morse function theory and the Phragmén–Lindelöff
maximum value principle.

An important scenario where Theorem 1.2 is applied is when M is spherical and f is
a CR diffeomorphism from a simply connected open piece D � M to an open piece in àBn

with n D dimeC �. Here and in what follows, we write Bn for the standard unit ball in Cn. In
this case, by the Alexander theorem [1,4], .f;D/ extends as local smooth CR diffeomorphism
elements into àBn (and thus with a uniform bound C �

D 1) along each curve inside M that
starts from a point in D. Such a map element .f;D/ is called a development map element
and the multiple-valued CR extension of .f;D/ in M along curves is called a multiple-valued
development map. Hence, the following is an immediate application of Theorem 1.2:

Corollary 1.3. Let � be a Stein space with dimC � D n � 2 with a connected smooth
compact spherical boundary M D à�. Let .f;D/ be a smooth CR development map element.
Then .f;D/ admits a holomorphic continuation along any curve 
 in Reg.�/ with 
.0/ 2 D.
Moreover, there is a subgroup � of Aut.Bn/ such that if .g; U / (with U a simply connected
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open subset of Reg.�/) is a holomorphic branch of .f;D/ obtained through continuation along
a curve, then g is a local biholomorphic map from U into Bn and all other branches of .f;D/
defined over U are precisely the holomorphic map elements of the form .� ı g;U / with � 2 � .

The following is a very useful consequence of Corollary 1.3:

Corollary 1.4. Let� be a Stein space with dimC � D n � 2 that has a connected com-
pact smooth boundary. Assume the boundary à� is spherical. Then there is a unique Kähler
metric !0 over Reg.�/ such that the following hold:

(A) !0 has a constant negative holomorphic sectional curvature.

(B) !0 is complete at infinity. Namely, for each number R > 0 and p0 2 Reg.�/, the ball
centered at p0 2 Reg.�/ with radius R (with respect to !0) has a compact closure in�.

(C) For a certain p 2 M there are a small neighborhood Up of p in � and a diffeomor-
phic map F from Up to Vq that is holomorphic over Up \ Reg.�/, where Vq is a cer-
tain neighborhood of q in B

n
with F.p/ D q and F.M \ Up/ D Vq \ àBn such that

F �.!Bn/ D !0 on Up nM . Here !Bn is the Bergman metric of the unit ball Bn
� Cn.

When � is a smoothly bounded spherical domain in a complex Euclidean space, by
studying the projective extension (see [7]) of the Cartan–Chern–Moser structure bundle overM
into the interior of�, Chern and Ji in [8] showed that, under the hypothesis in Corollary 1.3, the
development map element .f;D/ extends along any curve in � as bimeromorphic maps. The
paper of Burns and Ryu [3] also mentioned a preprint of Burns in the 1990s ([3, Reference [5]])
and indicated that certain results similar to those in Corollaries 1.4 and 1.3 were obtained
in that preprint of Burns. Since Burns’ preprint does not seem to be available to a reader,
Corollaries 1.3 and 1.4 thus serve as accessible complete proofs of these very useful results for
the study of spherical Stein spaces.

When the � in Corollary 1.4 is not smooth, the hyperbolic (i.e., having a constant neg-
ative holomorphic sectional curvature) metric may not be complete at the singular point. For
instance, as proved in Huang [16], if � is embedded in a complex Euclidean space with à�
spherical and algebraic, then � has exactly one singular point which is a finite quotient singu-
larity of the unit ball Bn

� Cn. The naturally inherited hyperbolic metric satisfies all properties
stated Corollary 1.4 and is not complete at the singular point (i.e., there is a Cauchy sequence
in Reg.�/ with respect to the metric !0 that converges to the singular point). The follow-
ing example shows that the hyperbolic metric in Corollary 1.4 may not be unique (even up to
scaling) in general in the one-dimensional case:

Let � be the unit disk and let X be the singular Riemann surface in C2 given by

¹.z; w/ 2 C2
W w2

D z3
º \�2:

It is the image of the map t ! .t2; t3/, t 2 � and has an isolated singularity at .0; 0/. Note
X�

WD X n ¹.0; 0/º is biholomorphic to punctured disk ��

WD � n ¹0º. The canonical met-
ric on �� induces a metric !1 on X� and the Bergman metric on �� induces a metric !2

on X�. Notice that both metrics are complete at infinity. But !1 is complete near the singular-
ity, while !2 is not. We claim that both !1 and !2 satisfy properties in (C) of Corollary 1.4.
Indeed, !2 is identical with the Bergman metric of � near boundary and thus has this prop-
erty. To understand !1, we look at the covering map �.�/ D ei� from the upper half plane
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H D ¹� 2 C W Im � > 0º to ��. Note that � maps biholomorphically ¹� 2 H W 0<Re � < 2�º

to an open subset of �� whose boundary contains an open piece of the circle. From this, one
sees that the induced canonical hyperbolic metric on �� and thus !1 on X� satisfies (C) of
Corollary 1.4. Hence we have two very distinct metrics on X� that both satisfy properties
in (A), (B) and (C) of Corollary 1.4.

Acknowledgement. The first author would like to thank Dan Burns for his discussions
related the work here during the joint Vietnam–USA summer conference in Quy Nhon, Viet-
nam in June, 2019. We thank the anonymous referees for helpful comments.

2. Proof of Theorem 1.1

Let� D ¹z 2 Cn
W �.z/ > 0º be a strictly pseudoconvex domain with a smooth defining

function �. In [11], Fefferman showed that the Bergman kernel function K.z/ D K.z; z/ of �
has the asymptotic expansion

K.z/ D

�.z/

�nC1.z/
C  .z/ log �.z/;

where �; 2 C1.�/ and �jà� ¤ 0. In particular, if the boundary à� of � is spherical, then
 vanishes to infinite order at the boundary à�.

We first recall the notion of Fefferman defining functions or Fefferman approximate solu-
tions. Consider the following Monge–Ampère-type equation introduced in [12]:

J.u/ WD .�1/n det

 
u u

ˇ

u˛ u
˛ˇ

!
D unC1 det

��
log

1

u

�
˛ˇ

�
D 1 in �;

with u D 0 on b�. Fefferman proved that for any bounded strictly pseudoconvex domain �
with smooth boundary, there is a smooth positive defining function r of � such that

J.r/ D 1CO.rnC1/;

which is called a Fefferman approximate solution or a Fefferman defining function of�. More-
over, if r1; r2 are two Fefferman approximate solutions, then r1 � r2 D O.�nC2/, where � is a
given defining function of �.

We next recall the Moser normal form theory [9] and the notion of Fefferman scalar
boundary invariants ([13]): Let M � Cn be a real analytic strictly pseudoconvex hypersurface
containing p 2 Cn. Then there exists a coordinates system z D .�; w/ WD .�1; : : : ; �n�1; w/

such that in the new coordinates, p D 0 and M is defined near p by an equation of the form

(2.1) u D j�j2 C

X
j˛j;jˇ j�2; l�0

Al
˛ˇ �

˛�
ˇ
vl ;

where w D uC iv, and ˛; ˇ are lists of indices between 1 and n � 1 (here j˛j and jˇj denote
their lengths). Moreover, the coefficients Al

˛ˇ 2 C satisfy the following:

� Al
˛ˇ is symmetric with respect to permutation of the indices in ˛.

� It holds Al
˛ˇ D Al

ˇ˛.
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� We have trAl
22 D 0, tr2Al

23 D 0 and tr3Al
33 D 0, where Al

pq is the symmetric tensor
ŒAl

˛ˇ �j˛jDp; jˇ jDq on Cn�1 and the traces are the usual tensorial traces with respect to ıij .
Namely, if we write

Al
pq.�; �/ D

X
j˛jDp; jˇ jDq

Al
˛ˇ �

˛�
ˇ
;

then we have, for each l ,

�
�
Al

22
.�; �/

�
D �2

�
Al

23
.�; �/

�
D �3

�
Al

33
.�; �/

�
� 0:

Here � is the standard Laplacian operator in � .

Here (2.1) is called a normal form of M at p. When M is merely smooth, the expansion
is in the formal sense. We call ŒAl

˛ˇ � the normal form coefficients. Recall that a boundary scalar
invariant at p $ 0, or briefly an invariant of weight w � 0, is a polynomial P in the normal
form coefficients ŒAl

˛ˇ � of à� satisfying certain transformation laws. (See [13] for more details
on this transformation law.) Using a Fefferman defining function in the asymptotic expansion
of the Bergman kernel function

(2.2) K.z/ D

�.z/

rnC1.z/
C  .z/ log r.z/;

with �; 2 C1.�/, �jà� ¤ 0, then � mod rnC1;  mod r1 are locally determined. More-
over, if à� is in its normal form at p D 0 2 b�, then any Taylor coefficient at 0 of � of
order � n, and that of  of any order is a universal polynomial in the normal form coeffi-
cients ŒAl

˛ˇ �. (See Boutet and Sjöstrand [4] and a related argument in [13].) In particular, we
state the following result from [10]:

Proposition 2.1 ([10]). Let � be as above and suppose that à� is in the Moser normal
form up to sufficiently high order. Let r be a Fefferman defining function, and let �; be as
in (2.2). Then

� D

nŠ

�n
CO.r2/

and P2 D

��

nŠ
�n

r2 jà� defines an invariant of weight 2 at 0. Furthermore, if n D 2, then P2 D 0.
If n � 3, then P2 D cnkA0

22k

2 for some universal constant cn ¤ 0.

As mentioned earlier, Theorem 1.1 is known in the case of n D 2 in [15] and [26]. We
next assume that n � 3.

Proof of Theorem 1.1. It is well known that the Bergman metric of the unit ball is com-
plete and hyperbolic, and in particular Kähler–Einstein. Moreover, the Bergman metric is invar-
iant under biholomorphic transformations. Thus if a domain � is biholomorphic to the unit
ball, then its Bergman metric is Kähler–Einstein. It remains to prove the converse statement.
Assume � is a smoothly bounded strongly pseudoconvex domain and its Bergman metric is
Kähler–Einstein. Recall the Fefferman asymptotic expansion

(2.3) K.z/ D

�.z/

�nC1.z/
C  .z/ log �.z/ D

� C �nC1 log �
�nC1

for z 2 �

with �; 2 C1.�/ and �jà� ¤ 0, where � 2 C1.�/ is a smooth defining function of �
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with � D ¹z 2 Cn
W �.z/ > 0º. Since K.z/ > 0 for z 2 �, we have

� C �nC1 log � > 0 for z 2 �:

Thus

.K/�
1

nC1 .z/ D

�

.� C �nC1 log �/
1

nC1

is well-defined in �.
We notice that the Kähler–Einstein condition of the Bergman metric is equivalent to the

fact that logK.z/ is a Kähler–Einstein potential function of �. More precisely, we have

J

��
�n

nŠ
K.z/

�
�

1
nC1

�
D 1

for z 2 �. (See [15]). Let r0.z/ WD .�n

nŠ
K/�

1
nC1 . We hence have that r0.z/ > 0 and J.r0/ D 1

in �. We next recall the following result of Fu and Wong [15]:

Proposition 2.2. Let � D ¹z 2 Cn
W � > 0º be a bounded strongly pseudoconvex

domain with a smooth defining function �. If the Bergman metric of � is Kähler–Einstein,
then the coefficient of the logarithmic term in Fefferman’s expansion (2.3) vanishes to infinite
order at b�, i.e.,  D O.�k/ for any k > 0.

As a consequence, � C �nC1 log � extends smoothly to a neighborhood of �. Since
�jà� ¤ 0, we have

� C �nC1 log � > 0 for all z 2 �:

Hence r0 extends smoothly to a neighborhood of � and it is then easy to conclude that r0 is
a Fefferman defining function of �. Then from the way r0 was constructed, it follows that

(2.4) K.z/ D

nŠ

�n
r

�.nC1/
0 :

Comparing (2.4) with (2.2), we arrive at the conclusion that if we let r D r0 in (2.2),
then � �

nŠ
�n . Then it follows from Proposition 2.1 that P2 D cnkA0

22k

2
D 0 at p 2 à� if à�

is in the Moser normal form up to sufficiently high order at p with A0
22 being the Chern–

Moser–Weyl tensor at p. Consequently, A0
22 D 0 in each Moser normal coordinates at each

point in à�, for cn ¤ 0. That is, every boundary point of à� is a CR umbilical point. We now
apply a similar argument of Nemirovski and Shafikov in [26] to show � is holomorphically
equivalent to the unit ball by applying Corollary 1.4 (or the Chern–Ji [8] or Kerner extension
theorem [18]) and the Qi-Keng Lu uniformization theorem [22] as follows:

Since à� is now spherical, we fix a point p0 2 à� and an open piece U of p0 in à�
such that there is a smooth CR diffeomorphism F from U to an open piece of the unit sphere
in Cn. Now, by Corollary 1.4, we obtain a well-defined complete Kähler metric !0 on �,
which is of constant negative holomorphic sectional curvature. (Note that !0 is complete for
� is assumed to be smooth.) Now, by the uniqueness of the complete Kähler–Einstein metric
over �0 (see [6]), since the Bergman metric on � is assumed to be Kähler–Einstein, we con-
clude that the Bergman metric of � is proportional to !0. Finally, by the classical Qi-Keng Lu
uniformization theorem [22], � is biholomorphic to the ball.
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3. Proof of Theorem 1.2

In this section, we give a proof for Theorem 1.2. We assume that � is a Stein space with
a smooth compact strongly pseudoconvex boundaryM D à�. Let .f;D/ be a CR map element
over M into CN and  a plurisubharmonic function over CN , as in Theorem 1.2. Write the
singular set of � to be sing.�/, which has at most finitely many points. Write � D � [M ,
Reg.�/ D � n sing.�/ and Reg.�/ D � n sing.�/ as before.

As mentioned in the introduction, .f;D/, in general, does not admit holomorphic con-
tinuation across a singular point (even a normal singular point) of �, as demonstrated by the
following example.

Example 3.1. Let � be the Stein space with boundary defined by

� D

´
W D .w1; w2; w3/ 2 C3

W

3X
j D1

jwj j

2
� 1; w2

2 D 2w1w3

µ
:

Let � W B2
! � be given by �.z1; z2/ D .z2

1 ;
p

2z1z2; z
2
2/. Note that � is 2 to 1 covering

from B2
n ¹0º to � n ¹0º and �.0/ D 0. Fix a point p0 D .1

2
;

p

2
2
; 1

2
/ 2 M WD à�. Let D be

a small simply connected open piece of M containing p0 and .f;D/ a CR mapping element
given by f .W / D .

p

w1;
p

w3/. Here
p

w D

p
jwjei �

2

for w D jwjei� with �� < � < � . Notice that f maps D into àB2 and thus .f;D/ is a devel-
opment map element. Notice that M is spherical. By Corollary 1.3, .f;D/ admits uniformly
bounded holomorphic map continuation along curves inside Reg.�/. It does not admit a holo-
morphic map continuation along a certain curve 
 in � with 
.0/ D p0 and 
.1/ D 0.

Indeed, to see the claim made in Example 3.1, set 
1 be a curve in� such that 
1.0/ D p0

and 
1.1/ D .�; 0; 0/ for some small � > 0 such that 
1 never intersects ¹w1 D 0º and let the
curve 
2 in � be given by 
2.t/ D .�t; 0; 0/; 0 � t � 1. Write 
 D 
1 C .�
2/. Note that

.Œ0; 1// does not pass through ¹w1 D 0º. We know for every 0 � t0 < 1, if we write .h; V /
for the branch we obtain at 
.t0/ with h D .h1; h2/ on V , then h1 equals either Œ�

p

w1�
.t0/

or Œ
p

w1�
.t0/. Without loss of generality, we assume it is the latter when t0.¤ 1/ is close
to 1. Suppose we can extend .f;D/ holomorphically along 
 to get a holomorphic branch
.g; U / at 
.1/ D 0 (in particular, 0 2 U ). Write g D .g1; g2/ on U . Then g1 D

p

w1 near
.�0; 0; 0/ for a sufficiently small �0. But this is impossible as we can find a loop � in U given
by �.t/ D .�0e

2�it ; 0; 0/ 2 �, 0 � t � 1, so that we get a different branch when applying
holomorphic continuation to

p

w1 along � .
The proof of Theorem 1.2 will be split into several steps to be established in the following

two Section 3.1 and 3.2. Before proceeding to the proof, we first fix a Morse plurisubharmonic
defining function � of �. More precisely, we choose a bounded plurisubharmonic exhaustion
function � W � ! Œ�1; 0� of� such that � � 0 onM;� < 0 in� and �.z/ D �1 if and only
if z is a singular point of �. In addition, d�jM ¤ 0 and � is smooth and strongly plurisub-
harmonic on Reg.�/. Moreover, � has only finitely many critical points in Reg.�/ and they
are all non-degenerate. The existence of such a � is guaranteed by the assumption on � and
Morse function theory. (The local existence of such a function near a singular point can be
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found in Milnor [24]. Away from singular points, we refer to the book of Forstnerič [14] for
such a construction. Then one applies the Morse approximation to get our �.)

For clarity, we fix a Riemannian metric ds2 over Reg.�/ which induces a distance func-
tion �d.x; y/ for x; y 2 Reg.�/. Write X� for the dual vector field of �d� with respect to ds2

over Reg.�/ away from the critical points of �.

3.1. Proof of Theorem 1.2: Part I. This step is the same for the two cases (1)and (2)
in Theorem 1.2 and it aims to prove .f;D/ admits holomorphic map continuation in a tube
neighborhood of M in �. We emphasize that the boundedness assumption in case (2) is not
needed in this subsection to derive the extension. We choose three finite open convex cover
¹W .k/

j º

m
j D1, k D 1; 2; 3, of .M; ds2

jM / with

W
.1/

j �� W
.2/

j �� W
.3/

j for each j .

Moreover, we makeW .3/
j sufficiently small for each j so that a neighborhood ofW .3/

j onM is
CR diffeomorphic to a strongly pseudoconvex hypersurface in Cn. Write Dj for the union of
all smooth holomorphic disks attached to W .3/

j which can be deformed through a continuous
family of disks to points in W .3/

j . For 0 < �1 � 1 and 1 � k � 3, we let bW .k/
j;�1

be the open
subset of � obtained by flowing each point p 2 W .k/

j along the orbit of X� (where X� is as
defined right before Section 3.1) with time 0 � t < �1. Note we can find an �1 > 0 sufficiently
small such that bW .2/

j;�1
�� .Dj [W

.3/
j / for each j ,

and that bW .2/
j;�1

is topological trivial (recall W .2/
j is chosen to be convex). In particular, for

each point q 2
bW .2/

j;�1
, there is a small embedded holomorphic disk �q containing q attached

toW .3/
j that is contained inDj and can be continuously deformed to a point onW .3/

j . Fix such
an �1. Write for r2 < r1 � 0,

�r2;r1
D ¹p 2 � W r2 < � � r1º:

We emphasize that �r2;r1
only contains its outer boundary but not its inner boundary.

Let 0 < �2 � �1 be small enough such that

�
��2;0 �

m[
j D1

bW .2/
j;�1

:

Define J�2
W �

��2;0 ! M for the retract of �
��2;0 to M which maps every point p in �

��2;0

through the orbit of X� to the corresponding point on M . Note that J�2
is a smooth map for

a small �2. By the Lewy–Baouendi–Treves theorem, we see that every continuous CR func-
tion h on W .3/

j extends to a holomorphic function in bW .2/
j;�1

that is continuous up to W .2/
j .

Let 
 W Œ0; 1� ! �
��2;0 be a curve. There is a corresponding curve �
 WD J�2

ı 
 on M . By
making �1; �2 sufficiently small, we note from the definition of J�2

that 
.t/ �
bW .k/

j;�1
for

some 1 � j � m, 1 � k � 3 if and only if�
.t/ � W .k/
j . We next prove the following lemma.

Lemma 3.2. Let .f;D/ and  be as in Theorem 1.2. Fix a curve 
 W Œ0; 1� ! �
��2;0

with 
.0/ D p0 2 D and let�
 be as above.

(1) We can find ¹W .2/
jl

º

k
lD0

and ¹
bW .2/

jl ;�1
º

k
lD0

with 0 � jl � m, together with continuous CR
map elements ¹.fl ; W

.2/
jl
/ºk

lD0
on M and holomorphic map elements ¹.gl ; bW .2/

jl ;�1
/ºk

lD0
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in Reg.�/ such that the following hold:

(a) The point p0 2 W .2/
j0

and f0 D f in a neighborhood of p0 on M .

(b) There is a partition 0 D ı0 < ı1 < � � � < ıkC1 D 1 of Œ0; 1� such that


.Œıl ; ılC1�/ �
bW .2/

jl ;�1
;�
.Œıl ; ılC1�/ � W

.2/
jl

for 0 � l � k.

(c) fl D gl on W .2/
jl

for 0 � l � k.

(d) fl D flC1 onW .2/
jl

\W .2/
jlC1

and gl D glC1 on bW .2/
jl ;�1

\
bW .2/

jlC1;�1
for 0 � l � k�1.

Consequently, ¹.gl ; bW .2/
jl ;�1

/ºk
lD0

(resp. ¹.fl ; W
.2/

jl
/ºk

lD0
) induces a holomorphic (resp.

CR) continuation of .f;D/ along 
 (resp.�
 ).

(2) It holds that  ı gl � 0 on bW .2/
jl ;�1

for all 0 � l � k. Moreover, assume that there is
some l0 with 0 � l0 � k and a point q 2

bW .2/
jl0

;�1
nM such that  ı gl0

.q/ D 0. Then
 .g/ � 0 for any holomorphic branch .g; V / of .f;D/ in �

��2;0.

Proof of Lemma 3.2. By the uniform continuity of�
 on Œ0; 1� and the Lebesgue lemma,
we can find some � > 0 such that for any sub-interval I� of Œ0; 1� with length bounded by �,
there exists some 1 � j.I�/ � m satisfying �
.I�/ � W .1/

j.I �/
. Note p0 D 
.0/ D �
.0/ is con-

tained in W .1/
j0

for some 1 � j0 � m. Set ı0 D 0 and let ı1 2 .0; 1� be the (unique) num-
ber (if exists) such that�
.Œ0; ı1// � W .1/

j0
but�
.ı1/ 62 W .1/

j0
. Note here that we choose j0 such

that ı1 takes the largest value and thus we must have ı1 � � if it exists. If such a number ı1 does
not exist, this means that �
.Œ0; 1�/ � W .1/

j0
and consequently 
.Œ0; 1�/ �

bW .1/
j0;�1

\�
��2;0.

Note first by the continuous CR map continuation assumption and the monodromy theorem, the
germ of f at p0 extends to a CR function f0 on W .3/

j0
as W .3/

j0
is simply connected. Secondly

.f0; W
.2/

j0
/ can be extended to a holomorphic map element .g0; bW .2/

j0;�1
/. Then .g0; bW .2/

j0;�1
/

induces a holomorphic continuation of .f;D/ along 
 and the first part of lemma is established.
Now assume that such a ı1 exists. First, as above, the germ of f at p0 extends to a CR

function f0 on W .3/
j0

and f0 extends to a holomorphic function element .g0; bW .2/
j0;�1

/ (thus (c)
holds for l D 0). We then look at �
.ı1/. Note �
.ı1/ 2 W .2/

j0
� W .3/

j0
and there exists some

1 � j1 � m such that �
.ı1/ 2 W .1/
j1

. By the same reason as above, the germ of f0 at �
.ı1/
extends to a continuous CR map f1 on W .3/

j1
and f1 extends to a holomorphic map element

.g1; bW .2/
j1;�1

/ (thus condition (c) holds for l D 1). Note that f1 and f0 coincide near �
.ı1/.
Moreover, since W .3/

j0
\W .3/

j1
and bW .2/

j0;�1
\
bW .2/

j1;�1
are simply connected by our convexity

assumption, we conclude that

f0 D f1 on W .3/
j0

\W
.3/

j1
and g1 D g0 in bW .2/

j0;�1
\
bW .2/

j1;�1

(thus (d) holds for l D 0).
Then we pick the (unique) number ı2 (if exists) such that

�
.Œı1; ı2// � W
.1/

j1
and �
.ı2/ 62 W

.1/
j1
:

Note again we choose j1 such that ı2 takes the largest possible value if it exists and thus we
must have ı2 � ı1 � �. And we run the same procedure as above to obtain 1 � j2 � m such
that �
.ı2/ 2 W .1/

j2
, along with a CR map element .f2; W

.3/
j2
/ and a holomorphic map element

.g2; bW .2/
j2;�1

/ such that f1 D f2 on W .3/
j1

\W .3/
j2

, and g1 D g2 in bW .2/
j1;�1

\
bW .2/

j2;�1
.
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By repeating the above procedure for at most Œ1
�
�C 1 times, we arrive at some positive

number ık such that ık C � � 1. More precisely, we obtain a partition

0 D ı0 < ı1 < � � � < ık < ıkC1 D 1

of Œ0; 1� and a collection of integers 1 � j1; : : : ; jk � m such that �
.Œıl ; ılC1// 2 W .1/
jl

and�
.ılC1/ 62 W .1/
jl

for 1 � l � k (in particular, one has�
.Œıl ; ılC1�/ 2 W .2/
jl

for all k). Moreover,
there are a collection of CR map elements ¹.fl ; W

.3/
jl
/ºk

lD0
and holomorphic map elements

¹.gl ; bW .2/
jl ;�1

/ºk
lD1

satisfying condition (c) and (d). This proves part (1) of the lemma.
To prove part (2), we note for every p 2

bW .2/
jl ;�1

nM , there exists a small holomorphic
disk�p �

bW .3/
jl ;�1

attached toW .3/
jl

such that p 2 �p. Moreover, ı gl is subharmonic in�p,
continuous up to à�p, and agrees with  ı fl on à�p. By the assumption that .f;D/ admits
a continuous CR map continuation with  -estimate in M and thus in particular  ı fl � 0 on
à�p � W .3/

jl
, we conclude by the maximum principle that  ı gl.p/ � 0. As p is arbitrary,

we have  ı gl � 0 on bW .2/
jl ;�1

for all 0 � l � k. Now suppose there is some 0 � l0 � k and
a point q 2

bW .2/
jl0

;�1
nM such that  ı gl0

.q/ D 0. This means  ı gl0
achieves its maximum

at an interior point q. Since  ı gl0
is subharmonic in bW .2/

jl0
;�1

, we conclude that

 ı gl0
� 0 in bW .2/

jl0
;�1

.

As gl D glC1 for each 0 � l � k on bW .2/
jl ;�1

\
bW .2/

jlC1;�1
; we have, for each l ,  ı gl attains

its maximum at an interior point and thus is constant. In particular,  ı g0 � 0 in bW .2/
j0;�1

and
 ı f0 D 0 in W .2/

j0
. Now let .g; U / be a holomorphic branch of .f;D/ in �

��2;0. Then there
is a path � in�

��2;0 connecting p0 to some point p1 2 U such that .g; U / is obtained by holo-
morphic continuation of .f;D/ along � . By part (1) of Lemma 3.2, writing�� WD J�1

ı � , there
exist holomorphic map elements ¹.�gl ; bW .2/

il ;�1
/º�

lD0
and CR map elements ¹. �fl ; W

.2/
il ;�1

/º�
lD0

that satisfy the conditions (a), (b), (c), and (d), and induce a holomorphic continuation and
a CR continuation of .f;D/ along � and �� . By the monodromy theorem, we have g D �g�

near q in U \
bW .2/

i� ;�1
. Note we have �f0 D f0 near p0 and�g0 D g0 near p0. Then  ı�g0 � 0

on bW .2/
i0;�1

. Applying the maximum principle for subharmonic functions as above, we obtain
that  ı�gl � 0 in bW .2/

il ;�1
for every 0 � l � �. In particular, we have  ı g � 0 on U . This

proves Lemma 3.2.

Summarizing the arguments above, we have the following:

Lemma 3.3. Let .f;D/ be as in Theorem 1.2. The continuous CR map element .f;D/
admits holomorphic continuation in �

��2;0 with  -estimate. In the dimension-two case, if
.f;D/ admits C �-uniformly bounded CR map extension along curves inM , then it also admits
C �-uniformly bounded holomorphic continuation with  -estimate in �

��2;0. Moreover, if
there is a holomorphic branch .h; U / of .f;D/ in �

��2;0 such that  .h.p// D 0 at some
point p in U nM . Then  .g/ � 0 for every holomorphic branch .g; V / of .f;D/ in �

��2;0.

3.2. Proof of Theorem 1.2: Part II. In this subsection, we finish the proof of Theo-
rem 1.2. The treatment for the two cases are different. We will apply the method of continuous
families of holomorphic curves which is a typical machinery in the study of holomorphic con-
tinuation problem. The use of the Morse function theory to study the holomorphic continuation
of multiple-valued holomorphic maps near the boundary to the interior of the pseudoconvex
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domain in Cn with n � 2 appeared in [17, Section 5]. In the paper by Merkel and Porten [23],
they employed the Morse function theory to re-investigate the Hartogs extension theorem of
single-valued holomorphic functions. In our argument here, besides the Morse function theory,
the Phragmén–Lindelöf principle will play a fundamental role in the case of complex dimen-
sion two.

To start with, we make the following definition. Let .f;D/ be as in Theorem 1.2 and
assume the hypotheses in Theorem 1.2. Let �� be a connected open subset of Reg.�/ with
D �

��. We say �� has the extendability property if, in the three or higher-dimensional case,
.f;D/ admits holomorphic continuation along cures in �� with  -estimate. And in the dimen-
sion-two case, .f;D/ is assumed to admit uniformly bounded holomorphic continuation with
a bound C � > 0 along curves in ��, that also has the  -estimate. Here C � is the least upper
bound for the super-norms of the CR map branches of .f;D/ obtained along curves inside M .
To establish Theorem 1.2, we will need to prove Reg.�/ has the extendability property. Now set

A D ¹a < 0 W �a;0 has the extendability propertyº:

We first note that A is not empty as Œ��2; 0/ � A, where �2 is chosen as in Section 3.1. Set
b D inf.A/ < 0. If b D �1, Theorem 1.2 holds trivially. We will therefore assume b > �1

in what follows. Note it follows from the definition of b that �b;0 has the extendability prop-
erty. Write inf.�/ WD inf¹�.z/ W z 2 � n sing.�/º. Before proceeding to the three different sce-
narios, we recall the following result of Huang-Ji that will be used several times in our later
discussions:

Proposition 3.4 ([17, Lemma 5.2]). The following statements hold:

(A) Let r > 0 and let 
 be a curve in �
�r;0 with 
.0/ 2 D and 
.1/ 2 M . Then 
 can be

continuously deformed inside �
�r;0 with both endpoints fixed to a new curve inside M .

Together with the monodromy theorem, one further has:

(B) Let 0 < r1 < r2 and suppose that �
�r2;0 has the extendability property. Then for each

q 2 �
�r1;0, the holomorphic map extension of .f;D/ along a curve 
 inside �

�r2;0

with 
.0/ 2 D, 
.1/ D q produces the same branch as that by continuing .f;D/ along
a certain other curve inside �

�r1;0 with the same endpoints.

Case I. We first consider the easiest case when b D inf.�/. In this case, since b > �1,
we must have that sing.�/ D ;. Write ��1.c/ for the level set ¹z 2 � W �.z/ D cº. Note in
this case we have �b;0 D Reg.�/ n ��1.b/ and ��1.b/ is a finite set. Fix any �q 2 ��1.b/.
By assumption, �q is an isolated critical point of � and the real Hessian of � is strictly pos-
itive definite at �q. We find a small strongly pseudoconvex domain U�q containing �q with U�q
diffeomorphic to the closed ball and U�q \ ��1.b/ D�q. To prove Theorem 1.2, we fix an arbi-
trary curve 
 in Reg.�/ with 
.0/ 2 D. Suppose 
.Œ0; 1�/ \ ��1.b/ D�q and let t0 2 Œ0; 1�

be the first one with 
.t0/ D�q and let t1 < t0 be the largest one with 
.t1/ 2 àU�q . We can
then continue .f;D/ along 
 jŒ0;t1� to get a holomorphic branch .g; U / with 
.t1/ 2 U . Notice
that àU�q is simply connected, we can further continue .g; U / along curves inside the bound-
ary of U�q to get a single valued holomorphic map in a neighborhood of àU�q . Now, applying
the classical Hartogs theorem, we get a holomorphic function h over U�q which together with
a certain holomorphic map continuation of .f;D/ along 
 jŒ0;t1� to get a holomorphic contin-
uation of .f;D/ across�q along 
 jŒ0;t�� with t� � t0 > � for a certain fixed positive number �
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(here � can be taken to be a positive number such that, if 
.t 0/ D�q for some 0 � t 0 � 1, then

.t/ 2 U�q for all jt � t 0j � �). Continuing this process, we obtain a holomorphic map contin-
uation of .f;D/ along 
 . The same argument can be applied even if 
 goes through several
points in ��1.b/. This proves the existence of the holomorphic continuation in Theorem 1.2.
The desired  -estimate and the C �-boundedness in the theorem follow from the maximum
principle in an obvious way.

Case II. Suppose that b > inf.�/. We assume that b > inf.�/ and Mb WD ��1.b/ has
no critical points of �. In this case, we note Mb0 is a compact smooth strongly pseudoconvex
hypersurface in� for b0

� b. Recall by the definition of b,�b;0 has the extendability property.
Then we apply the same argument in Section 3.1 with b0 being sufficiently close but greater
than b to obtain a small � > 0 such that .f;D/ admits holomorphic map extension along curves
in�b��;0. Applying maximum principle, we thus conclude�b��;0 has the extendability prop-
erty. This, however, contradicts with the definition of b. Thus Case II cannot occur.

Case III. We assume that b > inf.�/ and � has critical points on Mb . Let p 2 ��1.b/

be a critical point of �. Then choose a neighborhood Up of p such that p is the only critical
point of � in Up. And choose certain holomorphic coordinates z on Up such that z.p/ D 0 and
� takes the following normal form near p $ 0:

� D jzj2 C 2Re
nX

j D1

�j z
2
j CO.jzj3/C b:

Here we have 0 � �1 � �2 � � � � � �n < 1 and �j ¤

1
2

by the non-degeneracy assumption.
Recall that the zj -direction is called elliptic if 0 � �j <

1
2

, and hyperbolic if �j >
1
2

. Also,
in some smooth coordinates x on Up with x.p/ D 0, we have

�.x/ D

mX
j D1

x2
j �

2nX
mC1

x2
j C b:

By the plurisubharmonicity, we have m � n. For a small number � > 0, set

V� WD ¹q 2 Up W jx.q/j < �º �� Up:

One directly verifies that V� \�b;0 is connected for any small � > 0. We will need the follow-
ing crucial lemma:

Lemma 3.5. For a sufficiently small �3 > 0, it holds, for every q 2 V�3
\�b;0, that

if Œg�q is the germ of a holomorphic branch of .f;D/ obtained by holomorphic continuation
along a curve in �b;0, then Œg�q extends to a single-valued holomorphic function in V�3

with
 -estimate (and with the C �-uniform boundedness in the dimension-two case).

Proof. We choose holomorphic coordinates z in a small neighborhood U D Up of p
mentioned above. It holds that for a sufficiently small ı and a small jzj that

(3.1) � � .1 � ı/jzj2 C 2Re
nX

j D1

�j z
2
j C b:
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(a) We first assume � has an elliptic direction at z.p/ D 0, say the z1-direction (i.e.,
�1 <

1
2

). Write � for the unit disk in C. Fix small numbers 0 <�� � 1 and 0 < � � 1. We
define for 0 < t <��; a continuous family (parametrized by t ) of holomorphic disks with bound-
ary �t W � ! U0 �� Up given by �t .�/ D .��; �t; 0; : : : ; 0/. By (3.1), we have for � 2 �,

(3.2) � ı �t .�/ � .1 � ı/�2
j�j2 C �1�

2.�2
C �

2
/C .1 � ı C 2�2/�

2t2 C b:

Choosing ı small enough such that �1

1�ı
< 1

2
, we have

� ı �t .�/ � b C .1 � ı C 2�2/�
2t2 > b:

Thus we have �t .�/ �� �b;0. Now for � 2 à�, it follows from (3.2) again that

(3.3) �.�t .�// � .1 � ı � 2�1/�
2

C b:

In the following context, we set d.z; w/ D max¹jzj � wj j W 1 � j � nº for z D .z1; : : : ; zn/

and w D .w1; : : : ; wn/ in Cn. Set d.X; Y / D inf¹d.z; w/ W z 2 X;w 2 Y º for two subsets
X; Y of Cn. Write P .z0; r/ � Cn, r > 0, for the polydisk ¹z 2 Cn

W d.z; z0/ < rº.
Note (3.3) implies there exists a positive number A1 independent of t such that

(3.4) d.�t .à�/; à.�b;0 \ U// � A1 for all t:

Note there also exists a positive number A2 independent of t such that

(3.5) d.�t .�/; àU/ � A2 for all t:

Set A D min¹A1; A2º. Now pick � > 0 sufficiently small such that V� �� U and d.z; 0/ < A
2

whenever z 2 V�. Fix any branch Œg�q with q 2 V� \�b;0 as in the assumption of Lemma 3.5.
As V� \�b;0 is connected, we can first extend Œg�q holomorphically along certain curve in
V� \�b;0 to obtain a new branch Œh��q with �q D �t .0/ D .0; �t; 0; : : : ; 0/ 2 V� \ �t .�/ for
sufficiently small 0 < t <��.

We also note that
d.0; �t .0// D �t ! 0 as t ! 0:

As for each fixed small t , �t .�/ �� �b;0, we can extend Œh��q holomorphically along any
curve inside a small neighborhood of �t .�/. Since �t .�/ is simply connected, Œh��q extends to
a well-defined holomorphic function, which we still denote by h, in this small neighborhood
of �t .�/. Moreover, if q0 2 �t .à�/, then by (3.4) and (3.5), we can extends Œh�q0

to a holo-
morphic function in the polydisk P .q0; A/. By the continuity principle, we conclude that for
anyw 2 �t .�/, the Taylor expansion (in z-coordinates) of Œh�w aboutw converges in P .w;A/.
In particular, Œh��q with�q D �t .0/ extends to a holomorphic function, still called h, in P .�q;A/
and note for sufficiently small t;P .�q;A/ contains V�. By the uniqueness of holomorphic maps,
we have Œg�q D Œh�q . In this way, we extends Œg�q to a holomorphic map h in V�.

To obtain the  -estimate on h, we need to shrink V�. For small �;� > 0, define a family
(parametrized by � 2 Cn�1) of holomorphic disks '� .�/ W � ! U given by '� .�/ D .��; �/

with j� j < �. Note there exists c > 0 that only depends on � such that if we choose �; � < c,
then '� .�/ � V� for any j� j < �. Now we fix 0 < � � � < c such that '� .à�/ � �b;0 for
any j� j < �. (The existence of such �; � is due to (3.1) and the fact that �1 <

1
2

.) Then we note
there is a small 0 < �3 < � which only depends on � and � such that V�3

�

S
k�k<� '� .�/.



Huang and Xiao, Bergman–Einstein metrics 197

We claim V�3
is the desired region in Lemma 3.5. Indeed, for any q 2 V�3

\�b;0, if Œg�q is a
holomorphic branch of .f;D/ in�b;0, then by the above argument, Œg�q extends to a holomor-
phic map h in V�. Furthermore, as V� \�b;0 is connected, for each � and any q0 2 '� .à�/,
we can find a path in V� \�b;0 connecting q to q0. This shows that Œh�q0

is a branch of
.f;D/ obtained by holomorphic continuation along a certain curve in�b;0. By the assumption
on �b;0, we conclude Œh�q0

satisfies the  -estimate for every q0 2 '� .à�/. Now by the maxi-
mum principle for subharmonic functions, h also satisfies the  -estimate on '� .�/ for all � . In
particular, h satisfies the  -estimate in V�3

. The C �-uniform boundedness in the dimension-
two case also follows from the maximum principle.

(b) Next we consider the case where there are no elliptic directions (i.e., all �j >
1
2

).
When n � 3, the argument is similar to that in case (a). We replace the holomorphic disks
�t .�/ by

�t .�/ D �.
p
�2�; i

p
�1�; t; 0; : : : ; 0/; 0 < t <��;

where � and�� are fixed small positive numbers. Then by (3.1) we have for � 2 �,

� ı �t .�/ � .1 � ı/.�1 C �2/�
2
j�j2 C .1 � ı/�2t2 C 2�3�

2t2 C b > b:

Thus we have �t .�/ �� �b;0 for all t . Furthermore, if � 2 à�, it yields that

(3.6) � ı �t .�/ � .1 � ı/.�1 C �2/�
2

C b:

Replacing (3.3) by (3.6), the same argument in (a) yields that for sufficiently small �, and
for every q 2 V� \�b;0, if Œg�q is a holomorphic branch of .f;D/ in �b;0, then Œg�q extends
to a single-valued holomorphic function h in V�. It remains to establish the desired  -estimate.
We will also need to shrink V�. For fixed small �;� > 0, we define a family (parametrized by
� 2 C; � 2 Cn�2 with j� j; j�j < �) of Riemann surfaces with boundaries E�;� as follows:

E�;� WD ¹z D .z1; z2; �/ 2 U W �1z
2
1 C �2z

2
2 D �; 2�1jz1j

2
C 2�2jz2j

2
� �2

º:

Note that there exists �� > 0 such that if we choose 0 < �;� <��, then E�;� � V� for all
j� j; j�j < �. Furthermore, note for z 2 àE�;�, we have

�.z/ � .1 � ı/jzj2 C 2Re � C 2Re
nX

j D3

�j z
2
j C b

� .1 � ı/
�2

2�1 C 2�2
� 2� � 2�2

 
nX

j D3

�j

!
C b:

Thus we can choose 0 < � � � <�� such that àE�;� � �b;0 for all j� j; j�j < �. Fix such
a pair � and �. Then there is a small 0 < �3 < � which only depends on � and � such that
V�3

�

S
j� j;j�j<�E�;�. Now a quite similar argument as that in (a), which we skip, shows that

V�3
is the desired region in Lemma 3.5.

(c) We now consider the subtler case when n D 2 and both directions are non-elliptic:
�1; �2 >

1
2

. Recall in this case, we have additionally assumed the holomorphic continuation
of .f;D/ in�b;0 along curves is C �-uniformly bounded. Fix 0 <�� < � � 1. Consider a con-
tinuous family (parametrized by t ) of Riemann surfaces E t , for 0 < t <��, in U defined by

E t WD ¹z D .z1; z2/ 2 U W �1z
2
1 C �2z

2
2 D t; 2�1jz1j

2
C 2�2jz2j

2
� �2

º:
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We apply a holomorphic change of coordinates

w1 D

p
�1z1 C i

p
�2z2; w2 D

p
�1z1 � i

p
�2z2;

i.e., z1 D

w1Cw2

2
p

�1
; z2 D

w1�w2

2
p

�2i
. Then E t is defined as follows in the new coordinates:

w1w2 D t; jw1j

2
C jw2j

2
� �2; or w2 D

t

w1
; jw1j

2
C

ˇ̌̌̌
t

w1

ˇ̌̌̌2
� �2:

This shows that E t is the graph of w2 D

t
w1

over a certain annulus ea1
� jw1j � ea2 in the

w1-plane for a2 >a1 depending smoothly on � and t . Furthermore, by using thew-coordinates,
we note that E t is covered by a closed strip St WD ¹� 2 C W a1 � Re.�/ � a2º. Indeed, the
map �.�/ D .e� ; te��/ gives a covering map from St to E t . In particular, writing àEt for the
boundary ofE t , �.¹Re.�/D a1º/ corresponds to one component of àEt , and �.¹Re.�/D a2º/

corresponds to the other.
Note by (3.1), for any point z D .z1; z2/ 2 E t , we have

�.z/ � .1 � ı/kzk2
C 2t C b > b:

Hence we have E t � �b;0. On the other hand, if z D .z1; z2/ is on the boundary àEt of E t ,
it follows from (3.1) that

�.z/ � .1 � ı/kzk2
C 2t C b > .1 � ı/

�2

2�1 C 2�2
C b:

As before, this implies there exists a positive numbers A1; A2 independent of t such that

(3.7) d.àEt ; à.�b;0 \ U// � A1; d.Et ; àU/ � A2 for all t:

Set A D min¹A1; A2º. Let � be a small positive number such that V� � U and d.z; 0/ < A
whenever z 2 V�. Write for 0 < t <��,

zt D

�r
t

�1
; 0

�
:

Notice that zt 2 E t and zt ! 0 as t ! 0. Now fix a branch Œg�q with q 2 V� \�b;0 as in
the assumption of Lemma 3.5. As V� \�b;0 is connected, we can first extend Œg�q holo-
morphically along certain curve in V� \�b;0 to obtain a new branch Œg0�zt

for sufficiently
small 0 < t <��. Then note E t and thus a small neighborhood of it are connected(but not sim-
ply connected). We can thus extend Œg0�zt

to a multiple-valued map, still denoted by g, in
a small neighborhood V of E t . By the assumption on the holomorphic continuation in �b;0,
the norm of any branch of g is bounded by C �. Since E t � �b;0 \ U , there exists a con-
stant rt > 0 depending on t such that the polydisk P .z; rt / � �b;0 \ U for any point z 2 E t .
Then any branch Œg�z of g at z extends to a single-valued holomorphic map, still denoted
by g, in P .z; rt /. We apply the Cauchy estimate to g on P .z; rt / to obtain for any multiindex
˛ D .˛1; ˛2/,

(3.8) jD˛g.z/j �

C �˛Š

.rt /j˛j

:

Let p be a point on àE t . By (3.7), we see that P .p; A/ � �b;0 \ U . Then any branch Œg�p
of g at p extends to a single-valued holomorphic map�g in P .p; A/. AsE t [ P .p; A/ � �b;0,
by the C �-boundedness assumption on holomorphic continuation in �b;0, we have j�gj � C �
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in P .p; A/. It then follows from the Cauchy estimate that for any multiindex ˛ D .˛1; ˛2/,

(3.9) jD˛�g.p/j �

C �˛Š

Aj˛j

:

By the monodromy theorem, the multiple-valued g (respectively its derivatives D˛g)
onE t lifts to a single-valued holomorphic map h (respectively its derivatives denoted by h˛) in
the covering St which is holomorphic in the interior of St and continuous to the boundary àSt .
Moreover, it follows from (3.8) that

jh˛.�/j �

C �˛Š

.rt /j˛j

for all � 2 St .

Thus h˛ is bounded on St . It follows from (3.9) that

jh˛.�0/j �

C �˛Š

Aj˛j

for �0 2 àSt .

We apply the Phragmén–Lindelöf principle to h˛ on St to obtain that for all � 2 St ,

jh˛.�/j �

C �˛Š

Aj˛j

:

This implies that for every z 2 E t , we have

jD˛g.z/j �

C �˛Š

Aj˛j

for any branch of g at z:

In particular, it holds at z D zt 2 E t and for the branch Œg0�zt
. Hence the Taylor expansion

of Œg0�zt
about zt is convergent in P .zt ; A/, and thus Œg0�zt

extends to a holomorphic map
in P .zt ; A/. In particular, Œg0�zt

extends to a holomorphic map h in V� as V� � P .zt ; A/ for
small t > 0.

Finally, we prove the  -estimate on h. We will also need to shrink V�. For fixed small
�;� > 0, we define a family (parametrized by � 2 C) of Riemann surfaces with boundary E� ,
j� j < �, given by

E� WD ¹z D .z1; z2/ 2 U W �1z
2
1 C �2z

2
2 D �; 2�1jz1j

2
C 2�2jz2j

2
� �2

º:

Then we apply the same argument as in (a) or (b) to get the desired region V�3
,C �-boundedness

and the  -estimate.
This finally finishes the proof of Lemma 3.5.

We now continue the proof in Case III. To this end, we let ¹p1; : : : ; pkº be the crit-
ical points of � on Mb . By Lemma 3.5, we can choose for each j with 1 � j � k small
simply connected neighborhoods V1;j �� V2;j �� V3;j of pj such that any branch Œg�q of
.f;D/ with q 2 V3;j \�b;0 extends to a holomorphic map in V3;j with  -estimate (and also
with C �-boundedness in the two-dimensional case). Moreover, by making V1;j sufficiently
small, we can assume V3;j n V1;j is connected for all j . Let ı1 be such that if z1 2 V2;j and�d.z1; z2/ < 2ı1, then z2 2 V3;j . Now choose 0 < �0

� 1 such that there is a continuous retract
J of .�b��0;0 n

Sk
j D1 V1;j / [�bC�0;0 into �bC�0;0 (see Section 3.1). Here J maps a point
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in �bC�0;0 to itself and maps the other points along the orbit of X� to MbC�0 . Then by apply-
ing a similar argument as in Section 3.1, we obtain a sufficiently small �0 > 0 such that .f;D/
admits holomorphic extension along curves in�b��0;0 n

Sk
j D1 V1;j with  -estimate (and also

with C �-boundedness in the two-dimensional case). More precisely, write D for the union of
all small holomorphic disks attached to MbC�0 that can be continuously deformed to a point
in MbC�0 . Choosing �0 small, we make �b��0;bC�0 n

Sk
j D1 V1;j be contained in D [MbC�0 .

We can further make �0 small such that for any curve � in�b��0;0 n

Sk
j D1 V1;j with �.0/ 2 D,

we can deform � to a �� in �b through J such that �.0/ D��.0/ and �.t/;��.t/ are suffi-
ciently close for each t 2 Œ0; 1�. Moreover, the holomorphic continuation of .f;D/ along the
two curves are induced by the same branch at each t .

The above argument proved that �b��0;0 n

Sk
j D1 V1;j has the extendability property.

Claim. The set �b��0;0 has the extendability property.

Proof of Claim. Let 
 be any curve in �b��0;0 with 
.0/ 2 D. We first find a ı� such
that whenever 
.t/ 2 V1;j for some 1 � j � k and jt � t 0j < ı� with t; t 0 2 Œ0; 1�, we have

.t 0/ 2 V2;j . Note if 
.Œ0; 1�/ � �b��0;0 n

Sk
j D1 V1;j , then the proof is done. Now assume

that there is some t�1 such that 
.Œ0; t�1 // � �b��0;0 n

Sk
j D1 V1;j and 
.t�1 / 2 V1;j0

for some
1 � j0 � k. Fix a�t1 with 0 <�t1 < t�1 but sufficiently close to t�1 such that 
.t/ 2 V2;j0

when�t1 � t � t�1 . By the above argument, deforming 
.Œ0;�t1�/ if necessary, we can assume there is
some 0 < t0 <�t1 such that 
.Œ0; t0�/ � �b;0 and �d.
.t/; 
.�t1// < 2ı1 if t0 � t �

�t1. But since

.�t1/ 2 V2;j0

, we have 
.t/ 2 V3;j0
when t0 � t �

�t1 (and thus 
.t/ 2 V3;j0
for t0 � t � t�1 ).

Writing Œf �
.t/ for the germ of a branch of .f;D/ at 
.t/ obtained by holomorphic continu-
ation along 
 jŒ0;t�

1 /, we conclude Œf �
.t0/ is the germ of a branch of .f;D/ obtained by holo-
morphic continuation along a curve in �b;0 to a point in �b;0 \ V3;j0

. It follows from our
assumption on V3;j that Œf �
.t0/ extends to a holomorphic map h in V3;j0

with  -estimate
and thus Œf �
.t0/ extends as germs of h along 
.t/ for t0 � t � t�1 . If 
.Œt�1 ; 1�/ � V3;j0

,
then clearly .f;D/ admits holomorphic continuation along 
 with  -estimate (and also with
C �-boundedness in the two -dimensional case). If 
.Œt�1 ; 1�/ 6� V3;j0

, then there exists some t2
with t�1 < t2 < 1 such that 
.Œt�1 ; t2// � V2;j0

and 
.t2/ 2 V3;j0
n V2;j0

. Since 
.t�1 / 2 V1;j0
,

we must have jt2 � t�1 j � ı�. Moreover, by the proceeding argument, we can deform 
.Œt0; t2�/

in V3;j0
with endpoints fixed such that 
 avoids V1;j0

and we still get the same branch at 
.t2/.
In summary, we can extend .f;D/ along 
 jŒ0;t2� and we do obtain the same branch at 
.t2/ by
continuing .f;D/ along a certain other curve in�b��0;0 n

Sk
j D1 V1;j . Hence this branch is also

a branch of .f;D/ through continuation along curves in �b��0;0 n

Sk
j D1 V1;j . Next we con-

sider 
.Œt2; 1�/. If 
.Œt2; 1�/ � �b��0;0 n

Sk
j D1 V1;j , then the proof is done again. Otherwise

we repeat the above argument for at most Œ 1
ı�

�C 1 times to arrive at 
.1/. This completes the
proof of the claim.

The above claim gives a contradiction to the definition of b and thus Case III cannot
occur. This finishes the proof of part (1) and (2) in Theorem 1.2.

To see the last part of Theorem 1.2, we assume there is a holomorphic branch .h; U /
of .f;D/ in Reg.�/ such that  .h.p// D 0 for some p 2 U nM . But by part (1) and (2)
of Theorem 1.2,  .h/ � 0 on U . Since  ı h is subharmonic, it follows from the maximum
principle that  .h/ � 0 in U . Let � be the curve in Reg.�/ along which we obtain .h; U /
by applying holomorphic continuation to .f;D/. Applying the maximum principle finitely
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many times backward of � , we have  ı f0 � 0 over U0. Here .f0; U0/ is a holomorphic
branch of .f;D/ with U0 \D 6D ; and f0jU0\D D f jU0\D . The statements in the last part
of Theorem 1.2 then follows easily. This finally completes the proof of Theorem 1.2.

4. Proofs of Corollaries 1.3, 1.4 and 4.1

Let � be as in Corollary 1.4 with n D dimC � and let .f;D/ be a CR diffeomor-
phism from a certain simply connected open subset D to an open piece of the boundary
of Bn. Take  .z/ D jzj2 � 1 for z 2 Cn. As explained in the introduction, .f;D/ extends
to a multiple-valued development map over M . Applying Theorem 1.2, we conclude that
.f;D/ admits holomorphic map continuation along curves in Reg.�/ with  -estimate. Since
f is not constant, it follows that for any branch .g; U / of .f;D/ with U � Reg.�/, we have
 .g/ D jgj

2
� 1 < 0 in U , or g.U / � Bn.

By the Alexander theorem, for any p 2 M and for two germs of CR branches Œf1�p and
Œf2�p of .f;D/, we must have f2 D G ı f1 near p for some automorphismG of Bn. By Propo-
sition 3.4, even if we extends along curves inside Reg.�/ with endpoints inM , we will not get
more branches than extending through curves just insider M . Let �p be the collection of all
such G0s. Apparently, from the uniqueness of holomorphic functions, �p is a subgroup of the
automorphism group of the unit ball. We also have �q D �p for q 2 M sufficiently close to p.
Since M is connected, � WD �p is independent of p 2 M . Let �

��2;0 be as in Section 3.1.
It follows readily from the construction there of the holomorphic continuation in �

��2;0 that
the germs of two holomorphic branches Œg1�q and Œg2�q of .f;D/ at some q 2 �

��2;0 obtained
through curves inside �

��2;0 must satisfy g2 D G ı g1 for some automorphism G 2 � . Con-
versely, if Œg1�q is the germ of a branch of .f;D/ in�

��2;0, then so is ŒG ı g1�q for anyG 2 � .
By Proposition 3.4, this is also the case when extending along curves inside Reg.�/. Since for
any curve 
 inside Reg.�/, the holomorphic continuation along 
 induces a one-to-one cor-
respondence between the set of germs of branches at the endpoints of 
 , we easily see the
following statement:

Let Œh1�q be the germ of a branch of .f;D/ at q 2 Reg.�/. Any other germ Œh2�q
of a holomorphic map at q is the germ of a certain branch of .f;D/ at q if and only if
Œh2�q D ŒG ı h1�q for some G 2 � .

Now we define the complex analytic hyper-variety E � Reg.�/ to be such that, for any
branch .f �; U �/ of .f;D/, E \ U � is the zero of the Jacobian of f �. Then we see from
the above claim that E is well-defined and is independent of the choice of the chosen branch.
Since E \�

��2;0 D ;, we see that E D ;. Namely, f � is always a local biholomorphism.
This completes the proof of Corollary 1.3.

We now define the hyperbolic metric !0 on Reg.�/ in the following way. Writing !Bn

for the Bergman metric on Bn, for any holomorphic branch .g; V / of .f;D/ in Reg.�/, we
define !0 D g�.!Bn/ on V . Then !0 is a Kähler metric which is independent of the choice
of .g; V / as the Bergman metric on Bn is invariant under automorphisms. Thus the metric !0

is well-defined on Reg.�/. Finally, we notice that for any p 2 M , there are a neighborhood
Wp of p in Reg.�/ and a smooth diffeomorphism F from Wp to a certain open subset W 0

q

of Bn such that (i) à0Wp WD Wp \M is a connected open subset of M containing p and
à0W 0

q WD W 0

q \ àBn is a connected open subset of the unit sphere àBn containing q, (ii) F is
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CR diffeomorphism from à0Wp to à0W 0

p that extends to a biholomorphism from Wp \� to
W 0

p \ Bn with F.p/ D q, and (iii) !0 D F �.!Bn/ on Wp nM . This shows that !0 satisfies
the properties in (A), (B) and (C) of Corollary 1.4.

Next, let ! be a Kähler metric over Reg.�/ with properties in (A), (B) and (C) of Corol-
lary 1.4. Then ! is real analytic. And near a certain p 2 M , we have the system ¹Up; Vq; F º

with F.p/ D q as in (C) of Corollary 1.4 corresponding to !. As above, we have a similar
system ¹U 0

p ; V
0

q ; F
0
º with F 0.p/ D q for !0. By the Alexander theorem, F D � ı F 0 for

a certain � 2 Aut.Bn/. Since F �.!Bn/ D !, .F 0/�.!Bn/ D !0 and � is an isometry for !Bn ,
we see that ! D !0 near p. Hence we see ! D !0 over Reg.�/.

This completes the proof of Corollary 1.4.

We finish off the paper by presenting one more application of Theorem 1.2.
A Stein space � with isolated complex singularities can be exhausted by Stein spaces

with smooth compact strongly pseudoconvex boundaries. Indeed, let F be a proper holomor-
phic map from � into CN that is injective and regular at smooth points [14, Theorem 2.4.1].
By Sard’s theorem, most level sets of � D jF j

2 are smooth and strongly pseudoconvex, from
which we can pick a sequence exhausting �. Then Theorem 1.2 gives the following:

Corollary 4.1. Let � be a Stein space of complex dimension n � 2 with possibly iso-
lated singularities. LetK be a compact subset of� such that� nK is connected. Assume that
.f;D/ is a holomorphic map element in Reg.�/ nK that extends holomorphically along any
curve 
 in Reg.�/ nK with 
.0/ 2 D. Then the following conclusions hold:

(A) Suppose that n D dimC.�/ � 3. Then .f;D/ admits holomorphic continuation along
any curve in Reg.�/ that starts from a point in D.

(B) Suppose that n D dimC.�/ D 2 and .f;D/ admits uniformly bounded holomorphic map
continuation along any curve 
 inside Reg.�/ nK with 
.0/ 2 D. Then .f;D/ admits
uniform bounded holomorphic map continuation along any curve in Reg.�/ that starts
from a point in D.

Proof. Let 
 be a curve in Reg.�/with p0 D 
.0/2D. We first connect p0 by a curve �
to a certain point q 2 M � � nK. Here M is the compact smooth strongly pseudoconvex
boundary of a certain Stein space �M containing 
 . Let Œh�q be the germ at q of the holo-
morphic map obtained by continuing .f;D/ through � . Then by the assumption, Œh�q can be
continued along any curves inside M starting from q (with a uniform bound when the dimen-
sion is two). By Theorem 1.2, we see that Œh�q can be continued holomorphically along the
curve .��/C 
 , from which the assertion in the corollary follows easily.
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