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We prove that the commutator type, the regular contact type and the Levi form
type of order s = (n — 2) are the same for a smooth pseudoconvex real hypersurface
in C™ with n > 3. In particular, this provides, in the case of complex dimension
three, a complete solution of a long standing conjecture of Bloom formulated in his
famous and important 1981 paper [12]. When n > 4, our theorem provides the first
result along the lines of the Bloom conjecture in any dimensions in a case where the
pseudoconvexity assumption of the hypersurface starts to be crucial.
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RESUME

Pour toute hypersurface rélle lisse et pseudoconvexe de C2, nous considérons trois
notions de type : le type obtenu en considérant les crochets de Lie de champs
de vecteurs CR, le type obtenu a partir de I'ordre de contact avec les courbes
holomorphes réguliéres et le type associé a forme de Levi. Notre résultat principal
établit 1’égalité entre ces trois types, apportant ainsi une solution compléte a une
ancienne conjecture de Bloom en dimension trois. En dimension n supérieure, nous
vérifions aussi la conjecture de Bloom pour s = n — 2, obtenant ainsi la premiére
solution a la conjecture de Bloom pour laquelle I’hypothése de pseudoconvexité est
nécessaire.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let D be a smoothly bounded pseudoconvex domain in C™ for n > 2. Many analytic and geometric prop-

erties of D are determined by its boundary holomorphic invariants. To generalize his subelliptic estimate for

the -Neumann problem from bounded strongly pseudoconvex domains [24] to bounded weakly pseudocon-
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vex domains in C2, Kohn in a fundamental paper [34] investigated three different boundary invariants for
D C C2. These invariants describe, respectively, the maximum order of contact with smooth holomorphic
curves at a boundary point, degeneracy of the Levi-form along the CR directions and the length of the iter-
ated Lie brackets of boundary CR vector fields as well as their conjugates needed to recover the boundary
contact direction. Kohn proved that all these invariants are in fact the same, called the type value of a point
on D C C2. When this type value is finite at each point, Kohn’s work in [34] together with that of Greiner
[30] (see also Rothschild-Stein [41]) gives the precise information of how much subelliptic gain one obtains
for the O-Neumann problem for a smoothly bounded weakly pseudoconvex domain in C2. For decades, the
finite type condition initiated by the work of Kohn has been playing fundamental roles in many problems in
Several Complex Variables, CR Geometry and Analysis as well as the theory of Subelliptic Partial Differ-
ential Equations. For instance, Bedford-Fornaess [7], Fornaess-Sibony [23] studied peak functions on weakly
pseudoconvex domains of finite type in C? and discovered close connections between the type value of the
boundary and the Holder-continuity of the peak functions up to the boundary.

Generalizations of Kohn’s notion of the boundary finite type condition to higher dimensions have been
a subject under extensive investigations in the past 40 years in Several Complex Variables. Kohn later
introduced a finite type condition in higher dimensions through the subelliptic multiplier ideals [35]. The
understanding of this type has later revived to be a very active field of studies through the work of many
people including Diederich-Fornaess [20], Siu [43], Kim-Zaistev [32][33], Zaistev [45], as well as the refer-
ences therein. Bloom [11] and Bloom-Graham [9] established Kohn’s original notion of types in C? to any
dimensions. Namely, for each integer s € [1,n — 1] and for a smooth real hypersurface M C C™ with n > 2
and p € M, Bloom-Graham and Bloom defined the vector field commutator type t(*)(M,p), the Levi-form
type ¢(®) (M, p) and the regular contact type a(®)(M,p) of M at p, which are called the regular multi-types
of Kohn [34], Bloom-Graham [9] and Bloom [12]. Bloom-Graham [9][10] showed that when s = n — 1, all
these types are also the same as in the case of n = 2 by Kohn. However, without pseudoconvexity for M,
Bloom [12] showed that when s # n — 1, while the contact type a'®) may be finite, the commutator type
t(*) and the Levi-form type ¢(*) can be infinite in many examples. The commutator type is intrinsically
defined only through the Lie bracket of CR or conjugate CR vector fields of M valued in some smooth
subbundle of TN @ TOD M. Tt is an important object in the fields such as sub-elliptic analysis and
PDEs. In Adwan-Berhanu [1], the commutator type was crucially used to obtain analytic hyper-ellipticity
of solutions of non-linear PDEs. An excellent description on this matter can be found in the work of Derridj
[19] and the book of Berhanu-Cordaro-Hounie [5]. The other two types are more on the emphasis of complex
analysis, defined through the complex structure of the ambient space. D’Angelo [17] introduced his famous
notion of finite type condition by considering the order of contact with not just smooth complex manifolds
but possibly singular complex analytic varieties, which is a singular contact type condition and turns out
to be equivalent to the existence of the subelliptic estimate by the work of Kohn [35], Diederich-Fornaess
[20] and Catlin [15]. Catlin in [14] studied his version of multi-types as well as its connection with the
boundary stratification in terms of the degeneracy of Levi forms. Catlin’s types are more along the lines of
differentiation of Levi forms and thus more along the lines of Levi-form types. There was also a very useful
type condition called holomorphically finite non-degeneracy condition in [4] which has late played a funda-
mental role in understanding various problems in CR geometry in the work of Berhanu-Xiao [6] Lamel-Mir
[37], etc. Other studies involving various type conditions as well as their applications at least include the
work in D’Angelo [18], Sibony [42], McNeal [39], Boas-Straube [8], Fu-Isaev-Krantz [26], Baouendi-Ebenfelt-
Rothschild [3], Bove-Derridj-Kohn-Tartakoff [13], Berhanu-Xiao [6], Lamel-Mir [38], Gong-Stolotvich [28,29],
Gong-Lanzani [27], etc., and many references therein.

All these type conditions mentioned above were introduced through different aspects of studies. Revealing
the connections among them always resulted in a deeper understanding of the subject. For instance, proving
that the Kohn multiplier ideal type is equivalent to the finite D’Angelo type would provide a new and much
more direct solution of the 9-Neumann problem.
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In this paper, we are interested in the three multi-regular types of Kohn-Bloom-Graham. We will be
concerned with the question when all these types are equivalent, known as the Bloom conjecture formulated
in Bloom’s famous 1981 paper [12]. We will show that the (n — 2)-commutator type t(*)(M,p), also called
(n — 2)-Hérmander type, coincides with the (n — 2)— Levi-form type ¢(»~2)(M,p) and the regular (n —
2)—contact type a(»~2 (M, p) for any pseudo-convex hypersurface M in C™ with n > 3 and with p € M.
When s = n — 1, these three regular types were proved to be the same by Bloom-Graham [9][10] more than
40 years ago, and in the Bloom-Graham case, the pseudo-convexity for M is not needed. Hence, our main
theorem provides the first equivalence result of these three types in any dimensions in the case where the
pseudoconvexity starts to play a fundamental role after the work of Bloom-Graham [9][10] more than 40
years ago. In the C? case, Bloom obtained in 1981 the equality of the Levi-form type and the regular contact
type. However, Bloom left the important open question when the commutator type is also the same as the
regular contact type. As an immediate consequence of our main theorem, in the case of complex dimension
three, our result finally provides a complete solution of the famous Bloom conjecture posed in 1981 [12].

Our focus in this paper will be on the understanding of commutator types. The other types will be
reduced immediately to the study of commutator types.

Acknowledgment

Part of this work was completed when the second author was taking a year long sabbatical leave at
Rutgers University in the academic year of 2018-2019. He would like to thank the Mathematics Department
of Rutgers University for its hospitality during his pleasant and fruitful stay.

2. Statement of the main theorem

Let M C C™ be a smooth real hypersurface with p € M. Then dimCTpl’OM =n—1 for p € M. For any
1 < s < n—1, we have the following three sets of important local holomorphic invariants ([12]), used to
describe the holomorphic non-degeneracy of M at p.

(i): The s-contact type a'*)(M,p):

a(s)(M ,p) = sup {7’| 3 an s-dimensional complex submanifold X
X (2.1)
whose order of contact with M at p is r}.

Let p be a defining function of M near p, namely, p € C*°(U) with U an open neighborhood of p € C™
and UNM ={p=0}NU, dplunm # 0. Remark that the order of contact of X with M at p is defined as
the order of vanishing of p|x at p.

(ii) The s-vector field commutator type ¢t(*)(M,p):

Let B be an s-dimensional subbundle of 7%°M. We let M;(B) be the C* (M )-module spanned by the
smooth tangential (1,0) vector fields L with L|, € B|, for each ¢ € M, together with the conjugate of these
vector fields.

For p > 1, we let M, (B) denote the C*°(M)-module spanned by commutators of length less than or
equal to u of vector fields from M;j(B). A commutator of length p of vector fields in M;(B) is a vector field
of the following form: [V}, [Y,—1,- - , [Y2, Y1] -+ ]. Here Y; € M;(B). Define t*)(B, p) = m if (F,dp)(p) = 0
for any F' € M,,_1(B) but (G, dp)(p) # 0 for a certain G € M,,(B). Then

) (M, p) = sup{t(B, p)| B is an s-dimensional subbundle of T°M}. (2.2)
B
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t(5)(B,p) is the smallest length of the commutators by vector fields in M;(B) to recover the complex
contact direction in CT,M. t(*)(M, p) is the largest possible value among all ¢(*)( B, p)’s. Namely, ¢(*) (M, p)
describes the degeneracy of the most degenerate s-subbundles of 71°M in terms of the commutators of its
smooth sections. Notice that it is intrinsically defined, independent of the ambient embedded space.

(iii) The s-Levi form type c(*) (M, p):

Let B be as in (ii). Let L3 be a Levi form associated with a defining function p near p of M. For

Ve ={L1, -+, Ls}, a basis of smooth sections of B near p, we define the trace of Ly along Vi by
trv, Lar(g) = Y (L, L5),0p) (), q =~ p. (2.3)
j=1

We define ¢(B, p) = m if for any m — 3 vector fields Fy, -, Fy,—3 of M;(B) and any basis Vg, it holds
that

Fos- Fi(trv, Lar)(p) = 0;

and for a certain choice of m — 2 vector fields Gy, -+ , G2 of M1(B) and a certain basis Vp, we have
Gm—2-+-G1(trvy Lar)(p) # 0.

Then

) (M, p) = sup{c(B,p) : B is an s-dimensional subbundle of T*°A}. (2.4)
B

In his fundamental paper [34], when n = 2, Kohn showed that t()(M,p) = ¢M(M,p) = oMV (M,p).
Bloom-Graham [10] and Bloom [11] proved that

tm=V(M, p) = " V(M,p) = "V (M, p) for M c C™.
And for any 1 < s < n—2, Bloom in [12] observed that a(*)(M,p) < ¢(®) (M, p) and a®) (M, p) < t() (M, p).
For these results to hold there is no need to assume the pseudoconvexity of M. However, the following
example of Bloom shows that for n > 3, when M is not pseudoconvex, it may happen that a(“")(M ,p) <

c®) (M, p) and a'®) (M, p) < t)(M,p) for 1 < s <n— 2.

Example 2.1 (Bloom, [12]). Let p = 2Re(w) + (22 + 2z + |21]?)? and let M = {(21, 22, w) € C3| p = 0}. Let
p=0. Then a™ (M, p) = 4 but ¢V (M, p) =t (M, p) = cc.

With the pseudoconvexity assumption of M, Bloom in [12] showed that when M c C3, a™V)(M,p) =
(M, p). Motivated by this result, Bloom in 1981 [12] formulated the following famous conjecture:

Conjecture 2.2. Let M C C™ be a pseudoconvex real hypersurface with n > 3. Then for any 1 < s <n —2
andp € M,

&) (M, p) = (M, p) = a'®) (M, p).

The goal of the present paper is to prove the following theorem:
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Theorem 2.3. Let M C C™ be a smooth pseudoconvex real hypersurface with n > 3. Then for s =n —2 and
any p € M, it holds that

=2 (M, p) = a'""P (M, p) = "7 (M, p).

In particular, we answer affirmatively the Bloom conjecture in the case of complex dimension three
(namely, n = 3):

Theorem 2.4. The Bloom conjecture holds in the case of complex dimension three. Namely, for a smooth
pseudoconvex real hypersurface M C C? and p € M, it holds that

tW (M, p) = aM (M, p) = ¢V (M, p).

Our proof of Theorem 2.3 is a combination of analytic and geometric arguments along the lines of singular
foliation theory and CR geometry. Our arguments are quite different from what has appeared in the literature
in many aspects. Our paper focuses on understanding the commutator of vector fields evaluated in a certain
subbundle, for the Levi form type can be easily reduced to the study of the commutator type case. Notice
that Kohn’s multiple ideal sheaf type and Catlin’s type are more about differentiations of the Levi form in
a certain way and thus are more relate to the Levi form type here. Commutators of vector fields are not
just important in complex analysis but also play a fundamental role in many problems bordering complex
analysis and sub-elliptic analysis. In the paper of Adwan-Berhanu [1], the commutator type condition of
vector fields is crucially applied to get various real analytic hypo-ellipticity results. See also the book of
Berhanu-Cordaro-Hounie [5] and a paper of Derridj [19] for many references and historical discussions on
this matter. In §3, we give a general set-up and provide a normalization of the related vector fields. In §4,
we give a proof of Theorem 2.3 assuming Theorem 6.1. §5 and §6 are dedicated to the long and very much
involved proof of Theorem 6.1 which is about a weak version of the uniqueness property of a complex linear
PDE associated with a CR singular submanifold contained in a pseudoconvex hypersurface [22][28][29].

Already from the work of Chern-Moser [16], it is clear that a good weight system is always important
to single out the boundary holomorphic invariants for real hypersurfaces in a complex Euclidean space.
In this regard, we mention at least the works in [12,10,14,28,29,40,31,36,37] and many references therein
concerning different weight systems used in different settings. In this work, for a smooth subbundle B of
TWOI M of complex dimension s < n — 1, the CR directions along the subbundle are assigned weight one
and the missing CR direction is then assigned to have the weight equal to the first Hérmander number
[2] of B @ B. Once the weights of the CR directions are determined, the weight of the complex normal
direction is determined by the order of the degree of the weighted lowest order of the defining function
of the hypersurface. These weights can be used to apply the singular Frobenius-Nagano theorem to the
truncated manifold if the theorem fails. Then we are led to two very different scenarios: the CR setting [2]
and the CR singular setting [31,22,28,29]. To attack the Bloom conjecture, it is crucial to find a good use of
the pseudo-convexity. Our fundamental new ideas for applying pseudoconvexity are to deduce the problem
to the setting where the classical Hopf lemma (Proposition 4.6) can be applied in the first scenario; and
to deduce the problem to a weak version of the uniqueness theorem for solutions of a certain geometrically
oriented complex linear equation with real part plurisubharmonic (Theorem 6.1) in the second scenario.
The other new ingredients in this work include the crucial use of the Euler vector field, which does not seem
to have appeared before in the study of the finite type conditions.

Before proceeding to the proof of our main theorem, we mention the work of D’Angelo [18] and Fassina
[21], where results have been obtained related to the following question: Let M C C™ (n > 3) and for p € M,
when does it hold that t()(By,p) > ¢ (By, p)? Here Bj is a one dimensional complex smooth subbundle
of T M,
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3. Normalization of CR vector fields

In this section, we present a normalization for a basis of cross sections of a complex subbundle B of
TMOIM of CR codimension one. This will lead us to define the right weight system needed for the purpose
of applying the Nagano theorem. The basic idea behind the complicated normalization procedure in this
section is to apply holomorphic changes of coordinates to normalize as much as possible the lowest order
holomorphic terms in the coefficients of the vector fields with respect to a standard CR frame of M.

Denote by (21, ,2zn—1,w) = (z,w) the coordinates in C™. Let M C U be a smooth real hypersurface
in C™ with p € M and let p be a defining function of M near p. After a holomorphic change of coordinates,
we may assume that p = 0 and p takes the following form:

p(z,w,Z,W) = —2Re(w) + x(z,w,Z,W), x(z,w,Z,@) = O(|22| + |zw]). (3.1)

In what follows, when there is no risk of causing confusion, we use 0 to denote the number 0 or the origin
of C"™. We will assume that a("~2)(M,0) < oo in all that follows, for otherwise

tm=2(M,0), "2 (M,0) > a2 (M,0) = 0

and thus all these invariants coincide. After a holomorphic change of coordinates of the form (z/,w’) =
(z,w + O(2)), we assume that

x(2,0,---,0) = 0(a™ 2 (M,0) +1) (3.2)

in the sense that the partial derivatives of y up to order a("—2) (M, 0) along z-directions vanish at 0. Shrinking
U if necessary, we assume g—f} # 0 for (z,w) € U. For a defining function p defined over U as in (3.1), write

_ 9 ,3P(@
Y9z 0z 0w

)719 fori=1,---,n—1. (3.3)
w

Then {L;}!'"}' forms a basis for the space of CR vector fields along M. Let B be an (n — 2) dimensional
subbundle of T1:0M. Assume that the sections of B are generated by a certain linearly independent smooth

CR vector fields Sy, -+ ,S,_2 along M near 0. After a linear holomorphic change of coordinates, we assume
that S;(0) = L;(0) = %|0 for 1 <j <mn—2. Write

n—1
Sj = ajnLy with a; (0, ,0) = ;5 for 1 <j,h <n—2. (3.4)
h=1

We start with the following simple transformation law for {L’,p’} and {L;, p} under a holomorphic
change of coordinates (z/,w') = F(z,w) with p=p' o F, F(0) = 0.

Lemma 3.1. Let (2/,w') = F(z,w) = (2, -+ ,2,_1,w") be a new holomorphic coordinate system where

2i=2i(21, 0 yznm1) for j=1,--- ,n—1, w' =w with 2'(0) = 0. Then we have

n—1
0z
F*(Li):za—;L;- fori=1,---,n—1. (3.5)
j=1 "
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With S; and the frame {L;} being given as above, we define
£y =:min{k; : k; = vanishing order of a;(,—1)(21, -, 2n-2,0,0,21. - ,Z,-2,0,0) at 0}. (3.6)

Here aj(,—1)(2z,w,z,w) for j = 1,--- ,n — 2 are as in (3.4). In this section, for a smooth function A, we
write A(™)(z,%) for the sum of monomials of (ordinary) degree 7 in its Taylor expansion at 0; also when we
mention a holomorphic change of coordinates, we refer to a special type of holomorphic maps of the form
(z,w') = F(z,w) as in Lemma 3.1.

Lemma 3.2. Suppose £ # co. After a holomorphic change of coordinates, we have

al®) (0, 0,27, 20,0, ,0) =0 forall 1<j<n—2.

Proof. Let

Z1

Zi=zjfor 1<j<n—2, 2, 1 =2,1— /agii)il)(f,22,~~ 22,0, ,0)dE, w=w'.

0
Then in the new coordinates (z/,w’), we have
o 0 ) 0
6_21 - 6_21 - al(?ﬁ,fl)(zh ey Zn—2,0,0 0 Jo)ma
0 0 0
— =—+0j)=— for2<j<n-2
9z 02 () gy for2sjsn=-2 (3.7)
0 0

=—.
O0zp—1 0z, _4

n

In the new coordinates, by Lemma 3.1, we have

n—1
Sl - Z athh = all(Lll - agigl),l)(zlv ctt,2n—2, 07 e ,0)L;71)
h=1

. (3.8)
+ Y an(Li, + O L) + argn-1y Ly, 1.
h=2
Hence in the new coordinates, the coefficient a;(,_1) is changed to
" n—2
—allag&)ﬁl) (21, L, Zn—2, 0, cee ,0) + Z A1p - 0(58) + al(n—1)~ (39)
h=2

Recall that a1; = d1; + O(1) for 1 < j < n — 2. Hence in these new coordinates, which are still denoted
(€5)

by (z,w), we have al(n_l)(zl, <o+ 2Zp—2,0,---0) = 0. We remark that with such a change of holomorphic
coordinates, the non-holomorphic terms remain the same for aglgl)il).

Suppose that we have achieved af(i)_l)(o,~-~ 0,20, y2n—2,0,---,0) = 0for 1 < h < j—1. We
next show that we can make a%‘i)_l)((), <,0,25,- ,2p—2,0,---,0) = 0 after a holomorphic change of

coordinates. Set w = w’ and
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Zj
=2 1<ji<n—2 2 = — [ 0, ,0,6, 240, 0,--,0)d
j T i SJsn y Bp—1 — *n—1 aj(nfl)( 5 ) 7€7Zj+1a s Zn—2,Y, ) ) g
0
By a similar argument as in the proof for agii)_l)(zl, <o+ 2Zp—2,0,--+ ,0) = 0, we have in the new coordinates

that

o
ag(%)—l)(oa"' aovzja"' s Zn—2,0,- - 70) =0.

Notice that this transformation of coordinates preserves the property:

aﬁf(fjj_l)(o,--- 0,2 20,0, ,0) =0for 1<h<j—1.

By induction, this completes the proof of Lemma 3.2. O
Next, when £ = oo, we set £, = a™=2)(M,0). Otherwise, we define
/ . J— R
0= min {k] . k] :Ordz:O a/j(nfl)(zla"' azn—anvanlv"' 7Zn—27070)}7
1<j<n—2 (3.10)
lo = min{¢), a2 (M,0)},

where a;(,_1)’s are normalized as in Lemma 3.2.

Proposition 3.3. Assume that {o < a2 (M,0) — 1. After a holomorphic change of coordinates we can
normalize the coefficients of {S;} to further satisfy one of the following two normalization properties with
Ly being unchanged.

) a§§?1)_1)(z1,~-~ y2n-2,0,0,21, -+ ,Zn_2,0,0) is holomorphic in z1, -+ ,zn_2 for each j, and there ex-
ists jo € [2,m — 2] such that a§§2l)71)(z17--~ v 2n-2,0,0,21, -+ ,Zp—2,0,0) = 0 for 1 < j < jg— 1,
¢
aé.?(g;)“)(o,-.- 10,20, s Zn_2,0,-++,0) =0, but
ajoo(nfl)(zla ttt, 2n—2, 07 e 70) 7_é 0.
(I1) agil)q)(zlv S 2n-2,0,0,Z1, -+ ,Zp—2,0,0) is not a holomorphic polynomial
and ag?il)fl)(zl, cor yZp—2,0,---,0) =0.

Proof. (I): First, we assume that each a%‘gﬁl

a%‘;)_l) satisfies the properties as in Lemma 3.2. Then

)(zl, <oy 2Zp—9,0,0,Z1, -+ ,Zp—2,0,0) is holomorphic and each

a(ll;(;‘)_l)(zla' o azn—2707"' 70) =0.

By the definition of ¢y, we can find the smallest jo € [2,n — 2] such that

‘
a/_g‘(f,)l)_l)(zla e ,Zn—270a e ,0) =0
forall 1 <j < jo—1, but a%%_l)(zl, o+ 2Zp—2,0,--+-,0) £ 0. By Lemma 3.2, this jy satisfies the property
in part (I) of the proposition.
(IT): Next, assume that a%‘;)_l)(zl,~-- yZn—-2,0,0,Z1, -+ ,Zn_2,0,0) is not holomorphic for a certain

j € [1,n — 2]. Switching j with the index 1 and repeating the proof in Lemma 3.2, we can make



X. Huang, W. Yin / J. Math. Pures Appl. 146 (2021) 69-98 77

agi(;l)_l)(zl, “++,Zp—2,0,--+,0) = 0 and achieve the other normalization properties as in Lemma 3.2. Notice

that ¢y is not changed after this normalization procedure. This completes the proof of the proposition. 0O

Define the weight of z; and z; for 1 < j < n—2to be 1. The weight of 2,1 and Z,_7 is defined to be {o+1
and the weight of w is defined to be m that is the lowest weighted vanishing order of p in the expansion of
p(z,0,Z,0) at 0 with respect to the weights of {z1,--- , 2,2, 2,—1} just defined. Later, we will see the only
non-trivial weight ¢y + 1 for the missing CR direction along z,,_; is precisely the first Hormander number
associated with the lowest part of the system {S;}. In what follows, for a smooth function A, we write
Al (21, ,Zn-1,21," - ,Zn—1) for the weighted homogeneous part of weighted degree o with the weight
system just defined in its Taylor expansion at 0. Notice that when A does not contain z,_; then Al°l = A(@),
Then we have the following

Proposition 3.4. In the case of Proposition 3.3 (II), we can further apply a holomorphic transformation of
coordinates and change the basis {S;} if needed to make the coefficients of {S;} in the expansion with respect
to {L;} satisfy one of the following two normalizations with ¢y being unchanged:

(1) agzgl)fn(zlvoa ++,0,21,0,- - ,0) 7_é 0, ag[é(;)fl)(zl,ov T 70) =0
(a%‘;)_l)(zl, oo Zp—2,0,--+,0) =0, in fact),

p[M] (21707 T 7072n71707'z—1707 T aovznflao)

is not identically zero (and contains no non-trivial holomorphic terms).

(2) For a certain j € [1,n — 2], a%l)_l)(zl, cy2n-2,0,0,Z1, -+ ,Zp_2,0,0) is not holomorphic,
_ ¢ _ _
Z:12 Zka/gc (;,‘),1)(2:17 “y2p-2,0,0,71, - 22,0, 0) =0,
p[m](zl, ceo  Zn—1,0,21,+ ,Zn_1,0) is not identically zero (and contains no non-trivial holomorphic
terms).

Proof. Consider the following change of coordinates:

ny=21, =z —ajz, for2<j<n =2, 2, =21, w =w. (3.11)

We first give a sufficient condition under which, for a generic choice of a; with 2 < j <n — 2, we have

p[m](zho’_ o 707271717072—1707"' 7072717170) 7_é 07

(%) o . ) (3.12)
al(nil)(zl, 0,---,0,%21,0,---,0) contains a non holomorphic term.
Notice that
p[m](zh Ctt,2n—1, 07Z_1a tttyRn—1, O)

:p[m} (Ziv Zé + O‘2217 Tty Z;_Q + Oén—ZZia Z;L_la 07;iag + 04_2;/17 Y 247,72 + an—Qza 247,715 O)
The coefficient of 2/5 2"\ 27,"27, 1  with t + s+ (£o + 1)(u + v) = m in its Taylor expansion is

Z (m] H—J

P(Ep0) (Tv0)* @

Y ha=tY ja=s

H=(h1, hn—2),J=(j1, Jjn-2)

Here a; =1, a = (a1, -+ ,p_2), and p%}]ﬂo)uyo) is the coefficient of
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h1 hn—2 _n J1
Rl "t Rp—2 RFp_1”1 "R

jn72

n—2 2y

n—1

in the Taylor expansion of p at 0.
Notice that this term is 0 for a generic choice of « if and only if PE?}]M (Jv0) = 0 for any pair (H,J) with
> hx=t, Y, jx = s. By our choice of the weight m, there exists a pair (Hu0)(Jv0) with |J|+ (bp+1)v > 0

m

such that P (H u0)(J0) # 0. Thus for a generic choice of a;s, we have

P (20,0, 1,0,20,0,---,0,27 _,0) Z0.

»“n—1»
Since pl™ contains no holomorphic terms, so is
1Iml (21,0, ,0,201,0,27,0,- -+ ,0,2/,_;,0
1Y (Zlv o, 2, 1,0, 2,0, U 20, )

Hence for a generic choice of «, the statement in the first line of (3.12) holds.
Next notice that

9 o = 9 9 B ,
B o g 5 gy r2sisn-l (3.13)
1 1 A=2 A J J

And by Lemma 3.1, we have
n—2
Liy=IL{ =Y a)Lj, Ly =L;for2<j<n-—1. (3.14)

A=2

Set St = S1 + Y45 xSy, S = S;. Then

n—1 n—2 n—1
/
S| = E anLn + g o E axpLp
h=1 h=1

A=2
n—2 n—2 n—2 n—2
:(au + Z aAaM) (Lll — Z Oé)\L/)\) + (alh + Z Oz)\a)\h)L% (3.15)
A=2 A=2 h=2 A=2

n—2 n—1
+ (a1(n—1) + Z a,\aA(n—l))L;Lq = Z apy L.
A=2 A=1

Hence

a/l(nfl)(ZLOf” 707Z—1l707"' 70>

— U U / o 7 7
_al(nfl)(zh O422:17 e 7an—2217 07 Oa Zlv 0422?1, e 7an—221a 07 O) (3 16)
n—2 ’
j : / ! / I / /
+ O‘)\a/\(n—l)(zh QZy, " ,0p_227, Oa 07 21,227, , 0227, Oa 0)
A=2

Then the coefficient of z1't2z1’® with t + s = £, in al1(n71)(zi’ 0,---,0,2z17,0,---,0) is the following

n—2 n—2
¢ or— ¢ _
Z Z (ag\(ovz—l))HJOéHJr ral = Z Z (ag\((;l)_l))(H—eA)JaHOKJ7 (3.17)

A=1|H|=t,|J|=s A=1|H|=t+1,|J|=s
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where ey = (0,---,0,1,0---,0) with 1 at the A-th position. This term is 0 for a generic choice of « if and
only if Zfﬁ(a&@fl))mmw = 0. We next proceed in two steps:
(1). First, we suppose that there exists a pair (H, J) with |J| # 0 such that

n—2
¢
Z(a§(2_1>)(H—eA)J # 0.
A=1
Then for a generic choice of «, alEiO) 1)(2{, 0,---,0,71",0,--- ,0) contains a non-holomorphic term. Through

the normalization procedure as in Lemma 3.2, we can make

allgf?)l)(zl"" ’Z’I/'L—27O7'.' ,0)=0

and thus, in particular, aIE 0)1)(2'1,O,~-~ ,0) = 0. We point out that this transformation preserves the

statement in the first line of (3.12). Then by (3.9), the new a((OL 1) and pl™ satisfy the desired properties
in (1) of Proposition 3.4 and thus £y is not changed. Next, we can repeat the same argument in Lemma 3.2
to normalize a%‘:l)_l) for j > 2 and thus obtain the normalization for a§ (U) 1) with j =2,--- ,n—2.

(2). We now suppose

n—2
‘
Z(af\(gz)fl))(H—ex)J =0 for any |H| + |J| =4y + 1, |J] #0. (3.18)
A=1
We will show that by a suitable change of coordinates of the form 25 =2j, 21 = 2Zn—1+9(21, , Zn—2),
w’ = w, we can make
n—2
> (@801 (H—exyo = 0 for any |H| = o+ 1. (3.19)
A=1
Here g(z1,- -, 2n—2) is a homogeneous holomorphic polynomial of degree ¢y + 1.

In fact, under this transformation, we have

7 7] 0 7] 0

= — +g., , = .
0z, 02 Yoz 9zpy 04,

And by Lemma 3.2, we have

n—1 n—2
Sy = apnln =Y ap(Ly, + 9= L) + ajn-1)Lh,
j=1 j=1

n—2 n—2
= Z Clth/h + (aj(nfl) + Z ajhgzh)L;L—l'
Jj=1 Jj=1

Hence

¢ ¢
ax((ﬁ)) = a&{i? 1) T 9z (3.20)

Thus >"\_ l(a/\(n) 1))(H ex)o = 0 for any H with |H| = {41, which is equivalent to Z;;f z,\ai\((lg)_l)(zl’ -

Zn—2,0,---,0) =0, if and only if
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ZZ)\QZ)\—"ZZ/\GA.” 1) Zla"' ,Zn—270a"' aO)ZO

This is the well-known Euler equation and can be solved as follows:
Notice that if we write g = 3", ;1 _; 1 [';z7, then

n—2
Z ZAGzy = Z Z jx\FJZ KO + 1)
A=1

A=1 ‘J‘ Lo+1

Hence g can be uniquely solved as

n—2

1 4

g= _fo 1 )ZZ)‘CL&(OTS—U(Z“”' yZn_2,0,---,0).
=1

Thus we get the desired normalization property in (3.19). Notice that by (3.20), we conclude that ¢y is
not changed because any non-holomorphic term in aio(n_l) can not removed by this transform. Moreover,
(af\(oz 1))(H,EA)J with |H| + |J| = £y + 1, |J| # 0 is not changed under this transformation. Hence (3.18)
still holds to be true.

Notice that (3.18) and (3.19) are equivalent to the normalization property in (2) of Proposition 3.4. In
fact,

n—2

Z Zja;lgz)_l)(zh Tty Rn—2, 0, O7Ea Tty Rn—2s 07 0)
j=1

= Z (@561t 522 = 0.

|H|+|J|=£o+1 j=1

This completes the proof of Proposition 3.4. O
We summarize what we did in this section in the following theorem to facilitate our future quotation:

Theorem 3.5. Let M C C" be as deﬁned Z'n (3.1) and let B be a smooth subbundle of TOM of complex
dimension s = n — 2. Let {Ly}}—1, {S;}7 o > and {a;n} be as in (3.3) and (3./). Suppose that £y is defined
as in (5.10) and m is the weight of w. Assumption that £y < a2 (M,0) — 1. Then, after a holomorphic
change of coordinates and after re-choosing a suitable basis {5 ;:12 of the cross sections of B, if needed,

we have one of the following three normalizations for the system
{a](n 1)(217 Tty Rn—2, 07 Oa 21,0y Zn—2, Oa 0)7 P[m] (Z7 07 Z, 0)}?:_12

) a%%)_l)(zl, cor  2p—9,0,0,Z1, -+ ,Z,—2,0,0) is holomorphic in z1,- - , zn_o for each j, and there exists
Jo € [2,n — 2] such that

(bo)

aj(n_l)(zla"' azn—Zaovoaz_ly"' 7Zn—270a0) =0

for1<j<jo—1, agoc& 1)(O 50,250, yZp—2,0,---,0) =0, but
(¢o)

ajo(n—l)(zl"“ Zn—2; 7' )7_é0
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(II) agj(;b)_l)(zhoa'” a07aa07"' 70) i—é 0; CL(ZO) (Z1507"' 70) = 07

1(n—1)
plm] (21,0,-++,0,2,-1,0,21,0,--- ,0,Z,-1,0) is not identically zero (and contains no non-trivial holo-
morphic terms).
(IIT) For a certain j € [l,n — 2], a%%)_l)(zl, v 2Zpn—2,0,0,71, - ,Zn_2,0,0) is not holomorphic,
27;12 zja%%)_l)(zl, o Zn—2,0,0,Z1, - ,Z,—2,0,0) = 0. Moreover
p[m](zla e aznflaovz_h e 727171,0)

s not identically zero and contains no non-trivial holomorphic terms.
4. Proof of Theorem 2.3

We now present a proof of Theorem 2.3, assuming Theorem 6.1 whose proof is very much involved and
will be given in §5 and §6. As we mentioned before, our focus is on the equality of the commutator type
with the contact type. The Levi-form type can be easily reduced to the commutator type case.

Proof of the equality: t("~2) (M, p) = a2 (M, p). We keep the notations set up in §2 and §3 with p = 0.
Assume that M is defined as in (3.1) and (3.2). As we mentioned there, we assume that (=2 (M,p = 0) <
co. Supposing that t(*=2) (M, 0) > a(®=2) (M, 0), we will then seek a contradiction.

Let B be an (n—2)-dimensional smooth vector subbundle of T*°M such that t(*~2) (M, 0) = t(*=2)(B, 0).
By the assumption that (=2 (M, 0) > a2 (M, 0), for any | < a("~2)(M,0) we have

<F78p>(0):0f0r any F= [FluF‘lflf"[FQuFl]"'] with Fla"' 7-Fl GMI(B) (41)

We assume the normalization of §2 up to (3.10) such that we can well define £.

Recall that the weight of z; for 1 < j < n —2 and their conjugates is 1. Define the weight of z,_; and its
conjugate to be k = £y 4+ 1. Denote the weight of w to be m, which is the lowest weighted vanishing order
of p(z,0,%z,0) with respect to the weights just given. We also define

0 0
Wt(azj) Wt(az_j) lfor1<j<n-—2,
B B) ) ) (4.2)
W) =V aas) = R i) = wilgg) =

By the definition of a("~2)(M,0), when restricted to the (n — 2)-manifold {(z,w) : 2z,_1 = w = 0},
the vanishing order of p is bounded by a("~2)(M,0). Thus m < a("~2(M,0). When k < a("~2)(M,0), we
further assume that S; and p are normalized as in Theorem 3.5.

Write

9 k-1 0 n gm0

0_ _“
5 = 0z +aj("*1)6zn,1 n o w’

Then S;’ is the sum of terms in S; of weighted degree —1.
Now, let M° be the C°°(M")-module spanned by S and S_]U for all 1 < j <n—2, where M° = {(z,w) :
pl" = —2Rew + x["(2,0,%,0) = 0} and MY be the C>°(M°) module formed by taking the Lie bracket of

length < [ of sections from M° for I = 2,---. M9 = UjenM?. Notice that S;-) is a CR vector field along
M? for each j. We start with the following lemma:

Lemma 4.1. It holds that k < m, namely, £y < m — 1.
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Proof. Suppose that k& > m. Then the weight of z,_1 is no less than m. Hence y[™ (2,0,%,0) is independent
of z,_1. Write
0 0 [m—1] 0

G0 — g0 _ ,lk=1] —
5 =5 R ICE R 0z T B

Since S;-’ is tangent to M 0. whose defining function is independent of z,_;, we see that é? is also tangent
to M9 and a%il] ag . Hence agn Uis independent of z,,_1.

Regarding M° as a real hypersurface in C"~!. Let M° be the C>(M°) module spanned by S?
and :S’? for all 1 < j < n — 2. Define Q : M° — M by sending Zdj(z,z)aizj e M° to
Zj;én_l dj(z1,- -+, Zn—2,0,71, - 7271*270)8%_7 € MO, Then by (4.1), for any Z;») € MO7 there exists
V) € M with Q(Y}) = Z] such that

(27,123

jl’.”’

[ZS’Z?] ’ "]vap>(0) = <[on’ [on—la T a[YQanlo] o ']73P>(0) =0 for j <m.

(Indeed, we can simply take Y to be Z7, but regard it as a CR vector field of M? as a real hypersurface
in C".) Hence we have t("=D=1(A1° 0) > m. However, by our construction, a((*~1=1(M°, 0) = m. This
contradicts a result of Bloom-Graham for the equalities of regular (n — 1)-types in [9], which says that
t((n=D=1 (10, 0) = a{(»=D=D (MO, 0) for M* c C*~'. O

Lemma 4.2. For any Y° € MY, we have (Y°,9pl"™)(0) = 0.

Proof. We can assume, without loss of generality, that YO = [XP,---, [X3, X?]---] with X} € M? being
weighted homogeneous of degree —1. Write

X0 704+, Ca 'chO—n_lb 0 0
i =ZitBig +Cig-wi j—;(aka ik )

Here Z is weighted homogeneous of degree —1 and wt(B;) = wt(C;) = m — 1. A direct computation shows

0 0 o0 0
0 0] _ (0 _ 70 Y Z Z =2
[X27X1] _(ZQ(Bl) ZI(BQ))a,w mOd (az7azﬂaw)
and by an induction,
0 O 0 o0 0
O —_
g ™ (5 57 o)

with CP a weighted homogeneous polynomial of weighted degree equal to —l+m. Hence Y° = 0 when [ > m
and YO\O =0 when | < m mod (£, Z,2).

When [ = m, suppose that Z; € M, such that (Z;)" = X9. Then [Z;, Zk] (X7, X7]. Hence if Z € M,
with [ = m such that (2)° = YO, then Z = C9Y° + D, 2 mod (Z,2,2) with wt(Y?) = —m and
thus wt(Dy,) > wt(C9,) = 0. From (4.1), Z|p = 0 mod (Z, a% 2. Thus we obtain C9, = 0. Hence
(Y0, 9pl™)(0) =0 for all I € N. O

2
oz

Then we have 2|y ¢ MY . Now applying the Nagano theorem (see [2]) to MY, we obtain a unique
real analytic integral submanifold N with 0 € N® ¢ M® = {—2Rew + x["(2,0,%,0) = 0}. Moreover,
dimg N° = dimg M2, , = dimg M3, . Here M, , € MY, is the submodule generated by the aforementioned

homogenous frames over C*(M?).
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Since %|0 ¢ ToN°, NV is contained in the graph of v = f1(z,%,u) for a certain real analytic function f;
near 0. Since u = %X[m] (2,0,%,0), we conclude that N° is contained in the graph of

1 1
w=f(272) = 5x"(2,0,2,0) +ifi (2,7 53" (2,0,7,0)).

We mention that from the pseudoconvexity of M, we immediately conclude the pseudoconvexity of M?,
which is equivalent to the plurisubharmonicity of Re(f) = x[™l(2,0,%,0).

Lemma 4.3. The real dimension of N is either 2n — 3 or 2n — 2.

Proof. The proof is carried out in two steps according to the properties of

14 _ _
a§([;L)_1) (Zl7 trt, 2n—2, Oa 07 21y, Zn—2, 07 0)

in Proposition 3.3.

(1): Suppose we have the normalization in (I) of Proposition 3.3. We suppose that (ag.];(:llzl))H+e# #0
with H = (hy, - ,hp_2) and 1 < p < jo — 1. Then

0 _ 0 g 0
[SM’SJO] 9z, (ajo(n—l))aznfl mo (8111’ 3E).
Write
hi times ho times hyp_o times
0 0 0 0 0 0 (43)
(517"' 7517827"' 7S2a"' aSn—27"' 7Sn—2) as (Xlz"' 7X|H\)
Then
(X1, [ [Xa), [S0, S50 -+ 1]
_ . (h-1) 9 9 9
—(hll« + 1) hi! hn72!(aj0(n71))]—]+eu 921 mod (aw, (9@)

Since its conjugate is also in MY, we conclude that the dimension of N° is 2n — 2.

(2): Suppose we have the normalization in (II) of Proposition 3.3. Then there is a (H,J) =
(1, yhn_2,J1,* ,Jn—2) such that (aglz,:,l)l))ﬂ(JJre“) # 0. Then

— 0 , (k-1 7 7] o 0
S0 SO _ ( ) d — —).
(s 51 az(a“"—l))azn,l e %m’ ow’ aw)
Write (X1, , X|g|) as in (4.3) and write
J1 times Jj2 times Jn—2 times

(59’... 75?’533... )537... 75272’... ’5272) as (Yq,--- ,Y|J|).
Then

Yus ::[Xl,["' ,[X\H|7[?17 [ 7[%7 [S_B’S?H]

=(j Ryl Lileooi o 1(g® D) 9
f(]ﬂ + 1) hq! hn_g.jl. ]n_2'(aj(n_l))H(J+e“)8zn,1m0d (8,271,1
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Hence Yy ¢ spanC{S?,S_?, 1 < j <mn—2}. Thus either ReYx s|o # 0 or ImYy s|o # 0.

Since %h and ai|0 are not tangent to NV at 0, the dimension of N is either 2n —3 or 2n —2. O

Lemma 4.4. When N° has real dimension 2n — 2, f is a weighted homogeneous polynomial of weighted

degree m.

Proof. Let X° be a (weighted) homogeneous vector field from MY, . Then from the equality that X°(—w +
f) = XO(—w+ f) = 0, it follows that X°(—w 4 ") = XO(—w + fIml) = 0. Hence the manifold defined
by w = f[™ is also an integral manifold of the module MY through 0. By the uniqueness of the integrable
manifold, we conclude that fI"l = f. O

Before proceeding further, we need the following lemma:

Lemma 4.5. Let h(z,Z) be a real analytic function in z € C™ near the origin. Assume that h is holomorphic
in its variable (z1,- -+ ,zp) with k < n for each fixred (241, - ,2n) near the origin. Assume that Ref(z,Z)
is a plurisubharmonic function without non-trivial holomorphic terms in its Taylor expansion at 0. Then
h(z,Z) is independent of z1,--- ,z and Z1,- - Zj.

Proof. We need only to prove the lemma with £ = 1 and the other case follows from an induction argument.
Since Reh(z,Zz) is plurisubharmonic, for each j with 2 < j < n, we have

(2Reh)le(2R6h>zjz—j — (2Reh)zlz(2Reh)215 Z 0. (44)
Since h(z,%) is holomorphic in z1, we have
(2Reh)zlz = 0, (2Reh)215 = hzlfj, (2Reh)zjz = EZ-T-

Substituting these relations back to (4.4), we obtain —|h.,z|* > 0. Thus h.,z = 0. Since h(z,%) is holo-
morphic in z7, we see that

g(zvz) = h(Z,E) _h(O;Z%'” 7Zn,07EW" ,%) = ng(227"' 7Zn,5a"' a%)zf
k>1

with (gx)z = 0 for j =2,--- ,n. Hence g is a holomorphic function. By our assumption,
Reh = Reg(z,Z) + Reh(0, 22, ,2,,0,%Z2, - ,Z)

contains no non-trivial holomorphic terms. Hence g(z,%) is independent of z;. This shows that h(z,%) is
independent of z; and zZ7. O

The rest of the argument is carried out according to the dimension of N°. We remark that when the real
dimension of N is 2n — 3, it is a CR submanifold of hypersurface type, for it has a constant CR dimension
n — 2 everywhere. When its dimension is 2n — 2, it has CR dimension n — 1 at the origin. Since it cannot
be Levi-flat due to the fact that Re(f) # 0, it is thus a codimension two CR singular submanifold [22].

Step I. In this step, we suppose N is of real dimension 2n — 2. Since S’T) is tangent to N, and since N°
is defined by w = f(2,%) for z ~ 0 in C"~!, we have

9 = )
a—zf(z,z) +ale D (21 2n2,0,0,71, E2,0,0)5=—=1(2%) =0, z € crl, (4.5)
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By Lemma 4.1, we have £k < m < a(”_Q)(M, 0). Our further discussions are divided into the following
cases according to the normalizations in Theorem 3.5.

Case (1): In this case, suppose that we have the normalization in (I) of Theorem 3.5. For 1 < j < jo —1,

(lzn 1)1) = 0. Thus (4.5) takes the form g—% = 0. Hence f is holomorphic in 2, -, 2;,—1 for each fixed
Zjys++ #n—1. By the following Lemma 4.5, since Re(f) is plurisubharmonic and contains no non-trivial
holomorphic terms, f is in fact independent of 21, - - , zj,—1. Setting j = jo in (4.5), we obtain

of _ _w=n __Of
62]_0 do(n=1) 0Zn—1 .

Notice that the left hand side is independent of z;,--- , z;,—1. On the other hand, the right hand side is

divisible by a( (_nl 1)(5—£ 0), in which each term depends on z1, - - - , zj,—1. Thus af = 82311 = 0. Substituting
this back to ( 5), we obtain af =0foreach1 <j <n—2.Thus fis holomorphlc in 2zy,---,2,—1. However,

xI™ = Re(f) # 0 does not contaln any non-trivial holomorphic term. We thus reach a contraction.

Case (2): In this case, suppose we have the normalization in (II) of Theorem 3.5. Letting 7 = 1 in (4.5)
and restricting the equation to z; and z,_1 spaces, we obtain:

of LD _
(B_z_l+ In=1) gz — )(21,07--- ,0,2p-1,71,0,- -+ ,0,Z,71) = 0. (4.6)
By our assumption, aglzn 1)1) (21,0,--+,0,2,-2,0,0,%71,0,--- ,0,Z,-2,0,0) is not identically zero and contains

no non-trivial holomorphic terms. By Theorem 6.1, we know x™ = Re(f) = 0 when restricted to z; and
zn—1 spaces. This contradicts the last normalization in (II) of Theorem 3.5.

Case ( ) In this case, suppose we have the normalization in (III) of Theorem 3.5. Then we have

Z;L:f Ja (n 1)1)(21,-«- yZn-2,0,0,21, -+ ,Z,—2,0,0) = 0. Since fz + a ’;n 1)1)on - = 0 and a( )1) is in-

dependent of z,_; and w, we get

ZZfZ(Zla 721’17172—17"' 721'7,71) =0.

This is again the well-known Euler equation on f. Write f(z,2) = 3,50 9a(2)Z%, where g(2) is holomorphic
in z. Then

n—2 n—2 n—2
YT =D D al2)aE = Y (D ay)galz)z =0
J=1 J=1|a|>0 |a]>0 j=1
Hence g4(z) = 0 for Zﬂ:—f laj| > 0. Thus f(z1, -+, %n—1,%1, - ,2Zn—1) is holomorphic in 2z, -+, zp_2.

(k 1)
j(n 1 Zn—1

Hence fz; = 0 for each 1 < j < n — 2. Substituting this back to fz + a = 0, we know

;lgn 1)1) fz==— = 0. Recall that at least one agl(c _1)1) is not holomorphic and thus is nonzero. Thus feZ—— =
0. Hence f(z1, -+ ,2n-1,21, " ;Zn—1) is holomorphic in z1,---,z,-1. Since Ref contains no non-trivial

holomorphic terms, we reach a contradiction.
Step II. In this step, we suppose N is of real dimension 2n — 3.

Without loss of generality, we assume ReYy 7|g # 0. Then

CTN® = Spanc{SY, -+, 89 5,89, S0,

n—2

ReYy s} near 0.
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Thus N° is a CR manifold of hypersurface type of finite type in the sense of Hémander-Bloom-Graham.
With a rotation in z,_;-variable, we can assume, without loss of generality, that ReYy j|o = %b. Now,
we define 7 : N — C"~! by sending (21, , 2n_1,w) to (21, -+ ,2n_1). ™ is a CR immersion near 0. Write
(NY) = NO ¢ C"=!. Then NV is a real hypersurface in C*~! and 77! : NO -5 NO is a local real analytic

CR diffeomorphism with 7=1(0) = 0. Write

7T71(Z17"' 7Zn—1) = (217"' 7Zn—1ah(zlv"' 7Z7L—1))-

Since real analytic CR functions are restrictions of holomorphic functions, we can assume that h(zq,-- -,
Zn_1) is a holomorphic function. Notice that h = O(|z|?) and define (&1, -+ ,&n_1,1) = F(z1,+ , 2n_1,w) =
(Zl, ety Zp—1,W — h(Zl, e ,Zn_l)). Then

F(N") c €71 x {0} = {(&1, -+~ ,€n-1,0) ¢ &1, ,€n1 € C)

Also, F(M?) is defined by —2Ren + 2Reh(£) + xI™(£,0,€,0) = 0 or 2Ren = 2Reh(€) + x[™(£,0,€,0) :=
p(&,€). Notice that F(M?) is holomorphically equivalent to MO. Hence F'(M Y) is also pseudo-convex and
of finite type in the sense of Homander-Bloom-Graham. Notice that N* = F(N°) C My = F(MY). Hence,
Vé € NO, p(€,€) = 0. Notice that p = O(|¢|?) and is plurisubharmonic. By the following proposition, we
reach a contradiction to the assumption that 2Reh(¢) 4 x[™ # 0.

Proposition 4.6. Let N be a real analytic hypersurface in C"~! with 0 € N with n > 3. Let p(2,%) be a real
analytic plurisubharmonic function with p = O(|z|?) as z — 0 defined over a neighborhood of C"~1. Assume
that N is of finite type in the sense of Homander—Bloom-Graham and N C {p = 0}. Then p = 0.

Proof. Let ¢ : A — C"~! be a smooth small holomorphic disk attached to N with ¢(1) = 0. Namely, we
assume that ¢ € C>°(A)NHol(A), p(0A) C N, ¢(1) =0, #(A) is close to 0. Since p(p(£), (€)) = 0 on DA

and ﬁp(d)(f),m) >0for &€ A, p((§),d(€)) is a subharmonic function in A smooth up to A. By the

maximum principle, we have p(¢(£), #(£)) < 0 for &€ € A unless p(¢(€), #(£)) =0 for € € A. Now, we apply
the Hopf Lemma to get

d%ﬂ((b(ﬁ)»@)k:l >0

and the equality holds if and only if p(¢(€),#(£)) = 0. On the other hand,

p(6(€),6(€)) = O(19(&)*) = O(16(¢) — #(1)]*) = O(l¢ — 1)

as £(€ (0,1)) — 1. We conclude that p(¢(€), ¢(€)) = 0.

Next, by a result of Trépreau [44], since the union ¢(A) of all attached discs fill in at least one side of
N near 0, we see that p = 0 in one side of N. Since we assumed that p is real analytic, we conclude that
p = 0. This completes the proof of Proposition 4.6. O

We thus complete the proof of the equality that t(*=2) (M, p) = a(»~2(M,p). O

Proof of the equality: ¢("~2) (M, p) = a("~2) (M, p). We will reduce this case to the commutator case that
we just achieved.

We continue to use the notations and initial setups as in §2 and §3. By [12], we have c¢(*=2) (M,p = 0) >
a™=2)(M,p = 0). We will seek a contradiction supposing that ¢("=2) (M, 0) > a(®=2) (M, 0).

Let B be an (n—2)-dimensional smooth subbundle of 7% M such that ¢(»=2) (M, 0) = ¢(»=2)(B,0). With
a biholomorphic change of coordinates, we can find a basis {S;} of B and a defining function p that satisfy
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the normalization conditions up to (3.10) so that £y is well defined. Since ¢»=2)(M,0) > a(*=2)(M,0), for
any 2 <[ < a2 (M,0), we have

n—2
Fy---Fip Y 00p(S;,5;)(0) =0 for any Fy,--- , Fi_p € My(B). (4.7)

j=1

As in the proof of t("=2)(M,p) = a2 (M, p), we can similarly define the weights of z1,--- , z,_1,w,
and define S?, MO MO MY, MO, . By the same argument as that in Lemma 4.1, we have k& < m. Then we
can further assume the normalization in Theorem 3.5. Similar to Lemma 4.2, we have the following:

Lemma 4.7. For any l and Y,--- | Y,", € MY, we have

n—2
Yy, Y 00pm (S, 89)(0) = 0.

j=1
Proof. Similar to the previous case, we can assume that each on is weighted homogeneous of degree —1.
First notice that Y% := Y. v,%, 27;12 20 plm (S?, S_?) is a weighted homogeneous polynomial of weighted
degree —I + m. Hence Y° = 0 when [ > m and Y°|y = 0 when [ < m.

Next we suppose | = m. For any 1 < j <1 — 2, suppose Z; € M such that (Z;)° = Y}. By (4.7), we

have

n—2
Zy - T Z d9p(8;,5;)(0) = 0.
j=1
Notice that
n—2 n—2 o
Zy Tz Y 00p(S;,5;) = Y1 - Y 5 Y 90p™(S9,59) + o(1).
j=1 Jj=1

We thus have Y°(0) = 0 for [ = m. This completes the proof of Lemma 4.7. O

Now we similarly apply the Nagano theorem to conclude that Mgow gives a unique real analytic integral
submanifold N with N° ¢ M° = {—2Rew + x["™(z,0,%,0) = 0}. Since the tangent space at each point of
NO is generated by ReMY_, by Lemma 4.7, we have

1777

n—2
Z d0p™ (89,59 =0 on N?,
j=1

for pl™] (S;-), S_?) is real-analytic and it vanishes to infinite order at 0 along N°. Since pl”! is plurisubharmonic,
we have agp[m}(s;?,s_?) > 0 on MP°. Notice that N° ¢ M°, we have 90pl™ (S?,S_?) = 0 on NY. Hence
Re(5?),Im(S9) € TN (MP®). By [20, Proposition 2] (see also Freedman [25]), which says the Lie-bracket
operation is closed for sections in the null space of Levi-form TV MY, for any vector field Y in ./\/lg,
Re(Y?), Im(Y?) € TN(N?) for each j. Hence for any Y? € M9, we have (Y, dpI™)(0) = 0, for both the real
part and the imaginary part of Y|y are in Re(TO(l’O)NO). This then reduces the rest of the proof to that in the
proof of the equality of t(=2) (M, 0) = a(®=2) (M, 0). The proof of the equality c¢(*~2) (M, p) = a2 (M, p)
is now complete. O
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Finally, we make a remark for the Hérmander number of a subbundle B of T™9 at p € M. Let M; be as
defined in §2 for B. We define the first Hormander number £(B) to be the minimum length of Lie-Bracket
of sections of M; that produces a vector at p no longer in M;. From our discussion in this and last sections,
it is clear that our weight ¢y is £y(B) at p = 0.

5. Further application of positivity: proofs of three lemmas

In this section, we prove three lemmas concerning a homogeneous polynomial whose real part is plurisub-
harmonic. Plurisubharmonicity is an inequality. The basic idea behind the complicated computations of
this section is that when the plurisubharmonicity is combined with weighted homogeneous polynomials, we
often obtain identities with the help of Hélder inequality. This idea was already appeared in the proof of
Lemma 4.5.

We begin with the following two simple folklore lemmas.

Lemma 5.1. Let h(€,€) be a homogeneous polynomial of (&,€) € C x C. Suppose that
hheg — hehg = 0. (5.1)
Then h must be a monomial. Namely, h = cﬁjgk for a certain complex number c.
Proof. Suppose that h is not a monomial and takes the following form:
h= € + BEE + O(E™) with j < t, a,§ # 0.

Here and in what follows, we write O(¢%) for a homogeneous polynomial with degree in ¢ at least k. Then

ho he \ _ (o€ + e + O Jag=1E" 1 ipe e+ O(e)
he he hatl€' ' 4 5B E T+ 0(EY)  jhadi T T 4 aspet e T v 0(eh) )
Thus
hhee — hehg = af(ts + jh — th — js)e™H71E " L O(E™).

On the other hand, j+h =t+s, j <t. Thus j # t and h # s. Hence ts+ jh—th—js = (j —t)(h—s) # 0.
Thus hheg — hehg is not identically 0, which contradicts our hypothesis in (5.1). O

Lemma 5.2. Let h(2,Z) =) ;7 ay72"27 be a real nonzero plurisubharmonic polynomial in (z,%) € C™ x C™,
where I = (i1, yin),J = (J1, -+ ,jn) withi;+7j; being a fixed positive integer (independent of I, J) denoted
by ky for each | € [1,n]. Assume that h,,= # 0. Then each k; is even and the coefficient of TII,|z|* s
positive.

Proof. By the plurisubharmonicity of h(z,%), we know h,,z > 0. Since h,,z # 0, each k; is even. Write
z; = r;¢'%. Then for any R; € (0, 00), we have

3

1 R, 2 27
/]
coi o oo | hdry - drpdby - - d6,
(2m)™ - (5.2)
0 0 0 0

=the coefficient of TI|z;|** - some positive constant > 0.
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If the coeflicient of Hj:1|zj\kf is 0, then the above integral is 0. Combining with h.,z > 0, we obtain
hz,zr = 0. This contradicts our assumption that h,,z # 0. This proves Lemma 5.2. O

Lemma 5.3. Let B(z1,71), f(22,%3) and g(z2,%3) be three homogeneous polynomials of degree k > 2, m > 1
and m > 1, respectively, in the ordinary sense with B(z1,%z1) £ 0, f(22,%2) #Z 0. Suppose that B(z1,0) =
B(0,%7) = 0. Suppose that F = Bf + zFg with ReF being a non zero plurisubharmonic polynomial without
any non-trivial holomorphic term. Then k and m are even. Moreover g = 0 and ReF = alz|F|ze|™ for
some o > 0.

Proof. By the assumption that ReF" is non-zero and plurisubharmonic, (Re(F)), .- > 0. Since B(z1,0) =

B(0,71) = 0 and ReF contains no non-trivial holomorphic terms, one further concludes that (Re(F)), .- is

not identically 0. By Lemma 5.2, m and k are even. Set k = 2k3 and m = 2mg. Write

B= Y Buxz" f= ), funhm’ 9= Y g.#hm"

j+h=Ek t4+s=m t+s=m

First we claim that By,x, # 0 and fp,m, # 0. Otherwise the coefficient of the |z;|?%372|2y|?™2 in
(Re(F)),, is zero, and thus by Lemma 5.2, we reach a contradiction. After writing F' = c¢B - 1f+ztg, we
can assume that By, = 1.

By the plurisubharmonicity of Re(F’), we have
(ReF)Zlﬁ(ReF)Zzz - (ReF)Zlﬁ(ReF)ZQH > 0. (53)

The idea behind the next complicated computation is to write the left hand side of (5.3) into a negative
sum of squares modified some terms under control so that the Hoélder inequality can be applied. This is
made possible due to the homogeneity of the functions under study.

Notice that

2(R6F)Zlﬁ = leﬁf + Ezlﬂ?v Q(RQF)ZZE = szzﬁ + B_szE + 2Re(zi€9225)' (54)
Thus
4(ReF).,z (ReF).,z = QRe(BleﬂffZQi + FB@Zf?@@ + Boymf - 2Re(zng25)). (5.5)

The coefficients of |21|?*~2 in BB,,z; and BB,,5; are, respectively,

> ihBjnBus, Y jh|Bul*.

j+h=k j+h=k

The coefficients of |23|*™~2 in ff.,z and ff are, respectively,

2229

Z tsftsfsh Z ts|fts|2

t+s=m t+s=m

Notice that B, s f - Re(2§g.,z) is not divisible by |21|?*~2 (unless it is identically zero). Hence the
coefficient of |21]2%72|2|>™~2 in 4(Ref).,z (Ref).,= is

> 2Re(ththhjt5ftsfst +jh|th|2t5|fts\2)- (5.6)
j+h=k,t+s=m
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We similarly compute the coefficient of |21 |?*72|25]2™2 in 4(ReF),, = (ReF).,,= as follows:

Q(ReF)215 :Bz1 fE + En?ﬁ + sz_lgﬁa
Q(RCF)nZ :Bzfzz +§z722 =+ kz_lkilgz .

2

Thus

4(ReF)215(ReF)2221 lelefZszz +Bz1 f f
+ BB, foy [z + B2y B[, (5.8)
+ 2Re (sz_lgﬁ(Bﬂfzz + EZ?ZQ)) + k2|Z1|2k_2|g5|2'

The coefficients of |21|2*=2 in B,, Bz, B., Bz, Bz B, and B,, Bz are, respectively

Z h2thth, Z h2‘th|27 Z j2|th‘2; Z jQthth'

j+h=k j+h=k j+h=k j+h=k

The coefficients of |22|>™~2 in fx f.,, fgfzg, f2275 and 75722 are, respectively,

Z 52ftsfst7 Z 52‘fts|27 Z t2|fts‘27 Z t2ftsfst~

t+s=m t+s=m t+s=m t+s=m

Notice that kz¥ ' g (Bz fo, + B f.,) is not divisible by |z1|?*~2 (when not identically zero). Hence the
coefficient of |21[2#72|23|>™~2 in 4(ReF),,z(ReF).,z is

Z (ththhjSthsfst + h2|th‘252|fts|2 +j2|th|2t2|fts|2
Jjt+h=k,t+s=m

+] B hBth fts st) Z kZ 2|gt-5|2

t+s=m

Hence the coefficient of |z1|272|2;|?™~2 in 4(ReF),,z (ReF).,z — 4(ReF),, (ReF),,= is

> {2Re(inBinBustsfisus + ihlBui sl fisl) = (W Bai Bins® fis i
Jjt+h=k,t+s=m

+h2|th|2s2|fts|2+j2\th|2t2|fts|2+j2thB‘hjt27Jst)}— > kS gl

t+s=m

=- Z {(hS — jt)%1Bnj|?| frs|® + hs(hs — jt) Bjn B fes fot
Jjt+h=k,t+s=m

+ jt(jt — hs)Bjn B f i f st} Z k5% |gus)?

t+s=m

=— > Fffj{(hs — 30)21Buj [*| fus|? + (Gs = ht)?| By |*| fus|® + (it — jis)?|Bu [*| ful®

h<jt<s
+ (jt — hs)z\th|2|f5t|2 + (hs(hs — jt)+ js(js — ht) + ht(ht — js) + jt(jt — hs))ththftsfst

+ (380t = hs) + ht(ht = js) + js(js = ht) + hs(hs = j0) ) BBy FoaTur ) = D K28 Igusl?

t+s=m

== 3 Tl { (s = G02IBuPUsl® + s — BOPIBin Pl + (bt — )% B Pl

h<j,t<s
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+ (jt — hs)?|Bjn|?| fo|* + ((hs —jt)* + (js — ht)Q)ththftsfst

+ ((ht =35 + (it = b)) BnBugFuslon} = D K25lousl”

t+s=m
Here we have set
1 h<j, t<s,
F’;f‘j: % h=j,t<sorh<yj t=s,
0 h=yj, t=s.

Notice, by the Holder inequality, that
(s = ht)? + (hs = jt)) BinBus fiofor + (bt = j5) + (it = b)) BinBig FouT
< (g5 = ht)*(|Bhj fstl + | Bjn fes|?) + (it — hs)?(1Bnj fes|* + | Bjn ful?).-
Thus we see that the coefficient of |z1]?%72|2|?™~2 in
4(ReF)z 7 (ReF)zyz — 4(ReF): z (ReF)p=

is non positive. Furthermore, this coefficient is 0 if and only if for h < j, ¢t < s and for any j* 4+ [*=m — 1
with [* 2 0:

thfst = *thfts for jS # ht, thfts = *thfst for jt 7& hS, gjx1x = 0. (510)
Hence, we conclude from (5.3) that (5.10) holds and moreover

(ReF)Zlﬁ(ReF)ZQE — (RQF)Zlﬁ(ReF)ZQH =0. (511)

Since ReF and Bf contain no non-trivial holomorphic terms, we see g = 0.
We next prove that ReF' = a|z;|*|z2|™ for some a > 0 to complete the proof of the lemma. To this aim,
setting j = h = k3 in (5.10) and using the normalization that By, = 1, we obtain fi, = — fg for t # s.
Now, if f is of the form f = fi,ms|22|™ and ReF = |z2|™p(z1,Z1), then (5.11) is equivalent to

PPzyzr — P2y Pzr = 0.

By Lemma 5.1, p is a monomial. On the other hand, since p is real valued, p = a|z;|* for some o > 0.
Namely, ReF = «|z1|¥|22|™. This proves the lemma.

For the rest of the proof, we suppose that f is not of the form f = figms|22|™. Since figms # 0, f is
not a monomial.

We can now write

ReF = 21Z17q(2,73) + O(z11), q # 0. (5.12)
Since B(z1,0) = B(0,21) = 0, we have h,j > 1. From (5.11), we get
2h—1

hi 2t T T (4G — Gede) + O(23") = 0.

This gives
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492075 — 4220z = 0,
which further forces ¢ to be a monomial. In the following, let h, j be as in (5.12).

(1) If Bp; = 0 or Bj, =0, then ¢ = %thf or q = %thf, respectively. In either case, since f is not a
monomial, ¢ is not a monomial and thus we reach a contradiction.

(2) Assume that Byj # 0, Bji # 0 and h < j. In this case, Bh; fmgms = —Bjh fmsms- Hence ¢ # c|za|™
for some constant c.

Setting h = j in (5.10), we see fis = —fs for t # s. Thus Bpj fingms|22|™ + Bjnfmgms|22|™ = 0 and
[ = fmgms|22|™ = —(f — frgms|22|™). Hence ReF can be computed as follows:

1 _ .
Re(F) :§(thf + Binf)arzd + 0
. (5.13)
:§(th — Bin)Z 2 - (f = fingms|22™) + O(24T).

Thus we conclude that ¢ = 3(Bn; — Bjn)(f — fmgms|22|™), which can not be a monomial for f is not a
monomial. This thus gives a contradiction.

Hence we must have h > j. But from the reality of ReF’ and our choice of h, we must have h = j and
B = |z|". Hence ReF takes the form 1|z |*(f(22,%2) + f(22,%2)). Since fi; = —fs for s # ¢, we conclude
that ReF takes the form «|z;|*|29|™ with o > 0.

This finally completes the proof of the lemma. O

6. Proof of Theorem 6.1

In this section, we provide a detailed proof of Theorem 6.1, which played a key role in the proof of our
main theorem. We write z = (21, 2z2) for the coordinates in C? in this section.

Theorem 6.1. Define the weight of z1 and Zz7 to be 1, the weight of zo and Z3 to be k € N with k > 1. Let
A = A(z1,z1) be a homogenous polynomial of degree k—1 in (z1,Z1) without non-trivial holomorphic terms.
Suppose that f is a weighted homogeneous polynomial in (2,Z) of weighted degree m > k. Further assume
that Re(f) is plurisubharmonic, contains no non-trivial holomorphic terms and assume that f satisfies the
following equation:

fz(2,2) + Alz21,70) f(2,2) = 0. (6.1)
Then Re(f) = 0.

Without the plurisubharmonicity on Re(f), the above theorem can not be true as the following simple
example demonstrates:

Example 6.2. Let L = 6%1 - |z1|2%, k=3 and let f = 2123 + 3|21|*. Then L(f) = 0. Notice that Re(f) is
not plurisubharmonic neither is 0. Notice that A = A = —|21|2, Re(f)(z 0) has no non-trivial holomorphic
terms.

We also mention that in Theorem 6.1, we can not conclude f = 0 as demonstrated by the following
example:

Example 6.3. Let L = % + szzf*% and f =i(z2 + Zz — |21]?¥)2. The weight of z5 and Zz are 2k. Then

Lf =0 and Re(f) = 0. However f # 0.
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Remarks 6.4. Theorem 6.1 also holds if we simply assume that f is real analytic near the origin. Then we
just need to do a weighted Taylor expansion of f at the origin and apply Theorem 6.1 inductively on each
weighted truncation.

Proof of Theorem 6.1. The proof of Theorem 6.1 is long. The idea is to find a good use of the plurisubhar-
monicity of Re(f). We will proceed according to the four different scenarios, two of which are reduced to CR
equations along finite type hypersurfaces where Proposition 4.6 can be applied. (Hence, plurisubharmonicity
is used to apply the Hopf lemma.) The other two easier scenarios are treated by a formal theory method
with the help of Lemma 5.3.

Recall that the degree of A is k — 1 and the weight of 2o and Z3 is k.

For 0 < j <[] := my, denoted by f U) the sum of terms (monomial terms) in f which has ordinary
degree j in z9 and Z3. Then

= f[mo] 4 f[mo—l] ot f[o]_

In the course of the proof, for j = 1,2, we write O(|zj|k) for a homogeneous polynomial with (the ordinary
or un-weighted) degree in z; and z; at least k. We also denote by L(|z;|¥) a homogeneous polynomial with
the un-weighted degree in z; and Z; at most k. For a homogeneous polynomial P = ZhH:l Chjzhz? | we
denote the integral of P along Zz7 as

1 .
F(P)= )" ?chjzfzﬁﬁl. (6.2)
=’

We remark that after a transformation of the form: (21, z2) — (21,0 '22), A and f, in the new coordinates
still denoted by (z1, 22), takes the form

6 tA and f(z1,020,71,0%). (6.3)

We will need this transformation to normalize certain coefficients in our proof.
Case I: In this case, we suppose kmg < m or kmg = m, flml = 0.
Suppose h is the largest integer such that fI"l # 0. From (6.1), f*! is holomorphic in z;. We suppose
that
fU =2 Z f1s2573%, here j + kh = m. (6.4)

t+s=h

We then have j > 1. Since Ref contains no non-trivial holomorphic terms, frg = 0. In particular, we see
that we must have h > 1. In what follows, we regard any term with a negative power in some variable to
be zero to simplify the notations.

First, we claim f;s = 0 for any ¢t > 1. Since Ref is plurisubharmonic, we obtain

(Re(f)),,.. = Re(fM))_ _ +L(]22"*) > 0.

222

For £ < |z1] <1, we then have Cy >> 1 such that whenever |z;| > Cjy we have

j tele—s—1 |, —j T s—let—1
2] g tsfiszs Z2° T+ 77 g tsfiszs " 7z2' - > 0.
t+s=h,t,s>1 t+s=h,t,s>1
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Since j > 1, this is possible only when the left hand side is identically 0. This implies that f;s = 0 for all
t,s > 1 and thus for t > 1. Thus

FP = fonzizs" with j,h > 1, j+kh =m.
Then
Re(/) = 3 fonef " + o Jonzs"55
Since Re(f) is plurisubharmonic, we have

(Re(f)., = (Re(f)) ., — (Re(f)),  (Re(f)) - = 0.

Notice that

(Re(f) o = Ol ), (Re(f)). . = O(za' )
(Re(1)). o = 3 fonghel 5" + O(1a),

(Re(f) = = 5 fonjhay ™z ~" + O(|al).

Hence
(Re(1).,= (Re()) o = Re(f), o (Re()) ;

1. i _ -
== P2 fon 21 [ 22" 72 + O(| [P 2 0.

(6.5)

Now, for each fixed zo and letting |z;| sufficiently small, we get —j2h?|fon|?|21|>~2|22/>"~2 > 0. Hence
fon = 0, which means that " = 0. This contradicts our assumption that f" = 0. This completes the
proof in Case I, for we must then have fI" = 0 for any h.

Case IT: We now assume that kmg = m, Re(f™ol) # 0.

Suppose
forl = S e
t+s=mo
Since Re(f [mo]) contains no non-trivial holomorphic terms, we have fo;,, = — fmo0. By the plurisubhar-

monicity of Re(f), we get (Re(fl™0])),,zz > 0 and can not be identically zero. By Lemma 5.2, mg is even
and Refm,m, > 0. Here my = 2m;.
After a rotational transformation of the form (21, 22) — (21,8 122) for some constant § # 0, by (6.3), we

can make
Jmi=1)(m1+1) = Cfmym, for a certain ¢ > 0. (6.6)

We remark that this transformation does not change our original hypotheses in this case. Now (6.1) can be
solved as

mo
f=-F@) fm+Y 2 hmol(zy,53), hMo=l(z,0) =0, for each j. (6.7)
j=0
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In particular, we get
flmo=tl = —p(A) - flrol 4 okglmo=l (2, 75, g(2,0) = 0. (6.8)
By the plurisubharmonicity of Ref, we have (Ref).,= > 0. Notice that F(A) is divisible by |z;|?. Hence
(Ref)zyzr = (RefM ). + L(]2™72) > 0.
Hence
(Refmo=1), o >0.
Notice that the (ordinary) degree of (Ref[mo_l])zlﬁ in 2z and 73 is mg — 1 which is an odd number, we have

(Ref[mo_”)zla_z 0. Again since F@ is divisible by |21 |2, it follows from (6.8) that Re(F(A) - f[m0 )=
Next, write A = Zj+h:k—l,h21 Ajhzfz_lj. Then

_ 1 —
F(A) = Z ,—1Ajh21 le+
L 7+
j+h=k—1h>1

Hence

Re(F(A ) f[mO]) ( Z j j_ 1A—h21 Z1ﬁL Z Sfts%%Sfl) =0. (6.9)

Jj+h=k—1h>1 t+s=mg,s>1
Hence for h+j =k, t + s =mg — 1, we have
11— l=—=
314(%1);1 (s + 1) fis41) = —EA(hq)j (1) fogn)- (6.10)

Setting t = my — 1, s = my in the above equation and making use of (6.6), we get

17 1:
G- M+ De = =5 A - ma. (6.11)

If c =0, then Aj_1); =0 forall h+j =k, h > 1, j > 1. This implies that A = 0, which is impossible.
Thus ¢ # 0. From (6.11), we get

Ai—1nAn—1); < 0 and the equality holds only when A¢;_1), = Ap—1); = 0. (6.12)
Next, by (6.1), (6.7), we compute the following:
fimo? = F(AF(A)) - fI3) = F(A4)0 ™ (20,7) + 270102 (20, 72).

We will compute the coefficient of |z;|?#|z5|™0~2 in fImo=2 First, the coefficient of |zp|™° 2 in fgé‘ﬂ is

(m1 4+ 1)ma fm, —1)(m,+1)- Notice that

S I 1
AP(A) = 3 Apamle Y o AET (6.13)
j+h=k—1 t+s=k—1

Hence
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- 1 - |
F(AF(A)) = Z _ AjhAtSZ{LJrsZ—l]-f-H_z 614
j+h=k—1t+s=k—1 (t+1)(+t+2) ( )

Whenk=h+s=j5+t+2, j+h=k—-1,t+s=k—1, wehave j=k—1—-h, t=h—-1, s=k—h.
Hence the coefficient in F(AF(A)) with the factor |z;|?* is

1
Z EA(k—l—h)hA(h—l)(k—h) == H.
1<h<k—1

By (6.12), H < 0. Moreover H = 0 if and if A(;_1_p), = 0 for all h > 1, which is equivalent to A = 0. This
is impossible and thus H < 0.

Notice that A is divisible by z;, thus F(AzF) does not contain |z;|?* term.

Thus the coefficient of |z;|%#|zo|™0 =2 in fImo=2] is (m; + 1)mi fm,—1)(m,+1)H. Recall that Refr,,m, >0
and ¢ > 0. Together with (6.6), we get Ref(m,—1)(m,+1) > 0. Hence the real part of the coefficient of
|21]|%%|22|™0=2 in fIm0—2] must be negative. This contradicts the following

Z1%21

(Re(f[mo_Q])> >0,

which is true due to the fact that (Re(f[mo])> and (Re(f[mofl])) =0.

21ZT 2171

The following two cases are more subtle. Fortunately, we have more geometry in these two settings to
enable us to Proposition 4.6.

Case III: m = kmyg, fl™ol #£ 0, Re(fl"™0]) = 0 and Re(fmo—1) £ 0.

Here, we reduce f to the solution of a CR vector field of a real hypersurface of finite type in C2 and then
apply Proposition 4.6 to reach a contradiction. Write B := —F(A) = Zj+h:k Bjnz]zi". By Lemma 5.2,
both k and mo — 1 are even. Define k = 2ko, mo = 2mg + 1. Then By, # 0 by Lemma 5.2, which implies

that A, 1)k, 7 0. After a dilation transform of the form as in (6.3), we assume that A, _1)r, = —ko.
Then By,k, = 1. A direct computation shows

flmo=1l = Bflmol 4 kg (2, 75).

From our assumption, Ref™0~1 is plurisubharmonic. By Lemma 5.3,
9(22,73) = 0, Re(fImo~1) = Re(B ) = Az |¥[z| ™1, A > 0. (6.15)

Notice that By,r, = 1 and (ma + 1)Re(fin,(my+1)) = A # 0. Since Re(f™0)) = 0, we have f(,+1)m, +
fma(ma+1) = 0. Notice that f%no] — (mg + 1)fm2(m2+1)|22\2m2 has no term divisible by |z3|*™2. Hence we
conclude from (6.15)

Re(B finy (my+1) (M2 + 1)) |22 ™07 = Az1 [F 2o

m2+15m2—1

Collecting terms divisible by zj in (6.15), we get

M2 B fmy+1)yms + B(ma2 + 2) fim,—1)(ma+2) = 0.

Hence B is different from B by a constant. Since we normalized By,r, = 1, we see that B is real-valued.
But fZLZlO] contains a term of the form pu|zp|™°~! with Rey # 0. Thus —F(A) = |2/, namely, A =
_k2zfzflz—1k2.
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Now, L = 6%1 + A(zl,ﬁ)aiz2 forms a basis for the sections of CR vector fields along the real algebraic
finite type hypersurface My in C? defined by —zo — %5 = |21|?*2 and L(f) = 0. Thus f is a CR polynomial
on My and g = f(z1,721, 22, —22 — |21]?¥?) is a weighted homogeneous holomorphic polynomial of degree
m > k. Since f — g = 0 over My, My is contained in the zero set of the plurisubharmonic p = Re(f — g)
with 0 € My. Notice that p = O(|z|?), we conclude by Proposition 4.6 that p = 0 or Re(f) is pluriharmonic.
This is a contradiction. Hence Case III cannot occur.

Case IV: m = kmy, fI™ol # 0 but Re(fIml) = Re(flme—1) = 0.
Write

A= Z Ahjzhzja B= _F(Z) = Z thzh2j7 f[mo] = Z ftszéas.

h+j=k—1 h+j=k t+s=mg

Then by our assumption that Re(f™0l) = Re(fl™o~1) = 0 and F(A) is divisible by |2;|?. By Lemma 5.3,
as in Case (III), we have the following

flmo=1l = g glmol, (6.16)
Still write flmol = 3~ +s—m, fts#525. Then we similarly have from the hypotheses that Re( flmoly =
Re(flmo=1]) = 0 the following

frs = = [ty Bpj(s + 1>ft(s+1) =—(+ 1)thf8(t+1)' (6.17)

Hence for each pair (h, j), if Bp; # 0, then Bjj, # 0; for otherwise we get f;s = 0 for any ¢t + s = mg and
reach a contradiction. Since B is nonzero, we can suppose there is a pair (hg, jo) such that By, # 0 and
thus Bj,n, # 0. Since flmol £ 0, there is a certain fto(so+1) 7 0 and thus fo 41y # 0. By (6.17), we have

Bhgijo (80 + 1) fro(so+1) = —(to + 1) Bioho fso (t0+1)5
Bijono (80 + 1) fro(so+1) = —(to + 1) Bhyjo fso(to+1)-

Since fio(so+1) 7 0 and foo4+1) # 0, we have [Bp,j,| = |Bjon,|. After a rotational transformation as in
(6.3) with a suitable choice of §, we can assume that B, , = Bj,n,- Then by (6.17), we have

fts = _E7 (S + 1>ft(5+1) = _(t + 1)% (618>

By (6.18), fi—zn ol ig pure imaginary. Also, it is not identically zero for the absolute value of each coefficient
is a non-zero multiple of the others and at least one of them is non-zero. Now, by (6.16), we easily conclude
that B = F(A) is a real-valued homogeneous polynomial divisible by |21 |?. Hence, L = 6%1 + A(Z1,Z_1)6%2
forms a basis for the sections of CR vector fields along the real algebraic finite type hypersurface My in C?
defined by 23 + Z3 = F(A) and L(f) = 0. Now, following the same argument as in Case (III), we achieve a

contradiction by Proposition 4.6 unless Re(f) = 0.

Combining our arguments in Cases I-IV, we conclude the proof of Theorem 6.1. O
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