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Bergman—Einstein metrics,
a generalization of Kerner’s theorem and
Stein spaces with spherical boundaries

By Xiaojun Huang at New Brunswick and Ming Xiao at La Jolla

Abstract. We give an affirmative solution to a conjecture of Cheng proposed in 1979
which asserts that the Bergman metric of a smoothly bounded strongly pseudoconvex domain
in C", n > 2, is Kihler-Einstein if and only if the domain is biholomorphic to the ball. We
establish a version of the classical Kerner theorem for Stein spaces with isolated singularities
which has an immediate application to construct a hyperbolic metric over a Stein space with
a spherical boundary.

1. Introduction

Canonical metrics are important objects under study in Complex Analysis of Several
Variables. Since Cheng and Yau proved in [6] the existence of a complete Kédhler—Einstein
metric over a bounded pseudoconvex domain in C” with reasonably smooth boundary, it has
become a natural question to understand when the Cheng—Yau metric of a bounded pseudo-
convex domain is precisely its Bergman metric. S. Y. Cheng conjectured in 1979 [5] that if the
Bergman metric of a smoothly bounded strictly pseudoconvex domain is Kdhler—Einstein, then
the domain is biholomorphic to the ball. Cheng’s conjecture was previously obtained by Fu and
Wong [15] and Nemirovski and Shafikov [26] in the case of complex dimension two. There are
closely related studies on versions of the Cheng conjecture in terms of metrics defined by other
canonical potential functions. The reader is referred to work of Li [19-21] and the references
therein on this matter. There are also many other characterizations of the unit ball in terms of
various geometric properties of the domains. See, for instance, [27] and [8].

This paper is twofold. One is to present a solution of the Cheng conjecture in any dimen-
sions. The other is to use this opportunity to generalize the classical Kerner theorem [18]

The corresponding author is Ming Xiao.

Supported in part by NSF grants DMS-1665412 and DMS-2000050. Ming Xiao was supported in part by
NSF grant DMS-1800549.



184 Huang and Xiao, Bergman—FEinstein metrics

and the Chern—Ji theorem [8] to Stein spaces with singularities, whose original version is
a fundamental tool to obtain the Cheng conjecture. The generalization of the Kerner theo-
rem to singular space might be of independent interest in its own right and may find other
applications.

In Section 2, the first part of this paper, we answer affirmatively the Cheng conjecture [5],
based on deep works of many mathematicians in the past 40 years:

Theorem 1.1. The Bergman metric of a smoothly bounded strongly pseudoconvex
domain in C" (n > 2) is Kdihler—Einstein if and only if the domain is biholomorphic to the
ball.

To verify the Cheng conjecture, we first show that the Einstein property of the Bergman
metric over a bounded strongly pseudoconvex domain 2 forces the boundary 02 to be spher-
ical. Namely, at each point of 02 there is a small open piece of 02 that is CR-diffeomorphic
to an open piece of the sphere of the same dimension. To prove that, we will fundamentally
make use of the work done by Chern and Moser [9], Fefferman [11, 12], Christoffers [10], Fu
and Wong [15], etc. Once this is known, as in the work of Nemirovski and Shafikov [25], one
can use the classical Kerner theorem [18] or the Chern—Ji extension theorem [8] to prove that
2 is a ball quotient. Then the proof of Theorem 1.1 follows from the Cheng—Yau uniqueness
theorem of complete Kidhler—Einstein metrics [6] and the classical Qi-Keng Lu theorem [22].

In Section 3, the second part of the paper, we establish a Kerner-type theorem for Stein
spaces even with isolated complex singularities. Before stating our next main theorem, we
explain needed notations and terminologies:

Let 2 be a Stein space of complex dimension at least two with possibly isolated sin-
gularities and connected compact strongly pseudoconvex boundary M = 0$2. Write Reg(£2)
for the set of smooth points in © and Reg(Q2) = Reg(2) U M. We say (f, D) is a contin-
uous CR map element over M into CV if D is a simply connected open piece of M and
f D — CV is a continuous CR map for a certain N. Similarly, we say (g, U) is a holomor-
phic map element over Reg(Q) into CV if U is a simply connected open subset of Reg(Q)
and g : U — C¥ is a continuous map that is holomorphic in U N . We say (£, D) admits
a holomorphic continuation along o : [0, 1] — Reg(Q) with ¢ (0) € D if there exists a collec-
tion of holomorphic map elements {(f;,U j)}?zo on Reg(Q) such that fo = f in a neigh-
borhood of o(0) in Up N D and there is a partition 0 = #9 < #; <--- < f4+1 = 1 such that
o([tj,tj+1]) C Uj forall0 < j <k with f; = fjy1onU; NUj4q for0 < j <k — 1. Here
(fx» Ur) is called a (holomorphic) branch of (f, D) obtained by holomorphic continuation
of (f, D) along o. Let (f, D) be a CR map element over M as above and fix a plurisubhar-
monic function ¥ : CV — R such that ¥/(f) < 0 on D. Let Q be an open connected subset
of Reg(Q) containing D. We say (£, D) admits holomorphic continuation with y-estimate
in Q along curves if (f, D) can be continued holomorphically along any curve y in Q with
y(0) € D and for each branch (g, U) with U C Q obtained through holomorphic continuation
of (f, D) along a curve y in Q with y(0) € D, we have ¥(g) < 0 in U. Similarly, for a posi-
tive constant C*, we say ( f, D) admits C *-uniformly bounded holomorphic map continuation
along curves in Q if for any branch (g, U) of (f, D) with U C Q. we have lg] < C* over U.
One similarly defines the notion of continuous CR map continuation of ( f, D) along a curve
in M, continuous CR map continuation of ( f, D) with ¥-estimate along curves in M and the
notion of C *-uniformly bounded CR map continuation along curves in M.
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Theorem 1.2. Let Q be a Stein space of complex dimension at least two with possibly
isolated singularities and connected compact strongly pseudoconvex boundary M = 0S2. Let
(f. D) be a continuous CR map element into CN over M and ¥ : CN — R a plurisubhar-
monic function such that ¥ () < 0 on D. Then the following conclusions hold:

(1) Suppose that dimc () > 3 and (f, D) admits continuous CR map continuation with
Y-estimate along each curve inside M starting from a point in D. Then (f, D) admits
holomorphic continuation with \r-estimate along any curve in Reg(Q) starting from
a point in D.

(2) Suppose that dimc () = 2 and ( f, D) admits C *-uniformly bounded CR map continu-
ation with \-estimate along each curve inside M starting from a point in D. Then ( f, D)
admits C*-uniformly bounded holomorphic map continuation with \r-estimate along any
curve in Reg(Q) starting from a point in D.

Moreover, in both cases, assume there is a holomorphic branch (h,U) of (f. D) in Reg(2)
such that ¥ (h(p)) = 0 at some point p inU \ M. Then ¥ (g) = 0 for any holomorphic branch
(g, V) of (f. D). In particular, ¥ (f) = 0on D.

We mention that in Theorem 1.2, one does not have in general the extension of (f, D)
along a curve through the singular points, as Example 3.1 shows, even if the singularities are
normal. This is very different from the classical Hartogs extension theorem. This also partially
demonstrates that the method of the proof in Kerner’s paper does not apply to the singular
Stein space case. Indeed, Kerner [18] proved that the envelope of holomorphy Y of the uni-
versal cover Y of a domain Dy over a Stein manifold X is the universal cover of the envelope
of holomorphy 50 of Dg. (Here, 17, Y, 50 are domains over X.) Once this is established,
the multiple-valued Hartogs extension theorem follows as an immediate consequence, for the
multiple-valued map becomes single-valued map in the universal covering space. Example 3.1
shows that when a complex manifold is a domain over a singular Stein space, the envelope of
holomorphy of its universal cover is in general no longer the universal cover of its envelope
of holomorphy.

For the proof of Theorem 1.2, we will employ a different but in fact more elementary
and self-contained argument than those used in [18] and [8]. Ours is based on the Lewy and
Baouendi-Treves extension theorem [2], Morse function theory and the Phragmén—Lindeloff
maximum value principle.

An important scenario where Theorem 1.2 is applied is when M is spherical and f is
a CR diffeomorphism from a simply connected open piece D C M to an open piece in 0B”
with n = dimec Q. Here and in what follows, we write B” for the standard unit ball in C”. In
this case, by the Alexander theorem [1,4], (f, D) extends as local smooth CR diffeomorphism
elements into 0B” (and thus with a uniform bound C* = 1) along each curve inside M that
starts from a point in D. Such a map element ( f, D) is called a development map element
and the multiple-valued CR extension of ( f, D) in M along curves is called a multiple-valued
development map. Hence, the following is an immediate application of Theorem 1.2:

Corollary 1.3. Let Q2 be a Stein space with dim¢c Q2 = n > 2 with a connected smooth
compact spherical boundary M = 0R2. Let ( f, D) be a smooth CR development map element.
Then ( f, D) admits a holomorphic continuation along any curve y in Reg(Q) with y(0) € D.
Moreover, there is a subgroup T of Aut(B") such that if (g, U) (with U a simply connected
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open subset of Reg(2)) is a holomorphic branch of ( f, D) obtained through continuation along
a curve, then g is a local biholomorphic map from U into B" and all other branches of ( f, D)
defined over U are precisely the holomorphic map elements of the form (o o g, U) witho € T.

The following is a very useful consequence of Corollary 1.3:

Corollary 1.4. Let Q be a Stein space with dim¢ Q = n > 2 that has a connected com-
pact smooth boundary. Assume the boundary 092 is spherical. Then there is a unique Kdhler
metric wg over Reg(2) such that the following hold:

(A) wg has a constant negative holomorphic sectional curvature.

(B) wo is complete at infinity. Namely, for each number R > 0 and po € Reg(2), the ball
centered at po € Reg(2) with radius R (with respect to wg) has a compact closure in .

(C) For a certain p € M there are a small neighborhood U, of p in Q and a diffeomor-
phic map F from U, to V, that is holomorphic over U, N Reg(S2), where V is a cer-
tain neighborhood of q in B" with F(p) =q and F(M NUy,) =V, NOB" such that
F*(wpn) = wo on U, \ M. Here wpn is the Bergman metric of the unit ball B" C C".

When € is a smoothly bounded spherical domain in a complex Euclidean space, by
studying the projective extension (see [7]) of the Cartan—Chern—Moser structure bundle over M
into the interior of , Chern and Ji in [8] showed that, under the hypothesis in Corollary 1.3, the
development map element ( f, D) extends along any curve in € as bimeromorphic maps. The
paper of Burns and Ryu [3] also mentioned a preprint of Burns in the 1990s ([3, Reference [5]])
and indicated that certain results similar to those in Corollaries 1.4 and 1.3 were obtained
in that preprint of Burns. Since Burns’ preprint does not seem to be available to a reader,
Corollaries 1.3 and 1.4 thus serve as accessible complete proofs of these very useful results for
the study of spherical Stein spaces.

When the 2 in Corollary 1.4 is not smooth, the hyperbolic (i.e., having a constant neg-
ative holomorphic sectional curvature) metric may not be complete at the singular point. For
instance, as proved in Huang [16], if Q is embedded in a complex Euclidean space with 02
spherical and algebraic, then €2 has exactly one singular point which is a finite quotient singu-
larity of the unit ball B” C C”. The naturally inherited hyperbolic metric satisfies all properties
stated Corollary 1.4 and is not complete at the singular point (i.e., there is a Cauchy sequence
in Reg(£2) with respect to the metric wg that converges to the singular point). The follow-
ing example shows that the hyperbolic metric in Corollary 1.4 may not be unique (even up to
scaling) in general in the one-dimensional case:

Let A be the unit disk and let X be the singular Riemann surface in C? given by

{(z,w) e C%:w? =23 N A%

It is the image of the map ¢ — (¢2,¢3), t € A and has an isolated singularity at (0, 0). Note
X*:= X\ {(0,0)} is biholomorphic to punctured disk A* := A \ {0}. The canonical met-
ric on A* induces a metric w; on X* and the Bergman metric on A* induces a metric w,
on X *. Notice that both metrics are complete at infinity. But w; is complete near the singular-
ity, while w; is not. We claim that both w; and w; satisfy properties in (C) of Corollary 1.4.
Indeed, w, is identical with the Bergman metric of A near boundary and thus has this prop-
erty. To understand w;, we look at the covering map 7 (§) = '€ from the upper half plane
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H ={6e€C :Imé& >0} to A*. Note that 7 maps biholomorphically {£ € # : 0 <Re & <27}
to an open subset of A* whose boundary contains an open piece of the circle. From this, one
sees that the induced canonical hyperbolic metric on A* and thus w; on X™* satisfies (C) of

Corollary 1.4. Hence we have two very distinct metrics on X * that both satisfy properties
in (A), (B) and (C) of Corollary 1.4.

Acknowledgement. The first author would like to thank Dan Burns for his discussions
related the work here during the joint Vietnam—USA summer conference in Quy Nhon, Viet-
nam in June, 2019. We thank the anonymous referees for helpful comments.

2. Proof of Theorem 1.1

Let Q = {z € C" : p(z) > 0} be a strictly pseudoconvex domain with a smooth defining
function p. In [11], Fefferman showed that the Bergman kernel function K(z) = K(z,z) of Q
has the asymptotic expansion

$(2)
K(z) = 7F(z) + ¥ (2) log p(2).

where ¢, ¥ € C®(Q) and ¢|3q # 0. In particular, if the boundary dQ of Q is spherical, then
Y vanishes to infinite order at the boundary 0€2.

We first recall the notion of Fefferman defining functions or Fefferman approximate solu-
tions. Consider the following Monge—Ampere-type equation introduced in [12]:

T 1
J(u) := (—1)" det R utl det((log —) ) =1 in €,
ua uag u aﬁ

with ¥ = 0 on Q2. Fefferman proved that for any bounded strictly pseudoconvex domain €2
with smooth boundary, there is a smooth positive defining function r of 2 such that

J(r) =1+ 0@™th),

which is called a Fefferman approximate solution or a Fefferman defining function of 2. More-
over, if r1, rp are two Fefferman approximate solutions, then vy — rp = O(p”+2), where p is a
given defining function of €2.

We next recall the Moser normal form theory [9] and the notion of Fefferman scalar
boundary invariants ([13]): Let M C C” be a real analytic strictly pseudoconvex hypersurface
containing p € C". Then there exists a coordinates system z = (£, w) := (£1,...,Ex—1, W)
such that in the new coordinates, p = 0 and M is defined near p by an equation of the form

=B
@.1) wu=|EP+ Y ALgEUE Y,
|| |B]=2,1=0

where w = u + iv, and «, B are lists of indices between 1 and n — 1 (here || and | 8| denote
their lengths). Moreover, the coefficients A(lxg € C satisfy the following:

. Afxg is symmetric with respect to permutation of the indices in «.

» Ttholds ALz = Abg.
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« We have tr Ab5 = 0, 2 A4 = 0 and tr® A45 = 0, where Aiﬁ is the symmetric tensor
[Aég] la|=p, |Bl=¢g On C n=1 and the traces are the usual tensorial traces with respect to 81-7.
Namely, if we write

I (¢ F) — |_cagh
AbgEE) = > ALGEE,
le|=p, |Bl=q
then we have, for each /,

A(AL(E.D) = A2 (AL (E. D) = A% (AL3(6.) = 0.
Here A is the standard Laplacian operator in &.

Here (2.1) is called a normal form of M at p. When M is merely smooth, the expansion
is in the formal sense. We call [Afxg] the normal form coefficients. Recall that a boundary scalar
invariant at p <> 0, or briefly an invariant of weight w > 0, is a polynomial P in the normal
form coefficients [A(lxg] of 02 satisfying certain transformation laws. (See [13] for more details
on this transformation law.) Using a Fefferman defining function in the asymptotic expansion
of the Bergman kernel function

2.2) K(z) = rnqi(—lz()z) + ¥ (z)logr(z),

with ¢, ¥ € C®(Q), ¢laa # 0, then ¢ mod r"+1, 1 mod r> are locally determined. More-
over, if 0€2 is in its normal form at p = 0 € b2, then any Taylor coefficient at 0 of ¢ of
order < n, and that of i of any order is a universal polynomial in the normal form coeffi-
cients [A(lxg]. (See Boutet and Sjostrand [4] and a related argument in [13].) In particular, we
state the following result from [10]:

Proposition 2.1 ([10]). Letr Q be as above and suppose that 02 is in the Moser normal
Sform up to sufficiently high order. Let r be a Fefferman defining function, and let ¢, be as
in (2.2). Then
n!
p=—+00?
n! T

and P, = ¢;? loq defines an invariant of weight 2 at 0. Furthermore, if n = 2, then P, = 0.
Ifn > 3, then Py = cy||A%|? for some universal constant ¢, # 0.

As mentioned earlier, Theorem 1.1 is known in the case of n = 2 in [15] and [26]. We
next assume that n > 3.

Proof of Theorem 1.1. It is well known that the Bergman metric of the unit ball is com-
plete and hyperbolic, and in particular Kdhler—Einstein. Moreover, the Bergman metric is invar-
iant under biholomorphic transformations. Thus if a domain €2 is biholomorphic to the unit
ball, then its Bergman metric is Kihler—Einstein. It remains to prove the converse statement.
Assume €2 is a smoothly bounded strongly pseudoconvex domain and its Bergman metric is
Kihler-Einstein. Recall the Fefferman asymptotic expansion

n+1 1
pn¢+(lz()z) Ly logpr) = 2F ppnﬁf 2P forzeq

with ¢, ¥ € C®(Q) and ¢|aq # 0, where p € C®(RQ) is a smooth defining function of Q

2.3) K(z) =
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with Q@ = {z € C" : p(z) > 0}. Since K(z) > 0 for z € 2, we have
¢+ p" T ylogp >0 forze Q.

Thus
P

(¢ + p" 1 log p) T

(K) 71 (z) =

is well-defined in €2.
We notice that the Kdhler—Einstein condition of the Bergman metric is equivalent to the
fact that log K(z) is a Kidhler—Einstein potential function of 2. More precisely, we have

[we) ]

for z € Q. (See [15]). Let ro(z) := (%K)_#. We hence have that ro(z) > 0 and J(rg) = 1
in 2. We next recall the following result of Fu and Wong [15]:

Proposition 2.2. Let 2 ={z € C":p >0} be a bounded strongly pseudoconvex
domain with a smooth defining function p. If the Bergman metric of Q2 is Kdhler—Einstein,
then the coefficient of the logarithmic term in Fefferman’s expansion (2.3) vanishes to infinite
order at b2, i.e., ¥ = O(pX) for any k > 0.

As a consequence, ¢ + p" 1y log p extends smoothly to a neighborhood of Q. Since
dlag # 0, we have
¢+ p" T lylogp >0 forallz e Q.

Hence ry extends smoothly to a neighborhood of € and it is then easy to conclude that rg is
a Fefferman defining function of €2. Then from the way ro was constructed, it follows that

(2.4) K(z) = ”—iro‘(”“).

b4

Comparing (2.4) with (2.2), we arrive at the conclusion that if we let r = rg in (2.2),
then ¢ = 7’1‘—,'1 Then it follows from Proposition 2.1 that P, = ¢, || 495> = 0 at p € 9 if 0
is in the Moser normal form up to sufficiently high order at p with 495 being the Chern—
Moser—Weyl tensor at p. Consequently, Ag§ = 0 in each Moser normal coordinates at each
point in 0€2, for ¢, # 0. That is, every boundary point of 02 is a CR umbilical point. We now
apply a similar argument of Nemirovski and Shafikov in [26] to show 2 is holomorphically
equivalent to the unit ball by applying Corollary 1.4 (or the Chern-Ji [8] or Kerner extension
theorem [18]) and the Qi-Keng Lu uniformization theorem [22] as follows:

Since 0S2 is now spherical, we fix a point pg € 02 and an open piece U of pg in 02
such that there is a smooth CR diffeomorphism F from U to an open piece of the unit sphere
in C". Now, by Corollary 1.4, we obtain a well-defined complete Kihler metric wg on €2,
which is of constant negative holomorphic sectional curvature. (Note that wg is complete for
Q is assumed to be smooth.) Now, by the uniqueness of the complete Kidhler—Einstein metric
over ¢ (see [6]), since the Bergman metric on €2 is assumed to be Kdhler—Einstein, we con-
clude that the Bergman metric of €2 is proportional to wg. Finally, by the classical Qi-Keng Lu
uniformization theorem [22], €2 is biholomorphic to the ball. O
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3. Proof of Theorem 1.2

In this section, we give a proof for Theorem 1.2. We assume that €2 is a Stein space with
a smooth compact strongly pseudoconvex boundary M = 992. Let ( f, D) be a CR map element
over M into CV and ¥ a plurisubharmonic function over CV, as in Theorem 1.2. Write the
singular set of Q to be sing(£2), which has at most finitely many points. Write @ = Q U M,
Reg(Q) = Q \ sing(R) and Reg(Q) = Q \ sing(Q) as before.

As mentioned in the introduction, ( f, D), in general, does not admit holomorphic con-
tinuation across a singular point (even a normal singular point) of €2, as demonstrated by the
following example.

Example 3.1. Let Q be the Stein space with boundary defined by

3
Q= {W = (w1, wa, w3) € C3: Z |wj|2 <1, w% = 2w1w3}.
Jj=1

Let 77 : B2 — Q be given by 7(z1,22) = (Z%, ﬁzlzz,zg). Note that 7 is 2 to 1 covering
from B2 \ {0} to Q \ {0} and 7(0) = 0. Fix a point pg = (%, g, %) €M :=02.Let D be
a small simply connected open piece of M containing po and ( f, D) a CR mapping element

given by f(W) = (,/wi, /w3). Here
Vi = /wle'?

for w = |w|e’® with —r < 6 < 7. Notice that f maps D into 0B2 and thus ( f, D) is a devel-
opment map element. Notice that M is spherical. By Corollary 1.3, (f, D) admits uniformly
bounded holomorphic map continuation along curves inside Reg(£2). It does not admit a holo-
morphic map continuation along a certain curve y in © with y(0) = po and y(1) = 0.

Indeed, to see the claim made in Example 3.1, set y; be a curve in  such that y1(0) = py
and y1(1) = (€, 0, 0) for some small € > 0 such that y; never intersects {w; = 0} and let the
curve y, in Q be given by y2(t) = (¢£,0,0),0 < ¢ < 1. Write y = y; + (—y2). Note that
y([0, 1)) does not pass through {w; = 0}. We know for every 0 < f9 < 1, if we write (h, V)
for the branch we obtain at y(t9) with 4 = (h1,h3) on V, then hy equals either [— /w1, (1)
or [/w1ly()- Without loss of generality, we assume it is the latter when 79(# 1) is close
to 1. Suppose we can extend ( f, D) holomorphically along y to get a holomorphic branch
(g,U) at y(1) = 0 (in particular, 0 € U). Write g = (g1, g2) on U. Then g1 = ,/w; near
(€0, 0, 0) for a sufficiently small €. But this is impossible as we can find a loop o in U given
by o(t) = (e0e?™?,0,0) € Q, 0 <t < 1, so that we get a different branch when applying
holomorphic continuation to ,/w along o.

The proof of Theorem 1.2 will be split into several steps to be established in the following
two Section 3.1 and 3.2. Before proceeding to the proof, we first fix a Morse plurisubharmonic
defining function p of Q. More precisely, we choose a bounded plurisubharmonic exhaustion
function p : © — [—00, 0] of Q such that p = 0 on M, p < 0in  and p(z) = —oo if and only
if z is a singular point of 2. In addition, dp|as # 0 and p is smooth and strongly plurisub-
harmonic on Reg(£2). Moreover, p has only finitely many critical points in Reg(£2) and they
are all non-degenerate. The existence of such a p is guaranteed by the assumption on Q and
Morse function theory. (The local existence of such a function near a singular point can be
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found in Milnor [24]. Away from singular points, we refer to the book of Forstneri¢ [14] for
such a construction. Then one applies the Morse approximation to get our p.)

_For clarity, we fix a Riemannian metric ds? over Reg(Q) which induces a distance func-
tion d (x,y) for x, y € Reg(Q). Write X » for the dual vector field of —dp with respect to ds?
over Reg(€2) away from the critical points of p.

3.1. Proof of Theorem 1.2: Part I. This step is the same for the two cases (1)and (2)
in Theorem 1.2 and it aims to prove ( f, D) admits holomorphic map continuation in a tube
neighborhood of M in Q. We emphasize that the boundedness assumption in case (2) is not
needed in this subsection to derive the extension. We choose three finite open convex cover

(wRym_ |k =1,2.3, 0f (M, ds|y) with

W cc w® cc w®  foreach j.

Moreover, we make W(3 ) sufficiently small for each j so that a neighborhood of ij on M is
CR diffeomorphic to a strongly pseudoconvex hypersurface in C". Write D; for the union of
all smooth holomorphic disks attached to VV](3 ) which can be deformed through a continuous
family of disks to points in W( ) For0<e; < 1and 1<k <3, we let W(k) be the open
subset of © obtained by ﬂowmg each point p € W(k) along the orbit of X, (where X, is as
defined right before Section 3.1) with time 0 < ¢ < 61 Note we can find an €; > 0 sufficiently
small such that
W@ (D; U W-(3)) for each j,

J-€1
and that W( ) is topologlcal trivial (recall W(z) is chosen to be convex). In particular, for
each point q e w M 6) , there is a small embedded holomorphic disk A, containing ¢ attached
to W(3) that is contained in D; and can be continuously deformed to a point on W(3 ). Fix such
an 61 Write forrp, < r1 <0,

§r2,r1 ={p€§:r2<p§r1}.

We emphasize that §r2,r1 only contains its outer boundary but not its inner boundary.
Let 0 < €3 < €7 be small enough such that

Define Je, : 5_62,0 — M for the retract of §_€2,0 to M which maps every point p in 5_62,0
through the orbit of X, to the corresponding point on M. Note that J, is a smooth map for
a small €. By the Lewy—-Baouendi—Treves theorem, we see that every continuous CR func-
tion /& on W](3 ) extends to a holomorphic function in W(z)1 that is continuous up to W(z)
Let y : [0, 1] — Q_¢, 0 be a curve. There is a corresponding curve y := J., oy on M. By
making €1, €5 sufficiently small, we note from the definition of Je, that y(r) C W(k ) for
some 1 < j <m,1 <k <3ifandonlyif y(t) C W(k) We next prove the following lemma

Lemma 3.2. Let (f, D) and  be as in Theorem 1.2. Fix a curve y : [0,1] — 5_62,0
with y(0) = po € D and let y be as above.

(1) We can find {W(z)}k and {WJ(2 } o With 0 < j; < m, together with continuous CR
map elements {(fl W(Z))} on M and holomorphic map elements {(g;, w? )}

Ji1-€1
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in Reg(Q) such that the following hold:
(a) The point pg € ngz) and fo = f in a neighborhood of po on M.
(b) There is a partition 0 = §o < 81 < -++ < 841 = 1 of [0, 1] such that

y (81, 81411) € WL 981, 8114) € W

for0 <1l <k.
© fi=gionWP for0<1 <k

d) fi = fix10n W(z) N W]ﬁ)l and gy = gj4+10n W](])e1 N Wj(i)r] o Jor0 = [ <k-—1.

Consequently, {(gj, Wflz?el)} _o (resp- {(J1. W, (2))} _o) induces a holomorphic (resp.
CR) continuation of (f, D) along y (resp. 7).

(2) It holds that ¥ o gy <0 on W(z) for all 0 <1 < k. Moreover, assume that there is
some lo with 0 < lo <k and a pomt q € W(z) \ M such that ¥ o g;,(q) = 0. Then

¥ (g) = 0 for any holomorphic branch (g, V) of (f D)inQ_c, 0.

Proof of Lemma 3.2. By the uniform continuity of  on [0, 1] and the Lebesgue lemma,
we can find some € > 0 such that for any sub-interval I * of [0, 1] with length bounded by e,
there exists some 1 < j(I*) < m satisfying y(I*) C W(( *): Note po = y(0) = y(0) is con-
tained in W(l) for some 1 < jo <m. Set §o = 0 and let 6; € (0, 1] be the (unique) num-
ber (if ex1sts) such that ([0, 1)) C W(l) buty(81) € W(l) Note here that we choose jo such
that &1 takes the largest value and thus we must have §; > > 6 if it exists. If such a number §; does
not exist, this means that ([0, 1]) C W(l) and consequently y([0,1]) C W(l) 05_62,0.
Note first by the continuous CR map contmuatlon assumption and the monodromy theorem, the
germ of f at pg extends to a CR function fy on W}?) as Wj?) is simply connected. Secondly
(fo, ngz) ) can be extended to a holomorphic map element (go, Wj(g El) Then (go, Wj(g) El)
induces a holomorphic continuation of ( f, D) along y and the first part of lemma is established.

Now assume that such a §; exists. First, as above, the germ of f at py extends to a CR
function fo on W(3) and fo extends to a holomorphic function element (go, W(z) ) (thus (c)
holds for [ = 0). We then look at y(81). Note y(;) € W(z) C W(3) and there ex1sts some
1 < j1 < m such that y(§;) € W(l) By the same reason as above the germ of fy at y(81)
extends to a continuous CR map f1 on W( ) and f1 extends to a holomorphic map element
(g1, ](lz)e ) (thus condition (c) holds for l = 1). Note that f; and fy coincide near y(37).
Moreover, since W(3) N W(3) and WJ((Z))El N Wj(lz)e are simply connected by our convexity
assumption, we conclude that

fo=f1 on WJ-S') N Wj(IS) and g1 =go Iin e Aw®

J0>€1 J1,€1

(thus (d) holds for / = 0).
Then we pick the (unique) number 85 (if exists) such that

P(B1.82)) WY and 9(62) f Wi,

Note again we choose j; such that §, takes the largest possible value if it exists and thus we
must have §, — §; > €. And we run the same procedure as above to obtain 1 < j, < m such
that )/(82) € W(l) along with a CR map element ( f>, W(3)) and a holomorphic map element
(g2, 1(5)61) such that f1 = f> on W(3) N W( ), and g1 =gz in w® aw@

J1,:€1 J2:€1°
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By repeating the above procedure for at most [%] + 1 times, we arrive at some positive
number & such that §; + € > 1. More precisely, we obtain a partition

0=80<81<”-<8k<8k+1=1

of [0, 1] and a collection of integers 1 < ji,..., jr < m such that y([§;,8;+1)) € ijl) and
Y(6141) € W(l) for 1 <[ < k (in particular, one has y([Sl d1+1]) € W( ) for all k). Moreover,
there are a collectlon of CR map elements {(f;, W )} o and holomorphic map elements
{(g;, Wj(lz)el)} /-, satisfying condition (c) and (d). Th1s proves part (1) of the lemma.

To prove part (2), we note for every p € WJ(I . \ M, there exists a small holomorphic
disk A, C W(3)E attached to W(3) such that p € A,. Moreover, ¥ o g; is subharmonic in A,
continuous up to dA, and agrees with ¢ o f7 on aA p- By the assumption that ( f, D) admits
a continuous CR map continuation with ir-estimate in M and thus in particular ¥ o f; < 0 on
0A, C W( ), we conclude by the maximum principle that ¥ o g;(p) < 0. As p is arbitrary,
we have w og; <0on W(z) ¢, forall 0 <1 < k. Now suppose there is some 0 < /o < k and
apoint g € W(z) \ M such that ¥ o g;,(¢) = 0. ThlS means ¥ o gj, achieves its maximum

]lo €1
at an interior point g. Since ¥ o gj,, is subharmonic in W we conclude that

6 B

Yog, =0 in W@

]10561

As g7 = gj4+1 foreach 0 </ <k on W](z)61 N 1(/211 ¢;» We have, for each [, Y o g; attains

its maximum at an interior point and thus is constant. In particular, ¥ o gg = 0 in W(2)€1 and
Yo fo=0in W(z) Now let (g, U) be a holomorphic branch of (£, D) in Q_, 0. Theh there
isapatho in Q_Q,O connecting po to some point p; € U such that (g, U) is obtained by holo-
morphic continuation of ( f, D) along o. By part (1) of Lemma 3.2, writing 0 := = Je, 00, there
exist holomorphic map elements {(g;, W” el)}l _o and CR map elements {(f7, Wz§26)1)}1=0
that satisfy the conditions (a), (b), (c), and (d), and induce a holomorphic continuation and
a CR continuation of (f, D) along o and 0. By the monodromy theorem, we have g = g,
near g in U N W(z) . Note we have fo = fo near pg and go = go near pg. Then Y o ’gyp =0
on WZ(OZ)E Applylng the maximum principle for subharmonic functions as above, we obtain
that ¥ o’g; = 0 in W for every 0 </ < v. In particular, we have ¥y o ¢ = 0 on U. This
proves Lemma 3.2. O

1],€1

Summarizing the arguments above, we have the following:

Lemma 3.3. Let (f, D) be as in Theorem 1.2. The continuous CR map element ( f, D)
admits holomorphic continuation in Q—_e, o with Vr-estimate. In the dimension-two case, if
(f, D) admits C*-uniformly bounded CR map extension along curves in M, then it also admits
C*-uniformly bounded holomorphic continuation with -estimate in 5_62,0. Moreover, if
there is a holomorphic branch (h,U) of (f. D) in Q—c,0 such that ¥ (h(p)) = 0 at some
point pin U \ M. Then y/(g) = 0 for every holomorphic branch (g, V) of (f, D) in Q—_e, 0.

3.2. Proof of Theorem 1.2: Part II. In this subsection, we finish the proof of Theo-
rem 1.2. The treatment for the two cases are different. We will apply the method of continuous
families of holomorphic curves which is a typical machinery in the study of holomorphic con-
tinuation problem. The use of the Morse function theory to study the holomorphic continuation
of multiple-valued holomorphic maps near the boundary to the interior of the pseudoconvex
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domain in C”" with n > 2 appeared in [17, Section 5]. In the paper by Merkel and Porten [23],
they employed the Morse function theory to re-investigate the Hartogs extension theorem of
single-valued holomorphic functions. In our argument here, besides the Morse function theory,
the Phragmén—Lindelof principle will play a fundamental role in the case of complex dimen-
sion two.

To start with, we make the following definition. Let (£, D) be as in Theorem 1.2 and
assume the hypotheses in Theorem 1.2. Let Q be a connected open subset of Reg(2) with
D C Q. We say € has the extendability property if, in the three or higher-dimensional case,
(f, D) admits holomorphic continuation along cures in Q with Y-estimate. And in the dimen-
sion-two case, (f, D) is assumed to admit uniformly bounded holomorphic continuation with
a bound C* > 0 along curves in Q, that also has the Yr-estimate. Here C* is the least upper
bound for the super-norms of the CR map branches of ( f, D) obtained along curves inside M .
To establish Theorem 1.2, we will need to prove Reg($2) has the extendability property. Now set

A ={a <0: Qg has the extendability property}.

We first note that A is not empty as [—€2,0) C A, where €5 is chosen as in Section 3.1. Set
b = inf(A) < 0. If b = —o0, Theorem 1.2 holds trivially. We will therefore assume b > —o0
in what follows. Note it follows from the definition of » that ﬁb,o has the extendability prop-
erty. Write inf(p) := inf{p(z) : z € Q \ sing(R)}. Before proceeding to the three different sce-
narios, we recall the following result of Huang-Ji that will be used several times in our later
discussions:

Proposition 3.4 ([17, Lemma 5.2]). The following statements hold.:

(A) Let r > 0 and let y be a curve in Qo with y(0) € D and y(1) € M. Then y can be
continuously deformed inside 2_, o with both endpoints fixed to a new curve inside M.
Together with the monodromy theorem, one further has:

(B) Let 0 < ry < rp and suppose that §_r2,0 has the extendability property. Then for each
q € Q_r,.0, the holomorphic map extension of (f. D) along a curve y inside Q_r, o
with y(0) € D, y(1) = g produces the same branch as that by continuing ( f, D) along
a certain other curve inside Q_r, o with the same endpoints.

Case I. We first consider the easiest case when » = inf(p). In this case, since b > —o0,
we must have that sing(Q2) = @. Write p~1(c) for the level set {z € Q : p(z) = ¢}. Note in
this case we have §b,0 = Reg(R) \ p~1(b) and p~1(b) is a finite set. Fix any g € p~1(b).
By assumption, ¢ is an isolated critical point of p and the real Hessian of p is strictly pos-
itive definite at g. We find a small strongly pseudoconvex domain U; containing g with 75
diffeomorphic to the closed ball and U_;j N p~1(b) = . To prove Theorem 1.2, we fix an arbi-
trary curve y in Reg(Q2) with y(0) € D. Suppose y([0,1]) N p~1(h) =7 and let 1y € [0, 1]
be the first one with y(f9) = g and let #; < t9 be the largest one with y(t1) € 0U;. We can
then continue ( f, D) along y|[o ] to get a holomorphic branch (g, U) with y(¢1) € U. Notice
that 0Uj is simply connected, we can further continue (g, U) along curves inside the bound-
ary of Uz to get a single valued holomorphic map in a neighborhood of 0Uz;. Now, applying
the classical Hartogs theorem, we get a holomorphic function & over Uz which together with
a certain holomorphic map continuation of (f, D) along y|[o ] to get a holomorphic contin-
uation of (f, D) across ¢ along y|[g ,+] With t* —to > 1 for a certain fixed positive number 7
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(here 7 can be taken to be a positive number such that, if y(¢') = ¢ for some 0 < ¢’ < 1, then
y(t) € Ug for all |t — ¢'| < n). Continuing this process, we obtain a holomorphic map contin-
uation of (f, D) along y. The same argument can be applied even if y goes through several
points in p~!(b). This proves the existence of the holomorphic continuation in Theorem 1.2.
The desired y-estimate and the C*-boundedness in the theorem follow from the maximum
principle in an obvious way.

Case II. Suppose that b > inf(p). We assume that b > inf(p) and M} := p~1(b) has
no critical points of p. In this case, we note Mj, is a compact smooth strongly pseudoconvex
hypersurface in Q for b’ a~ b. Recall by the definition of b, ﬁb,o has the extendability property.
Then we apply the same argument in Section 3.1 with b’ being sufficiently close but greater
than b to obtain a small € > 0 such that ( f, D) admits holomorphic map extension along curves
in ﬁb—e,o- Applying maximum principle, we thus conclude ﬁb—e,o has the extendability prop-
erty. This, however, contradicts with the definition of ». Thus Case II cannot occur.

Case III. We assume that b > inf(p) and p has critical points on Mp,. Let p € p~1(b)
be a critical point of p. Then choose a neighborhood U, of p such that p is the only critical
point of p in U,. And choose certain holomorphic coordinates z on U, such that z(p) = 0 and
p takes the following normal form near p < 0:

n
p=lz* + 2Re2)kaj2 + 0(|z®) + b.
j=1

Here we have 0 < A1 <Ay <--- <A, <ocand A; # % by the non-degeneracy assumption.
Recall that the z;-direction is called elliptic if 0 < A; < % and hyperbolic if A; > % Also,
in some smooth coordinates x on U, with x(p) = 0, we have

m 2n
P =Y 7= A b
j=1 m+1

By the plurisubharmonicity, we have m > n. For a small number € > 0, set
Ve:i=1{q €Uy : |x(q)| <€} CC Up.

One directly verifies that Ve N ﬁb,o is connected for any small € > 0. We will need the follow-
ing crucial lemma:

Lemma 3.5. For a sufficiently small €3 > 0, it holds, for every q € Ve, N ﬁb,o’ that
if [glq is the germ of a holomorphic branch of ( f, D) obtained by holomorphic continuation
along a curve in §b,0: then [g), extends to a single-valued holomorphic function in Ve, with
Y-estimate (and with the C*-uniform boundedness in the dimension-two case).

Proof. 'We choose holomorphic coordinates z in a small neighborhood U = U, of p
mentioned above. It holds that for a sufficiently small § and a small |z| that

n
(3.1) p=(1=8)z]* +2Re Y Az} +b.
Jj=1



196 Huang and Xiao, Bergman—FEinstein metrics

(a) We first assume p has an elliptic direction at z(p) = 0, say the z;-direction (i.e.,
A < %). Write A for the unit disk in C. Fix small numbers 0 <€ < 1 and 0 < < 1. We
define for 0 < ¢ <€, a continuous family (parametrized by ¢) of holomorphic disks with bound-
ary ¢y : A = Uy CC Up given by ¢;(§) = (n&,nt,0,...,0). By (3.1), we have for § € A,

32 podi(®) = (1= OMIEP + MnP(E +E) + (1 =8 + 2Aa)P> + b.

Choosing § small enough such that IATIS < % we have

podi (&) =b+ (1—8+2x)n°t> > b.

Thus we have ¢, (A) cC §b,0‘ Now for £ € 0A, it follows from (3.2) again that

(3.3) p(¢:(£)) = (1 =8 —2X1)n* + b.

In the following context, we set d(z, w) = max{|z; —w;|:1 < j <n} forz = (z1,...,2pn)
and w = (wq,...,wy) in C". Set d(X,Y) =inf{d(z,w) :z € X,w € Y} for two subsets
X,Y of C". Write P(zg,r) C C",r > 0, for the polydisk {z € C" : d(z,z9) < r}.

Note (3.3) implies there exists a positive number A; independent of ¢ such that

(3.4) d(¢:(0A),0(Rpo NU)) > Ay forallz.
Note there also exists a positive number A, independent of 7 such that
(3.5) d(¢:(A),0U) > A, forall ¢.

Set A = min{A, A, }. Now pick € > 0 sufficiently small such that V. CC U and d(z,0) < %
whenever z € V. Fix any branch [g], withg € Ve N §b,o as in the assumption of Lemma 3.5.
As Ve N ﬁb,o is connected, we can first extend [g], holomorphically along certain curve in
Ve N 5;,70 to obtain a new branch [h]; with ¢ = ¢;(0) = (0,7¢,0,...,0) € Ve N ¢, (A) for
sufficiently small 0 < ¢ <'€.
We also note that
d(0,¢:(0)) =nt -0 ast — 0.

As for each fixed small 7, ¢;(A) CC Qp 9, we can extend [h]; holomorphically along any
curve inside a small neighborhood of ¢, (A). Since ¢;(A) is simply connected, [h]; extends to
a well-defined holomorphic function, which we still denote by /4, in this small neighborhood
of ¢ (A). Moreover, if go € ¢;(0A), then by (3.4) and (3.5), we can extends [h]4, to a holo-
morphic function in the polydisk P (gg, A). By the continuity principle, we conclude that for
any w € ¢;(A), the Taylor expansion (in z-coordinates) of [/],, about w converges in P (w, A).
In particular, [h]; with ¢ = ¢, (0) extends to a holomorphic function, still called %, in IP(g, A)
and note for sufficiently small ¢, (g, A) contains V. By the uniqueness of holomorphic maps,
we have [g],; = [h]g. In this way, we extends [g], to a holomorphic map / in V.

To obtain the yr-estimate on %, we need to shrink V. For small A, ;& > 0, define a family
(parametrized by t € C"~!) of holomorphic disks ¢;(£) : A — U given by ¢.(£) = (A, 1)
with |t]| < u. Note there exists ¢ > 0 that only depends on € such that if we choose u, A < c,
then ¢ (A) C V, for any || < u. Now we fix 0 < 4 < A < ¢ such that ¢, (0A) C §b,0 for
any |7| < u. (The existence of such p, A is due to (3.1) and the fact that A1 < %.) Then we note
there is a small 0 < €3 < € which only depends on A and p such that Ve, C U”t" <u (D).
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We claim Vg, is the desired region in Lemma 3.5. Indeed, for any ¢ € Ve, N §b,0’ if [g]gisa
holomorphic branch of ( f, D) in ©5,9, then by the above argument, [g], extends to a holomor-
phic map 4 in V. Furthermore, as V¢ N 5;,70 is connected, for each t and any gg € ¢;(0A),
we can find a path in Ve N §b,0 connecting ¢ to go. This shows that [h]g, is a branch of
(f, D) obtained by holomorphic continuation along a certain curve in §b’0. By the assumption
on ﬁb,o, we conclude [h]y, satisfies the y-estimate for every go € ¢;(0A). Now by the maxi-
mum principle for subharmonic functions, / also satisfies the 1/-estimate on ¢ (A) for all 7. In
particular, & satisfies the -estimate in V,. The C *-uniform boundedness in the dimension-
two case also follows from the maximum principle.

(b) Next we consider the case where there are no elliptic directions (i.e., all A; > %).
When n > 3, the argument is similar to that in case (a). We replace the holomorphic disks
$1(§) by

$:(§) = n(VA26.iVAi£.1.0....,0), 0<1 <

where 7 and € are fixed small positive numbers. Then by (3.1) we have for £ € A,
poi(€) = (1 =81 + A2)? (& + (1 = 8)*e? + 22301 + b > b
Thus we have ¢, (A) cC Qb,o for all z. Furthermore, if £ € 0A, it yields that

(3.6) podi(§) = (1—8) (A1 + A2)n* + b.

Replacing (3.3) by (3.6), the same argument in (a) yields that for sufficiently small €, and
for every g € Ve N §b,0, if [g]4 is a holomorphic branch of (f, D) in ﬁb,o, then [g], extends
to a single-valued holomorphic function / in V. It remains to establish the desired 1 -estimate.
We will also need to shrink V. For fixed small A, & > 0, we define a family (parametrized by
T € C, y € C" 2 with |z}, || < 1) of Riemann surfaces with boundaries E . y as follows:

Fr,x ={z=1(z1,22,x) €U :)&12% + /\22% =1, 2A1|z1|? + 2A2|22]? < A2

Note that there exists A > 0 such that if we choose 0 < A< X, then Fr,x C Ve for all
|z], x| < w.Furthermore, note for z € 0E+,,, we have

n
p(2) = (1=8)|z]* + 2Ret +2Re Y _A;z7 + b
j=3
2

1 n
— = ou—-2u? A b.
201 + 22 H H (j; J)+

Thus we can choose 0 < 4 K A < 2 such that 0E;, C §b,0 for all ||, |x| < w. Fix such
a pair A and p. Then there is a small 0 < €3 < € which only depends on A and p such that
Ve C Ultl,\ Yl<u fr, x- Now a quite similar argument as that in (a), which we skip, shows that
Ve, is the desired region in Lemma 3.5.

(c) We now consider the subtler case when n = 2 and both directions are non-elliptic:
A1, Ap > % Recall in this case, we have additionally assumed the holomorphic continuation
of (f. D) in Q2 ¢ along curves is C *-uniformly bounded. Fix 0 <€ < 1 <« 1. Consider a con-
tinuous family (parametrized by ¢) of Riemann surfaces E,, for 0 < t <€, in U defined by

> (1-9)

Et = {Z = (21,22) eU: /\12% +kzZ§ =1, 2)&1|le2 +2)kz|22|2 < 772}.
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We apply a holomorphic change of coordinates

w1 = Vaizi +ivAaza, wa = Az — iz,

witws wi—wa T : : .
AT 72 = /YR . Then E; is defined as follows in the new coordinates:

ie.,z1 =
2
2

t t
wiwa =1, |wi]* + |w2|* < n?, or wp = ——, |w1|2+‘w— <7’
1 1

This shows that E, is the graph of wy = le over a certain annulus e?! < |wq| < e%2 in the
w1 -plane for a, > a; depending smoothly on 1 and ¢. Furthermore, by using the w-coordinates,
we note that £, is covered by a closed strip 8; := {£ € C : a; < Re(£) < a,}. Indeed, the
map 7(£) = (ef,re7¢) gives a covering map from §; to E,. In particular, writing dE; for the
boundary of E;, w({Re(£) = a1 }) corresponds to one component of dE;, and 7 ({Re(£) = a,})
corresponds to the other.

Note by (3.1), for any point z = (21, z2) € E;, we have

p(z) = (1 =8)||z||* + 2t + b > b.

Hence we have E, C §b,0- On the other hand, if z = (21, z2) is on the boundary 0E; of E;,
it follows from (3.1) that

772

2A1 + 2A,

As before, this implies there exists a positive numbers A, A, independent of ¢ such that

p(z) = A =8)|z|> +2t +b > (1-96) + b.

(3.7) d©E;,0(QpoNU)) > Ay, d(E;0U)> A, forallz.

Set A = min{A, A,}. Let € be a small positive number such that Ve C U and d(z,0) < A
whenever z € V.. Write for 0 < 7 <€,

(59

Notice that z; € E; and z; — 0 as 1 — 0. Now fix a branch [g], with ¢ € Ve N Qp ¢ as in
the assumption of Lemma 3.5. As V. N ﬁb,o is connected, we can first extend [g], holo-
morphically along certain curve in V¢ N §b,0 to obtain a new branch [g¢];, for sufficiently
small 0 < ¢ <. Then note E; and thus a small neighborhood of it are connected(but not sim-
ply connected). We can thus extend [go];, to a multiple-valued map, still denoted by & in
a small neighborhood V' of E. By the assumption on the holomorphlc continuation in €, 5,0
the norm of any branch of g is bounded by C*. Since E; C Q, b,0 N U, there exists a con-
stant 7, > 0 depending on ¢ such that the polydisk P(z, r;) C gb,o N U for any point z € E,.
Then any branch [g], of g at z extends to a single-valued holomorphic map, still denoted
by g, in P(z, r;). We apply the Cauchy estimate to g on P(z, ;) to obtain for any multiindex
o = (o1, 02),

*a!

o C*a!
(3-8) |ID%g(2)] = W-

Let p be a point on 0E;. By (3.7), we see that P(p, A) C §b,0 N U. Then any branch [g],
of g at p extends to a single-valued holomorphic map g in P(p, A). As E; UP(p, A) C Qp0,
by the C*-boundedness assumption on holomorphic continuation in € o, we have |g] < C*
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in P(p, A). It then follows from the Cauchy estimate that for any multiindex o« = (1, @2),

*o!

o C*a!
(3.9) D8P = — ot

By the monodromy theorem, the multiple-valued g (respectively its derivatives D%g)
on E lifts to a single-valued holomorphic map % (respectively its derivatives denoted by /) in
the covering &; which is holomorphic in the interior of §; and continuous to the boundary 04;.
Moreover, it follows from (3.8) that

*o!

ha(§)] < % forall £ € $;.

Thus A, is bounded on ;. It follows from (3.9) that

*o!

C*a!
|ha(£:0)| =< W for %‘0 € 88t

We apply the Phragmén—Lindelof principle to 4 on §; to obtain that for all £ € §;,

C*

@)l = o

This implies that for every z € E;, we have

*o!

C*a!
|ID%(z)] < Alo(txl for any branch of g at z.

In particular, it holds at z = z; € E; and for the branch [go0]z, - Hence the Taylor expansion
of [go]z, about z; is convergent in IP(z;, A), and thus [go];, extends to a holomorphic map
in P(z;, A). In particular, [go];, extends to a holomorphic map % in Ve as Ve C P(z;, A) for
small # > 0.

Finally, we prove the 1r-estimate on 4. We will also need to shrink Ve. For fixed small
A, pu > 0, we define a family (parametrized by t € C) of Riemann surfaces with boundary E .,
|t| < w, given by

Ey:={z=(z1.22) €U : Mz? + Xz% = 1, 2A1|21 |2 + 2A2] 22| < A%},

Then we apply the same argument as in (a) or (b) to get the desired region Ve,, C *-boundedness
and the 1/ -estimate.
This finally finishes the proof of Lemma 3.5. o

We now continue the proof in Case III. To this end, we let {py,..., px} be the crit-
ical points of p on Mp. By Lemma 3.5, we can choose for each j with 1 < j <k small
simply connected neighborhoods Vi,; CC V> ; CC V3, of p; such that any branch [g], of
(f.D) withg € V3; N ﬁb,o extends to a holomorphic map in V3 ; with y-estimate (and also
with C*-boundedness in the two-dimensional case). Moreover, by making V7, ; sufficiently
small we can assume V3 ; \ V7 ; is connected for all j. Let §; be such that if z; € V> ; and
d(21 Z5) < 261, then 22 € V3, ;. Now choose 0 < €’ < 1 such that there is a continuous retract
J of (Qp_ .0\ U —1 V1,;)U Qpie ,0 into Qb+€/ o (see Section 3.1). Here J maps a point
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in §b+€/’0 to itself and maps the other points along the orbit of X, to My /. Then by apply-
ing a similar argument as in Section 3.1, we obtain a sufficiently small €’ > 0 such that ( f, D)
admits holomorphic extension along curves in Qb—e’,o \ U};l V1,; with -estimate (and also
with C*-boundedness in the two-dimensional case). More precisely, write £ for the union of
all small holomorphlc disks attached to Mb-}-e/ that can be continuously deformed to a point
in My .. Choosing €’ small, we make Qp_ e b+e’ \ U =1 V1,; be contalned indUMpye.

We can further make €’ small such that for any curve o in Q_ .0\ U i=1 V1, witho (0) € D,

we can deform o to a & in Q2 through J such that o(0) = 5(0) and o(¢),5(¢) are suffi-
ciently close for each ¢ € [0, 1]. Moreover, the holomorphic continuation of ( f, D) along the
two curves are induced by the same branch at each 7.

The above argument proved that §b—s/,0 \ Uj;l V1,; has the extendability property.

Claim. The set ﬁb_el,o has the extendability property.

Proof of Claim. Let y be any curve in Qp_ .0 With y(0) € D. We first find a 6* such
that whenever y(t) € V;,; for some 1 < j < k and |t — 1’| < §* with ¢,¢’ € [0, 1], we have
y(t') € Va, ;. Note if y([0,1]) C Qp_ .0\ U =1 V1), then the proof is done. Now assume
that there is some tl such that y([O 7)) C Qb .0\ UJ_I V1,j and y(tF) € V3, for some
1 <jo<k.Fixa 1 with0 <7 < tl but sufficiently close to tl such that y(¢) € V> j, when
nh<t< 1. By the above argument, deforming y([O 11]) if necessary, we can assume there is
some 0 < o < f1 such that y([0, t9]) C Qb o and d(y(t) y(t1)) < 281 ifty <t <1;.Butsince
y(t) € V2, j,. we have y(t) € V3 j, whentg <t < 71 (and thus p(¢) € V3,j, fortg <t <t).
Writing [ ], (;) for the germ of a branch of (f, D) at y(¢) obtained by holomorphic continu-
ation along |, 1) we conclude [f ]V(to) is the germ of a branch of ( f, D) obtained by holo-
morphic continuation along a curve in Q p,0 to a point in Qb o N V3 j,. It follows from our
assumption on V3 ; that [f],,) extends to a holomorphic map % in V3 j, with v/-estimate
and thus [f],«,) extends as germs of i along y(t) for to <t <. If y([t{.1]) C V3 j,,
then clearly ( f, D) admits holomorphic continuation along y with -estimate (and also with
C*-boundedness in the two -dimensional case). If y([t{", 1]) ¢ V3 j,, then there exists some 7>
with ¢ <t < 1 such that y([t{",#2)) C V2,j, and y(t2) € V3 j, \ V2, j,. Since y(t{) € V1, jos
we must have |t — ¢{'| > §*. Moreover, by the proceeding argument, we can deform y ([t 2])
in V3 ;, with endpoints fixed such that y avoids V7, and we still get the same branch at y(72).
In summary, we can extend ( f, D) along y|[o, 1] ¢ and we do obtaln the same branch at y(#;) by
continuing ( £, D) along a certain other curve in £p_ 0\ U Uj=1 V1., Hence this branch is also
a branch of (f, D) through continuation along curves in Qp_¢r o \ U —1 V1,j. Next we con-
sider y([t2, 1]). If y([t2. 1]) C Qp— .0\ U =1 V1,;, then the proof is done again. Otherwise
we repeat the above argument for at most [+ 8*] =+ 1 times to arrive at y(1). This completes the
proof of the claim. m]

The above claim gives a contradiction to the definition of b and thus Case III cannot
occur. This finishes the proof of part (1) and (2) in Theorem 1.2.

To see the last part of Theorem 1.2, we assume there is a holomorphic branch (4, U)
of (f, D) in Reg(RQ) such that ¥ (h(p)) = 0 for some p € U \ M. But by part (1) and (2)
of Theorem 1.2, ¥ (h) < 0 on U. Since ¥ o & is subharmonic, it follows from the maximum
principle that ¥ (h) = 0 in U. Let o be the curve in Reg(2) along which we obtain (h, U)
by applying holomorphic continuation to ( f, D). Applying the maximum principle finitely
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many times backward of o, we have ¥ o fo = 0 over Uy. Here (fy, Up) is a holomorphic
branch of (f, D) with Uy N D # @ and foly,np = f|u,np- The statements in the last part
of Theorem 1.2 then follows easily. This finally completes the proof of Theorem 1.2. |

4. Proofs of Corollaries 1.3, 1.4 and 4.1

Let  be as in Corollary 1.4 with n = dimc 2 and let (f, D) be a CR diffeomor-
phism from a certain simply connected open subset D to an open piece of the boundary
of B”. Take ¥/ (z) = |z|?> — 1 for z € C". As explained in the introduction, (f, D) extends
to a multiple-valued development map over M. Applying Theorem 1.2, we conclude that
(f. D) admits holomorphic map continuation along curves in Reg(£2) with y-estimate. Since
f is not constant, it follows that for any branch (g, U) of (f, D) with U C Reg(2), we have
V(g)=|gl>—1<0inU,org(U) C B".

By the Alexander theorem, for any p € M and for two germs of CR branches [ f1], and
[f2]p of (f. D), we musthave f, = G o f] near p for some automorphism G of B”. By Propo-
sition 3.4, even if we extends along curves inside Reg(£2) with endpoints in M, we will not get
more branches than extending through curves just insider M. Let I';, be the collection of all
such G's. Apparently, from the uniqueness of holomorphic functions, I', is a subgroup of the
automorphism group of the unit ball. We also have I'j; = I, for ¢ € M sufficiently close to p.
Since M is connected, I := I';, is independent of p € M. Let 5_62,0 be as in Section 3.1.
It follows readily from the construction there of the holomorphic continuation in Q_, ¢ that
the germs of two holomorphic branches [g1], and [g2], of (£, D) at some ¢ € Q_, o obtained
through curves inside Q_, o must satisfy g2 = G o g1 for some automorphism G € I'. Con-
versely, if [g1], is the germ of a branch of (f, D) in Q_, o, then sois [G o g1], forany G € T.
By Proposition 3.4, this is also the case when extending along curves inside Reg(£2). Since for
any curve y inside Reg($2), the holomorphic continuation along y induces a one-to-one cor-
respondence between the set of germs of branches at the endpoints of y, we easily see the
following statement:

Let [h1]q be the germ of a branch of (f, D) at q € Reg(S2). Any other germ [h2]
of a holomorphic map at q is the germ of a certain branch of (f, D) at q if and only if
[h2]q = [G o hilq for some G € T.

Now we define the complex analytic hyper-variety £ C Reg(2) to be such that, for any
branch (f*,U*) of (f,D), ENU* is the zero of the Jacobian of f*. Then we see from
the above claim that E is well-defined and is independent of the choice of the chosen branch.
Since E N Q_¢,,0 = @, we see that £ = @. Namely, f* is always a local biholomorphism.
This completes the proof of Corollary 1.3. o

We now define the hyperbolic metric wg on Reg(£2) in the following way. Writing wg»
for the Bergman metric on B”, for any holomorphic branch (g, V') of (f, D) in Reg(R2), we
define wg = g*(wpn) on V. Then wyq is a Kéhler metric which is independent of the choice
of (g, V') as the Bergman metric on B” is invariant under automorphisms. Thus the metric wq
is well-defined on Reg(2). Finally, we notice that for any p € M, there are a neighborhood
W if p in Reg(2) and a smooth diffeomorphism F from W), to a certain open subset Wq’
of B” such that (i) doW), := W), N M is a connected open subset of M containing p and
Jo Wq/ = Wq/ M 0B” is a connected open subset of the unit sphere 0B” containing ¢, (ii) F is
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CR diffeomorphism from do W), to do Wp’ that extends to a biholomorphism from W), N €2 to
W, NB" with F(p) = g, and (iii) wo = F*(wpn) on W, \ M. This shows that wy satisfies
the properties in (A), (B) and (C) of Corollary 1.4.

Next, let w be a Kihler metric over Reg(£2) with properties in (A), (B) and (C) of Corol-
lary 1.4. Then o is real analytic. And near a certain p € M, we have the system {U,, V,, F'}
with F(p) = ¢q as in (C) of Corollary 1.4 corresponding to w. As above, we have a similar
system {U?, qu, FO) with F°(p) = g for wy. By the Alexander theorem, F = o o F° for
acertain 0 € Aut(B"). Since F*(wp») = w, (F%)*(wpr) = w and o is an isometry for wgn,
we see that @ = wg near p. Hence we see @ = wq over Reg(£2).

This completes the proof of Corollary 1.4. O

We finish off the paper by presenting one more application of Theorem 1.2.

A Stein space 2 with isolated complex singularities can be exhausted by Stein spaces
with smooth compact strongly pseudoconvex boundaries. Indeed, let F' be a proper holomor-
phic map from Q into C¥ that is injective and regular at smooth points [14, Theorem 2.4.1].
By Sard’s theorem, most level sets of p = |F|? are smooth and strongly pseudoconvex, from
which we can pick a sequence exhausting 2. Then Theorem 1.2 gives the following:

Corollary 4.1. Let Q be a Stein space of complex dimension n > 2 with possibly iso-
lated singularities. Let K be a compact subset of 2 such that Q \ K is connected. Assume that
(f, D) is a holomorphic map element in Reg(2) \ K that extends holomorphically along any
curve y in Reg(2) \ K with y(0) € D. Then the following conclusions hold:

(A) Suppose that n = dimc (2) > 3. Then (f, D) admits holomorphic continuation along
any curve in Reg(2) that starts from a point in D.

(B) Suppose thatn = dimc (2) = 2 and (f, D) admits uniformly bounded holomorphic map
continuation along any curve y inside Reg(2) \ K with y(0) € D. Then (f, D) admits
uniform bounded holomorphic map continuation along any curve in Reg(S2) that starts
from a point in D.

Proof. Let y be acurve in Reg(€2) with pg = y(0) € D. We first connect pg by a curve o
to a certain point ¢ € M C Q2 \ K. Here M is the compact smooth strongly pseudoconvex
boundary of a certain Stein space 2p containing y. Let [h], be the germ at ¢ of the holo-
morphic map obtained by continuing (f, D) through o. Then by the assumption, [], can be
continued along any curves inside M starting from g (with a uniform bound when the dimen-
sion is two). By Theorem 1.2, we see that [h], can be continued holomorphically along the
curve (—o) + y, from which the assertion in the corollary follows easily. m]
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