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1. Introduction

For two integers n ≥ 2 and 0 ≤ l < n, we equip Cn+1 with a Hermitian form Hl+1
with l + 1 negative and n − l positive eigenvalues. More precisely, write Ik,m for the 
m × m diagonal matrix where its first k diagonal elements equal −1 and the rest equal 
+1. Then the Hermitian form Hl+1 is given by Hl+1(z, z) = zIl+1,n+1zt for z ∈ Cn+1. 
This naturally leads to the definition of the generalized ball Bn

l , which is a domain in 
the projective space P n:

Bn
l = {[z0, · · · , zn] ∈ P n : |z0|2 + · · · + |zl|2 > |zl+1|2 + · · · + |zn|2}.

Note when l = 0, Bn
0 becomes the standard unit ball Bn in Cn (embedded into P n). 

The generalized ball Bn
l is indeed an open orbit of the real form SU(l + 1, n + 1) of the 

complex simple Lie group SL(n + 1, C) when acting on P n. Here SU(l + 1, n + 1) is the 
special unitary group which consists of matrices preserving the Hermitian form Hl+1 on 
Cn+1:

SU(l + 1, n + 1) = {A ∈ SL(n + 1, C) : AIl+1,n+1A
t = Il+1,n+1}.

The topological boundary ∂Bn
l of Bn

l , sometimes called the generalized sphere of 
signature l, is the unique closed orbit under the action of SU(l + 1, n + 1) on P n. The 
generalized sphere ∂Bn

l or its local realization, the real hyperquadric

Hn
l = {(z, w) = (z1, · · · , zn−1, w) ∈ Cn : Imw = −

l∑
j=1

|zj |2 +
n−1∑

j=l+1

|zj |2}

serves as a basic model for Levi-nondegenerate hypersurfaces (see [5]) and plays a fun-
damental role in CR geometry. Note that when l = 0, Hn

0 is the standard Heisenberg 
hypersurface. Due to the special geometric structure of ∂Bn

l or Hn
l , many striking rigidity 

phenomena have been discovered for mappings into the real hyperquadrics. Results along 
these lines can be found for instance in [29,11,14,15,9,8,7,13] and references therein. In 
particular, in [14] the first author defined a useful geometric invariant for a nonconstant 
C2-smooth CR map F from ∂Bn to ∂BN (N ≥ n ≥ 2), called the geometric rank of F . 
He proved that if n ≥ 2 and N ≤ 2n − 2, then the geometric rank must be identically 
zero and furthermore F extends to a linear fractional holomorphic proper map from Bn

to BN .
The mapping property is of different flavor when l > 0. By studying local holomorphic 

mappings from Hn
l to HN

l , Baouendi-Huang [4] proved that any proper holomorphic 
map from Bn

l to BN
l extends to a totally geodesic embedding from P n to P N whenever 

0 < l < n −1 and N ≥ n. After their work, many interesting results have been established. 
Here we mention [1,2,10,26,13,12]. It remains an open problem to study the analytic 
property of mappings into hyperquadrics in the general setting.
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On the other hand, the generalized ball has distinguished geometric feature as well. 
Recall the automorphism group of Bn

l is given by SU(l + 1, n + 1) (see, for example, 
section 1 in [5]). The generalized ball Bn

l possesses a canonical indefinite metric ωBn
l

that 
is invariant under the action of its automorphisms:

ωBn
l

= −
√

−1∂∂̄log
( l∑

j=0
|zj |2 −

n−1∑
j=l+1

|zj |2
)
.

When l = 0, the metric is identical with the (normalized) Poincaré metric on the unit ball. 
A generalized ball equipped with the indefinite metric ωBn

l
is often called an indefinite 

hyperbolic space form.
In this paper, we give a complete characterization for local holomorphic isometric 

embeddings between indefinite hyperbolic spaces in terms of a boundary CR invariant 
of the maps. Let Ω be a connected open set of Bn

l and F a holomorphic map from Ω to 
BN

l′ . We say F is isometric if F ∗(ωBN
l′

) = ωBn
l

on Ω.

Theorem 1.1. Let N ≥ n ≥ 3, 0 ≤ l ≤ n − 1, l ≤ l′ ≤ N − 1. Let U be an open subset 
in P n containing some p ∈ ∂Bn

l and F be a holomorphic map from U into P N . Assume 
U ∩ Bn

l is connected and F (U ∩ Bn
l ) ⊂ BN

l′ , F (U ∩ ∂Bn
l ) ⊂ ∂BN

l′ . Then the following are 
equivalent.
(1) F is CR transversal and has geometric rank zero at generic points on U ∩∂Bn

l near p.
(2) F is an isometric embedding from (U ∩ Bn

l , ωBn
l
) to (BN

l′ , ωBN
l′

).

We recall that F is called CR transversal at p ∈ ∂Bn
l if TF (p)(∂BN

l′ ) + dF (TpP n) =
TF (p)P

N . We remark that if a map F as in the assumption of Theorem 1.1 exists and F
is CR transversal at some point near p, then we must have l′ ≥ l and N − l′ ≥ n − l. The 
definition of geometric rank, which serves as a crucial invariant for holomorphic maps 
between open pieces of the generalized spheres, will be given in Definition 3.3 of §3. It 
can be routinely computed through the fourth order jets of the map. In the language of 
pseudo-Hermitian geometry, the zero geometric rank at a point q̂ ∈ F (U ∩∂Bn

l ) is equiv-
alent to the condition that for any Xq̂ ∈ T

(1,0)
q̂ F (∂Bn

l ), the value at Xq̂ of the CR second 

fundamental form 
∏

(Xq̂, Xq̂) ∈ T
(1,0)
q̂ (∂BN

l′ )/dF (T (1,0)(∂Bn
l )) of F (∂Bn

l ) ⊂ ∂BN
l′ stays 

in the null cone of the Levi form Lq̂ of ∂BN
l′ at q̂, namely, L̂q̂(

∏
(Xq̂, Xq̂), 

∏
(Xq̂, Xq̂)) = 0. 

See Proposition 3.5 for more discussions on this matter.
In general, in the zero geometric rank case, the second fundamental form does not 

vanish identically. Instead, its image can have the largest possible real dimension 2(l′ −l), 
that is nonzero unless l′ = l. This is indeed the main difficulty we will encounter in the 
course of the proof of Theorem 1.1. The vanishing of CR second fundamental form is 
linked with the linearity (or the total geodesy) of the map, while our main theorem 
shows that the zero geometric rank condition, or equivalently the condition that the CR 
second fundamental form stays in the null cone of the Levi form, is precisely the one 
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to characterize holomorphic isometric embeddings. For results related to the vanishing 
of the CR second fundamental form, we refer the reader to [33] and many references 
therein.

Remark 1.2.

1. The assumptions that F (U ∩ Bn
l ) ⊂ BN

l′ and F (U ∩ ∂Bn
l ) ⊂ ∂BN

l′ do not guarantee 
F to be CR transversal in general even at a single boundary point, as the following 
Example 1.3 shows.

2. Note the Levi form of the boundary of Bn
l , l > 0, has at least one negative eigenvalue 

at each point. By applying the Lewy extension type theorem for mappings into 
compact Kähler manifolds of Siu and Ivashkovich (see references in [4]), we see that 
if F is holomorphic from U ∩ Bn

l , l > 0, into P N , then F extends to a holomorphic 
mapping from a neighborhood of ∂Bn

l ∩ U to P N .
3. Let H be a holomorphic map in U such that F (U ∩ Bn

l ) ⊂ P n \ BN
l′ . Note P n \ BN

l′ ≈
BN

N−l′−1. We can thus regard H as a map from U ∩ Bn
l to BN

N−l′−1.

Example 1.3. Let F (z) be the polynomial map from P 5 to P N (N ≥ 20) given by 
F ([z0, · · · , z5]) = [f, g, 0, · · · , 0]. Here

f = (z2
0 ,

√
2z0z1,

√
2z0z2, z2

1 , z2
2 , z2

3 , z2
4 , z2

5 ,
√

2z1z2,
√

2z3z4,
√

2z3z5,
√

2z4z5);

g = (
√

2z0z3,
√

2z0z4,
√

2z0z5,
√

2z1z3,
√

2z1z4,
√

2z1z5,
√

2z2z4,
√

2z2z4,
√

2z2z5).

Note

‖f‖2 − ‖g‖2 = (|z0|2 + |z1|2 + |z2|2 − |z3|2 − |z4|2 − |z5|2)2.

Hence F (B5
2) ⊂ BN

11 and F (∂B5
2) ⊂ ∂BN

11. The map F , however, is not CR transversal at 
any boundary point of B5

2.

When 1 ≤ l′ < 2l ≤ n − 1, the CR transversality automatically holds at F (q) for a 
generic point q ∈ U ∩ ∂Bn

l (see [4] and [3]), and the geometric rank of F is always zero 
at such a point q. Hence our main theorem gives, in this special case, a different proof of 
the following theorem obtained in [2] (see also [26] for a different approach for a global 
version of this theorem).

Theorem 1.4 (Baouendi-Ebenfelt-Huang [2]). Let N ≥ n, 1 ≤ l ≤ n−1
2 , 1 ≤ l′ ≤ N−1

2
and 1 ≤ l ≤ l′ < 2l. Let U be an open subset in P n containing some p ∈ ∂Bn

l with U ∩Bn
l

being connected, and F a holomorphic map from U ∩ Bn
l into BN

l′ . Assume that for any 
sequence {qj}∞

j=1 ⊂ U ∩Bn
l that converges to ∂Bn

l , the limit set of {F (qj)}∞
j=1 is contained 

in ∂BN
l′ . Then F is an isometric embedding from (U ∩ Bn

l , ωBn) into (BN
l′ , ωBN ).
l l′
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We remark that in [15], the first author proved a semi-rigidity theorem for proper 
holomorphic map as the codimension increases. For holomorphic maps between general-
ized balls, the rigidity gradually disappears as the difference of the signature increases. 
Our main theorem will provide a useful tool for such a study in the future as the rank 
zero maps always appear in any signature difference case.

Moreover, the mapping problem between indefinite hyperbolic spaces has been re-
cently discovered to be of critical importance in the study of mappings between bounded 
symmetric domains. By using holomorphic double fibration, Ng [27] applied the results 
for mappings between generalized balls in [4] to prove rigidity properties for proper 
maps between the type I domains. Xiao-Yuan [31,30] established rigidity results for 
proper maps from the unit ball to the type IV domain DIV

m by regarding DIV
m as an iso-

metric submanifold of the indefinite hyperbolic space. We remark that every irreducible 
bounded symmetric domain (equipped with Kähler-Einstein metric) can be isometri-
cally embedded into an indefinite hyperbolic space (with a normalizing constant) in a 
canonical way. For instance, let DI

p,q(p ≤ q) be the type I classical domain. Recall the 
Borel embedding realizes DI

p,q(p ≤ q) as an open subset in its compact dual Gp,q (the 
Grassmannian of p-plane in Cp+q). And Gp,q can be holomorphically embedded into a 
projective space P N for some appropriate N by the Plüker embedding P . Then P maps 
DI

p,q(p ≤ q) isometrically into BN
l ⊂ P N for some appropriate l. We should also mention 

closely related studies on various rigidity properties for holomorphic proper or isometric 
maps, and CR mappings. To name a few, the readers are referred to the work by Eben-
felt [8], Ji [16], Kim-Zaitsev [18,19], Kim [17], Kossovskiy-Lamel [20], Lamel-Mir [22,21], 
Mok [23,24], Mok-Ng [25], Yuan-Zhang [32] and references therein.

The paper is organized as follows. We analyze holomorphic isometries between indef-
inite hyperbolic spaces in Section 2. In Section 3, we recall the notion of geometric rank 
for mappings between real hyperquadrics and set up notations and definitions needed 
later. We also prove the equivalence of the geometric rank zero and Levi null cone con-
dition. Section 4 and Section 5 are devoted to proving the main theorem. The proof is 
based on an induction argument. Compared with the method employed in [1] and [2], a 
crucial lemma (Lemma 3.2, [14]) due to the first author cannot be applied anymore for τ
could be arbitrarily large, and this poses a major difficulty. Our main tools for the proof 
include methods from CR geometry, normal form theory and most importantly the mov-
ing point trick introduced for studying maps between manifolds with huge group actions 
in [14].
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The authors thank the anonymous referees for their helpful comments, which have 
greatly improved the readability of the paper. Part of the work was completed when the 
first and the fourth authors were visiting Huzhou University in the part of the summers 
of 2017, 2018 and 2019. The two authors thank the institute for the hospitality.
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2. Isometries between indefinite hyperbolic spaces

We establish the following theorem in this section:

Theorem 2.1. Let F be a holomorphic map from an open connected subset Ω of Bn
l to 

BN
l′ . Assume Ω is contained in the affine cell U0 = {[z0, · · · , zn] ∈ P n : z0 
= 0} and F (Ω)

is contained in the affine cell V0 = {[w0, · · · , wN ] ∈ P N : w0 
= 0}. Then the following 
are equivalent:
(a). F is an isometric embedding from (Ω, ωBn

l
) to (BN

l′ , ωBN
l′

).
(b). After composing with automorphisms of Bn

l and BN
l′ from the right and the left, 

respectively, F equals to the following map in the local affine coordinates on U0 and V0:

(z1, · · · , zl, φ, zl+1, · · · , zn, ψ).

Here φ, ψ are holomorphic maps with l′ − l and N − n − l′ + l components, respectively, 
and satisfy ‖φ‖ ≡ ‖ψ‖.

Here ‖ · ‖ denotes the usual Euclidean norm. We remark that if a map F as in (a)
exists, then we must have l′ ≥ l, N − l′ ≥ n − l. Before we prove the above theorem, we 
fix some notations. We denote by δj,l the symbol which takes value -1 when 1 ≤ j ≤ l

and 1 otherwise. If l = 0, δj,0 is identically one for all j ≥ 1. We also denote by δj,l,l′,n

the symbol which takes value -1 when 1 ≤ j ≤ l or n ≤ j ≤ n + l′ − l −1 and 1 otherwise. 
When l′ = l, δj,l,l,n is the same as δj,l.

Let m ≥ 1. For two m-tuples x = (x1, · · · , xm), y = (y1, · · · , ym) of complex 
numbers, we write 〈x, y〉l =

∑m
j=1 δj,lxjyj and |x|2l = 〈x, ̄x〉l. Also write 〈x, y〉l,l′,n =∑m

j=1 δj,l,l′,nxjyj and |x|2l,l′,n = 〈x, ̄x〉l,l′,n. Note if m ≤ n − 1, the two symbols 〈·, ·〉l and 
〈·, ·〉l,l′,n are identical. We use 〈·, ·〉 to denote the usual inner product: 〈x, y〉 =

∑m
j=1 xjyj . 

Denote by Il,m the m × m diagonal matrix whose jth diagonal element equals to 
δj,l, 1 ≤ j ≤ m. Similarly we define Il′,m. Write Il,l′,n,m for the m × m diagonal ma-
trix whose jth diagonal element equals to δj,l,l′,n, 1 ≤ j ≤ m.

Proof of Theorem 2.1. It is easy to see (b) implies (a). We will show (a) implies (b). 
Let F : Ω → BN

l′ be as in the theorem. Write p0 = [1, 0, · · · , 0] ∈ U0. By composing 
F with automorphisms of Bn

l and BN
l′ and shrinking Ω if necessary, we can assume 

that p0 ∈ Ω, F (p0) = [1, 0, · · · , 0] ∈ V0, and F (Ω) ⊂ V0. Write F (z1, · · · , zn) =
(F1(z1, · · · , zn), · · · , FN (z1, · · · , zn)) in the local affine coordinates of U0 and V0, which 
are identified as complex Euclidean spaces. By the isometry assumption, we have 
∂∂̄ log(1 − |F |2l′) = ∂∂̄ log(1 − |z|2l ). Since now F (0) = 0, by a standard reduction, 
we get 1 − |F |2l′ = 1 − |z|2l or |F |2l′ = |z|2l . The conclusion then follows from the following 
Proposition 2.2. �

Recall U(l′, N) = {A ∈ GL(N, C) : AIl′,N A
t = Il′,N }.
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Proposition 2.2. Let f = (f1, · · · , fN ) and g = (g1, · · · , gn) be two holomorphic maps 
on an open connected set V ⊂ Cm. Assume that l ≤ n, l′ ≤ N , and |f |2l′ = |g|2l on V , 
and {g1, · · · , gn} is a linearly independent set over C. Then l′ ≥ l and N − l′ ≥ n − l. 
Moreover, there exists a matrix T ∈ U(l′, N) and two holomorphic maps φ, ψ with l′ − l

and N − n − l′ + l components, respectively, such that
(1): (f1, · · · , fN ) = (g1, · · · , gl, φ, gl+1 · · · , gn, ψ)T .
(2): ‖φ‖ ≡ ‖ψ‖.

Proof. It follows from [28] that l′ ≥ l and N − l′ ≥ n − l. We will thus prove only the 
latter part of the conclusion. To make notations simple, by reordering the components 
of f , we assume |f |2l,l′,n+1 = |g|2l .

We write the vector space W = SpanC{g1, · · · , gn, f1, · · · , fN }. Since {g1, · · · , gn} is a 
linearly independent set over C, we can extend it a basis of W : {g1, · · · , gn, ϕ1, · · · , ϕk}. 
Here k ≥ 0 (k = 0 means no ϕ′

js appear) and ϕ1, · · · , ϕk are holomorphic functions on V .
Note there is an (n + k) × N matrix B such that (f1, · · · , fN ) = (g1, · · · , gn, ϕ1, · · · ,

ϕk)B. Then it yields that

|f |2l,l′,n+1 = fIl,l′,n+1,N f̄ t

= (g1, · · · , gn, ϕ1, · · · , ϕk)BIl,l′,n+1,N B̄t(ḡ1, · · · , ḡn, ϕ̄1, · · · , ϕ̄k)t.
(2.1)

By assumption, (2.1) equals to |g|2l . We will need the following lemma.

Lemma 2.3. Let h1, ..., hm be m linearly independent holomorphic functions in an open 
connected set V . Assume that (h1, ..., hm)C(h1, ..., hm)t = 0, where C is a Hermitian 
matrix, then C = 0. Consequently, if

(h1, ..., hm)C1(h1, ..., hm)t = (h1, ..., hm)C2(h1, ..., hm)t,

where C1, C2 are Hermitian matrices, then C1 = C2.

Proof of Lemma 2.3. We only prove the first part of the lemma. The second part of the 
statement is an easy consequence. We will prove by seeking a contradiction. Suppose 
C 
= 0. First write C = PDP

t, where D = diag(λ1, ..., λs, 0, ..., 0), s > 0, is a diagonal 
matrix, with all λi 
= 0, λ1 ≥ ... ≥ λs, and P is a unitary matrix. We write (g1, ..., gm) :=
(h1, ..., hm)P , which are also linearly independent. By hypotheses we have 

∑s
i=1 λi|gi|2 =

0. Clearly, λi cannot be all positive. Assume λ1 ≥ ... ≥ λν > 0 > λν+1 ≥ ... ≥ λs. It 
yields that,

ν∑
i=1

λi|gi|2 =
s∑

i=ν+1
(−λi)|gi|2.

It then follows from a lemma of D’Angelo ([6]) that the functions g1, ..., gm are linearly 
dependent. We thus get a contradiction. �
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Since (2.1) equals |g|2l , it follows from Lemma 2.3 that

BIl,l′,n+1,N B̄t = diag(−1, · · · , −1, 1, · · · , 1, 0, · · · , 0) (2.2)

where on the right hand side of (2.2), there are l negative and n − l positive ones, and 
k zeros on the diagonal. Now denote the rows of B by α1, · · · , αn, β1, · · · , βk, where 
αi, βj , 1 ≤ i ≤ n, 1 ≤ j ≤ k are N -dimensional row vectors. As a consequence of (2.2), 

we have if we write D =

⎛⎜⎝ α1
...

αn

⎞⎟⎠, then DIl,l′,n+1,N D̄t = Il,n. By page 386 of [4], we are 

able to extend {α1, · · · , αn} to {α1, · · · αn, αn+1, · · · , αN } such that

AIl,l′,n+1,N Āt = Il,l′,n+1,N ,

where A is the N ×N matrix whose jth row is αj , 1 ≤ j ≤ N . Thus A ∈ U(l, l′, n +1, N). 
Here U(l, l′, n + 1, m) = {T ∈ GL(m, C) : TIl,l′,n+1,mT̄ t = Il,l′,n+1,m}. Consequently, 
Il,l′,n+1,N Āt and C := (Il,l′,n+1,N Āt)−1 are also in U(l, l′, n + 1, N). Now set

f̂ = fIl,l′,n+1,N Āt = (g1, · · · , gn, ϕ1, · · · , ϕk)BIl,l′,n+1,N Āt.

Note by (2.2), 〈αi, βj〉l,l′,n+1 = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ k. A direct computation verifies 
that

BIl,l′,n+1,N Āt =
(

Il,n On×(N−n)
Ok×n M

)
.

Here Op×q denotes the p ×q zero matrix, M is a certain k×(N −n) matrix. Consequently,

f̂ = (−g1, · · · , −gl, gl+1, · · · , gn, h1, · · · , hN−n).

Write f̃ = f̂ Il,N = fIl,l′,n+1,N ĀtIl,N . Then

f̃ = (g1, · · · , gl, gl+1, · · · , gn, h1, · · · , hN−n).

Since Il,l′,n+1,N ĀtIl,N ∈ U(l, l′, n + 1, N), we have |f̃ |2l,l′,n+1 = |f |2l,l′,n+1 = |g|2l . 
This yields that 

∑l′−l
j=1 |hj |2 =

∑N−n
j=l′−l+1 |hj |2. Writing φ = (h1, · · · , hl′−l) and 

ψ = (hl′−l+1, · · · , hN−n), we have f = f̃T = (g1, · · · , gl, gl+1, · · · , gn, φ, ψ)T and 
‖φ‖2 ≡ ‖ψ‖2. Here T is the inverse of Il,l′,n+1,N ĀtIl,N , which is still in U(l, l′, n + 1, N).

Then we reorder the components of f and f̃ back to obtain Proposition 2.2. �
3. Geometric rank, second fundamental form and Levi null cone

In this section, we give the definition of geometric rank of CR transversal maps in the 
positive signature case and justify its invariant property. We also show the equivalence 
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between geometric rank zero condition and the null cone condition of the values of CR 
second fundamental form associated with the image manifold of the mapping.

We first set up certain notations and terminologies which will also be needed in §4
and §5 for the proof of our main theorem. For 0 ≤ l ≤ n − 1, we define the generalized 
Siegel upper-half space

Sn
l = {(z, w) ∈ Cn−1 × C : Im(w) > −

l∑
j=1

|zj |2 +
n−1∑

j=l+1

|zj |2}.

The boundary of Sn
l is the standard hyperquadrics: Hn

l = {(z, w) ∈ Cn−1 ×C : Im(w) =∑n−1
j=1 δj,l|zj |2}. We also define for l ≤ l′ ≤ N − 1

SN
l,l′,n = {(z, w) ∈ CN−1 × C : Im(w) >

N−1∑
j=1

δj,l,l′,n|zj |2}.

We similarly define SN
l′ , HN

l′ , HN
l,l′,n. Now for (z, w) = (z1, · · · , zn−1, w) ∈ Cn, let 

Ψn(z, w) = [i + w, 2z, i − w] ∈ P n. Then Ψn is the Cayley transformation which bi-
holomorphically maps the generalized Siegel upper-half space Sn

l and its boundary Hn
l

onto Bn
l \ {[z0, · · · , zn] : z0 + zn = 0} and ∂Bn

l \ {[z0, · · · , zn] : z0 + zn = 0}, respectively.
Note HN

l,l′,n is identical to HN
l′ if l′ = l. When l′ > l, HN

l′ is holomorphically equivalent 
to HN

l,l′,n by a permutation of coordinates in CN . We will more often work with HN
l,l′,n

instead of HN
l′ , as it makes notations simpler.

We will write Aut(Hn
l ) and Aut0(Hn

l ) for the (holomorphic) automorphism group of 
Hn

l and the isotropy group of Hn
l at 0, respectively. Write Aut+(Hn

l ) and Aut+
0 (Hn

l ) for 
the automorphisms in Aut(Hn

l ) and Aut0(Hn
l ), respectively, that in addition preserves 

sides (that is, maps Sn
l to Sn

l ). Clearly they are subgroups of Aut(Hn
l ) and Aut0(Hn

l ), 
respectively. We define Aut(HN

l,l′,n), Aut0(HN
l,l′,n) and Aut+(HN

l,l′,n) and Aut+
0 (HN

l,l′,n)
similarly.

Recall we denote by (z, w) = (z1, · · · , zn−1, w) the coordinates of Cn. Write u for the 
real part of w and write

Lj := 2iδj,lz̄j
∂

∂w
+ ∂

∂zj
, 1 ≤ j ≤ n − 1, T := ∂

∂u
. (3.1)

Then {L1, · · · , Ln−1} forms a global basis for the CR tangent bundle T (1,0)Hn
l of Hn

l , 
where T is a tangent vector field of Hn

l transversal to T (1,0)Hn
l ⊕ T (0,1)Hn

l .
Let F = (f̃ , g) = (f, φ, g) = (f1, · · · , fn−1, φ1, · · · , φN−n, g) be a holomorphic map 

from a neighborhood U of p0 ∈ Hn
l to CN , satisfying F (U∩Sn

l ) ⊂ SN
l,l′,n and F (U∩Hn

l ) ⊂
HN

l,l′,n. We additionally assume M1 := U ∩ Hn
l is connected and F is CR transversal on 

M1. We will define the geometric rank for such a map F .
First for each p ∈ M1, we associate it with a map Fp defined by

Fp = τF
p ◦ F ◦ σ0

p = (f̃p, gp) = (fp, φp, gp). (3.2)
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Here for each p = (z0, w0) ∈ M1, we write σ0
(z0,w0) ∈ Aut+(Hn

l ) for the map

σ0
(z0,w0)(z, w) = (z + z0, w + w0 + 2i〈z, z̄0〉l),

and define τ0
(z0,w0) ∈ Aut+(Hn

l,l′,n) by

τF
(z0,w0)(ξ, η) = (ξ − f̃(z0, w0), η − g(z0, w0) − 2i〈ξ, f̃(z0, w0)〉l,l′,n).

Then Fp is a holomorphic map in a neighborhood of 0 ∈ Cn, which sends an open piece 
of Hn

l into HN
l,l′,n with Fp(0) = 0. Moreover, F (U ∩ Sn

l ) ⊂ SN
l,l′,n.

Note the fundamental commutator identities hold:

[L̄j , Lj ] = 2iδj,l(
∂

∂w
+ ∂

∂w̄
) = 2iδj,l

∂

∂u
, 1 ≤ j ≤ n − 1;

[L̄j , Lk], [T, Lk], [Lj , Lk], [Lk, Lk] = 0, if 1 ≤ j 
= k ≤ n − 1.

(3.3)

By the assumption that F (U ∩ M1) ⊂ HN
l,l′,n, we have

Im g = 〈f̃ , ¯̃f〉l,l′,n on M1. (3.4)

In the following, for a holomorphic map h = (h1, · · · , hK) from Cn to CK , we write 
h′

zj
= (∂h1

∂zj
, · · · , ∂hK

∂zj
), h′′

wzj
= h′′

zjw = ( ∂2h1
∂w∂zj

, · · · , ∂2hK

∂w∂zj
), 1 ≤ j ≤ n − 1. The notations 

h′
w, h′′

zjzk
, h′′

ww are understood similarly. We apply L̄jLj to (3.4) and obtain

λ(p) := (gp)w(0) = gw(p) − 2i〈f̃ ′
w(p), f̃(p)〉l,l′,n = δj,l〈Lj(f̃), Lj(f̃)〉l,l′,n(p). (3.5)

Note this implies λ(p) is a real number. Recall the CR-transversality assumption is 
equivalent to λ(p) 
= 0 (see for example, [4]). Furthermore, since Fp preserves the sides, 
we have λ(p) > 0 (see e.g. page 396 in [4]).

We apply L̄k, Lj , j 
= k to (3.4) and get 〈Lj(f̃), Lk(f̃)〉l,l′,n |p= 0. Let for 1 ≤ j ≤ n −1,

Ej(p) :=
(∂f̃p

∂zj

)
|0=

(∂fp,1

∂zj
, · · · ,

∂fp,n−1

∂zj
,

∂φp,1

∂zj
· · · ,

∂φp,N−n

∂zj

)
|0= Lj(f̃)(p);

Ew(p) :=
(∂f̃p

∂w

)
|0=

(∂fp,1

∂w
, · · · ,

∂fp,n−1

∂w
,

∂φp,1

∂w
· · · ,

∂φp,N−n

∂w

)
|0= T (f̃)(p).

Then

〈Ej(p), Ej(p)〉l,l′,n = δj,lλ(p), 〈Ej(p), Ek(p)〉l,l′,n = 0, 1 ≤ j 
= k ≤ n − 1. (3.6)

Write E for the (n − 1) × (N − 1) matrix whose jth row is Ej(p)√
λ(p) , 1 ≤ j ≤ n − 1. Then 

E satisfies EIl,l′,n,N−1Ēt = Il,n−1. Here Il,n−1 and Il,l′,n,N−1 are as defined in §3.
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As in [4], we can choose (N − 1)-dimensional row vectors C1(p), · · · , CN−n(p) such 
that if we write

A(p) =

⎛⎜⎜⎜⎜⎜⎜⎝

E1(p)√
λ(p)
· · ·

En−1(p)√
λ(p)

C1(p)
· · ·

CN−n(p)

⎞⎟⎟⎟⎟⎟⎟⎠
then

A(p)Il,l′,n,N−1A(p)
t

= Il,l′,n,N−1, i.e., A(p) ∈ U(l, l′, n, N − 1). (3.7)

Here recall U(l, l′, n, m) = {T ∈ GL(m, C) : TIl,l′,n,mT̄ t = Il,l′,n,m}. Note that one 
can choose Cj(p)’s in such a way that A(p) is smooth in p for p ≈ p0 by the standard 
Gram-Schmidt process.

Next note B(p) := A−1(p) = Il,l′,n,N−1A(p)
t
Il,l′,n,N−1 is also in U(l, l′, n, N − 1). 

Write

B(p) = (B1(p), · · · , Bn−1(p), B̂n(p), · · · , B̂N−1(p)),

where Bj(p)′s and B̂i(p)′s are (N − 1)-dimensional column vectors. Note B1(p), · · · ,

Bn−1(p) only depend on E1(p), · · · , En−1(p). Indeed, we have

(B1(p), · · · , Bn−1(p)) = Il,l′,n,N−1

(
E1(p)

t√
λ(p)

, · · · ,
En−1(p)

t√
λ(p)

)
Il,n−1. (3.8)

Define F ∗
p = (f̃∗

p , g∗
p) = ((f∗

p )1, · · · , (f∗
p )n−1, (φ∗

p)1, · · · , (φ∗
p)N−n, g∗

p) by

F ∗
p = 1√

λ(p)
Fp

(
B(p) 0

0 1√
λ(p)

)
. (3.9)

Then F ∗
p is a holomorphic map in a neighborhood of 0 ∈ Cn, which sends an open piece 

of Hn
l into HN

l,l′,n with F ∗
p (0) = 0 and the following holds (see [4], [2] for more details).

⎧⎪⎪⎨⎪⎪⎩
f∗

p = z + O(|w| + |(z, w)|2)
φ∗

p = O(|w| + |(z, w)|2)
g∗

p = w + O(|(z, w)|2).

Let
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a(p) = (a1(p), · · · , an−1(p), an(p), · · · , aN−1(p)) :=
∂f̃∗

p

∂w
(0) = 1√

λ(p)
Ew(p)B(p).

(3.10)
Note

ak(p) = 1√
λ(p)

Ew(p)Bk(p) for 1 ≤ k ≤ n − 1, and |a(p)|2l,l′,n = 1
λ(p) |Ew(p)|2l,l′,n.

(3.11)
Set for 1 ≤ k, j ≤ n − 1,

dkj(p) :=
∂2(f∗

p )k

∂zj∂w
|0= 1√

λ(p)
(f̃p)′′

wzj
(0)Bk(p) = 1√

λ(p)
Lj(f̃ ′

w)(p)Bk(p),

ck(p) :=
∂2g∗

p

∂zk∂w
|0= 1

λ(p) (gp)′′
wzk

(0) = 1
λ(p)Lk(g′

w − 2i〈f̃ ′
w, f̃(p)〉l,l′,n,N ) |p,

r(p) := 1
2Re

(
∂2g∗

p

∂w2

)
|0= 1

2λ(p)Re
(
(gp)′′

ww(0)
)

= 1
2λ(p)Re

(
g′′

ww − 2i〈f̃ ′′
ww, f̃(p)〉l,l′,n,N

)
|p .

Write (ξ, η) = (ξ1, · · · , ξN−1, η) for the coordinates of CN and define

Gp(ξ, η) =
(

ξ − a(p)η
Qp(ξ, η) ,

η

Qp(ξ, η)

)
, (3.12)

where Qp(ξ, η) = 1 + 2i〈ξ, a(p)〉l,l′,n +
(
r(p) − i〈a(p), a(p)〉l,l′,n

)
η. Then Gp ∈

Aut+
0 (HN

l,l′,n). Let F ∗∗
p be the composition of F ∗

p with Gp:

F ∗∗
p = (f̃∗∗

p , g∗∗
p ) = (f∗∗

p , φ∗∗
p , g∗∗

p ) := Gp ◦ F ∗
p . (3.13)

We recall some notations (from [14,15] and [4]) for functions of weighted degree that will 
be used in the remaining context of the paper. We assign the weight of z to be 1, and 
assign the weight of u and w to be 2. We say a smooth function h(z, ̄z, u) on U ∩ Hn

l is 

of quantity Owt(s) for 0 ≤ s ∈ N, if 
∣∣∣∣ h(tz,tz̄,t2u)

ts

∣∣∣∣ is bounded for (z, u) on any compact 

subset of U ∩Hn
l and t close to 0. Similarly, we say h is of quantity owt(s) for 0 ≤ s ∈ N, 

if 
∣∣∣∣ h(tz,tz̄,t2u)

ts

∣∣∣∣ converges to 0 uniformly for (z, u) on any compact subset of U ∩ Hn
l as t

goes to 0.
In general, for a smooth function h(z, ̄z, u) on U ∩ Hn

l , we denote h(k)(z, ̄z, u) the 
sum of terms-weighted degree k in the Taylor expansion of h at 0. And h(k)(z, ̄z, u) also 
sometimes denotes a weighted homogeneous polynomial of degree k, if h is not specified. 
When h(k)(z, ̄z, u) extends to a holomorphic polynomial of weighted degree k, we write 
it as h(k)(z, w) or h(k)(z) if it depends only on z.
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By Lemma 2.2 in [4], we have the following normalization and CR Gauss-Codazzi 
equation:

Lemma 3.1. For each p ∈ M , F ∗∗
p satisfies the normalization condition:⎧⎪⎪⎨⎪⎪⎩

f∗∗
p = z + i

2a
∗∗(1)
p (z)w + Owt(4)

φ∗∗
p = φ

∗∗(2)
p (z) + Owt(3)

g∗∗
p = w + Owt(5),

with

〈z̄, a∗∗(1)
p (z)〉l|z|2l = |φ∗∗(2)

p (z)|τ , τ = l′ − l. (3.14)

Remark 3.2. As mentioned in [4], there exists τ∗∗
p ∈ Aut+

0 (HN
l,l′,n) such that F ∗∗

p = τ∗∗
p ◦

Fp. From (3.14), we see, if we write a∗∗(1)
p (z) = zA(p), then A(p)Il,n−1 is a (n −1) ×(n −1)

Hermitian matrix.

We next claim that A(p) is independent of the choice of Cj(p). To see this, we first 
recall

f̃∗∗
p =

f̃∗
p − a(p)g∗

p

1 + 2i〈f̃∗
p , a(p)〉l,l′,n +

(
r(p) − i〈a(p), a(p)〉l,l′,n

)
g∗

p

.

Then,

P k
j =

∂2(f∗∗
p )k

∂zj∂w
|0= dkj(p) − ak(p)cj(p) − δk

j (i〈a(p), a(p)〉l,l′,n + r(p)). (3.15)

Here δk
j is the Kronecker symbol. Note each term in (3.15) is independent of Cj(p).

Definition 3.3. The rank of the (n − 1) × (n − 1) matrix A(p) = −2i(P k
j )1≤j,k≤(n−1), 

denoted by RkF (p), is called the geometric rank of F at p. In particular, F is said to 
have geometric rank zero at p if RkF (p) = 0, which occurs if and only if A(p) = 0.

Since A(p) is smooth on p, we see that RkF (p) is a lower semi-continuous function in 
p ∈ U ∩ Hn

l . Furthermore, with the same proof as that for Lemma 2.2 (A), (B) in [15], 
we have the following invariant property of geometric rank:

Proposition 3.4. Let F1 be holomorphic in a small neighborhood U ⊂ Cn of p ∈ Hn
l as 

above. That is F1(U ∩ Hn
l ) ⊂ HN

l,l′,n and F1(U ∩ Sn
l ) ⊂ SN

l,l′,n. Moreover, F1 is CR-
transversal along U ∩ Hn

l . Assume that F2 = τ ◦ F1 ◦ σ with σ ∈ Aut+(Hn
l ) and τ ∈

Aut+(HN
l,l′,n). Then F2 is CR-transversal and side-preserving map from Hn

l to HN
l,l′,n, 

and RkF2(p) = RkF1(σ(p)).
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We next define the geometric ranks for maps between generalized spheres. Let F be a 
holomorphic map from a small neighborhood U of q ∈ ∂Bn

l to CN . Assume F (U ∩Bn
l ) ⊂

BN
l′ and F (U ∩ ∂Bn

l ) ⊂ ∂BN
l′ , and in addition F is CR-transversal along U ∩ ∂Bn

l . We 
can find some Cayley transformations Φq that biholomorphically maps Sn

l and Hn
l to 

Bn
l \ V and ∂Bn

l \ V for some variety V with q /∈ V . Write p = Φ−1
q (q) ∈ Hn

l .
Similarly, we can find some Cayley transformation ΨF (q) that biholomorphically maps 

SN
l,l′,n and HN

l,l′,n to BN
l′ \ W and ∂BN

l′ \ W for some variety W with F (q) /∈ W . Set 
F̂ = Ψ−1

F (q) ◦ F ◦ Φq and regard it as a germ of map at p ∈ Hn
l . We then define the 

geometric rank of F at q, denoted by RkF (q), to be the geometric rank RkF̂ (p) of F̂ at 
p. By the above proposition, RkF (q) is independent of the choices of Φq and ΨF (q), and 
thus it is well-defined. Note RkF (q) is a lower semi-continuous function in q ∈ U ∩ ∂Bn

l .

We next give a description of the geometric rank zero condition in terms of the CR 
second fundamental form and the Levi null cone. The reader is refereed to [10] for many 
notations and background on this matter.

Let M̂ ⊂ CN be a Levi non-degenerate hypersurface with signature l′. Let M ⊂ M̂

be a Levi non-degenerate submanifold of hypersurface type of signature l and of CR 
dimension n − 1. Let θ̂ be a contact form of M̂ and T̂ be its corresponding Reeb vector 
field. Let {L̂1, · · · , L̂N−1} be a frame of T (1,0)M̂ near q̂ ∈ M ⊂ M̂ . We can assume that 
{L̂1, · · · , L̂n−1} are tangent to M when restricted to M . Let {θ̂1, · · · , θ̂N−1, θ̂} be the dual 
frame of {L̂1, · · · , L̂N−1, T̂ }. Then the Levi matrix (ĝαβ) is given by dθ̂ = iĝαβ θ̂α ∧ θ̂β . 
We normalize the frames such that (ĝαβ) = Il,l′,n,N−1. Let ω̂j

k be the Webster connection 

with respect to this frame (see [2]). Identify the CR normal bundle N = T (1,0)M̂/T (1,0)M

along M as the orthogonal complement (with respect to the Levi form of M̂) of T (1,0)M

in T (1,0)M̂ restricted to M . Then N has a frame {L̂a}N−1
a=n . Write ω̂j

k = ω̂j
kσ θ̂σ. Then 

the CR second fundamental form 
∏

: T
(1,0)
q̂ M × T

(1,0)
q̂ M → T

(1,0)
q̂ M̂

/
T

(1,0)
q̂ M of M in 

its ambient space M̂ is given by 
∏

(L̂α, L̂β) =
∑N−1

a=n ω̂a
αβL̂a. Notice the concept of CR 

second fundamental form is invariant under holomorphic change of coordinates.
Now, we take M̂ = HN

l,l′,n and M = F (U∩Hn
l ). For any p ∈ M ⊂ M̂ , as in Remark 3.2, 

after a holomorphic change of coordinates, we can assume that p = 0 and M is the image 
of Hn

l under F which satisfies the normalization in Lemma 3.1. Then by the computation 
in [9], writing φ(2) = (φ(2)

1 , · · · , φ(2)
N−n), we have 

∏
(
∑n−1

α=1 bα
∂

∂zα
|0, 

∑n−1
α=1 bα

∂
∂zα

|0) =∑N−n
j=1 φ

(2)
j (b) ∂

∂ξj+n−1
|0. Here (ξ, η) = (ξ1, · · · , ξN , η) is the coordinates of the target 

Euclidean space CN . Recall that the rank zero condition is equivalent to |φ(2)|τ ≡ 0. 
With these set-ups, we have the following:

Proposition 3.5. Let F be a holomorphic map in an open set U and maps M := U ∩ Hn
l

into HN
l,l′,n. Assume F is CR transversal along M . Then the following two statements 

are equivalent:
(1): F has geometric rank zero at every q ∈ M .
(2): For any q̂ ∈ F (M) ⊂ HN

l′ , and any Xq̂ ∈ T (1,0)M , then L̂q̂(
∏

(Xq̂, Xq̂), 
∏

(Xq̂, Xq̂))
= 0. Here L̂q̂ is the Levi form of the ambient space at q̂. Namely, the value of the second 
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fundamental form of M in its ambient space is in the null cone of the Levi form of the 
ambient space.

Claim. A holomorphic map F = (f̃ , g) = (z, φ, ψ, w) : Hn
l → HN

l,l′,n with ‖φ‖ ≡ ‖ψ‖ has 
geometric rank zero (here φ, ψ have l′ − l and N − n − l′ + l components, respectively).

Proof. We first prove it is the case at p = 0. Note 〈φ, φ(0)〉 = 〈ψ, ψ(0)〉. Consequently, 
〈f̃ , f̃(0)〉l,l′,n = 0. Write F (0) = (q̃, qn) = (q̃, 0) and take τ0 ∈ Aut+(HN

l,l′,n) to be 
τ0(ξ, η) = (ξ− q̃, η−2i〈ξ, ̃q〉l,l′,n). Set F1 = τ0 ◦F . Then F1(0) = 0 and F1 = (z, φ1, ψ1, w)
with ‖φ1‖ ≡ ‖ψ1‖. We replace F by F1 and still write the new map as F . This will not 
change the geometric rank at p = 0. (See Proposition 3.4.) Then notice there exist 
holomorphic functions ϕ1, · · · , ϕk which has no constant terms or linear terms in z

such that SpanC{z1, · · · , zn−1, φ, ψ} = SpanC{z1, · · · , zn−1, ϕ1, · · · , ϕk}. By the proof 
of Proposition 2.2, we can find some matrix T ∈ U(l, l′, n − 1, N − 1) such that F2 =
(f̃T, w) = (z, φ̂, ψ̂, w), and the components of φ̂, ψ̂ are linear combinations of ϕj ’s. In 
particular, they have no linear terms in z. Then it is easy to verify by definition that 
the geometric rank of F2 is zero at p = 0. By Proposition 3.4, F also has geometric 
rank zero at p = 0. To study the geometric rank at a point p ≈ 0, we note there exists 
σ ∈ Aut+(Hn

l ) such that σ(0) = p. Moreover, there exists τ ∈ Aut+(HN
l,l′,n) such that 

G := τ ◦F ◦σ = (z, φ, ψ, w). By the preceding argument, RkG(0) = 0. By Proposition 3.4, 
we have RkF (p) = RkF (σ(0)) = RkG(0) = 0. �
4. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. We will first work with maps between 
hyperquadrics instead of generalized spheres. This makes it easier to apply techniques 
from CR geometry. The following result is crucial to establish Theorem 1.1.

Theorem 4.1. Let U ⊂ Cn a small (connected) neighborhood of 0. Let F be a holomorphic 
map from U to CN such that F (0) = 0 and F (U ∩ Hn

l ) ⊂ HN
l,l′,n, F (U ∩ Sn

l ) ⊂ SN
l,l′,n. 

Then the following statements are equivalent.
(1) F is CR transversal at 0 and F has geometric rank zero near 0 along Hn

l .
(2) There exists some τ ∈ Aut+

0 (HN
l,l′,n) such that the following holds near 0:

τ ◦ F = (z, φ, ψ, w),

where φ and ψ are holomorphic maps near 0 with l′ − l and N − n − l′ + l components, 
respectively, satisfying ‖φ‖ ≡ ‖ψ‖.

At the end of §3, we have shown that (2) implies (1). We will therefore prove only the 
converse implication in this section.
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4.1. Some preliminaries

Assume F satisfies the assumption in (1). By Lemma 3.1 and the zero geometric rank 
condition, we can compose F with some element in Aut+

0 (HN
l,l′,n) to make F = (f̃ , g) =

(f, ϕ, g) satisfy the following normalization:⎧⎪⎪⎨⎪⎪⎩
f = z + Owt(4)
φ = φ(2)(z) + Owt(3)
g = w + Owt(5).

(4.1)

For p ∈ M near 0, let Fp be as in (3.2) and λ(p) as in (3.5). Recall λ(p) ≈ 1 is a 
real number for p ≈ 0. Let F ∗

p = ( 1√
λ

f̃pB(p), 1
λ gp) be as in (3.9). We next let B(p) =

(B1(p), · · · , Bn−1(p), B̂n(p), · · · , B̂N−1(p)) ∈ U(l, l′, n, N − 1) be as in §3. In particular, 
(3.8) holds:

(B1(p), · · · , Bn−1(p)) = Il,l′,n,N−1

(
E1(p)

t√
λ(p)

, · · · ,
En−1(p)

t√
λ(p)

)
Il,n−1. (4.2)

Let a(p) be as in (3.10) and (3.11). Then we have

aj(p) = 1
λ(p) 〈T (f̃), δj,lLj(f̃)〉l,l′,n, if 1 ≤ j ≤ n − 1; (4.3)

aj(p) = 1√
λ(p)

〈T (f̃), B̂j(p)〉, if n ≤ j ≤ N − 1. (4.4)

Let r(p) = 1
2Re

(
∂2g∗

p

∂w2

)
|0 be as in §3 and write

�(f∗
p , g∗

p) := 1 + 2i〈f̃∗
p , a(p)〉l,l′,n +

(
r(p) − i〈a(p), a(p)〉l,l′,n

)
g∗

p. (4.5)

Let F ∗∗
p = (f̃∗∗

p , g∗∗
p ) be as in (3.13). That is,

f̃∗∗
p =

f̃∗
p − a(p)g∗

p

�(f∗
p , g∗

p) , g∗∗
p =

g∗
p

�(f∗
p , g∗

p) . (4.6)

Then the normalization in Lemma 3.1 holds.
We pause to fix some notations. Write N for the set of non-negative integers. For a 

multi-index α = (α1, · · · , αn−1) ∈ Nn−1 and β ∈ N, we write Dα
z Dβ

w = ∂|α|+|β|

∂z
α1
1 ···∂z

αn−1
n−1 ∂wβ

. 
In the following context, we will introduce a notion of weighted degree in p ∈ Hn

l . Let 
h(z, w, p) be a smooth function in W × V . Here (z, w) ∈ W and W is an open set in 
Cn−1 ×C, while p ∈ V and V is an open subset of Hn

l containing 0. We say h ∈ Owt,p(k)
with k ≥ 0 if for every α ∈ Nn−1, β ∈ N and (z0, w0) ∈ W , it holds that H(p) :=
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Dα
z Dβ

wh(z0, w0, p) is in Owt(k). That is, writing p = (p̂, pn) = (p1, · · · , pn−1, pn = u +

iv), we have 

∣∣∣∣H(tp̂,t ¯̂p,t2u)
tk

∣∣∣∣ is bounded for p on any compact subset of V and t close to 

0. Sometimes even h is independent of (z, w), we will still use the notion Owt,p(k) to 
distinguish the variables (z, w) and p. We next prove the following proposition.

Proposition 4.2.

λ(p) = 1 + Owt,p(3), (4.7)

aj(p) = Owt,p(2) if 1 ≤ j ≤ n − 1, (4.8)

aj(p) = Owt,p(1) if n ≤ j ≤ N − 1, (4.9)

r(p) = Owt,p(1). (4.10)

Proof of Proposition 4.2. Note by (4.1), Tg(p) = g′
w(p) = 1 + Owt,p(3), f(p) = Owt,p(1), 

Tf(p) = f ′
w(p) = Owt,p(2), and also ϕ(p) = Owt,p(2), Tϕ(p) = ϕ′

w(p) = Owt,p(1). And 
Ljϕ(p) = Owt,p(1) for 1 ≤ j ≤ n − 1. We have by (3.5), λ(p) = 1 + Owt,p(3). It follows 
from (4.3) and (4.7) that

aj(p) = Owt,p(2) if 1 ≤ j ≤ n − 1.

When n ≤ j ≤ N−1, since T f̃(p) = Owt,p(1), we conclude by (4.4) that aj(p) = Owt,p(1). 
Note g′′

ww(p) = Owt,p(1), f̃(p) = Owt,p(1). Using (4.7), we have r(p) = Owt,p(1). �
4.2. A crucial proposition

The key step to prove Theorem 4.1 is to establish the following Proposition 4.3. The 
proof of the proposition heavily relies on the moving point trick (see [14]). Recall τ = l′−l.

Proposition 4.3. Let F be as above. Fix an integer s ≥ 5. Assume⎧⎪⎪⎨⎪⎪⎩
(f∗∗

p )(t−1) ≡ 0,

(g∗∗
p )(t) ≡ 0,

〈(ϕ∗∗
p )(s1), (ϕ∗∗

p )(s2)〉τ ≡ 0,

(4.11)

for all p ∈ Hn
l close to 0 and all 4 ≤ s1 + s2 = t < s. Then (4.11) holds at p = 0 for 

s1 + s2 = t = s.

Proof of Proposition 4.3. We split the proof into several lemmas (Lemma 4.4–4.14). Re-
call we denote by N the set of non-negative integers. Let α ∈ Nn−1, β ∈ N. We say 
(α, β) ∈ E if |α| + β = 1. Fix an integer ŝ ≥ 2. Write Iŝ for the collection of indices 
(α, β) ∈ Nn−1 × N that satisfies |α| + 2|β| = ŝ and (α, β) /∈ E .



18 X. Huang et al. / Advances in Mathematics 374 (2020) 107388
Lemma 4.4. Let s ≥ 5 be as in Proposition 4.3. Fix s1 ≥ 2, s2 ≥ 2 with s1 +s2 < s. Then 
for any (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 , and any 1 ≤ j ≤ n − 1, the following hold:

〈LjLα1T β1ϕ(s1+1), Lα2T β2ϕ(s2)〉τ (p) = −〈Lα1T β1ϕ(s1), L̄jLα2T β2ϕ(s2+1)〉τ (p); (4.12)

〈L̄jLα1T β1ϕ(s1+1), Lα2T β2ϕ(s2)〉τ (p) = −〈Lα1T β1ϕ(s1), LjLα2T β2ϕ(s2+1)〉τ (p). (4.13)

Proof of Lemma 4.4. We start with the hypothesis (4.11), which implies that

〈Dα1
z Dβ1

w f̃∗∗
p , Dα2

z Dβ2
w f̃∗∗

p 〉l,l′,n(0) = 0, (4.14)

where (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 . Note that by (4.5), (4.6), we have

f̃∗∗
p = f̃∗

p [1 − 2i〈f̃∗
p , a(p)〉l,l′,n − r(p)g∗

p] − a(p)g∗
p + Owt,p(2). (4.15)

Recall g∗
p = gp

λ(p) . Also λ(p) = 1 + Owt,p(3) and

Dα
z Dβ

wgp(0) = LαT βg(p) − 2i〈LαT β f̃(p), f̃(p)〉l,l′,n. (4.16)

It then follows from the assumption that whenever |α| + 2β ≤ s − 2, and (α, β) /∈ E , we 
have

Dα
z Dβ

wg∗
p(0) = Owt,p(2).

Recall by Proposition 4.2, a(p) = Owt,p(1) and r(p) = Owt,p(1). We then obtain from 
(4.14) and (4.15) that

〈Dα1
z Dβ1

w f̃∗
p , Dα2

z Dβ2
w f̃∗

p 〉l,l′,n(0)

+〈Dα1
z Dβ1

w f̃∗
p , −2iDα2

z Dβ2
w (f̃∗

p 〈f̃∗
p , ā〉l,l′,n)〉l,l′,n(0)

+〈−2iDα1
z Dβ1

w (f̃∗
p 〈f̃∗

p , ā〉l,l′,n), Dα2
z Dβ2

w f̃∗
p 〉l,l′,n(0)

+〈Dα1
z Dβ1

w f̃∗
p , −Dα2

z Dβ2
w (r(p)f̃∗

p g∗
p)〉l,l′,n(0)

+〈−Dα1
z Dβ1

w (r(p)f̃∗
p g∗

p), Dα2
z Dβ2

w f̃∗
p 〉l,l′,n(0) = Owt,p(2).

(4.17)

On the other hand, recall f̃∗
p = 1√

λ(p) f̃pB(p), and B(p)Il,l′,n,N−1B(p)
t

= Il,l′,n,N−1. This 

implies for any α̂1, α̂2 ∈ Nn−1, and β̂1, β̂2 ∈ N,

〈Dα̂1
z Dβ̂1

w f̃∗
p , Dα̂2

z Dβ̂2
w f̃∗

p 〉l,l′,n(0)

= 1 〈Dα̂1
z Dβ̂1

w f̃p, Dα̂2
z Dβ̂2

w f̃p〉l,l′,n(0) = 1 〈Lα̂1T β̂1 f̃(p), Lα̂2T β̂2 f̃(p)〉l,l′,n.
(4.18)
λ(p) λ(p)
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Now letting |α̂1| +2β̂1 ≥ 2 or |α̂2| +2β̂2 ≥ 2 and |α̂1| +2β̂1 + |α̂2| +2β̂2 ≤ s −1, we have 

Lα̂1T β̂1f(p) = Owt,p(1) or Lα̂2T β̂2f(p) = Owt,p(1), and 〈Lα̂1T β̂1ϕ(p), Lα̂2T β̂2ϕ(p)〉τ =
Owt,p(1). Thus the quantity in (4.18) belongs to Owt,p(1). But r(p) = Owt,p(1), and 
aj(p) = Owt,p(1) for all j. This implies the last four terms on the left hand side of (4.17)
belong to Owt,p(2). Hence we obtain from (4.17) that the weighted degree one part (in p) 
in expansion of 〈Dα1

z Dβ1
w f̃∗

p , Dα2
z Dβ2

w f̃∗
p 〉l,l′,n(0) equals 0. By (4.18) and (4.7), we conclude 

that the weighted degree one part in expansion of 〈Lα1T β1 f̃(p), Lα2T β2 f̃(p)〉l,l′,n equals 
zero.

Using again the fact

Dα̂
z Dβ̂

wfp(0) = Lα̂T β̂f(p) = Owt,p(1),

whenever 2 ≤ |α̂| + 2β̂ ≤ s − 2, we have 〈Lα1T β1f(p), Lα2T β2f(p)〉l belongs to 
Owt,p(2). Hence we conclude the weighted degree one part in the expansion of 
〈Lα1T β1ϕ(p), Lα2T β2ϕ(p)〉τ equals 0. This means

〈Lα1T β1ϕ(s1+1)(p), Lα2T β2ϕ(s2)(p)〉τ + 〈Lα1T β1ϕ(s1)(p), Lα2T β2ϕ(s2+1)(p)〉τ = 0.

(4.19)

We finally apply Lj and Lj to (4.19) and obtain the two equations in Lemma 4.4. �
Write ej ∈ Nn−1, 1 ≤ j ≤ n − 1, for the (n − 1)-tuple whose jth component equals 

1 and all other components equal 0. Write α1 =
∑n−1

j=1 k1
j ej , i.e. α1 = (k1

1, · · · , k1
n−1). 

Similarly, write α2 =
∑n−1

j=1 k2
j ej . We have the following lemmas.

Lemma 4.5. Let s1 ≥ 2, s2 ≥ 2 and s1 +s2 = s ≥ 5. Assume (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 , 
β1 ≥ 1, and (α1, β1 − 1) /∈ E. If there is some 1 ≤ j0 ≤ n − 1, such that k1

j0
= 0 and 

k2
j0

= 0, then

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ (p) = −〈Lα1T β1−1ϕ(s1−2), Lα2T β2+1ϕ(s2+2)〉τ (p).

Proof of Lemma 4.5. We have

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = 〈TLα1T β1−1ϕ(s1), Lα2T β2ϕ(s2)〉τ

=δj0,l

2i
〈(L̄j0Lj0 − Lj0L̄j0)Lα1T β1−1ϕ(s1), Lα2T β2ϕ(s2)〉τ .

(4.20)

Here we have used the identity [L̄j , Lj ] = 2iδj,lT . By the assumption k1
j0

= 0,

Lj0L̄j0Lα1T β1−1ϕ(s1) = Lj0Lα1T β1−1L̄j0ϕ(s1) = 0.

Furthermore, note (α1 + ej0 , β1 − 1) /∈ E . We apply Lemma 4.4 twice to obtain (4.20)
equals
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− δj0,l

2i
〈Lj0Lα1T β1−1ϕ(s1−1), Lj0Lα2T β2ϕ(s2+1)〉τ

=δj0,l

2i
〈Lα1T β1−1ϕ(s1−2), L̄j0Lj0Lα2T β2ϕ(s2+2)〉τ .

(4.21)

Again noting

L̄j0Lj0 = Lj0L̄j0 + 2iδj0,lT and Lj0L̄j0Lα2T β2ϕ(s2+1) = Lj0Lα2T β2L̄j0ϕ(s2+1) = 0,

we have (4.21) equals to the following

δj0,l

2i
(−2iδj0,l)〈Lα1T β1−1ϕ(s1−2), TLα2T β2ϕ(s2+2)〉τ

=−〈Lα1T β1−1ϕ(s1−2), Lα2T β2+1ϕ(s2+2)〉τ .

This proves Lemma 4.5. �
Lemma 4.6. Let s, s1, s2 be as in Lemma 4.5 and (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 . Then

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ (p) = C〈Lα̂1T β̂1ϕ(s∗
1), Lα̂2T β̂2ϕ(s∗

2)〉τ (p).

Here C is a nonzero constant. Moreover, if s = 2s∗ is even, then s∗
1 = s∗

2 = s∗. If 
s = 2s∗ + 1 is odd, then s∗

1 = s∗, s∗
2 = s∗ + 1. And (α̂1, β̂1) ∈ Is∗

1 , (α̂2, β̂2) ∈ Is∗
2 .

Proof of Lemma 4.6. We first notice that the following equations follow from (3.3) and 
an induction argument:

L̄jLk
j = Lk

j L̄j + 2ikδj,lTLk−1
j ; L̄k

j Lj = LjL̄k
j + 2ikδj,lT L̄k−1

j . (4.22)

The proof of Lemma 4.6 for s = 5 is slightly different and we will leave it to §5. 
We will therefore assume s ≥ 6 in the following context of proof. Furthermore, since 
〈A, B̄〉τ = 〈B, Ā〉τ for two vectors A, B, we will assume s1 ≥ s2 − 1.

We prove by induction on m = s1 −s2 ≥ 0. If m = −1 or 0, i.e. s1 = s2 −1 or s1 = s2, 
the conclusion is trivial. Now suppose the conclusion holds for −1 ≤ m ≤ k with k ≥ 0
and consider the case where m = k + 1. In this case, s1 − s2 ≥ 1 and thus s1 ≥ 4. We 
have two different cases (A) and (B).

(A) If α1 
= 0, we let i0 be the smallest integer such that k1
i0


= 0 and write α̃1 =
α1 − ei0 . Then we have by Lemma 4.4,

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ

=〈Li0Lα̃1T β1ϕ(s1−1), Lα2T β2ϕ(s2)〉τ

= − 〈Lα̃1T β1ϕ(s1−1), L̄ Lα2T β2ϕ(s2+1)〉 .

(4.23)
i0 τ
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Write α2 =
∑n−1

j=1 k2
j ej . Note if k2

i0
= 0, then L̄i0Lα2T β2ϕ(s2+1) = 0, and the conclusion 

is trivially true. Now assume k2
i0


= 0 and write α̃2 = α2 − k2
i0

ei0 . Then by (4.22), we 
have (4.23) equals

− 〈Lα̃1T β1ϕ(s1−1), L̄i0L
k2

i0
i0

Lα̃2T β2ϕ(s2+1)〉τ

= − 〈Lα̃1T β1ϕ(s1−1), (L
k2

i0
i0

L̄i0 + 2ik2
i0

δi0,lTL
k2

i0
−1

i0
)Lα̃2T β2ϕ(s2+1)〉τ

=2ik2
i0

δi0,l〈Lα̃1T β1ϕ(s1−1), L
k2

i0
−1

i0
Lα̃2T β2+1ϕ(s2+1)〉τ .

Now (s1 −1) −(s2 +1) = k −1 and thus the proof is finished by the inductive hypothesis.

(B) If α1 = 0, then β1 ≥ 2. We have by (3.3) and Lemma 4.4,

〈T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ

=δ1,l

2i
〈(L̄1L1 − L1L̄1)T β1−1ϕ(s1), Lα2T β2ϕ(s2)〉τ

=δ1,l

2i
〈L̄1L1T β1−1ϕ(s1), Lα2T β2ϕ(s2)〉τ

=−δ1,l

2i
〈L1T β1−1ϕ(s1−1), L1Lα2T β2ϕ(s2+1)〉τ .

Again now (s1 −1) −(s2 +1) = k−1 and the proof is done by the inductive hypothesis. 
This establishes Lemma 4.6. �
Lemma 4.7. (a). Let s1, s2, s be as in Lemma 4.5. Let (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 . If 
α1 
= α2, then

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ (p) = 0.

(b). Let s1, s2, s be as in Lemma 4.5 and assume s is odd. Let (α1, β1) ∈ Is1 , (α2, β2) ∈
Is2 . Then

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ (p) = 0.

Proof of Lemma 4.7. Again we will treat the case for s = 5 separately and leave its 
proof to §5. We therefore assume here s ≥ 6. Writing αi =

∑n−1
j=1 ki

jej , 1 ≤ i ≤ 2, by 
assumption there is some 1 ≤ j ≤ n − 1 such that k1

j 
= k2
j . To make the notation simple, 

we assume, without loss of generality, that k1
j > k2

j , and will further assume j = 1. We 
will first need the following claim.

Claim 4.8. If Lα1T β1 = L2
1, or Lα1T β1 = L1Lj , j 
= 1, or Lα1T β1 = L1T , then

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = 0.
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Proof. We prove the three cases separately.
(I). If Lα1T β1 = L2

1, we have s1 = 2. Since s ≥ 6, we have s2 ≥ 4, i.e. |α2| + 2β2 ≥ 4. 
Note k2

1 = 0 or 1. First assume k2
1 = 0.

(1). If α2 
= 0, then there is some 2 ≤ j ≤ n − 1 such that k2
j 
= 0. Write α̃2 = α2 − ej . 

We have by Lemma 4.4,

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = 〈L2
1ϕ(2), LjLα̃2T β2ϕ(s2)〉τ

= − 〈L̄jL2
1ϕ(3), Lα̃2T β2ϕ(s2−1)〉τ = 0.

(2). If α2 = 0, then β2 ≥ 2. We have by (3.3) and Lemma 4.4,

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = 〈L2
1ϕ(2), TT β2−1ϕ(s2)〉τ

=−δ2,l

2i
〈L2

1ϕ(2), (L̄2L2 − L2L̄2)T β2−1ϕ(s2)〉τ = −δ2,l

2i
〈L2

1ϕ(2), L̄2L2T β2−1ϕ(s2)〉τ

=δ2,l

2i
〈L2L2

1ϕ(3), L2T β2−1ϕ(s2−1)〉τ = −δ2,l

2i
〈L1L2ϕ(2), L̄1L2T β2−1ϕ(s2)〉τ = 0.

Now consider the case k2
1 = 1, write α̃2 = α2 − e1. Then by Lemma 4.4 and (4.22),

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = 〈L2
1ϕ(2), L1Lα̃2T β2ϕ(s2)〉τ

= − 〈L̄1L2
1ϕ(3), Lα̃2T β2ϕ(s2−1)〉τ = −4iδ1,l〈L1Tϕ(3), Lα̃2T β2ϕ(s2−1)〉τ .

It is reduced to case (III).
(II). If Lα1T β1 = L1Lj , j 
= 1. We again have s1 = 2, s2 ≥ 4. Note also we must have 

k2
1 = 0. If there exist i 
= j such that k2

i 
= 0, then write α̃2 = α2 − ei and by Lemma 4.4,

〈L1Ljϕ(2), LiLα̃2T β2ϕ(s2)〉τ = −〈L̄iL1Ljϕ(3), Lα̃2T β2ϕ(s2−1)〉τ = 0.

Now assume k2
i = 0 for all i 
= j and k2

j 
= 0. Then by Lemma 4.4 and (3.3),

〈L1Ljϕ(2), Lα2T β2ϕ(s2)〉τ = 〈L1Ljϕ(2), LjLα2−ej T β2ϕ(s2)〉τ

= − 〈L1L̄jLjϕ(3), Lα2−ej T β2ϕ(s2−1)〉τ = −2iδj,l〈L1Tϕ(3), Lα2−ej T β2ϕ(s2−1)〉τ .

Again it is reduced to case (III).
Finally consider α2 = 0. Then β2 ≥ 2. We have again by (3.3) and Lemma 4.4,

〈L1Ljϕ(2), T β2ϕ(s2)〉τ = −δ1,l

2i
〈L1Ljϕ(2), L̄1L1T β2−1ϕ(s2)〉τ

=δ1,l

2i
〈L2

1Ljϕ(3), L1T β2−1ϕ(s2−1)〉τ = −δ1,l

2i
〈L2

1ϕ(2), L̄jL1T β2−1ϕ(s2)〉τ = 0.

(III). If Lα1T β1 = L1T , then s1 = 3, s2 ≥ 3 and k2
1 = 0. We have several subcases:
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(1). If |α2| ≥ 2, then there exist j 
= 1, such that k2
j 
= 0. By Lemma 4.4,

〈L1Tϕ(3), Lα2T β2ϕ(s2)〉τ = 〈L1Tϕ(3), LjLα2−ej T β2ϕ(s2)〉τ

= − 〈L̄jL1Tϕ(4), Lα2−ej T β2ϕ(s2−1)〉τ = 0.

(2). If |α2| = 1 and β2 ≥ 2, then the same computation as in the preceding case (1) 
yields

〈L1Tϕ(3), Lα2T β2ϕ(s2)〉τ = 0.

(3). Next consider the case |α2| = 1, and β2 = 1. Writing Lα2 = Lj , j 
= 1, we have

〈L1Tϕ(3), LjTϕ(3)〉τ

=−δj,l

2i
〈L1Tϕ(3), (L̄jLj − LjL̄j)Ljϕ(3)〉τ

=−δj,l

2i
〈L1Tϕ(3), L̄jL2

jϕ(3)〉τ + δj,l

2i
〈L1Tϕ(3), LjL̄jLjϕ(3)〉τ .

(4.24)

Note by Lemma 4.4 and (3.3) respectively, we have

〈L1Tϕ(3), L̄jL2
jϕ(3)〉τ = −〈LjL1Tϕ(4), L2

jϕ(2)〉τ = 〈LjTϕ(3), L̄1L2
jϕ(3)〉τ = 0;

〈L1Tϕ(3), Lj(L̄jLj)ϕ(3)〉τ = −2iδj,l〈L1Tϕ(3), LjTϕ(3)〉τ .

We substitute the above two equations into (4.24) to get

〈L1Tϕ(3), LjTϕ(3)〉τ = −〈L1Tϕ(3), LjTϕ(3)〉τ .

Hence 〈L1Tϕ(3), LjTϕ(3)〉τ = 0.
(4). We finally consider the case where |α2| = 0. Then we must have β2 ≥ 2. In this case, 
the proof is similar to the case (I).(2).

This proves Claim 4.8. �
Now we come back to the proof of part (a), Lemma 4.7. Recall k1

1 > k2
1. Suppose 

k2
1 = 0. If Lα1T β1 ∈ {L2

1, L1L2, · · · , L1Ln−1, L1T}, then we are done by Claim 4.8. 
Otherwise, i.e. Lα1T β1 /∈ {L2

1, L1L2, · · · , L1Ln−1, L1T}, we have (α1 − e1, β1) /∈ E and 
by Lemma 4.4,

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = 〈L1Lα1−e1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ

= − 〈Lα1−e1T β1ϕ(s1−1), L̄1Lα2T β2ϕ(s2+1)〉τ = 0.

Now we assume k2
1 ≥ 1. Note k1

1 − (k2
1 − 1) ≥ 2. We can keep applying Lemma 4.4

and (4.22) to move (k2
1 − 1) L1’s to Lα2T β2ϕ(s2), and annihilate (k2

1 − 1) L′
1s in Lα2 . 
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Then we get a new inner product 〈Lα̃1T β̃1ϕ(s̃1), Lα̃2T β̃2ϕ(s̃2)〉τ . Here Lα̃2 contains only 
one L1 and Lα̃1 has at least two L1’s. If Lα̃1T β̃1 = L2

1, then the conclusion follows 
from Claim 4.8. Otherwise, we can apply Lemma 4.4 again and move one more L1 from 

Lα̃1T β̃1ϕ(s̃1) to Lα̃2T β̃2ϕ(s̃2), and get new inner product 〈Lα̂1T β̂1ϕ(ŝ1), Lα̂2T β̂2ϕ(ŝ2)〉τ , 
where Lα̂2 contains no L1 and Lα̂1 has at least one L1. This is reduced to the known 
case we considered before (k2

1 = 0).
For part (b) of Lemma 4.7, note if s = s1 + s2 is odd, we must have α1 
= α2. Thus 

the conclusion follows from part (a). �
Lemma 4.9. Let s1, s2, s be as in Lemma 4.5. Let (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 . Then one 
of the following must hold.

1. 〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = 0.

2. 〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = C〈T ŝϕ(s∗), T ŝϕ(s∗)〉τ ,

where s = 2s∗ = 4ŝ, with ŝ ≥ 2, s∗ ≥ 4.

3. 〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ = C〈LjT ŝϕ(s∗+1), LjT ŝϕ(s∗+1)〉τ ,

where s = 2s∗ + 2 = 4ŝ + 2, with s∗ = 2ŝ ≥ 2, and 1 ≤ j ≤ n − 1. Here, as before, C
denotes a nonzero constant which may be different in different contexts.

Proof of Lemma 4.9. If s is odd, then the inner product equals 0 by part (b) of 
Lemma 4.7. Now assume s is even and thus s ≥ 6. By Lemma 4.6, we can assume 
s1 = s2 = s ≥ 3. And by Lemma 4.7, we can assume α1 = α2 = α, for otherwise the 
inner product again equals 0. Consequently, β1 = β2 = β. We will prove by induction on 
m = |α|. If m = 0, 1, the conclusion (2) or (3) holds trivially. Now suppose the conclusion 
holds for 0 ≤ m ≤ k for some k ≥ 1, and consider the case m = k + 1 ≥ 2 (note in the 
case m = 2, we must have β ≥ 1 due to the fact s1 = s2 ≥ 3). Pick 1 ≤ j0 ≤ n − 1 such 
that, writing α =

∑n−1
j=1 kjej , we have j0 
= 0. If α = kj0ej0 , then kj0 = k + 1 ≥ 2. In this 

case by Lemma 4.4 and (4.22),

〈LαT βϕ(s), LαT βϕ(s)〉τ = 〈Lkj0
j0

T βϕ(s), L
kj0
j0

T βϕ(s)〉τ

= − 〈L̄j0L
kj0
j0

T βϕ(s+1), L
kj0 −1
j0

T βϕ(s−1)〉τ

= − 2ikj0δj0,l〈L
kj0 −1
j0

T β+1ϕ(s+1), L
kj0 −1
j0

T βϕ(s−1)〉τ

=2ikj0δj0,l〈L
kj0 −2
j0

T β+1ϕ(s), L̄j0L
kj0 −1
j0

T βϕ(s)〉τ

=4kj0(kj0 − 1)〈Lkj0 −2
j0

T β+1ϕ(s), L
kj0 −2
j0

T β+1ϕ(s)〉τ .

This is reduced to the case m ≤ k.
If there is 1 ≤ i0 
= j0 ≤ n −1 such that ki0 
= 0, kj0 
= 0. We write α̃ = α−ki0ei0−kj0ej0

and compute, again by using Lemma 4.4 and (4.22),
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〈LαT βϕ(s), LαT βϕ(s)〉τ = 〈Lki0
i0

L
kj0
j0

Lα̃T βϕ(s), L
ki0
i0

L
kj0
j0

Lα̃T βϕ(s)〉τ

= − 〈L̄i0L
ki0
i0

L
kj0
j0

Lα̃T βϕ(s+1), L
ki0 −1
i0

L
kj0
j0

Lα̃T βϕ(s−1)〉τ

= − 2iki0δi0,l〈L
ki0 −1
i0

L
kj0
j0

Lα̃T β+1ϕ(s+1), L
ki0 −1
i0

L
kj0
j0

Lα̃T βϕ(s−1)〉τ

=2iki0δi0,l〈L
ki0 −1
i0

L
kj0 −1
j0

Lα̃T β+1ϕ(s), L
ki0 −1
i0

L̄j0L
kj0
j0

Lα̃T βϕ(s)〉τ

=4ki0kj0δi0,lδj0,l〈L
ki0 −1
i0

L
kj0 −1
j0

Lα̃T β+1ϕ(s), L
ki0 −1
i0

L
kj0 −1
j0

Lα̃T β+1ϕ(s)〉τ .

This is again reduced to the case m ≤ k. By induction, we see the conclusion holds. �
We now continue to prove Proposition 4.3.

Lemma 4.10. f (s−1) ≡ 0, g(s) ≡ 0.

Proof of Lemma 4.10. We split the proof into two parts, depending on whether s is odd 
or even.

(I). First assume s is odd. Write s = 2s∗ − 1, s∗ ≥ 3.
(I.a). We first prove that f (s−1)(z, w) ≡ 0. Fix some j0 with 1 ≤ j0 ≤ n − 1. Write

f
(2s∗−2)
j0

=
s∗−1∑
k=0

a(2k)(z)ws∗−k−1.

Here a(2k)(z) depends on j0. But we will not write it as a subscript to simplify the 
notation. By the assumption of Proposition 4.3, for 1 ≤ j, k ≤ n − 1, it holds for p ≈ 0
on Hn

l that

∂

∂zk

∂s∗−2

∂ws∗−2 (f∗∗
p )j(0) = 0.

By (4.8), (4.15), we have if 1 ≤ j ≤ n − 1,

(f∗∗
p )j = (f∗

p )j

[
1 − 2i〈f̃∗

p , a(p)〉l,l′,n − r(p)g∗
p

]
+ Owt,p(2). (4.25)

Moreover, if 1 ≤ j ≤ n − 1,

(f∗
p )j = 1√

λ(p)
f̃pBj(p) = 1

λ(p) 〈f̃p, δj,lLj f̃(p)〉l,l′,n. (4.26)

For 1 ≤ j ≤ N − n, (φ∗
p)j = 1√

λ(p) 〈f̃p, B̂j(p)〉l,l′,n. And λ(p) = 1 + Owt,p(3). Recall if 
1 ≤ j ≤ n − 1, aj(p) = Owt,p(2) and for j ≥ n, aj(p) = 〈T (f̃)(p), B̂j(p)〉 + Owt,p(2) =
〈ϕ(3)

w (p), bj(p)〉 + Owt,p(2). Here bj(p) are the last (N − n) component of B̂j(p). Hence 
we have
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∂

∂zk

∂s∗−2

∂ws∗−2 (f∗∗
p )j0(0) = 〈LkT s∗−2f̃(p), δj0,lLj0 f̃(p)〉l,l′,n

+ 〈Lkf̃(p), δj0,lLj0 f̃(p)〉l,l′,n

[
− 2i

N−n−1∑
j=n

〈T s∗−2f̃p, B̂j(p)〉

· δj,l,l′,n〈ϕ(3)
w (p), bj(p)〉 − r(p)T s∗−2g(p)

]
+ Owt,p(2).

We choose k 
= j0. Note then 〈Lkf̃(p), Lj0 f̃(p)〉l,l′,n = Owt,p(2). We thus have the 

weighted degree one part in p in the expansion of 〈LkT s∗−2f̃(p), δj0,lLj0 f̃(p)〉l,l′,n must 
be zero. This implies, writing p = (p̂, pn) = (p1, · · · , pn−1, pn) ∈ Hn

l ,

2iδk,lδj0,l(s∗ − 1)!p̄ka(0) + δj0,la
(2)
zk

(p̂) + δj0,l〈LkT s∗−2ϕ(2s∗−3)(p), ϕ
(2)
zj0

(p̂)〉τ ≡ 0. (4.27)

Collecting the anti-holomorphic part in p̂ in (4.27), we have

2iδk,lδj0,l(s∗ − 1)!p̄ka(0) + δj0,l〈LkT s∗−2ϕ(2s∗−3), ϕ
(2)
zj0

(p̂)〉τ ≡ 0.

We apply L̄k to this equation to get

2iδk,lδj0,l(s∗ − 1)!a(0) + δj0,l〈LkT s∗−2ϕ(2s∗−3), LkLj0ϕ(2)〉τ ≡ 0.

By Lemma 4.7, 〈LkT s∗−2ϕ(2s∗−3), LkLj0ϕ(2)〉τ ≡ 0. Thus we conclude a(0) = 0. Since 
1 ≤ j0 ≤ n − 1 is arbitrary, this conclusion in the case s∗ = 3 implies the following fact.

Corollary 4.11. f ′′
ww(p) = Owt,p(1).

Now we prove by induction that all a(2k) ≡ 0 for 1 ≤ k ≤ s∗ − 1. Suppose we have 
already proved a(2i) ≡ 0 for 1 ≤ i < k, with some 1 ≤ k ≤ s∗ − 1. Next we aim to prove 
a(2k)(z) ≡ 0. For that, note by assumption, for any α ∈ Nn−1 with |α| = 2k − 1, we have 
DzαD

(s∗−k−1)
w (f∗∗

p )j(0) = 0.
As before, we have, writing α =

∑n−1
μ=1 kμeμ,

0 = DzαD(s∗−k−1)
w (f∗∗

p )j0(0) = 〈LαT s∗−k−1f̃(p), δj0,lLj0 f̃(p)〉l,l′,n

+
∑

kμ≥1

c̃(kμ)〈Lμf̃(p), δj0,lLj0 f̃(p)〉l,l′,n

(
− 2i

N−n+1∑
j=n

〈Lα−eμT s∗−k−1f̃p, B̂j(p)〉

· δj,l,l′,n〈ϕ(3)
w (p), bj(p)〉 − r(p)Lα−eμT s∗−k−1g(p)

)
+ Owt,p(2)

(4.28)

Here the sum 
∑

kμ≥1 is taken over those μ satisfying kμ ≥ 1, and c̃(kμ) is some integer 
depending on kμ (the value of c̃(kμ) is determined by the Leibniz rule).

We will need to use the following facts.
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Claim 4.12. Let F be as in Proposition 4.3. Then g′′
ww(p) = Owt,p(2).

Proof. This is trivial if s > 5 in Proposition 4.3 and therefore we only need to prove for 
the case s = 5. We will postpone the proof to (I.b). �
Corollary 4.13. r(p) = Owt,p(2).

Proof of Corollary 4.13. Recall

r(p) = 1
2λ(p)Re

(
g′′

ww(p) − 2i〈f̃ ′′
ww(p), f̃(p)〉l,l′,n,N

)
.

Then the conclusion follows easily from Corollary 4.11 and Claim 4.12. �
Write ϕ(3)

w (z, w) = d(1)(z). Also recall a(2j)(z) ≡ 0 for 1 ≤ j < k. We conclude by 
collecting the weighted degree one terms in (4.28) that

(s∗ − k − 1)!Dzαa(2k)(p̂) +
N−n+1∑

j=n

ĉj〈d(1)(p̂), bj(0)〉 ≡ 0. (4.29)

Here ĉj ’s are constants, which may be 0. For instance, if kj0 = 0, then all ĉj = 0. We 
further collect holomorphic terms in (4.29) to see (s∗ − k − 1)!Dzαa(2k)(p̂) ≡ 0. Thus 
we conclude Dzαa(2k)(p̂) ≡ 0 for every α ∈ Nn−1 with |α| = 2k − 1. This yields that 
a(2k)(z) ≡ 0. By induction, we see f (s−1)(z, w) ≡ 0.

(I.b). Next we will prove g(s) ≡ 0. Before that we first prove Claim 4.12. For that, we 
write

g(5)(z, w) = c(1)(z)w2 + c(3)(z)w + c(5)(z).

Recall g∗∗
p = g∗

p

�(f∗
p ,g∗

p) (see (4.5), (4.6)), and g∗
p = 1

λ(p) gp. We then have (using (4.7))

g∗∗
p = gp + gp

(
− 2i〈f̃∗

p , a(p)〉l,l′,n − r(p)gp

)
+ Owt,p(2). (4.30)

Proof of Claim 4.12. By the assumption of Proposition 4.3, (g∗∗
p )(4) ≡ 0, and thus

D2
w(g∗∗

p )(0) = 0. (4.31)

Recall by (4.16), Dβ
wgp(0) = T βg(p) − 2i〈T β f̃(p), f̃(p)〉l,l′,n. Then it follows from Corol-

lary 4.11 that if β ≤ 2, Dβ
wgp(0) = T βg(p) + Owt,p(2). Consequently, equations (4.30)

and (4.31) yield that

T 2g(p) + Tg(p)
(

− 2i〈T f̃∗
p (0), a(p)〉l,l′,n − r(p)Tg(p)

)
+ Owt,p(2) = 0.
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By the same argument as before, we obtain

T 2g(p) + Tg(p)
(

− 2i
N−n+1∑

j=n

〈T f̃p(0), B̂j(p)〉 · δj,l,l′,n · 〈ϕ(3)
w (p), bj(p)〉 − r(p)Tg(p)

)
+ Owt,p(2) = 0.

(4.32)

Recall p = (p̂, pn) = (p1, · · · , pn−1, pn) and note

r(p) = 1
2λ(p)Re

(
g′′

ww(p) − 2i〈f̃ ′′
ww(p), f̃(p)〉l,l′,n,N

)
= 1

2Re{g′′
ww(p)} + Owt,p(2)

= 1
2

(
c(1)(p̂) + c(1)(p̂)

)
+ Owt,p(2).

Here we have used (4.7) and Corollary 4.11.
Collecting the weighted degree one terms in (4.32), we have

2c(1)(p̂) +
N−n−1∑

j=n

ĉj〈d(1)(p̂), bj(0)〉 − 1
2

(
c(1)(p̂) + c(1)(p̂)

)
≡ 0.

Here ĉj ’s are some constants. We further collect holomorphic terms to get 3
2c(1)(p̂) = 0. 

We thus have c(1)(z) = 0 and this proves Claim 4.12. �
We are now at the position to prove g(s) ≡ 0. For that we write

g(s)(z, w) =
s∗−1∑
j=0

c(2j+1)(z)ws∗−j−1.

We will first prove c(1)(z) = 0 (this is already established for s = 5). By assumption, 
Ds∗−1

w (g∗∗
p )(0) = 0. Recall Dβ

wgp(0) = T βg(p) − 2i〈T β f̃(p), f̃(p)〉l,l′,n. It follows from 
(I.a) that T s∗−1f(p) = Owt,p(1) and thus Ds∗−1

w gp(0) = T s∗−1g(p) + Owt,p(2). Then by 
(4.30), Proposition 4.2, and Corollary 4.13.

0 = Ds∗−1
w (g∗∗

p )(0)

= T s∗−1g(p) + Tg(p)
(

− 2i
N−n+1∑

j=n

〈T s∗−2f̃∗(p), B̂j(p)〉 · δj,l,l′,n · 〈ϕ(3)
w (p), bj(p)〉

)
+ Owt,p(2).

Recall ϕ(3)
w (z, w) = d(1)(z). Collecting weighted degree one terms in the above equation, 

we get



X. Huang et al. / Advances in Mathematics 374 (2020) 107388 29
(s∗ − 1)!c(1)(p̂) +
N−n−1∑

j=n

ĉj〈d(1)(p̂), bj(0)〉 = 0 for some constants ĉ′
js.

We then collect holomorphic terms to see c(1)(z) = 0.
Now suppose we have already proved c(2j+1)(z) ≡ 0 for 0 ≤ j < k with 1 ≤ k ≤ s∗ −1, 

and aim to prove c(2k+1)(z) ≡ 0. For that we use the fact that DzαDs∗−1
w (g∗∗

p )(0) = 0
for any α ∈ Nn−1 with |α| = 2k. By a similar argument as above, using (4.30) and (I.a), 
and collecting holomorphic weighted degree one terms, we see Dzαc(2k+1)(z) ≡ 0. This 
implies c(2k+1)(z) ≡ 0. By induction, we see all c(2k+1)(z) = 0 and thus g(s) ≡ 0.

(II). Finally we consider the case s = 2s∗ is even. Here s∗ ≥ 3.
(II.a). We start with the proof of f (s−1) ≡ 0. For that, we fix some 1 ≤ j0 ≤ n − 1

and write

f
(s−1)
j0

(z, w) =
s∗−1∑
j=0

a(2j+1)(z)ws∗−j−1.

To prove a(1)(z) = 0, we notice, by assumption, that Ds∗−1
w (f∗∗

p )j0(0) = 0. By (4.25), 
Proposition 4.2, and Corollary 4.13, we have

Ds∗−1
w (f∗∗

p )j0(0) = Ds∗−1
w (f∗

p )j0(0) + Owt,p(2)

= 〈T s∗−1f̃(p), δj0,lLj0 f̃(p)〉l,l′,n + Owt,p(2) ≡ 0.

This implies δj0,l(s∗ − 1)!a(1)(p̂) ≡ 0. We thus have a(1)(z) ≡ 0.
Now suppose we have proved a(2j+1)(z) ≡ 0 for 1 ≤ j < k with 1 ≤ k ≤ s∗ − 1, and 

consider the case j = k. By assumption, DzαDs∗−1
w (f∗∗

p )(0) ≡ 0 with |α| = 2k. We use 
the same argument as before to derive Dzαa(2k+1)(p̂) ≡ 0 for any |α| = 2k. Thus we have 
a(2k+1)(z) ≡ 0. By induction, we have f (s−1) ≡ 0.

(II.b). It remains to prove g(s) ≡ 0. Write

g(s)(z, w) =
s∗∑

k=0

c(2k)(z)ws∗−k.

We first prove that c(0)(z) ≡ 0. By assumption, Dzj
Ds∗−1

w (g∗∗
p )(0) ≡ 0, for any 1 ≤ j ≤

n − 1. By (4.16), Dzj
Ds∗−1

w gp(0) = LjT s∗−1g(p) − 2i〈LjT s∗−1f̃(p), f̃(p)〉l,l′,n. It follows 
from (II.a) that LjT s∗−1f(p) = Owt,p(1) and thus Dzj

Ds∗−1
w gp(0) = LjT s∗−1g(p) +

Owt,p(2). Then by (4.30) and Proposition 4.2, we get

Dzj
Ds∗−1

w (g∗∗
p )(0) = LjT s∗−1g(p) + Tg(p)

(
− 2i〈Dzj

Ds∗−2
w f̃∗

p (0), a(p)〉l,l′,n

)
+ Owt,p(2) ≡ 0.

(4.33)

Note for any α ∈ Nn−1 and β ∈ N,
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〈DzαDβ
wf̃∗

p (0), a(p)〉l,l′,n

= 1√
λ

(
DzαDβ

wf̃p(0)
)

· B(p) · Il,l′,n,N ·
( 1√

λ
T f̃ · B(p)

)t

= 1
λ

(
DzαDβ

wf̃p(0)
)

· B(p) · Il,l′,n,N · B(p)
t
T f̃

t

=〈DzαDβ
wf̃p(0), T f̃〉l,l′,n + Owt,p(2)

=〈LαT β f̃(p), T f̃〉l,l′,n + Owt,p(2)

=〈LαT βϕ(s−3)(p), Tϕ(3)〉τ + Owt,p(2); and

(4.34)

LjT s∗−1g(p) = 2iδj,ls
∗!pjc(0) + (s∗ − 1)!c(2)

zj
(p̂). (4.35)

Collecting weighted degree one terms in (4.33) and using (4.34), (4.35), we obtain

2iδj,ls
∗!p̄jc(0) + (s∗ − 1)!c(2)

zj
(p̂) = 2i〈LjT s∗−2ϕ(s−3)(p), Tϕ(3)(p)〉τ . (4.36)

We apply L̄j to (4.36) and get

δj,ls
∗!c(0) = 〈LjT s∗−2ϕ(s−3)(p), LjTϕ(3)(p)〉τ . (4.37)

We then have two cases:

Case I. If s∗ = 2σ is even, σ ≥ 2. Then by Lemma 4.5, we have

c(0) = δj,l

s∗! 〈LjT s∗−2ϕ(s−3), LjTϕ(3)〉τ = δj,l(−1)σ−2

s∗! 〈LjT σϕ(2σ+1), LjT σ−1ϕ(2σ−1)〉τ .

(4.38)

Note σ ≥ 2. By Lemma 4.4 and (3.3), we obtain

c(0) = δj,l(−1)σ−1

s∗! 〈T σϕ(2σ), L̄jLjT σ−1ϕ(2σ)〉l,l′,n

= δj,l(−1)σ−1

s∗! (−2iδj,l)〈T σϕ(2σ), T σϕ(2σ)〉l,l′,n

= 2i(−1)σ

s∗! μ.

(4.39)

Here μ = 〈T σϕ(2σ), T σϕ(2σ)〉τ ∈ R.
Now we use the following fundamental identity:

Im{g} = 〈f̃ , f̃〉l,l′,n, on Im w = 〈z, z〉l.

We collect the weighted degree s terms in the above equation and recall we already know 
f (t)(z, w) ≡ 0 for t ≤ s − 1. We then see



X. Huang et al. / Advances in Mathematics 374 (2020) 107388 31
Im{g(s)} =
∑

s1,s2≥2, s1+s2=s

〈ϕ(s1), ϕ(s2)〉τ , on Im w = 〈z, z〉l; or (4.40)

Im{
s∗∑

k=0

c(2k)(z)ws∗−k} =
∑

s1,s2≥2, s1+s2=s

〈ϕ(s1), ϕ(s2)〉τ , on Im w = 〈z, z〉l. (4.41)

Writing w = u + iv, we collect terms of us∗ in equation (4.41). Since by (4.39), c(0) is an 
imaginary number, we get

c(0)

i
=

s∗−2∑
j=2

〈 1
j!T

jϕ(2j),
1

(s∗ − j)!T
s∗−jϕ(s−2j)〉τ

=
s∗−2∑
j=2

1
j!(s∗ − j)! 〈T

jϕ(2j), T s∗−jϕ(s−2j)〉τ .

(4.42)

By Lemma 4.5, we have 〈T jϕ(2j), T s∗−jϕ(s−2j)〉τ = (−1)σ−jμ, for all 2 ≤ j ≤ s∗ − 2. 
Then (4.42) is reduced to

c(0)

i
=

s∗−2∑
j=2

(−1)σ−jμ

j!(s∗ − j)! . (4.43)

We combine (4.39) and (4.43) to get

2μ =
s∗−2∑
j=2

(−1)jμs∗!
j!(s∗ − j)! =

s∗−2∑
j=2

(−1)jμ

(
s∗

j

)
. (4.44)

But

s∗−2∑
j=2

(−1)j

(
s∗

j

)
= 2s∗ − 2.

We thus obtain from (4.44) that 2μ = (2s∗ − 2)μ. This implies μ = 0. Consequently, by 
(4.39), c(0) = 0.

Case II. If s∗ = 2σ + 1 is odd, here σ ≥ 1, then by (4.37) and Lemma 4.5, we have

c(0) = δj,l

s∗! 〈LjT s∗−2ϕ(s−3), LjTϕ(3)〉τ = δj,l(−1)σ−1

s∗! 〈LjT σϕ(2σ+1), LjT σϕ(2σ+1)〉τ .

(4.45)
Consequently, c(0) is real, and we cannot use the method in Case I. We instead apply 
T 2σL̄1L1 to (4.40) and evaluate at 0 to obtain

1
2i

T 2σL̄1L1g(s)(0) =
∑

T 2σL̄1L1〈ϕ(s1), ϕ(s2)〉τ (0). (4.46)

s1,s2≥2,s1+s2=s
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Note L̄1L1g(s) = 2iδ1,lTg(s) and L̄1L1〈ϕ(s1), ϕ(s2)〉τ = 〈L1ϕ(s1), L1ϕ(s2)〉τ +2iδ1,l〈Tϕ(s1),

ϕ(s2)〉τ . We thus derive from (4.46) that

δ1,lT
2σ+1g(s)(0) =

2σ∑
j=0

∑
s1,s2≥2,s1+s2=s

(
2σ

j

)
〈L1T jϕ(s1), L1T 2σ−jϕ(s2)〉τ (0)

+ 2iδ1,l

2σ∑
j=0

∑
s1,s2≥2,s1+s2=s

(
2σ

j

)
〈T j+1ϕ(s1), T 2σ−jϕ(s2)〉τ (0)

=
2σ−1∑
j=1

(
2σ

j

)
〈L1T jϕ(2j+1), L1T 2σ−jϕ(s−2j−1)〉τ

+ 2iδ1,l

2σ−2∑
j=1

(
2σ

j

)
〈T j+1ϕ(2j+2), T 2σ−jϕ(s−2j−2)〉τ .

(4.47)

Note the left hand side δ1,lT
2σ+1g(s)(0) equals δ1,lc

(0)(s∗!). If σ = 1, then the right hand 
side equals 2μ∗, where

μ∗ = 〈L1Tϕ(3), L1Tϕ(3)〉τ .

By (4.45), we have c(0) = δ1,l

s∗! μ∗. Then (4.47) is reduced to μ∗ = 2μ∗. Thus μ∗ = c(0) = 0.
Now assume σ ≥ 2. Write

μ1 := 〈L1T σϕ(2σ+1), L1T σϕ(2σ+1)〉τ ;

μ2 := 〈T σϕ(2σ), T σ+1ϕ(2σ+2)〉τ = −δ1,l

2i
〈T σϕ(2σ), L̄1L1T σϕ(2σ+2)〉τ

= δ1,l

2i
〈L1T σϕ(2σ+1), L1T σϕ(2σ+1)〉τ = δ1,l

2i
μ1.

Then by (4.45), c(0) = δ1,l(−1)σ−1

s∗! μ1. By Lemma 4.5, we have

〈L1T jϕ(2j+1), L1T 2σ−jϕ(s−2j−1)〉τ = (−1)σ−jμ1 for 1 ≤ j ≤ 2σ − 1.

〈T j+1ϕ(2j+2), T 2σ−jϕ(s−2j−2)〉τ = (−1)σ−j−1μ2 for 1 ≤ j ≤ 2σ − 2.

By the above equations, (4.47) is reduced to

(−1)σ−1μ1 =
2σ−1∑
j=1

(
2σ

j

)
(−1)σ−jμ1 + 2iδ1,l

2σ−2∑
j=1

(
2σ

j

)
(−1)σ−j−1μ2

=
( 2σ−1∑ (

2σ

j

)
(−1)σ−j +

2σ−2∑ (
2σ

j

)
(−1)σ−j−1

)
μ1.
j=1 j=1
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This implies (−1)σ−1μ1 = (−1)σ−12σμ1, or μ1 = 2σμ1. Thus we conclude μ1 = c(0) = 0.
Hence in all cases, it holds that c(0) = 0. Once we know c(0) = 0, as before, we use 

an induction argument that all c(2j)(z) = 0 for all 0 ≤ j ≤ s∗. Suppose we have proved 
c(2j)(z) = 0 for 0 ≤ j < k for some 1 ≤ k ≤ s∗ and consider the case j = k. By 
assumption, DzαDs∗−k

w (g∗∗
p )(0) ≡ 0 for any |α| = 2k − 1, and any p ∈ Hn

l close to 0. 
As before, by (II.a) we have LαT s∗−kf(p) = Owt,p(1). Consequently, DzαDs∗−k

w gp(0) =
LαT s∗−kg(p) + Owt,p(2). By (4.30) and Proposition 4.2, we have

LαT s∗−kg(p) + Tg(p)
(

− 2i〈DzαDs∗−k−1
w f̃∗

p (0), a(p)〉l,l′,n

)
+ Owt,p(2) ≡ 0.

Using (4.34), we collect the Owt,p(1)-term in the above equation to obtain

(s∗ − k)!Dzαc(2k)(p̂) − 2i〈LαT s∗−k−1ϕ(s−3)(p), Tϕ(3)〉τ = 0

Furthermore we collect holomorphic terms in p̂ to see Dzαc(2k)(p̂) = 0. As α is arbitrary, 
we have c(2k)(z) ≡ 0. By induction, c(2j)(z) ≡ 0 for all j, and thus g(s)(z, w) ≡ 0. This 
finishes the proof of Lemma 4.10. �
Lemma 4.14. 〈ϕ(s1), ϕ(s2)〉τ ≡ 0 for all s1, s2 ≥ 2, s1 + s2 = s.

Proof of Lemma 4.14. When s is odd, it follows from Lemma 4.7 that〈
∂|α1|+β1

∂zα1∂wβ1
ϕ(s1),

∂|α2|+β2

∂zα2∂wβ2
ϕ(s2)

〉
τ

(0) ≡ 0,

for any (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 . This implies 〈ϕ(s1), ϕ(s2)〉τ (0) ≡ 0. When s is even 
and s = 2s∗ = 4σ for some σ ≥ 2, it follows from Lemma 4.9 and the proof of Lemma 4.10
(see (4.39) and recall we proved c(0) = 0) that〈

∂|α1|+β1

∂zα1∂wβ1
ϕ(s1),

∂|α2|+β2

∂zα2∂wβ2
ϕ(s2)

〉
τ

(0) ≡ 0,

for any (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 . This again implies 〈ϕ(s1), ϕ(s2)〉τ (0) ≡ 0.
Similarly, if s is even and s = 2s∗ = 4σ+2, then the conclusion follows from Lemma 4.9

and the proof of Lemma 4.10 (see (4.45) and recall we proved c(0) = 0). This establishes 
Lemma 4.14. �

Proposition 4.3 follows from Lemma 4.10 and Lemma 4.14 (except that it remains to 
prove Lemma 4.6 and Lemma 4.7 for the case s = 5; this will be done in §5). �
4.3. Proofs of Theorem 4.1 and Theorem 1.1

Proof of Theorem 4.1. As was mentioned, we prove only the implication from (1) to (2). 
This easily follows from the following claim.
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Claim 4.15. Let F be as in the assumption in Theorem 4.1. Assume F is CR transversal 
near 0 and satisfies the normalization in Lemma 3.1. If F is of geometric rank zero near 
0, then

f (t−1) ≡ 0, g(t) ≡ 0, 〈ϕ(s1), ϕ(s2)〉τ ≡ 0, ∀s1, s2 ≥ 2, s1 + s2 = t ≥ 4. (4.48)

We prove the claim by induction on t. First note by Lemma 3.1 and the geometric 
zero condition, (4.48) holds for t = 4. Now assume Claim 4.15 holds for all 4 ≤ t < s

with s ≥ 5, and consider the case t = s. But Claim 4.15 (with 4 ≤ t < s) applies also to 
F ∗∗

p . We thus have (4.11) holds for 4 ≤ t < s. Then by Proposition 4.3, (4.48) holds for 
t = s. Hence by induction, Claim 4.15 holds. �
Proof of Theorem 1.1. Composing F with automorphisms, we assume that p =
[1, 0, · · · , 0, 1] ∈ ∂Bn

l and F (p) = [1, 0, · · · , 0, 1] ∈ ∂BN
l . Denote by Ψn the Cayley 

transformation from Sn
l to Bn

l , and ΦN the Cayley transformation from SN
l,l′,n to BN

l′

(see §3). Then G := Φ−1
N ◦ F ◦ Ψn is well-defined in a small neighborhood of 0 ∈ HN

l . 
Note F is side-preserving, CR transversal, and of geometric rank zero if and only if G is 
so. Then Theorem 1.1 follows from Theorem 4.1 and Theorem 2.1. �
5. Completion of the proof

In this section, we complete the proof of Theorem 1.1 by giving a proof of Lemma 4.6
and Lemma 4.7 in the case s = 5. More precisely, we prove the following proposi-
tion.

Proposition 5.1. Let s1 ≥ 2, s2 ≥ 2 and s1 +s2 = 5. Assume (α1, β1) ∈ Is1 , (α2, β2) ∈ Is2 . 
Then

〈Lα1T β1ϕ(s1), Lα2T β2ϕ(s2)〉τ (p) ≡ 0.

Proof of Proposition 5.1. Note 〈A, B̄〉τ = 〈B, Ā〉τ for two vectors A, B and thus we can 
always assume s1 ≤ s2. Since s1 + s2 = s = 5, this implies s1 = 2, s2 = 3. We will verify 
the conclusion by a direct computation case by case.

(1). We first consider the case when Lα1T β1 = L2
i for some 1 ≤ i ≤ n − 1.

(1.a). If Lα2T β2 = LiT , then we have

〈L2
i ϕ(2), LiTϕ(3)〉τ = 〈L2

i ϕ(2), TLiϕ(3)〉τ = −δj,l

2i
〈L2

i ϕ(2), (L̄jLj − LjL̄j)Liϕ(3)〉τ .

Here we have used identity (3.3) and let j 
= i. Furthermore, by Lemma 4.4 it equals
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−δj,l

2i
〈L2

i ϕ(2), L̄jLjLiϕ(3)〉τ = δj,l

2i
〈LjL2

i ϕ(3), LjLiϕ(2)〉τ

=−δj,l

2i
〈LiLjϕ(2), LjL̄iLiϕ(3)〉τ = −δj,l

2i
〈LiLjϕ(2), Lj2iδi,lTϕ(3)〉τ

=δj,lδi,l〈LiLjϕ(2), LjTϕ(3)〉τ .

(5.1)

This equals zero by case (2.a).
(1.b). If Lα2T β2 = LjT with 1 ≤ j 
= i ≤ n − 1, we have by (3.3),

〈L2
i ϕ(2), LjTϕ(3)〉τ = −δj,l

2i
〈L2

i ϕ(2), (L̄jLj − LjL̄j)Ljϕ(3)〉τ

= −δj,l

2i
〈L2

i ϕ(2), L̄jL2
jϕ(3)〉τ + δj,l

2i
〈L2

i ϕ(2), LjL̄jLjϕ(3)〉τ

(5.2)

Furthermore, by Lemma 4.4 and (3.3) respectively, we have

〈L2
i ϕ(2), L̄jL2

jϕ(3)〉τ = −〈LjL2
i ϕ(3), L2

jϕ(2)〉τ = 〈LjLiϕ
(2), L̄iL2

jϕ(3)〉τ = 0;

〈L2
i ϕ(2), LjL̄jLjϕ(3)〉τ = 〈L2

i ϕ(2), Lj2iδj,lTϕ(3)〉τ = −2iδj,l〈L2
i ϕ(2), LjTϕ(3)〉τ .

Then by (5.2), 〈L2
i ϕ(2), LjTϕ(3)〉τ = −〈L2

i ϕ(2), LjTϕ(3)〉τ , and thus 〈L2
i ϕ(2), LjTϕ(3)〉τ =

0.
(1.c). If Lα2T β2 = L3

i , by Lemma 4.4 and (4.22) we have

〈L2
i ϕ(2), L3

i ϕ(3)〉τ = −〈L̄iL
2
i ϕ(3), L2

i ϕ(2)〉τ

= −〈L2
i L̄iϕ

(3), L2
i ϕ(2)〉τ − 4iδi,l〈TLiϕ

(3), L2
i ϕ(2)〉τ .

Note 〈LiTϕ(3), L2
i ϕ(2)〉τ = 0 by (1.a). Hence we conclude 〈L2

i ϕ(2), L3
i ϕ(3)〉τ ≡ 0.

(1.d). If Lα2T β2 = LjLkLl where j 
= i and k, l may be equal to i, then

〈L2
i ϕ(2), LjLkLlϕ(3)〉τ = −〈L̄jL2

i ϕ(3), LkLlϕ(2)〉τ = −〈L2
i L̄jϕ(3), LkLlϕ(2)〉τ = 0.

(2). It remains to consider the case where Lα1T β1 = LiLj for some 1 ≤ i 
= j ≤ n − 1.
(2.a). If Lα2T β2 = LjT , then by (3.3),

〈LiLjϕ(2), LjTϕ(3)〉τ = 〈LiLjϕ(2), TLjϕ(3)〉τ

=−δj,l

2i
〈LiLjϕ(2), (L̄jLj − LjL̄j)Ljϕ(3)〉τ

=−δj,l

2i
〈LiLjϕ(2), L̄jL2

jϕ(3)〉τ + δi,l

2i
〈LiLjϕ(2), LjL̄jLjϕ(3)〉τ

Note by Lemma 4.4 and (3.3) respectively,

〈LiLjϕ(2), L̄jL2
jϕ(3)〉τ = −〈LiL

2
jϕ(3), L2

jϕ(2)〉τ = −〈L2
jϕ(3), L̄iL2

jϕ(2)〉τ = 0;
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〈LiLjϕ(2), LjL̄jLjϕ(3)〉τ = 〈LiLjϕ(2), Lj(LjL̄j + 2iδj,lT )ϕ(3)〉τ

= −2iδj,l〈LiLjϕ(2), LjTϕ(3)〉τ .

Then we have 〈LiLjϕ(2), LjTϕ(3)〉τ = −〈LiLjϕ(2), LjTϕ(3)〉τ . Thus

〈LiLjϕ(2), LjTϕ(3)〉τ = 0.

(2.b). If Lα2T β2 = LkT with k 
= i, j, a similar argument as in (2.a) yields

〈LiLjϕ(2), LkTϕ(3)〉τ = 0.

(2.c). If Lα2T β2 = L3
j , then by Lemma 4.4 and (3.3),

〈LiLjϕ(2), L3
jϕ(3)〉τ = −〈L̄jLjLiϕ

(3), L2
jϕ(2)〉τ = −2iδj,l〈TLiϕ

(3), L2
jϕ(2)〉τ .

This equals 0 by (1.b).
(2.d). If Lα2T β2 = L2

i Lj , then by Lemma 4.4 and (3.3),

〈LiLjϕ(2), L2
i Ljϕ(3)〉τ = −〈L̄iLiLjϕ(3), LiLjϕ(2)〉τ = −2iδi,l〈TLjϕ(3), LiLjϕ(2)〉τ .

This equals 0 by (2.a).
(2.e). If Lα2T β2 = LkLμLν with k 
= i, j and μ, ν may equal i, j, Lemma 4.4 implies

〈LiLjϕ(2), LkLμLνϕ(3)〉τ = −〈L̄kLiLjϕ(2), LμLνϕ(3)〉τ

= −〈LiLjL̄kϕ(2), LμLνϕ(3)〉τ = 0.

This proves Proposition 5.1. �
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