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1. Introduction

For two integers n > 2 and 0 < [ < n, we equip C"*! with a Hermitian form H;,
with [ + 1 negative and n — [ positive eigenvalues. More precisely, write Ij ,, for the
m X m diagonal matrix where its first k& diagonal elements equal —1 and the rest equal
+1. Then the Hermitian form H;i; is given by Hy11(2,%) = zl41, 017" for z € Cntl.
This naturally leads to the definition of the generalized ball B;’, which is a domain in
the projective space P™:

B = {[z0, - zn] € P" ¢ |20|” + - + a1l > e + - + |2}

Note when | = 0,Bj becomes the standard unit ball B” in C™ (embedded into P™).
The generalized ball B} is indeed an open orbit of the real form SU(I 4 1,n + 1) of the
complex simple Lie group SL(n + 1,C) when acting on P™. Here SU(I + 1,n+ 1) is the

special unitary group which consists of matrices preserving the Hermitian form H;;; on
crtl:

SU(I+1,n+1)={A€ SLn+1,C): All11 1A = Ijs1ns}-

The topological boundary OB;* of B}, sometimes called the generalized sphere of
signature [, is the unique closed orbit under the action of SU(l + 1,n + 1) on P™. The
generalized sphere 0B} or its local realization, the real hyperquadric

l n—1
? - (Z,’U.)) = (Zlv"' 7Zn—1aw) eC": Imw = 7Z|Zj‘2 + Z |Zj|2}
j=1 j=1+1

serves as a basic model for Levi-nondegenerate hypersurfaces (see [5]) and plays a fun-
damental role in CR geometry. Note that when [ = 0, Hf is the standard Heisenberg
hypersurface. Due to the special geometric structure of 0B}* or H*, many striking rigidity
phenomena have been discovered for mappings into the real hyperquadrics. Results along
these lines can be found for instance in [29,11,14,15,9,8,7,13] and references therein. In
particular, in [14] the first author defined a useful geometric invariant for a nonconstant
C?%-smooth CR map F from OB" to 8BN(N > n > 2), called the geometric rank of F.
He proved that if n > 2 and N < 2n — 2, then the geometric rank must be identically
zero and furthermore F extends to a linear fractional holomorphic proper map from B"™
to BV,

The mapping property is of different flavor when [ > 0. By studying local holomorphic
mappings from H}' to HlN , Baouendi-Huang [4] proved that any proper holomorphic
map from B to B{¥ extends to a totally geodesic embedding from P™ to PV whenever
0 <l <n—1and N > n. After their work, many interesting results have been established.
Here we mention [1,2,10,26,13,12]. It remains an open problem to study the analytic
property of mappings into hyperquadrics in the general setting.
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On the other hand, the generalized ball has distinguished geometric feature as well.
Recall the automorphism group of B} is given by SU(l + 1,n + 1) (see, for example,
section 1 in [5]). The generalized ball B]' possesses a canonical indefinite metric wpy that
is invariant under the action of its automorphisms:

1 n—1
wmp = —v"T000g( 32 — 3 |5[2).
7=0

j=l+1

When [ = 0, the metric is identical with the (normalized) Poincaré metric on the unit ball.
A generalized ball equipped with the indefinite metric wpy is often called an indefinite
hyperbolic space form.

In this paper, we give a complete characterization for local holomorphic isometric
embeddings between indefinite hyperbolic spaces in terms of a boundary CR invariant
of the maps. Let 2 be a connected open set of B;* and F' a holomorphic map from 2 to
B/Y. We say F is isometric if F*(W]ELI\,]) = wpy on (L

Theorem 1.1. Let N >n >3,0<1<n-—-1,1 <I' <N —1. Let U be an open subset
in P™ containing some p € OB' and F' be a holomorphic map from U into PN, Assume
UNB} is connected and F(U NBY) C BYY, F(UNOB) C OB . Then the following are
equivalent.

(1) F is CR transversal and has geometric rank zero at generic points on UNOB}* near p.
(2) F is an isometric embedding from (U N B}, wpy) to (B{Y,ww).

We recall that F is called CR transversal at p € OB} if Tr(,) (0B} ) + dF (T,P") =
TF(p)IP’N . We remark that if a map F' as in the assumption of Theorem 1.1 exists and F'
is CR transversal at some point near p, then we must have I’ >l and N —1' > n—1. The
definition of geometric rank, which serves as a crucial invariant for holomorphic maps
between open pieces of the generalized spheres, will be given in Definition 3.3 of §3. It
can be routinely computed through the fourth order jets of the map. In the language of
pseudo-Hermitian geometry, the zero geometric rank at a point § € F(UNOIB}) is equiv-
alent to the condition that for any X4 € qul’O)F(ﬁ]B%f), the value at X, of the CR second
fundamental form [[(X4, X4) € Tq(l’o)(aBl]y)/dF(T(l’o)(8Bl”)) of F(OB}') C OB} stays
in the null cone of the Levi form £, of OB at g, namely, £4(IT(X4, X4), [1(X4, X4)) = 0.
See Proposition 3.5 for more discussions on this matter.

In general, in the zero geometric rank case, the second fundamental form does not
vanish identically. Instead, its image can have the largest possible real dimension 2(I' —1),
that is nonzero unless I’ = [. This is indeed the main difficulty we will encounter in the
course of the proof of Theorem 1.1. The vanishing of CR second fundamental form is
linked with the linearity (or the total geodesy) of the map, while our main theorem
shows that the zero geometric rank condition, or equivalently the condition that the CR,
second fundamental form stays in the null cone of the Levi form, is precisely the one
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to characterize holomorphic isometric embeddings. For results related to the vanishing
of the CR second fundamental form, we refer the reader to [33] and many references
therein.

Remark 1.2.

1. The assumptions that F(UNB}) C BY and F(U N dB) C dBY do not guarantee
F to be CR transversal in general even at a single boundary point, as the following
Example 1.3 shows.

2. Note the Levi form of the boundary of B, > 0, has at least one negative eigenvalue
at each point. By applying the Lewy extension type theorem for mappings into
compact Kahler manifolds of Siu and Ivashkovich (see references in [4]), we see that
if F' is holomorphic from U NB}*,! > 0, into P, then F extends to a holomorphic
mapping from a neighborhood of B! N U to P.

3. Let H be a holomorphic map in U such that F(UNB}) C P" \@ Note P \@ ~
B%_l,_l. We can thus regard H as a map from U NB} to B%_l,_l.

Example 1.3. Let F(z) be the polynomial map from P°® to PY(N > 20) given by
F([Z(),"' 725]) = [fag707"' 70] Here

f= (Zg, \/izozl, ﬂZOZQ,zf,zg,zg,zf,zg, ﬂzlzg, \/52324, \/52325, \/52425);
9= (V22023, V22024, V22025, V221 23, V22124, V221 25, V22024, V22224, V220 25).

Note
I£11 = 1lgll? = (l20* + |21 * + |22]* = |2s|* = |zaf® — |25]*)%.

Hence F(B3) C BY and F(0B3) C 0BY,. The map F, however, is not CR transversal at
any boundary point of B3.

When 1 <1’ < 2l < n —1, the CR transversality automatically holds at F(q) for a
generic point ¢ € U N OB} (see [4] and [3]), and the geometric rank of F' is always zero
at such a point q. Hence our main theorem gives, in this special case, a different proof of
the following theorem obtained in [2] (see also [26] for a different approach for a global
version of this theorem).

Theorem 1.4 (Baouendi-Ebenfelt-Huang [2]). Let N > n, 1 <1 < ”T_l, 1<l < %
and1 <1<l <2l. Let U be an open subset in P™ containing some p € OB} with UNB}
being connected, and F' a holomorphic map from U NB}* into IBIJY. Assume that for any
sequence {q;}52, C UNB}' that converges to OB}, the limit set of {F(q;)}32, is contained

in OB} . Then F is an isometric embedding from (U N B}, wgy) into (B{Y,ww).
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We remark that in [15], the first author proved a semi-rigidity theorem for proper
holomorphic map as the codimension increases. For holomorphic maps between general-
ized balls, the rigidity gradually disappears as the difference of the signature increases.
Our main theorem will provide a useful tool for such a study in the future as the rank
zero maps always appear in any signature difference case.

Moreover, the mapping problem between indefinite hyperbolic spaces has been re-
cently discovered to be of critical importance in the study of mappings between bounded
symmetric domains. By using holomorphic double fibration, Ng [27] applied the results
for mappings between generalized balls in [4] to prove rigidity properties for proper
maps between the type I domains. Xiao-Yuan [31,30] established rigidity results for
proper maps from the unit ball to the type IV domain D!V by regarding D!V as an iso-
metric submanifold of the indefinite hyperbolic space. We remark that every irreducible
bounded symmetric domain (equipped with Ké&hler-Einstein metric) can be isometri-
cally embedded into an indefinite hyperbolic space (with a normalizing constant) in a
canonical way. For instance, let Diq(p < q) be the type I classical domain. Recall the
Borel embedding realizes sz,,q(p < ¢) as an open subset in its compact dual G, , (the
Grassmannian of p-plane in CP*9). And G, ; can be holomorphically embedded into a
projective space P for some appropriate N by the Pliiker embedding P. Then P maps
DZI)’ 4(p < q) isometrically into BN < P¥ for some appropriate I. We should also mention
closely related studies on various rigidity properties for holomorphic proper or isometric
maps, and CR mappings. To name a few, the readers are referred to the work by Eben-
felt [8], Ji [16], Kim-Zaitsev [18,19], Kim [17], Kossovskiy-Lamel [20], Lamel-Mir [22,21],
Mok [23,24], Mok-Ng [25], Yuan-Zhang [32] and references therein.

The paper is organized as follows. We analyze holomorphic isometries between indef-
inite hyperbolic spaces in Section 2. In Section 3, we recall the notion of geometric rank
for mappings between real hyperquadrics and set up notations and definitions needed
later. We also prove the equivalence of the geometric rank zero and Levi null cone con-
dition. Section 4 and Section 5 are devoted to proving the main theorem. The proof is
based on an induction argument. Compared with the method employed in [1] and [2], a
crucial lemma (Lemma 3.2, [14]) due to the first author cannot be applied anymore for 7
could be arbitrarily large, and this poses a major difficulty. Our main tools for the proof
include methods from CR geometry, normal form theory and most importantly the mov-
ing point trick introduced for studying maps between manifolds with huge group actions
in [14].
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2. Isometries between indefinite hyperbolic spaces

We establish the following theorem in this section:

Theorem 2.1. Let F' be a holomorphic map from an open connected subset Q of B} to
BY. Assume Q is contained in the affine cell Uy = {[z0,- - ,2n] € P™ : 29 # 0} and F(Q)
is contained in the affine cell Vo = {[wo, - ,wn] € PN :wy # 0}. Then the following
are equivalent:

(a). F is an isometric embedding from (Q,wpp) to (B{Y,ww).

(b). After composing with automorphisms of B}* and B{Y from the right and the left,
respectively, F' equals to the following map in the local affine coordinates on Uy and Vy:

(Z17 e azla(bazl-‘rh e 7Zn7’(/))'

Here ¢, are holomorphic maps with I’ —1 and N —n — 1’ +1 components, respectively,
and satisfy ||¢]| = ||¥]].

Here || - || denotes the usual Euclidean norm. We remark that if a map F' as in (a)
exists, then we must have I’ > I, N — I’ > n — [. Before we prove the above theorem, we
fix some notations. We denote by d;; the symbol which takes value -1 when 1 < j </
and 1 otherwise. If [ = 0, d;¢ is identically one for all j > 1. We also denote by d;;1/ »
the symbol which takes value -1 when 1 < j <lorn < j <n+1l'—I1—1 and 1 otherwise.
When " = 1,0, is the same as J;;.

Let m > 1. For two m-tuples © = (21, ,Zm), ¥ = (y1,-* ,Ym) of complex
numbers, we write (z,y); = Y71, djux;5y; and [2[} = (z,Z);. Also write (z,y)1rn =
> i1 051 sy and |71 = (&, )10 - Note if m < n—1, the two symbols (-, -); and
(- )1,17,n are identical. We use (-, -) to denote the usual inner product: (z,y) = 377" ;y;.
Denote by I;,, the m x m diagonal matrix whose jth diagonal element equals to
01,1 < j < m. Similarly we define Iy ,,. Write I ;s . for the m x m diagonal ma-
trix whose jth diagonal element equals to ;1,1 < 7 < m.

Proof of Theorem 2.1. It is easy to see (b) implies (a). We will show (a) implies (b).
Let F: Q — B}’ be as in the theorem. Write py = [1,0,---,0] € Uy. By composing
F with automorphisms of B;* and B;,V and shrinking Q if necessary, we can assume
that po € Q, F(po) = [1,0,---,0] € Vp, and F(Q) C Vy. Write F(z1, -+ ,2n) =
(Fi(z1,-++ y2n), -+, Fn(21,+ -+, 2,)) in the local affine coordinates of Uy and Vp, which
are identified as complex Euclidean spaces. By the isometry assumption, we have
d0log(1 — |F|2) = 90log(1l — |2|?). Since now F(0) = 0, by a standard reduction,
we get 1 — |F|2 =1—|z|? or |F|? = |z|?. The conclusion then follows from the following
Proposition 2.2. 0O

Recall U(I, N) = {A € GL(N,C) : Aly yA' = I x}.
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Proposition 2.2. Let f = (f1,---,fn) and g = (91, - ,gn) be two holomorphic maps
on an open connected set V.C C™. Assume that | < n,l’ < N, and |f|} = |g|? on V,
and {g1, - ,gn} s a linearly independent set over C. Thenl' > 1 and N —=1U' > n — 1.
Moreover, there exists a matriz T € U(I', N) and two holomorphic maps ¢, with I —1
and N —n — 1" +1 components, respectively, such that

(1): (fro IN) = (91, 91,0, G141+ 5 gns )T

(2): |8l = [lv |-

Proof. It follows from [28] that I’ > [ and N — I’ > n — . We will thus prove only the
latter part of the conclusion. To make notations simple, by reordering the components

of f7 we assume |f l2,l’,n+1 = |g|l2
We write the vector space W = Spanc{g1,- - ,gn, f1,- -, fn}. Since {g1, - ,gn}isa
linearly independent set over C, we can extend it a basis of W : {g1, -+ , gn, 1, , ¥k }-
Here k > 0 (k = 0 means no ¢;s appear) and 1, - - -, ) are holomorphic functions on V.
Note there is an (n + k) x N matrix B such that (f1,- -, fn) = (91, ,gn, ©1, " »
@ )B. Then it yields that

) _
|17 msr = Flymern [

~ (2.1)
= (gl"" yGn, P1, " 7<)0k)BIl,l',n+1,NBt(§1a"' agnasalv"' 7<pk)t'

By assumption, (2.1) equals to |g|?. We will need the following lemma.

Lemma 2.3. Let hq,..., hy, be m linearly independent holomorphic functions in an open
connected set V. Assume that (hi, ..., hm)C(hy, ..., b))t = 0, where C is a Hermitian
matriz, then C' = 0. Consequently, if

(s ooy ) C1L (Bt ooy )t = (B ooy ) Ca (Bt oy )
where Cy,Cy are Hermitian matrices, then Cy = Cs.

Proof of Lemma 2.3. We only prove the first part of the lemma. The second part of the
statement is an easy consequence. We will prove by seeking a contradiction. Suppose
C # 0. First write C = PD?t, where D = diag(\q, ..., As,0,...,0),s > 0, is a diagonal
matrix, with all \; # 0, A1 > ... > A, and P is a unitary matrix. We write (g1, ..., gm) 1=
(hi, ..., hy) P, which are also linearly independent. By hypotheses we have Y 7, A;|g;|* =
0. Clearly, A\; cannot be all positive. Assume A\; > ... > A, > 0> A\py1 > ... > A, It
yields that,

S

D oNlgil = D (=M)lal
=1

1=v+1

It then follows from a lemma of D’Angelo ([6]) that the functions g1, ..., g, are linearly
dependent. We thus get a contradiction. O
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Since (2.1) equals |g|?, it follows from Lemma 2.3 that
Bl pi1,nB' = diag(-1,--+,—1,1,--- ,1,0,--- ,0) (2.2)

where on the right hand side of (2.2), there are | negative and n — [ positive ones, and
k zeros on the diagonal. Now denote the rows of B by ai,---,an, 51, -+, Bk, where
a;,B5,1 <i<mn,1<j<kare N-dimensional row vectors. As a consequence of (2.2),

(€51

we have if we write D = | ... |, then DI, ;s 41, 8D = I; ,. By page 386 of [4], we are
Qp

able to extend {aq, -+ ,an} to {aq, - an,apy1, -+, an} such that

1t
ALy 1, NA" =11y nt1,N,

where A is the N x N matrix whose jth row is oj,1 < j < N. Thus A € U(l,I’,n+1, N).
Here U(l,l',n +1,m) = {T € GL(m,C) : TIl,l/,nH’mTt = I1.1' n+1.m - Consequently,
Ly miinAt and C = (I i1 NAY) ™! are also in U(I,1',n + 1, N). Now set

f: fIl,l','rL-‘rl,NAt - (91, oty Gns P10 a()pk)BIl,l',n-‘,-l,NAt'

Note by (2.2), <ai,Fj>l’l')n+1 =0for1<i<n,1<j<k. A direct computation verifies
that

- I @) N—
BI At _ n nx( n) )
LI n+1,N (kan IV

Here O, x4 denotes the p x ¢ zero matrix, M is a certain k x (N —n) matrix. Consequently,

f = (_917"' »y =91, 9i+1, " 7gn7h'1a"' ah'N—n)~

Write f = fIlJV = fIl7l’7n+1,NAtIl7N~ Then

f = (917"' y 91, 9141, agn;hl,"' ,thn)~

Since Iy ny1,vA Ly € U(LU,n + 1,N), we have |f?, 1 = [f} .0 = lgl?.
This yields that 237 [hy|* = 00", [hj[?. Writing ¢ = (h1,--+,hi—y) and
w = (hl’fl+17"' 7hN7n)7 we have f = fT 7: (gla"' y 91, gl41, 7g’n7¢u¢)T and
|4||* = ||v||*. Here T is the inverse of I} ;s 41, v A' I} N, which is still in U({,I/,n+1, N).

Then we reorder the components of f and f back to obtain Proposition 2.2. O
3. Geometric rank, second fundamental form and Levi null cone

In this section, we give the definition of geometric rank of CR transversal maps in the
positive signature case and justify its invariant property. We also show the equivalence
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between geometric rank zero condition and the null cone condition of the values of CR
second fundamental form associated with the image manifold of the mapping.

We first set up certain notations and terminologies which will also be needed in §4
and §5 for the proof of our main theorem. For 0 < < n — 1, we define the generalized
Siegel upper-half space

n—1
S7 = {(z,w) € C* x C : Im(w ZW S 1P

j=l+1

The boundary of S} is the standard hyperquadrics: H = {(z,w) € C"! x C : Im(w) =
Z;:ll 8;1]27%}. We also define for [ <1’ < N —1

Sm,)n:{(z w) € CN71 x C : Im(w 253”' |25}

We similarly define S7, H{Y,Hl]ﬁ,m. Now for (z,w) = (21, ,2n—1,w) € C", let
U, (z,w) = [i + w,2z,9 — w] € P". Then ¥, is the Cayley transformation which bi-
holomorphically maps the generalized Siegel upper-half space S;* and its boundary H}'
onto B \ {[20, - ,2n] : 20 + 2, = 0} and OB} \ {[20, - - , 2n] : 20 + 25 = 0}, respectively.

Note H}Y, , is identical to H} if I’ = I. When I > I, H]\" is holomorphically equivalent
to H%,,n by a permutation of coordinates in CV. We will more often work with HlN,l,,n
instead of H{Y , as it makes notations simpler.

We will write Aut(H}") and Auto(H}) for the (holomorphic) automorphism group of
H? and the isotropy group of H* at 0, respectively. Write Aut™ (H?) and Autg (HP*) for
the automorphisms in Aut(H}") and Auto(H]"), respectively, that in addition preserves
sides (that is, maps S}* to S}*). Clearly they are subgroups of Aut(H}") and Auto(H”),
respectively. We define Aut(HJY, ), Auto(H}Y, ) and Aut™(H, ) and Auty (H, )
similarly.

Recall we denote by (z,w) = (21, , 2n—1,w) the coordinates of C™. Write u for the
real part of w and write

0

6+i 1<ji<n-1, T:=—. (3.1)

L; = 2i6;,%; w5z 7

Then {Ly,---,L,_1} forms a global basis for the CR tangent bundle 7O H? of HY,
where T is a tangent vector field of HI' transversal to T(LO)H? ® T(O’l)Hl”.

Let F = (f,9) = (f,6,9) = (fi,-+ s fu—1, 01, - ,dN—n,g) be a holomorphic map
from a neighborhood U of pg € Hj' to CV, satisfying F(UNS}") C S, ,, and F(UNH}) C
Hu'n' We additionally assume M; := U N H}* is connected and F' is CR transversal on
M 1 We will define the geometric rank for such a map F.

First for each p € M;, we associate it with a map F}, defined by

Fp = Tif OFOUS = (fpagp) = (fp7¢p7gp)~ (32)
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Here for each p = (20, wo) € M7, we write U?ZWO) € Aut™ (H7) for the map

U?zo,wo)(’z?w) = (Z + 20, W + wo + 22<Z, 50>l)7

and define 7'( ~o00

) € Aut™ (Hj, ,,) by

o ooy (&) = (€ = f(20,w0),m = 9(20, wo) — 2i(&, f(20,w0)) 1,1 n)-

Then F), is a holomorphic map in a neighborhood of 0 € C", which sends an open piece
of H* into H Y, , with F},(0) = 0. Moreover, F(UNS}") C Sy, ,,
Note the fundamental commutator identities hold:
- 0 0 0
L;,L;]|=2i0;)(—+=—)=2i0;;—, 1<j<n-—-1;
(L, L] Z]’l(8w+3@) Zj’lau’ =J =0 7 (3.3)
[EjﬂLk]a [TﬂLk]? [LjﬂLk]? [LkﬂLk] :07 if 13]7&k§n*1

By the assumption that F(U N M;) C H{Yl,’n, we have

mg={f, fliym on M. (3.4)

In the following, for a holomorphic map h = (hy,--- ,hg) from C" to CK, we write

/) _ (Oh1 .. Bhk\ pi o _ o 8*h . 0%hk : _ .
by = (azj7 » Dz, )7hwz =hZ.= (awazj> ' Dwdz, ),1 < j < n — 1. The notations
hl h//

Yz P are understood similarly. We apply L;L; to (3.4) and obtain

AP) = (9p)w(0) = gu(p) — 20T (), F@)) 1 = 50(L; (F)s Li(Diwrm(p).  (3.5)

Note this implies A(p) is a real number. Recall the CR-transversality assumption is
equivalent to A(p) # 0 (see for example, [4]). Furthermore, since F), preserves the sides,
we have A(p) > 0 (see e.g. page 396 in [4]).

We apply Ly, L;,j# kto (3.4) and get (Lj(f), Lk(f)>l7l/7n |[p=0.Letfor1 <j <n-1,

(%) |O: (gfp,l afp,n—l 6¢p71 8¢p,N—n) |0:

Ej(p) = 8zj 8zj’ ’ 8zj ’ 8zj ’ (92’3' L](f)(p)’
0 0 Ofpn—1 O 0 n
Bu(p) == ( fp)l—( gful fg’w L g;l ¢va ) lo=T(F)(»).
Then

(Bi(0), Ej()irm =0;A®), (E;(0), Ee(p))iymn=0, 1<j#k<n-1. (3.6

. _ _ : . ;o Eilp) < < —
Write E for the (n — 1) x (N — 1) matrix whose jth row is NOL 1<j<n-—1. Then

E satisfies EIy  n—1E* = I 1. Here I;,_1 and I 1, y—1 are as defined in §3.
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As in [4], we can choose (N — 1)-dimensional row vectors C1(p),- -+ ,Cn—_n(p) such
that if we write

then

—t

A(p)Il,l/,n,N—lA(p) = Il,l’,n,N—h i.e., A(p) S U(l,l/,n,N — 1) (37)

Here recall U(1,I',n,m) = {T € GL(m,C) : Tl mT* = L1/ n.m}- Note that one
can choose C;(p)’s in such a way that A(p) is smooth in p for p ~ py by the standard
Gram-Schmidt process.

Next note B(p) := A~ Y(p) = Il,l’,n,Nflwtll,l’,n,Nfl is also in U(l,l',n,N — 1).
Write

B(p) = (Bi(p),+ , Bu-1(p), Bu(p), - , Bn_1(p)),

where Bj(p)’s and B;(p)’s are (N — 1)-dimensional column vectors. Note Bj(p), - -

)

B, —1(p) only depend on Eq(p),- -, En—1(p). Indeed, we have

n

Ei(p En—l(p)u>lm_1' (3.8)

o) VD)

Define F; = ( ~;7g;) = ((f;)la to 7(f;)’ﬂ*17 (¢;)17 T 7(¢;)N*nag;) by

(B0 Bucr (p)) = L1 (

.1 Bp) 0
B (0 An) 39

Then F; is a holomorphic map in a neighborhood of 0 € C", which sends an open piece
of H} into H%,’n with F7(0) = 0 and the following holds (see [4], [2] for more details).

fy =2+ 0(wl+(zw))
¢y = O(|w| + (2, w)[*)
gy =w+ O(|(z,w)[?).

Let
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ofy 1
op) = @) s o) o p) = G O0) = BB
(3.10)
Note
mm-i@m@m@&w%k@wmewmm—memmw
(3.11)

Set for 1 < k,j7 <n-—1,

dij(p) == O Uy

1 £\ _
82]'811} |0: )\(p) (fp)wz](o)Bk(p) -

829;; B 1 " _ 1 / SfF
cr(p) == 92100 lo= m(gp)wzk (0) = mLk(gw = 2i(foys F(P)) 11 0.N) |

82 *
r(p) = %m(ajg) lo= 2;@) Re((gp)!4.,(0))
- %@Re(ggw - 27;< Ztgw’mﬁ,l’,n,N) |p .

Write (&,7) = (&1, ,&n—1,7) for the coordinates of CYV and define

_ (&—alp)n Ul
%@m‘(%@m’%@m) (3.12)

where Q,(&,m) = 142i(& a(p))iyn+ (r(p) —i{a(p),a(p))iyn)n. Then G, €
Autg (H, ). Let F;* be the composition of F with G):

Fr=(797) = (7 6,7.9,7) = Gpo Fy. (3.13)

p >7p 2Jp

We recall some notations (from [14,15] and [4]) for functions of weighted degree that will
be used in the remaining context of the paper. We assign the weight of z to be 1, and
assign the weight of u and w to be 2. We say a smooth function h(z, z,u) on U N H} is

of quantity Oy:(s) for 0 < s € N, if ’M’ is bounded for (z,u) on any compact
subset of UNH] and ¢ close to 0. Similarly, we say h is of quantity o0,(s) for 0 < s € N,
if

h(tz,tz,t2u)
tS

‘ converges to 0 uniformly for (z,u) on any compact subset of U N H} as ¢

goes to 0.

In general, for a smooth function h(z,Zz,u) on U N H}, we denote h*)(z, 2, u) the
sum of terms-weighted degree k in the Taylor expansion of h at 0. And h(*)(z, z,u) also
sometimes denotes a weighted homogeneous polynomial of degree k, if h is not specified.
When h(*)(z, z,u) extends to a holomorphic polynomial of weighted degree k, we write
it as h*)(z,w) or h®)(z) if it depends only on z.
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By Lemma 2.2 in [4], we have the following normalization and CR Gauss-Codazzi
equation:

Lemma 3.1. For each p € M, F;* satisfies the normalization condition:

frr =2+ 20"V (2)w + Oue(4)
¢1* = 6" P (2) + 0w (3)
g;* =w+ Owt(5)7

with

(a5 D)) |2 = |65 @ ()], T=1 — L. (3.14)

»P

Remark 3.2. As mentioned in [4], there exists 7;* € Autg (H}Y, ,,) such that F;* = 7% o

F,. From (3.14), we see, if we write a;*(l)(z) = zA(p), then A(p)I;,—1isa (n—1)x(n—1)
Hermitian matrix.

We next claim that A(p) is independent of the choice of C;(p). To see this, we first
recall

P T 2u(f a@)rm + (r(p) — ia(p), aD))iwm) g5

Then,

o P N
I 90w lo= d;(p) — ar(p)c;(p) — 05 (ia(p), a(p))ry.n + (p))- (3.15)

Here 55? is the Kronecker symbol. Note each term in (3.15) is independent of C;(p).

Definition 3.3. The rank of the (n — 1) x (n — 1) matrix A(p) = —2i(P})1<;k<(n-1),
denoted by Rkp(p), is called the geometric rank of F' at p. In particular, F is said to
have geometric rank zero at p if Rkp(p) = 0, which occurs if and only if A(p) = 0.

Since A(p) is smooth on p, we see that Rkp(p) is a lower semi-continuous function in
p € UNH}. Furthermore, with the same proof as that for Lemma 2.2 (A), (B) in [15],
we have the following invariant property of geometric rank:

Proposition 3.4. Let Fy be holomorphic in a small neighborhood U C C™ of p € H} as
above. That is F1(U NH}) C HINJ,m and FL(UNS}) C S{Yl/,n- Moreover, Fy is CR-
transversal along U N HP. Assume that Fy = 70 Fy o0 with ¢ € Aut™(H}) and 7 €
Aut+(HlIYl,7n). Then Fy is CR-transversal and side-preserving map from H} to HZIYZ’JN
and Rkp,(p) = Rkp, (o(p)).
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We next define the geometric ranks for maps between generalized spheres. Let F be a
holomorphic map from a small neighborhood U of ¢ € 9B} to CV. Assume F(UNBY) C
B and F(U N OB}') C OBy, and in addition F is CR-transversal along U N 9B'. We
can find some Cayley transformations ®, that biholomorphically maps S;* and H} to
B\ V and 0B} \ V for some variety V with ¢ ¢ V. Write p = ®_'(¢) € HJ".

Similarly, we can find some Cayley transformation ¥, that biholomorphically maps
Sl 1, and Hl 1 1O BY \ W and 0B}Y \ W for some variety W with F(q) ¢ W. Set
F = \PF% ) © F o @, and regard it as a germ of map at p € H}'. We then define the

geometric rank of F at ¢, denoted by Rkr(q), to be the geometric rank Rk (p) of F at
p. By the above proposition, Rkr(g) is independent of the choices of ®, and ¥p(,), and
thus it is well-defined. Note Rkr(q) is a lower semi-continuous function in ¢ € U N OB;'.

We next give a description of the geometric rank zero condition in terms of the CR
second fundamental form and the Levi null cone. The reader is refereed to [10] for many
notations and background on this matter.

Let M C CY be a Levi non-degenerate hypersurface with signature I’. Let M C M
be a Levi non-degenerate submanifold of hypersurface type of signature ! and of CR
dimension n — 1. Let 8 be a contact form of M and T be its corresponding Reeb vector
field. Let {L1,---,Ly_1} be a frame of T(WO N near § € M C M. We can assume that
{ﬁl, e ,ﬁn_l} are tangent to M when restricted to M. Let {él, e GN-T é} be the dual
frame of {Ly,---,Ly_1,T}. Then the Levi matrix (§47) is given by df = igagé"‘ A B8
We normalize the frames such that @QB) =11 nN-1. Let @i be the Webster connection
with respect to this frame (see [2]). Identify the CR normal bundle N = 710 N7 /7(1.0) pf
along M as the orthogonal complement (with respect to the Levi form of M ) of T M
in T(HO) N restricted to M. Then A has a frame {L,}N-!. Write wk = wk 7. Then
the CR second fundamental form [] : T(i(1 O x T(1 RV g T(1 O)M/T(1 DM of M in

its ambient space M is given by [[(La, L) = Zflv nl 0l L Notlce the concept of CR
second fundamental form is invariant under holomorphlc change of coordinates.

Now, we take M = Hljyl’,n and M = F(UNH}). Foranyp € M C M, as in Remark 3.2,
after a holomorphic change of coordinates, we can assume that p = 0 and M is the image

of H}* under I which satisfies the normalization in Lemma 3.1. Then by the computation
in [9], writing 6@ = (6, 6% ), we have TI(X0Z1 bag2lo, Xnct bagelo) =

Z;v:_ln ¢§-2)(b) aﬁjfn_l lo. Here (&,m) = (&1, ,&n, 1) is the coordinates of the target

Euclidean space CV. Recall that the rank zero condition is equivalent to |¢(2)|T = 0.

With these set-ups, we have the following:

Proposition 3.5. Let F' be a holomorphic map in an open set U and maps M := U NH}
into Hllyl',n' Assume F is CR transversal along M. Then the following two statements
are equivalent:

(1): F has geometric rank zero at every ¢ € M.

(2): For any § € F(M) C HYY, and any X; € TSOM, then L4(T1(X4, X4), [1(X4, X4))
= 0. Here [:q is the Levi form of the ambient space at §. Namely, the value of the second
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fundamental form of M in its ambient space is in the null cone of the Levi form of the
ambient space.

Claim. A holomorphic map F = (f,g) = (z,¢,0,w) : H} — H}Y, ,, with ||| = [[¢]] has
geometric rank zero (here ¢, havel' —1 and N —n —1' + 1 components, respectively).
Proof. We first prove it is the case at p = 0. Note (¢, $(0)) = (1,9(0)). Consequently,
(f, FO)rm = 0. Write F(0) = (7,q2) = (3,0) and take 7o € Aut™(H}, ) to be
T0(&,m) = (S*&,T}*Qi(&,a}l,l/,n). Set Fy = 190 F. Then F;(0) = 0 and Fy = (z, ¢1, 1, w)
with ||¢1]] = ||¢1]]. We replace F by F; and still write the new map as F. This will not
change the geometric rank at p = 0. (See Proposition 3.4.) Then notice there exist
holomorphic functions ¢1,- -, which has no constant terms or linear terms in z
such that Spanc{z1,--,2n-1,0,%} = Spanc{z1, -, 2zn-1,¢1,  * ,¥k}. By the proof
of Proposition 2.2, we can find some matrix T' € U(l,I',n — 1, N — 1) such that F» =
(fT,w) = (z7d3,1/3,w), and the components of ¢, are linear combinations of ©;’s. In
particular, they have no linear terms in z. Then it is easy to verify by definition that
the geometric rank of Fy is zero at p = 0. By Proposition 3.4, F' also has geometric
rank zero at p = 0. To study the geometric rank at a point p ~ 0, we note there exists
o € Autt(HP) such that o(0) = p. Moreover, there exists 7 € Aut+(H£[l,)n) such that
G :=70Fo0 = (z,¢,%,w). By the preceding argument, Rk (0) = 0. By Proposition 3.4,
we have Rkp(p) = Rkp(0(0)) = Rkg(0) =0. O

4. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. We will first work with maps between
hyperquadrics instead of generalized spheres. This makes it easier to apply techniques
from CR geometry. The following result is crucial to establish Theorem 1.1.

Theorem 4.1. Let U C C™ a small (connected) neighborhood of 0. Let F' be a holomorphic
map from U to CN such that F(0) =0 and F(UNH) C HZNJ,’W FUNS)) C S%,’n.
Then the following statements are equivalent.

(1) F is CR transversal at 0 and F has geometric rank zero near 0 along HJ".

(2) There exists some T € Aut[{(Hle/’n) such that the following holds near 0:

TOF: (Z7¢71/}’w)7

where ¢ and 1 are holomorphic maps near 0 with I’ —1 and N —n — 1’ +1 components,
respectively, satisfying ||d|| = ||¥]|-

At the end of §3, we have shown that (2) implies (1). We will therefore prove only the
converse implication in this section.
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4.1. Some preliminaries

Assume F satisfies the assumption in (1). By Lemma 3.1 and the zero geometric rank
condition, we can compose F with some element in Autg(H%,)n) to make F = (f,g) =
(f, ¢, g) satisfy the following normalization:

f =z+ Owt<4)
¢ =0®(2) + Oui(3) (4.1)
g =w+ Ouw(5).

For p € M near 0, let F, be as in (3.2) and A(p) as in (3.5). Recall A(p) = 1 is a

real number for p ~ 0. Let F; = (%pr(p), 19p) be as in (3.9). We next let B(p) =

(Bi(p),- -+, Bn-1(p), En(p)7 e ,3N_1(p)) e U(l,l',n, N — 1) be as in §3. In particular,
(3.8) holds:

Ei(p) En—1<p>b)fl,n1. (4:2)

) VD)

Let a(p) be as in (3.10) and (3.11). Then we have

(Bip).+ - Buos(p)) = Lovrmns (

) = 555 (TS (D i 15 <=1, (4.3)
a3(p) = Al(p) (T(F), By(p), it n<j<N-1 (4.4)

2
Let r(p) = 1Re<%) lo be as in §3 and write

-2

A(fy9p) =14 2i(f5,a@)ivn + (r(p) — ila(p),a(p))iv.n) g5 (4.5)
Let F;* = (f;*,g,%) be as in (3.13). That is,
[ fp—aP)gy % (4.6)

eI NTTI
A( p7gp) P A( p?gp)

Then the normalization in Lemma 3.1 holds.
We pause to fix some notations. Write N for the set of non-negative integers. For a

.. _ . [l +16]
multi-index & = (ay,-- ,a,_1) € N* "L and B € N, we write D2Df = 2~
027102, "7 Owh

In the following context, we will introduce a notion of weighted degree in p € HJ'. Let
h(z,w,p) be a smooth function in W x V. Here (z,w) € W and W is an open set in
C"~!x C, while p € V and V is an open subset of H} containing 0. We say h € Oy p (k)
with & > 0 if for every a € N""1 3 € N and (29, wp) € W, it holds that H(p) :=
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Dngjh(zo,wmp) is in Oy (k). That is, writing p = (P, pn) = (P1,"** ,Pn—1,Pn = U +
H(tp,tp,t%u)
tk

1), we have is bounded for p on any compact subset of V and t close to

0. Sometimes even h is independent of (z,w), we will still use the notion Oy (k) to
distinguish the variables (z,w) and p. We next prove the following proposition.

Proposition 4.2.

Ap) =14 Oy p(3), (4.7)

a;(p) = Owtp(2) if 1<j<n-1, (4.8)
aj(p) = Ouwtp(l) i n<j<N-1 (4.9)
7(p) = Ot p(1). (4.10)

Proof of Proposition 4.2. Note by (4.1), Tg(p) = ¢,,(p) = 1+ Ouwt p(3), f(p) = Owep(1),
(p) = Ouwep(1). And

P
Lip(p) = Ouwtp(1) for 1 < j < n—1. We have by (3.5), A(p) = 1 + Ouwtp(3). It follows

from (4.3) and (4.7) that
aj(p) = Owtp(2) if 1<j<n—1

Whenn < j < N—1,since Tf(p) = Out (1), we conclude by (4.4) that aj(p) = Out p(1).
Note g./.,(p) = Owt,p(l),f(p) = Outp(1). Using (4.7), we have 7(p) = Ot p(1). O

4.2. A crucial proposition

The key step to prove Theorem 4.1 is to establish the following Proposition 4.3. The
proof of the proposition heavily relies on the moving point trick (see [14]). Recall 7 = I'—I.

Proposition 4.3. Let F' be as above. Fix an integer s > 5. Assume

(f;*)(t_l) = 07
(g57)" =0, (4.11)

(@)D, (93 2))r = 0,

for all p € H} close to 0 and all 4 < sy 4+ s9 =t < s. Then (4.11) holds at p = 0 for
S1+ s =1t=s.

Proof of Proposition 4.3. We split the proof into several lemmas (Lemma 4.4—4.14). Re-
call we denote by N the set of non-negative integers. Let « € N"~1, 3 € N. We say
(o, ) € € if |a] + 8 = 1. Fix an integer § > 2. Write I; for the collection of indices
(o, B) € N1 x N that satisfies |a| + 2|3| = § and (o, 3) ¢ &.
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Lemma 4.4. Let s > 5 be as in Proposition /.5. Fix s1 > 2,59 > 2 with s1+ s2 < s. Then
for any (a1, B1) € Iy, (a2, B2) € Is,, and any 1 < j < n — 1, the following hold:

(LyLo TPt LaaThag(sa)) (p) = —(L1 TP 1), L LoaTP2p(s2+0) (p); (4.12)
<.Z/jLa1TB1§0(Sl+1), La2Tﬂ2¢(82)>T(p) — _<LCE1 TBl (P(sl)a LjLazTﬁng(52+1)>T(p). (413)

Proof of Lemma 4.4. We start with the hypothesis (4.11), which implies that
(DD fr D2 D2 f# )0, (0) = 0, (4.14)
where (a1, 81) € I,,, (a2, B2) € Is,. Note that by (4.5), (4.6), we have

=T = 2i(f5, P — r(0)gy] — alp)gy + Owtp(2)- (4.15)

Recall g5 = (p) =14 Ouwep(3) and

D D5 g,(0) = LT g(p) — 2i(LT° f(p), F(p))1, - (4.16)

It then follows from the assumption that whenever |a| 4+ 25 < s — 2, and (o, ) ¢ &, we
have

D2D5g5(0) = Ot p(2).

Recall by Proposition 4.2, a(p) = Outp(1) and r(p) = Oy p(1). We then obtain from
(4.14) and (4.15) that

(D D fr, DE2 D2 f)1.00.0(0)

+(D2 DS fr —2iD22 D2 (f(fx, @)1 n)) 1,00 (0)

H(=20DX DB (fr(Fr, @i ), D2 D )10, (0) (4.17)
(D DY fx, D2 D (r(p) f393)) 1.0 (0)

+H(=D D (r(p) fy.95), D22 DI )10, (0) = Out p(2).

On the other hand, recall fp fp (p), and B(p)]l,l@n,N_lB(p)t = I s n,n—1. This

\//\(
implies for any &1, 42 € N®~1, and Bi, B2 €N,

(DS D fi. DS D fi i n(0)
1 A B rs A B e ~ B ~ - X~ ~_ _ (4'18)
=— (DM DB f DD 1 n(0) = —— (LT f(p), Lé2T5> n
)\(p)< z w fp’ fp>l,l s ( ) )\(p)< f(p) f(p)>l7l s
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Now letting |dy|+231 > 2 or || 4+262 > 2 and |1 | +261 +|da| +282 < s—1, we have
LATP f(p) = Oupp(1) or LE2T% f(p) = Ouep(1), and (LN TP1(p), L2T2(p)), =
Ouwt,p(1). Thus the quantity in (4.18) belongs to Oy p(1). But r(p) = Oy p(1), and
a;(p) = Ouwt,p(1) for all j. This implies the last four terms on the left hand side of (4.17)
belong to Oy ,(2). Hence we obtain from (4.17) that the weighted degree one part (in p)

in expansion of (D21 D5 ~;, DDy f;)l,l/,n(O) equals 0. By (4.18) and (4.7), we conclude
that the weighted degree one part in expansion of (LT f(p)7 Lo2T52 f(p»l,l’,n equals
Zero.

Using again the fact
DEDfy(0) = LT f(p) = Our (1),

whenever 2 < |a] + 28 < s — 2, we have (L*'TP f(p), L®2T5 f(p)); belongs to
Ouwt p(2). Hence we conclude the weighted degree one part in the expansion of
(LeyTPrp(p), L22TP20(p)), equals 0. This means

<La1Tﬂlw(31+1)(p)’ LaQTﬁzw(sz)(p»T + <La1T5180(51)(p)’ La2T32g0(52+1)(p)>7— —0.
(4.19)

We finally apply L; and L; to (4.19) and obtain the two equations in Lemma 4.4. 0O

Write e; € N*"71, 1 < j < n—1, for the (n — 1)-tuple whose jth component equals
1 and all other components equal 0. Write a; = Z?;ll kiej, ie. o = (kf,-- k).

Similarly, write g = Z;:ll kZe;. We have the following lemmas.

Lemma 4.5. Let s1 > 2,85 > 2 and $1+ 52 = s > 5. Assume (a1, 1) € Iy, (e, o) € Is,,
61> 1, and (an, 1 — 1) ¢ E. If there is some 1 < jo < n — 1, such that kjl.o =0 and
kao =0, then

(LT o), TRl (p) = —(L T =112, Lot g 12) ().

Proof of Lemma 4.5. We have

(LTPrpsn), LaaThap(s2)), = (TLTH 1 plo1) LaaThag(sa)),
(4.20)

Y _ _ -
- j20i’l <(LjoLjo - LjoLjo)LalT&il(P(Sl)v La2T52¢(82)>T.
Here we have used the identity [L;, L;] = 2id,;T. By the assumption kjl»o =0,
LjoLjg LA TA =100 = [, pearh=1. o) = 0,

Furthermore, note (a1 + e, 51 — 1) ¢ £. We apply Lemma 4.4 twice to obtain (4.20)
equals
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0.
— 32_02’1 (L, L™ Tﬁl—lso(sl_l), L;, Lo=Th> pls2t1)y

(4.21)

:% <La1 Tﬁ1—1¢(51—2)’ EjoLjo L2 B2 @(32+2)>T,

i :

Again noting

EjOLjO = Ljof’jo + 2i5jo,lT and LJ'OI_’J'OLQQTBQQD(52+1) = LjOLazTBzEjU@(Sﬁl) =0,

we have (4.21) equals to the following

% (—2i6;, 1) (L™ T51_1<p(81_2), TLo2TF2p(s212))
7

:_<La1 1"51—190(81—2)7 La2TB2+1SO(S2+2)>T-
This proves Lemma 4.5. O
Lemma 4.6. Let s, s1, 82 be as in Lemma /.5 and (a1, 1) € Iy, (s, B2) € Is,. Then

<L041Tﬁ1g0(51),LOQTBQQD(SQ)>T(p) — C<Ld1T§1<p(s1‘)’L@QTBZ¢(55)>T(p).

* *

Here C is a nonzero constant. Moreover, if s = 2s5* is even, then s} = s5 = s*. If
s =25"+1is odd, then s] = s*, 55 = s* + 1. And (41, 1) € L, (G2, f2) € Ig;.

Proof of Lemma 4.6. We first notice that the following equations follow from (3.3) and
an induction argument:

L;L} = LVL; + 2iké; , TLY™  LEL; = L; L} + 2iké; L. (4.22)

The proof of Lemma 4.6 for s = 5 is slightly different and we will leave it to §5.
We will therefore assume s > 6 in the following context of proof. Furthermore, since
(A, B), = (B, A)_ for two vectors A, B, we will assume s1 > sp — 1.

We prove by induction on m = s1 —s3 > 0. If m = —1or0,i.e. s; =so—1o0r sy = sg,

the conclusion is trivial. Now suppose the conclusion holds for —1 < m < k with £ > 0
and consider the case where m = k + 1. In this case, s; — so > 1 and thus s; > 4. We
have two different cases (A) and (B).

(A) If @1 # 0, we let ig be the smallest integer such that kilo # 0 and write &1 =
a1 — €;,. Then we have by Lemma 4.4,

<La1Tﬂ14p(sl),W>r
:<LZ_OL6¢1 761 90(51—1)7 Lo2TB2p(s2)) (4.23)

__ <L6‘1T’61§0(31_1), iiOLO‘2T’62<P(52+1)>T~
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Write ag = Zn ! er] Note if k:2 =0, then L;, LT p(2+1) = 0, and the conclusion
is trivially true. Now assume kfo 75 0 and write @Gy = g — k;ZUeZO Then by (4.22), w
have (4.23) equals

- k2 — k2 — -
_ <La1Tﬂl<p(sl_1)7 (Liom L;, + Qikfof;io,lTLigo 1)LazTﬂ2¢(82+1)>T

A k2 —1
:2@'1{?1-2061'0’1<LO‘1T51@(31_1)7Lio"o lLazTﬂz-i-l(p(sz—&-l))T.

Now (s1 —1)—(s2+1) = k—1 and thus the proof is finished by the inductive hypothesis.
(B) If a3 = 0, then 87 > 2. We have by (3.3) and Lemma 4.4,

<Tﬂl (81)7 La2TB2 @(52)>T

LU (L — Ly BT o) T lon),
7

5ll<L L TBI 1@(51) La2Tﬁ2¢(52)>

—01,
21

—r, TP —1 («51 DL 1 Lo2TBzp(s2+1))

Again now (s1—1)—(s2+1) = k—1 and the proof is done by the inductive hypothesis.
This establishes Lemma 4.6. O

Lemma 4.7. (a). Let s1, 82,8 be as in Lemma /.5. Let (a1,$1) € Is,, (o, B2) € Is,. If
a1 # asg, then

<La1Tﬁ1§0(Sl)7W>T(p) =0.

(b). Let s1, 82, s be as in Lemma 4.5 and assume s is odd. Let (o, 1) € Is,, (a2, B2) €
. Then
52

(LT, LoaTh2p(2) - (p) = 0.

Proof of Lemma 4.7. Again we will treat the case for s = 5 separately and leave its
proof to §5. We therefore assume here s > 6. Writing «; = Z" ! klej, 1 <i<2, by
assumption there is some 1 < j < n —1 such that k:jl #+ kf To make the notation simple,
we assume, without loss of generality, that kjl > k:]z7 and will further assume j = 1. We

will first need the following claim.
Claim 4.8. If L TP = L2, or LTP = L1L;,5 # 1, or LTP = L, T, then

<La1Tﬁ1¢(81)7W>T =0.
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Proof. We prove the three cases separately.
(I). If L1TA = L2, we have s; = 2. Since s > 6, we have sy > 4, i.e. |ag| + 282 > 4.
Note k2 = 0 or 1. First assume k} = 0.
(1). If ag # 0, then there is some 2 < j < n — 1 such that kJQ # 0. Write & = a2 — e;.
We have by Lemma 4.4,
(LaTPr ) LoaThap(s2) = (L3 L; L& Thps2)),

= — (L L3, LTh2p(2-1)) = 0.
(2). If g = 0, then 53 > 2. We have by (3.3) and Lemma 4.4,

<La1Tﬁ1 @(81)’ LO(QTBQLP(SQ)>T — <L%(,0(2) , TT6271@(52)>T

Y — = -0 T g1 (o)
_ 2_2’l <L%QO(2), (LyLy — L2L2>Tﬁ2*1¢(82)>7 = 2—?J<L%Qp(2),L2L2T627130(32)>7—
7 1

:%(LQL%@)’M&Q——W% — —52,1 <L1L2¢(2)amp _o.

Now consider the case k3 = 1, write G2 = az — e1. Then by Lemma 4.4 and (4.22),
<La1 T’BIQO(Sl), Lo2TB2 @(32)>T _ <L%(p(2)7 LlLdzTﬁz (p(sz)>7_
=_ @lL%@(?ﬁ,L&2T62¢(82—1)>T = —4i§1’l<L1TS@(3),L&2T5290(82—1)>T,

It is reduced to case (III).
(I1). If L**TA = Ly L;,j # 1. We again have s; = 2, s3 > 4. Note also we must have
k3 = 0. If there exist i # j such that k? # 0, then write da = as — e; and by Lemma 4.4,
(L1Ljp® | LiL&2TB2p(s2)) . = —(L; L1 ;03 L&2TB2p(s2=1)) = 0.

Now assume k2 = 0 for all i # j and k:j2 # 0. Then by Lemma 4.4 and (3.3),

(L1Ljp®), LoaTPep(2)), = (L1 Lo, L;Lo2 =i Thap(s2)),

= — <L1.Z/ij(p(3), La2*ejT52@(52—1)>T = _2i6j,l<L1TS0(3)7 La27e]‘TB2Qp(52—1)>T.

Again it is reduced to case (III).
Finally consider ag = 0. Then 85 > 2. We have again by (3.3) and Lemma 4.4,

(L1 Ljp®, Th2p(s2)), = —o (L1Ljp®, L1 Ly TP~ 1p(s2))

21
0Ll 127 (3) T TH—ToeaT)
:§<L1Lj§0 S L Th=1p(s2—1)) L =

o1
29

(L2p@) L L T 1p()), = 0.

(ID). If L>+THr = LT, then s; = 3, s3 > 3 and k? = 0. We have several subcases:
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(1). If |ao| > 2, then there exist j # 1, such that k7 # 0. By Lemma 4.4,

<L1Tg0(3),La2T52g0(52)>T — <L1T(p(3)’LjLQQ*GjTﬁzSD(SQ)>T

= — (L;LiTeW, Loz—ei Th2p(s2-1)) = 0.

(2). If |az| = 1 and By > 2, then the same computation as in the preceding case (1)
yields

(LT ®, ToaThagloa), = 0.
3). Next consider the case |az| =1, and S = 1. Writing L*2 = L;,j # 1, we have
J

<L1T§0(3)7 LJT§0(3)>T

6 _ _
:Tg’<L1T¢(3)7 (LjLj — LiL;) L))~ (4.24)

—8;4 - » o
:—2; <L1T90(3)7 LjL§@(3)>T + QJ_Z-<L1T<P(3)7LJ‘LJ‘L;‘<P(3)>T.

Note by Lemma 4.4 and (3.3) respectively, we have
(LT, LI2®), = —(L, LT @, T20), = (LT, T, 130), = 0;
(LaTe®  Li(L;Ly)e®), = =2i8; (L1 T, L;Te®),.
We substitute the above two equations into (4.24) to get
(L1 Te®, L;Te®), = —(LiTe®, L;Te®),.

Hence (L1T<p(3), LiTe®), =0.
(4). We finally consider the case where |az| = 0. Then we must have 82 > 2. In this case,
the proof is similar to the case (I).(2).

This proves Claim 4.8. O

Now we come back to the proof of part (a), Lemma 4.7. Recall k&} > k%. Suppose
k¥ = 0. If LvTP € {L2 LiLy,--- ,L1L,_1,L1T}, then we are done by Claim 4.8.
Otherwise, i.e. LTP ¢ {L2 LiLy,-++ ,L1L,_1,L1T}, we have (a; —e1,3;) ¢ € and
by Lemma 4.4,

<La1 Tﬁlcp(SI)7 L2 B2 s0(52)>7_ _ <L1La1—61 T51¢(81)’ L2 B2 <)0(52)>7_

= — (L= Thpr =) [ LeaThap(s241)) . = 0.

Now we assume k? > 1. Note ki — (k? — 1) > 2. We can keep applying Lemma 4.4
and (4.22) to move (k¥ — 1) Ly’s to L2TP2p(52)  and annihilate (k? — 1) L}s in L.
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Then we get a new inner product (L‘ilTBlgo(gl), La>TBe (32)) . Here L% contains only
one L; and L* has at least two Li’s. If LTk = L2, then the conclusion follows
from Claim 4.8. Otherwise, we can apply Lemma 4.4 again and move one more L; from
LaTPp(1) to L&2TP25(32)  and get new inner product (L1751 (1) [aaThap(32)),
where L% contains no L; and L* has at least one Li. This is reduced to the known
case we considered before (k% = 0).

For part (b) of Lemma 4.7, note if s = s1 + s2 is odd, we must have a3 # «as. Thus
the conclusion follows from part (a). O

Lemma 4.9. Let s1, 89,5 be as in Lemma 4.5. Let (a1, 1) € Ls,, (a2, B2) € Is,. Then one
of the following must hold.

1. <L°‘1Tﬁ1gp(sl),L02T52<p(32)>7- —=0.
2. <La1Tﬁ1<P(s1)7LaQTﬁ2(p(sz)>T _ C<T§90(s*),—T§QD(S*)>T,
where s = 28 = 48, with § > 2,5 > 4.

3. <La1T'61<,0(81),LaQTﬁ2go(32)>T _ C<LjT§QD(S*+1),LjT§¢(5*—+1)>T,

where s = 2s* +2 =45+ 2, with s* =25 > 2, and 1 < j < n — 1. Here, as before, C
denotes a nonzero constant which may be different in different contexts.

Proof of Lemma 4.9. If s is odd, then the inner product equals 0 by part (b) of
Lemma 4.7. Now assume s is even and thus s > 6. By Lemma 4.6, we can assume
s1 = so = s > 3. And by Lemma 4.7, we can assume a7 = as = «, for otherwise the
inner product again equals 0. Consequently, 81 = B2 = 3. We will prove by induction on

= |a|. If m = 0, 1, the conclusion (2) or (3) holds trivially. Now suppose the conclusion
holds for 0 < m < k for some k& > 1, and consider the case m = k + 1 > 2 (note in the
case m = 2, we must have § > 1 due to the fact s; = so > 3). Pick 1 < jy <n — 1 such
that, writing o = Z?;ll kje;, we have jo # 0. If o = kj,ej,, then kj, = k+1 > 2. In this
case by Lemma 4.4 and (4.22),

(LOTP ) AT, = (L5078 o), R0 Ty,
Loy LT, LT T ),

= — 20k 8o 0 (L0 T TP OHD LRl psp(s-1))

< J
=2ik;, 6504 f ST L LT B ),

=dk;, (kjo — 1)(L0 2 TPHH1G0) L2 s4100))

This is reduced to the case m < k.
If thereis 1 <ig # jo < n—1suchthat k;, # 0, k;, # 0. We write & = a—k;, e;, —kj €5,
and compute, again by using Lemma 4.4 and (4.22),
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<L“TBQD(S), LoTBp()), = <Lf0io L?g‘o L&Tﬁ@(s), Lf:’o L;?;'o LETBp())

— (Lig Lo LYo LATB ol o=t %0 papp(s—1),
Jo

1019 Et %)
— Qikiy b0 (L0 T L0 AT Gl LT R0 pasp(s-1))
=2ikiy6i0 (L1 ’1Lfg°’ LOTPHHLG0) [P0 L Lho LaThpe),
k o~ 1rkjn—1 kig—1 rkjo—114
:4]620]6] (510 lé]ol< LJU LO‘TB+1 (s) L Lj LaTﬁ+1(,D(S)>7-.

This is again reduced to the case m < k. By induction, we see the conclusion holds. O
We now continue to prove Proposition 4.3.
Lemma 4.10. £~ =0,¢) = 0.

Proof of Lemma 4.10. We split the proof into two parts, depending on whether s is odd
or even.

(I). First assume s is odd. Write s = 2s* — 1, s* > 3.

(La). We first prove that f(*=1)(z,w) = 0. Fix some jo with 1 < jo < n — 1. Write

s —1

2s*—2) Z a(Qk)

Here a(%)(z) depends on jy. But we will not write it as a subscript to simplify the
notation. By the assumption of Proposition 4.3, for 1 < j,k < n — 1, it holds for p ~ 0
on H} that

o0 O° *—2
9o =z (33 (0) = 0.

By (4.8), (4.15), we have if 1 < j <n—1,
(£ = ()31 = 2(f5, alp))rn = r(0)g5] + Outp(2)- (4.25)

Moreover, if 1 < j <n—1,

fpBi(p) = (for 050 Li F(P)) 1t m- (4.26)

1 1
~ VD) Ap)

For 1 <j < N-—n,(¢p); = ﬁ(fméj(p)ﬁ,p,n. And A(p) = 1 4+ Ouep(3). Recall if

1< j<n—10a(p) = Ouyp(2) and for j = n,a;(p) = (T(f)(p), Bj(p)) + Ouwrp(2) =
<<p7(j’)( ), 0;(p)) + Owip(2). Here b;(p) are the last (N — n) component of B;(p). Hence
we have
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0 2
0z, Ows™—2

(f3)30(0) = (L&T* "2 F () Sjou Ljo f (P)1r

N—-n—1 o
NI ()W LT Dl s A )

000 (05 (9), 55 () — r(p)T‘“*‘Qg(p)] + Ouwt,p(2).

We choose k # jo. Note then (Lyf(p), Ljof(p))iirm = Ouwip(2). We thus have the
weighted degree one part in p in the expansion of (LyT* =2 f(p), 801 L, f(0))1.1r.n must

be zero. This implies, writing p = (p,pn) = (P1,-** s Pn—1,Pn) € HJ,

2i81,10j0,1(5* — 1)1Pkal® + 8010 (9) + 810 1 (LeT* 202 =D (p), &) (), = 0. (4.27)

Collecting the anti-holomorphic part in p in (4.27), we have

2i65105,.0(5* — Dlpra® + 65, 1 (LeT* 202 =3 o3 (5)), = 0.

ZJO

We apply Ly, to this equation to get
2611001 (s* — 1)1a'® + 65, 1 (LT 7202 =3 LiLi @), = 0.

By Lemma 4.7, (LiT% ~202"=3) L, L; @), = 0. Thus we conclude a(®) = 0. Since
1 < jo < n—1is arbitrary, this conclusion in the case s* = 3 implies the following fact.

Corollary 4.11. f/] (p) = Oy p(1).

Now we prove by induction that all a®®*) = 0 for 1 < k < s* — 1. Suppose we have
already proved a®) =0for1<i< k, with some 1 < k < s* — 1. Next we aim to prove
a?!)(z) = 0. For that, note by assumption, for any o € N1 with |a| = 2k — 1, we have
DDy I (£37);(0) = 0,

As before, we have, writing a = Zz;i kueu,

OZDZ"‘Dz(j*_k_l)(f;*)jo(O) <LO¢T&s R 1f( ) JolLJOf( )>ll’,n
N—n+1

—+ Z JO leof( )>l U'n ( — 2 Z <La_€“Ts*_k_1fp, BJ(P» (428)

k,>1 j=n
500 (0D (9), b, () — r(p)La-euTs*—’“—lg@)) + Ot p(2)

Here the sum Zk > Is taken over those p satisfying k, > 1, and ¢(k,,) is some integer
depending on k, (the value of é(k,) is determined by the Leibniz rule).

We will need to use the following facts.
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Claim 4.12. Let F be as in Proposition 4.3. Then g.,,,(p) = Owt p(2).

Proof. This is trivial if s > 5 in Proposition 4.3 and therefore we only need to prove for
the case s = 5. We will postpone the proof to (I.b). O

Corollary 4.13. 7(p) = Ouep(2).

Proof of Corollary 4.13. Recall

1 " 1 r
- __ R ) SN ).
Then the conclusion follows easily from Corollary 4.11 and Claim 4.12. O

Write ) (z,w) = dM(z). Also recall a(®)(z) = 0 for 1 < j < k. We conclude by
collecting the weighted degree one terms in (4.28) that

N—-n+1
(s* =k = D)ID.a®(p) + > &(dD(p),b;(0)) = 0. (4.29)
j=n
Here ¢;’s are constants, which may be 0. For instance, if k;, = 0, then all ¢; = 0. We

further collect holomorphic terms in (4.29) to see (s* — k — 1)!D,«a®**)(p) = 0. Thus
we conclude D,.a®*)(p) = 0 for every a € N*~! with |a| = 2k — 1. This yields that
a®*)(z) = 0. By induction, we see =1 (z,w) = 0.

(I.b). Next we will prove g®) = 0. Before that we first prove Claim 4.12. For that, we
write

g(5)(z7 w) = c(l)(z)w2 + 0(3)(2)10 +c® (2).

Recall g7 = < 9 (see (4.5), (4.6)), and g5 = 1>gp. We then have (using (4.7))
(Fy.95) (»)

9" = 9o+ 9p(— 2i(f;. a@)ivrn — 7(P)9p) + Ourp(2). (4.30)
Proof of Claim 4.12. By the assumption of Proposition 4.3, (g **)(4) =0, and thus
D2 (g5)(0) = 0. (4.31)
Recall by (4.16), D2 g,(0) = TPg(p) — 2i(T” f(p), f(p))l 1 m- Then it follows from Corol-
wt,

lary 4.11 that if 8 < 2, D5 g,(0) = Tg(p) + Ouwtp(2). Consequently, equations (4.30)
and (4.31) yield that

T?g(p) + Tg(p)( — 2i(T£;(0), a(p))iirn — r(P)T9(p)) + Ouwtp(2) = 0.
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By the same argument as before, we obtain

- ) Nongl N e -
g(p) +Tg(p)( —2i > (TFp(0),B;(p)) - Sj0rm - (i (p),b;(p)) — r(p)Tg(p)

Jj=n
+ Ouwtp(2) =0.
(4.32)

Recall p = (p, pn) = (p1,- - s Pn—1,Pn) and note

———Re (gl (p) = 20(f1 s (D), F(P)) i,

SRe{0 (1) + Oy (2

= 5 (6) + &) + Our,p(2).

Here we have used (4.7) and Corollary 4.11.
Collecting the weighted degree one terms in (4.32), we have

0.

21 (p Z & @), 550) - 5 (V) + D p))

Here ¢;’s are some constants. We further collect holomorphic terms to get %c(l)(ﬁ) = 0.
We thus have ¢()(z) = 0 and this proves Claim 4.12. 0O

We are now at the position to prove ¢(*) = 0. For that we write

s*—1

g(s)(%w) _ Z c(2j+1)<z)ws*—j_l.

J=0

We will first prove c(!)(z) = 0 (this is already established for s = 5). By assumption,
Dﬁj**l(g;*)(()*) = 0. Recall DZg,(0) = Tﬂg(*p) — 2(TP f(p ) F(P) i m. Tt follows from
(.a) that T° =1 f(p) = Our (1) and thus D3 ~1g,(0) = T° ~1g(p) + Owtp(2). Then by
(4.30), Proposition 4.2, and Corollary 4.13.

0= D3~ (g;")(0)

* N_ntl * ~ A
—1 )+ T~ 2 Y 0B b 05,00

Jj=n

+ Oyt p(2).

Recall cpS) (z,w) = dM(2). Collecting weighted degree one terms in the above equation,
we get
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N—n—1
(s* = DM (p) + ¢j(d®(p),b;(0)) = 0 for some constants &;s.
J

n

We then collect holomorphic terms to see ¢(!)(z) = 0.

Now suppose we have already proved c(2j+1)(z) =0for0<j<kwithl <k<s"—1,
and aim to prove ¢?**1(z) = 0. For that we use the fact that D.. D3 ~(g5*)(0) = 0
for any o € N"~1 with |a| = 2k. By a similar argument as above, using (4.30) and (La),
and collecting holomorphic weighted degree one terms, we see D« C(2k+1)(2) = 0. This
implies c¢(2**1) () = 0. By induction, we see all ¢t () = 0 and thus ¢(*) = 0.

(IT). Finally we consider the case s = 2s* is even. Here s* > 3.
(IL.a). We start with the proof of f(sfl) = 0. For that, we fix some 1 < jg <n—1
and write

s*—1

f(s 1) Z a(23+1 w1

To prove a(!)(z) = 0, we notice, by assumption, that Df;_l(f;*)jo(O) = 0. By (4.25),
Proposition 4.2, and Corollary 4.13, we have

Dy (f37)50(0) :Df;*l(f;) (0) + Ouwtp(2)
< ( ) ]o,leof( )>l U'm T+ Owt,p(2) =0.

This implies d, ;(s* — 1)la™™)(p) = 0. We thus have a(!)(z) = 0.

Now suppose we have proved a?+1)(z) =0 for 1 < j < k with 1 < k < s* — 1, and
consider the case j = k. By assumption, Dzan;_l(f;*)(O) = 0 with |a| = 2k. We use
the same argument as before to derive D.oa?**1(p) = 0 for any |a| = 2k. Thus we have
a1 (2) = 0. By induction, we have f(*=1 = 0.

(ILb). It remains to prove g(®) = 0. Write

*
S

g (z,w) = Zc(gk)(z)ws*_k.
k=0
We first prove that ¢(”)(z) = 0. By assumption, D, Dj ~*(g3*)(0) = 0, for any 1 < j <
n—1. By (4.16), D, D3 ~1g,(0) = L;T* ~'g(p) — 2i(L,;T* *1f( ), F(0)) 1. - Tt follows
from (ILa) that L;T* ~f(p) = Outp(1) and thus DszfU “1g,(0) = L;T* ~'g(p) +
Ouwt,p(2). Then by (4.30) and Proposition 4.2, we get

D, Dy gy )(0) = LyT* "'g(p) + Ty(p)( — 2i(D., D3 ~2£7(0), a(p))10n)

+ Ouip(2) = 0. (4.33)

Note for any o € N*~! and 3 € N,
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(DD} f(0), a(p)) 1 m

= (DDEF(0)) - B®) Ty (%T?%)t

L (D.DEFO)  BO) - BT 34

(Do DL Fp(0), T F)rrn + Out p(2)
=(LT" f(p), Tf)10':n + Ouwt,p(2)

(LT =3 (p), To®) . + Ot »(2); and
LT " g(p) = 2i65,5" p7e® + (5* = 1)1eP (). (4.35)

>

Collecting weighted degree one terms in (4.33) and using (4.34), (4.35), we obtain
2i8;15"1p;c” + (5* — D1el? (p) = 2i(L; T 20" (p), Tp®) (p)).. (4.36)
We apply Ej to (4.36) and get
8051 = (L; 7" 72573 (p), L;Tp®) (p)) . (4.37)
We then have two cases:

Case I. If s* = 20 is even, o > 2. Then by Lemma 4.5, we have

(5 S§:1(—1 o—2 -
o0 = SL T 20 LTe®), = 7“(5*,) (LT P+ L;To=1pRo=D)
(4.38)
Note ¢ > 2. By Lemma 4.4 and (3.3), we obtain
§j(—=1)1 T o 1l (20)
0 = %(T"gp(%),LijT"’1<P(2”)>l,1/,n
oju(=1)7t o (20)
_ ],l(s*') (—225j,l><TU<P(20),TU@(20)>l,l’,n (439)
_2i(=1)°
s

Here p = (T7p(2%) Top20)) € R.
Now we use the following fundamental identity:

Im{g} = < i, on Imw=(z7%).

We collect the weighted degree s terms in the above equation and recall we already know
f®(z,w) =0 for t < s— 1. We then see
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Mg = Y G, o mw=(eH o (4

81,8222, s1+82=s

Im{z 2R (2w k) = Z (1) p2)) - on Imw = (z,7). (4.41)
k=0

81,8222, s1+82=5

Writing w = u 4 iv, we collect terms of u*~ in equation (4.41). Since by (4.39), ¢(© is an
imaginary number, we get

© s=2q 1 -
C_. = <_|TJQ0(2]) —Ts*fj(p(s 2])>
P LG e
. (4.42)
— 1 N
= 3 o T T ),
= !

By Lemma 4.5, we have (T9¢(27) Ts*=ip(s=20)) = (=1)7Ip, for all 2 < j < s* — 2.
Then (4.42) is reduced to

st —2 o—i
A G i) (4.43)

_ *_9
) ps*l o . (s
Z o = > (=1 ). (4.44)
3! =2
But
s*—2 5"
-1 J’( ) =2s" —2.
Ry
We thus obtain from (4.44) that 2u = (2s* — 2)u. This implies ¢ = 0. Consequently, by

(4.39), ¢® = 0.
Case II. If s* = 20 + 1 is odd, here o > 1, then by (4.37) and Lemma 4.5, we have

0«7

PHLT 20070 LTo®), = %%T%(Q"“%W%

' (4.45)
Consequently, ¢(?) is real, and we cannot use the method in Case I. We instead apply
T2°L, Ly to (4.40) and evaluate at 0 to obtain

(0) _

CIJ

1 _— s oT (s2)
T Lilig® ) = > T LiLi (), ¢0), (0). (4.46)

81,822>2,81+82=s
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Note L1L1g"®) = 2i6; ,Tg'® and L1 L1 (V) o(2)) . = (L1 Lyp(s2)) 42367 1 (Tp(s1),
©(52)) . We thus derive from (4.46) that

20
9 -
61’lT20+1g(s)(0) _ Z Z <j0'> <L1T] (s1) L1T2<7 J(p(sz)> (0)

J=0s1,522>2,81+s2=s

20
2 S——
+2i010) > ( U) (T7H (1) T20=ip(52))(0)

- J
7=051,52>2,51+52=s5
. (4.47)
_ Z (20) (LT (2j+1)’L1T2g—j30(872j71)>7_
=1 N
20—2 2 -
ci 3 ( _U) (791 (2042) TRr—j 2 2))
- J
j=1

Note the left hand side §; ; 727+ g(*)(0) equals &, ;c¢(9 (s*!). If & = 1, then the right hand
side equals 2u*, where

:U’* = <L1T§0(3)7 L1T<p(3)>'r

By (4.45), we have ¢(®) = o, Zri*. Then (4.47) is reduced to p* = 2u*. Thus p* = =c0 =0.
Now assume o > 2. erte

L= (LlT"gp(%“),L1T0<p(20+1)>

—01,

o 1= <TU@(20)’TU+1¢(20+2)>T — 5

2Ot o) T T @),

_ 0w

_—— 5
- T (20+1) T, o (2a+1)>T:ﬂM1.

27

Then by (4.45), ¢ = %ul By Lemma 4.5, we have

S

(L T2+ [ T20—ip(s=2i-1) = (=1)7 I py for 1 < j < 20 — 1.

<Tj+190(2j+2)7T2o—j(p(s—2j—2)>‘r — (_l)tf—j—lﬂ2 for 1 <j <20 —2.

By the above equations, (4.47) is reduced to

(1) = Z (27) (=1)7 7y + 2id1, Z (2;’) ()77

=1 \J J=1
- (2]21 (2]7)(_1)0—J‘ + jSj (2;> (—1)"‘j‘1>u1.
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This implies (—1)° ' = (=1)°" 201, or p1 = 20u1. Thus we conclude p; = ¢(®) = 0.

Hence in all cases, it holds that ¢(©) = 0. Once we know ¢(¥ = 0, as before, we use
an induction argument that all ¢(9)(z) = 0 for all 0 < j < s*. Suppose we have proved
c(2j)(z) =0 for 0 < j < k for some 1 < k < s* and consider the case j = k. By
assumption, DZanU*_k(g;*)(O) = 0 for any || = 2k — 1, and any p € H} close to 0.
As before, by (ILa) we have LYT* % f(p) = Oy ,(1). Consequently, D« D ~*g,(0) =
LT* =% g(p) 4+ Out »(2). By (4.30) and Proposition 4.2, we have

LT g(p) + Tg(p) (= 21Dz Dy =71 £(0), a(p))1r,n) + Owe p(2) = 0.
Using (4.34), we collect the Oy ,(1)-term in the above equation to obtain
(s* = k)1 D4ac®®) (p) — 20(LOT ~F1p0=3) (p), Tp®)), = 0

Furthermore we collect holomorphic terms in p to see D, ac(2) (p) = 0. As « is arbitrary,
we have ¢(?*)(z) = 0. By induction, ¢*))(z) = 0 for all j, and thus ¢(*)(z,w) = 0. This
finishes the proof of Lemma 4.10. O

Lemma 4.14. (01, 0(s2)) =0 for all 51,50 > 2,51 + 55 = 5.
Proof of Lemma 4.14. When s is odd, it follows from Lemma 4.7 that

Hleal+p Oloz|+82
R ('5 ) J— S =
<8za18wﬁl LA R 4 2)>T(O) =

for any (ay, 1) € Is,, (ag, B2) € I,,. This implies (¢(*1), ©(52))_(0) = 0. When s is even
and s = 2s* = 40 for some o > 2, it follows from Lemma 4.9 and the proof of Lemma 4.10
(see (4.39) and recall we proved ¢(®) = 0) that

Hleal+p Olaz|+B2
J— (S ) P — S =
<8za18w51 ! 90( 2)>T(0) =0,

for any (a1, 1) € Is,, (a2, B2) € Is,. This again implies <<p(51),@>7(0) =0.

Similarly, if s is even and s = 2s* = 40+2, then the conclusion follows from Lemma 4.9
and the proof of Lemma 4.10 (see (4.45) and recall we proved ¢(®) = 0). This establishes
Lemma 4.14. O

Proposition 4.3 follows from Lemma 4.10 and Lemma 4.14 (except that it remains to
prove Lemma 4.6 and Lemma 4.7 for the case s = 5; this will be done in §5). O

4.8. Proofs of Theorem /.1 and Theorem 1.1

Proof of Theorem 4.1. As was mentioned, we prove only the implication from (1) to (2).
This easily follows from the following claim.
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Claim 4.15. Let F be as in the assumption in Theorem /.1. Assume F is CR transversal
near 0 and satisfies the normalization in Lemma 5.1. If F' is of geometric rank zero near
0, then

fE =0, ¢® =0, (ga(sl), P(52)) =0, Vs1,82 > 2,81 + 89 =1t >4. (4.48)

We prove the claim by induction on ¢. First note by Lemma 3.1 and the geometric
zero condition, (4.48) holds for ¢ = 4. Now assume Claim 4.15 holds for all 4 <t < s
with s > 5, and consider the case t = s. But Claim 4.15 (with 4 <t < s) applies also to
F;*. We thus have (4.11) holds for 4 <t < s. Then by Proposition 4.3, (4.48) holds for
t = s. Hence by induction, Claim 4.15 holds. O

Proof of Theorem 1.1. Composing F with automorphisms, we assume that p =
[1,0,---,0,1] € OB} and F(p) = [1,0,---,0,1] € OBY. Denote by ¥, the Cayley
transformation from Sj* to B}, and ®y the Cayley transformation from S, . to B
(see §3). Then G := ®y' o F o ¥, is well-defined in a small neighborhood of 0 € H}.
Note F' is side-preserving, CR transversal, and of geometric rank zero if and only if G is
so. Then Theorem 1.1 follows from Theorem 4.1 and Theorem 2.1. O

5. Completion of the proof

In this section, we complete the proof of Theorem 1.1 by giving a proof of Lemma 4.6
and Lemma 4.7 in the case s = 5. More precisely, we prove the following proposi-
tion.

Proposition 5.1. Let s1 > 2,82 > 2 and s1+ 82 = 5. Assume (aq, 51) € I, (a2, f2) € I,.
Then

(L TP p01) LaaTB2p(s2)) (p) = 0.

Proof of Proposition 5.1. Note (A, B), = (B, A)_ for two vectors A, B and thus we can
always assume s; < so. Since s; + so = s = 5, this implies s; = 2, s5 = 3. We will verify
the conclusion by a direct computation case by case.

(1). We first consider the case when LT = L? for some 1 <i<n-—1.

(1.a). If L*2TP2 = [,T, then we have

<L$¢(2)’L1T¢(3)>‘r = <L1290(2)3TL1§0(3)>T - <L12Q0(2), (Eij — LJI_/])LMD(S)%'

— 9%l
2i

Here we have used identity (3.3) and let j # ¢. Furthermore, by Lemma 4.4 it equals
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—5;. N 5 -
2_Z<L1290(2)7 LijLi‘P(3)>'r = QJ_Z<LJL1290(3)3 LjLi@(2)>'r
:_;Sﬂ (LiLj @, L;L;L;ip®), = _57’1 (LiLj@, L;2i6; Tp®), (5-1)
; : :

5y (Lo LT,

This equals zero by case (2.a).
(1.b). If L*2TP2 = ;T with 1 < j # i < n — 1, we have by (3.3),

T To®) =01 - _
@ LT, = S Tk - LI
5.2
65 — 5y -
= SIHLD, LiL2e®), + LD, L L;Ljo®),

Furthermore, by Lemma 4.4 and (3.3) respectively, we have

(L3, L;L2p®)), = —(L; L3e®, L2p™), = (L;Lip®, L;L2p®)), = 0;
(L3e®), L;L;Lie®), = (L}p®), L;2i8;,To®), = =2i6;,(Lie®, LiTe®),.

Then by (5.2), (L2¢®) | L;Te®), = —(L2¢p?) L;T¢®)) ., and thus (L2 L;Tp®)), =
0.
(l.c). If L22TP2 = L3, by Lemma 4.4 and (4.22) we have
(L3P, L3p®), = —(L;L7®), L2p®),
= —(L?L;p®), L2p®), — 4i6; (TLip®, L202) .

Note (L;T¢®, L20(2),. = 0 by (1.a). Hence we conclude (L2¢?) L3x®3)) = 0.
(1.d). If L*2TP2 = [; L} L; where j # i and k,l may be equal to i, then

(L2 L Ly Lip®), = —(L;L2p®) L Lip®), = —(L2L;0®, LiLip®@), = 0.

(2). It remains to consider the case where Lo = L;Lj;forsomel <i#j<n-1
(2.a). If L2TP2 = [;T, then by (3.3),

(L;Lj @, L;Te®), = (L;Ljp® , TL;jp®).,

—5,, _ _
=— (il @, (LiL; — LiL;)Lip®)-

—0j.1 =3, il —
:TJ’<L¢LM<2>, LiL%p®). + §<LiLj<p<2>, L;L;Lje®),

Note by Lemma 4.4 and (3.3) respectively,

(LiLjo®), LiL2p®), = —(L; L3p®, L2p®), = (L3, L;L2p®), = 0;
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(LiLj®  L;L;Ljp®); = (L;L;j®), L;(L;L; + 2i6;,T)p®)),
= —2i6;1(LiL;e®, L;Tp®),.

Then we have (L;L;o®), L;Tp®) . = —(L;L;po®, L. Tp®)_. Thus
J J i¥ J

(LiLjp®), LTe®), =0,

(2.b). If Lo2TP2 = L, T with k # 4,7, a similar argument as in (2.a) yields
(LiLjp®? | L, Te®), = 0.

2.c). If L*2TH> = 3, then by Lemma 4.4 and (3.3),

j
(LiLjp® L3p®)), = —(L;L; Li®), L2p®), = —2i6; |(TL;p'® , L2p@)..

This equals 0 by (1.b).
(2.d). If L>2TP2 = [2L;, then by Lemma 4.4 and (3.3),

(LiLjp®, L2L;0®), = —(L;L; L', L;L;o®); = —2i6; )(TLjp®, L; Ljp),.

This equals 0 by (2.a).
(2.e). If L*2TP2 = Ly L, L, with k # 4,5 and p,v may equal i, j, Lemma 4.4 implies

(LiLip®, LeLyLyp®), = —(LiLiLio®, L,L,0®),
= —(LiL; L@, Ly Ly g®) = 0.

This proves Proposition 5.1. O
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