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We prove that the commutator type, the regular contact type and the Levi form 
type of order s = (n − 2) are the same for a smooth pseudoconvex real hypersurface 
in Cn with n ≥ 3. In particular, this provides, in the case of complex dimension 
three, a complete solution of a long standing conjecture of Bloom formulated in his 
famous and important 1981 paper [12]. When n ≥ 4, our theorem provides the first 
result along the lines of the Bloom conjecture in any dimensions in a case where the 
pseudoconvexity assumption of the hypersurface starts to be crucial.
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r é s u m é

Pour toute hypersurface rèlle lisse et pseudoconvexe de C3, nous considérons trois 
notions de type : le type obtenu en considérant les crochets de Lie de champs 
de vecteurs CR, le type obtenu à partir de l’ordre de contact avec les courbes 
holomorphes régulières et le type associé à forme de Levi. Notre résultat principal 
établit l’égalité entre ces trois types, apportant ainsi une solution complète à une 
ancienne conjecture de Bloom en dimension trois. En dimension n supérieure, nous 
vérifions aussi la conjecture de Bloom pour s = n − 2, obtenant ainsi la première 
solution à la conjecture de Bloom pour laquelle l’hypothése de pseudoconvexité est 
nécessaire.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let D be a smoothly bounded pseudoconvex domain in Cn for n ≥ 2. Many analytic and geometric prop-
erties of D are determined by its boundary holomorphic invariants. To generalize his subelliptic estimate for 
the ∂-Neumann problem from bounded strongly pseudoconvex domains [24] to bounded weakly pseudocon-
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vex domains in C2, Kohn in a fundamental paper [34] investigated three different boundary invariants for 
D ⊂ C2. These invariants describe, respectively, the maximum order of contact with smooth holomorphic 
curves at a boundary point, degeneracy of the Levi-form along the CR directions and the length of the iter-
ated Lie brackets of boundary CR vector fields as well as their conjugates needed to recover the boundary 
contact direction. Kohn proved that all these invariants are in fact the same, called the type value of a point 
on ∂D ⊂ C2. When this type value is finite at each point, Kohn’s work in [34] together with that of Greiner 
[30] (see also Rothschild-Stein [41]) gives the precise information of how much subelliptic gain one obtains 
for the ∂-Neumann problem for a smoothly bounded weakly pseudoconvex domain in C2. For decades, the 
finite type condition initiated by the work of Kohn has been playing fundamental roles in many problems in 
Several Complex Variables, CR Geometry and Analysis as well as the theory of Subelliptic Partial Differ-
ential Equations. For instance, Bedford-Fornaess [7], Fornaess-Sibony [23] studied peak functions on weakly 
pseudoconvex domains of finite type in C2 and discovered close connections between the type value of the 
boundary and the Hölder-continuity of the peak functions up to the boundary.

Generalizations of Kohn’s notion of the boundary finite type condition to higher dimensions have been 
a subject under extensive investigations in the past 40 years in Several Complex Variables. Kohn later 
introduced a finite type condition in higher dimensions through the subelliptic multiplier ideals [35]. The 
understanding of this type has later revived to be a very active field of studies through the work of many 
people including Diederich-Fornaess [20], Siu [43], Kim-Zaistev [32][33], Zaistev [45], as well as the refer-
ences therein. Bloom [11] and Bloom-Graham [9] established Kohn’s original notion of types in C2 to any 
dimensions. Namely, for each integer s ∈ [1, n − 1] and for a smooth real hypersurface M ⊂ Cn with n ≥ 2
and p ∈ M , Bloom-Graham and Bloom defined the vector field commutator type t(s)(M, p), the Levi-form 
type c(s)(M, p) and the regular contact type a(s)(M, p) of M at p, which are called the regular multi-types 
of Kohn [34], Bloom-Graham [9] and Bloom [12]. Bloom-Graham [9][10] showed that when s = n − 1, all 
these types are also the same as in the case of n = 2 by Kohn. However, without pseudoconvexity for M , 
Bloom [12] showed that when s �= n − 1, while the contact type a(s) may be finite, the commutator type 
t(s) and the Levi-form type c(s) can be infinite in many examples. The commutator type is intrinsically 
defined only through the Lie bracket of CR or conjugate CR vector fields of M valued in some smooth 
subbundle of T (1,0)M ⊕ T (0,1)M . It is an important object in the fields such as sub-elliptic analysis and 
PDEs. In Adwan-Berhanu [1], the commutator type was crucially used to obtain analytic hyper-ellipticity 
of solutions of non-linear PDEs. An excellent description on this matter can be found in the work of Derridj 
[19] and the book of Berhanu-Cordaro-Hounie [5]. The other two types are more on the emphasis of complex 
analysis, defined through the complex structure of the ambient space. D’Angelo [17] introduced his famous 
notion of finite type condition by considering the order of contact with not just smooth complex manifolds 
but possibly singular complex analytic varieties, which is a singular contact type condition and turns out 
to be equivalent to the existence of the subelliptic estimate by the work of Kohn [35], Diederich-Fornaess 
[20] and Catlin [15]. Catlin in [14] studied his version of multi-types as well as its connection with the 
boundary stratification in terms of the degeneracy of Levi forms. Catlin’s types are more along the lines of 
differentiation of Levi forms and thus more along the lines of Levi-form types. There was also a very useful 
type condition called holomorphically finite non-degeneracy condition in [4] which has late played a funda-
mental role in understanding various problems in CR geometry in the work of Berhanu-Xiao [6] Lamel-Mir 
[37], etc. Other studies involving various type conditions as well as their applications at least include the 
work in D’Angelo [18], Sibony [42], McNeal [39], Boas-Straube [8], Fu-Isaev-Krantz [26], Baouendi-Ebenfelt-
Rothschild [3], Bove-Derridj-Kohn-Tartakoff [13], Berhanu-Xiao [6], Lamel-Mir [38], Gong-Stolotvich [28,29], 
Gong-Lanzani [27], etc., and many references therein.

All these type conditions mentioned above were introduced through different aspects of studies. Revealing 
the connections among them always resulted in a deeper understanding of the subject. For instance, proving 
that the Kohn multiplier ideal type is equivalent to the finite D’Angelo type would provide a new and much 
more direct solution of the ∂-Neumann problem.
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In this paper, we are interested in the three multi-regular types of Kohn-Bloom-Graham. We will be 
concerned with the question when all these types are equivalent, known as the Bloom conjecture formulated 
in Bloom’s famous 1981 paper [12]. We will show that the (n − 2)-commutator type t(s)(M, p), also called 
(n − 2)-Hörmander type, coincides with the (n − 2)− Levi-form type c(n−2)(M, p) and the regular (n −
2)−contact type a(n−2)(M, p) for any pseudo-convex hypersurface M in Cn with n ≥ 3 and with p ∈ M . 
When s = n − 1, these three regular types were proved to be the same by Bloom-Graham [9][10] more than 
40 years ago, and in the Bloom-Graham case, the pseudo-convexity for M is not needed. Hence, our main 
theorem provides the first equivalence result of these three types in any dimensions in the case where the 
pseudoconvexity starts to play a fundamental role after the work of Bloom-Graham [9][10] more than 40 
years ago. In the C3 case, Bloom obtained in 1981 the equality of the Levi-form type and the regular contact 
type. However, Bloom left the important open question when the commutator type is also the same as the 
regular contact type. As an immediate consequence of our main theorem, in the case of complex dimension 
three, our result finally provides a complete solution of the famous Bloom conjecture posed in 1981 [12].

Our focus in this paper will be on the understanding of commutator types. The other types will be 
reduced immediately to the study of commutator types.
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2. Statement of the main theorem

Let M ⊂ Cn be a smooth real hypersurface with p ∈ M . Then dimCT 1,0
p M = n − 1 for p ∈ M . For any 

1 ≤ s ≤ n − 1, we have the following three sets of important local holomorphic invariants ([12]), used to 
describe the holomorphic non-degeneracy of M at p.

(i): The s-contact type a(s)(M, p):

a(s)(M, p) = sup
X

{
r| ∃ an s-dimensional complex submanifold X

whose order of contact with M at p is r
}

.

(2.1)

Let ρ be a defining function of M near p, namely, ρ ∈ C∞(U) with U an open neighborhood of p ∈ Cn

and U ∩ M = {ρ = 0} ∩ U , dρ|U∩M �= 0. Remark that the order of contact of X with M at p is defined as 
the order of vanishing of ρ|X at p.

(ii) The s-vector field commutator type t(s)(M, p):

Let B be an s-dimensional subbundle of T 1,0M . We let M1(B) be the C∞(M)-module spanned by the 
smooth tangential (1, 0) vector fields L with L|q ∈ B|q for each q ∈ M , together with the conjugate of these 
vector fields.

For μ ≥ 1, we let Mμ(B) denote the C∞(M)-module spanned by commutators of length less than or 
equal to μ of vector fields from M1(B). A commutator of length μ of vector fields in M1(B) is a vector field 
of the following form: [Yμ, [Yμ−1, · · · , [Y2, Y1] · · · ]. Here Yj ∈ M1(B). Define t(s)(B, p) = m if 〈F, ∂ρ〉(p) = 0
for any F ∈ Mm−1(B) but 〈G, ∂ρ〉(p) �= 0 for a certain G ∈ Mm(B). Then

t(s)(M, p) = sup{t(B, p)| B is an s-dimensional subbundle of T 1,0M}. (2.2)

B
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t(s)(B, p) is the smallest length of the commutators by vector fields in M1(B) to recover the complex 
contact direction in CTpM . t(s)(M, p) is the largest possible value among all t(s)(B, p)′s. Namely, t(s)(M, p)
describes the degeneracy of the most degenerate s-subbundles of T 1,0M in terms of the commutators of its 
smooth sections. Notice that it is intrinsically defined, independent of the ambient embedded space.

(iii) The s-Levi form type c(s)(M, p):

Let B be as in (ii). Let LM be a Levi form associated with a defining function ρ near p of M . For 
VB = {L1, · · · , Ls}, a basis of smooth sections of B near p, we define the trace of LM along VB by

trVB
LM (q) =

s∑
j=1

〈[Lj , Lj ], ∂ρ〉(q), q ≈ p. (2.3)

We define c(B, p) = m if for any m − 3 vector fields F1, · · · , Fm−3 of M1(B) and any basis VB, it holds 
that

Fm−3 · · · F1
(
trVB

LM

)
(p) = 0;

and for a certain choice of m − 2 vector fields G1, · · · , Gm−2 of M1(B) and a certain basis VB , we have

Gm−2 · · · G1
(
trVB

LM

)
(p) �= 0.

Then

c(s)(M, p) = sup
B

{c(B, p) : B is an s-dimensional subbundle of T 1,0M}. (2.4)

In his fundamental paper [34], when n = 2, Kohn showed that t(1)(M, p) = c(1)(M, p) = a(1)(M, p). 
Bloom-Graham [10] and Bloom [11] proved that

t(n−1)(M, p) = c(n−1)(M, p) = a(n−1)(M, p) for M ⊂ Cn.

And for any 1 ≤ s ≤ n − 2, Bloom in [12] observed that a(s)(M, p) ≤ c(s)(M, p) and a(s)(M, p) ≤ t(s)(M, p). 
For these results to hold there is no need to assume the pseudoconvexity of M . However, the following 
example of Bloom shows that for n ≥ 3, when M is not pseudoconvex, it may happen that a(s)(M, p) <
c(s)(M, p) and a(s)(M, p) < t(s)(M, p) for 1 ≤ s ≤ n − 2.

Example 2.1 (Bloom, [12]). Let ρ = 2Re(w) + (z2 + z2 + |z1|2)2 and let M = {(z1, z2, w) ∈ C3| ρ = 0}. Let 
p = 0. Then a(1)(M, p) = 4 but c(1)(M, p) = t(1)(M, p) = ∞.

With the pseudoconvexity assumption of M , Bloom in [12] showed that when M ⊂ C3, a(1)(M, p) =
c(1)(M, p). Motivated by this result, Bloom in 1981 [12] formulated the following famous conjecture:

Conjecture 2.2. Let M ⊂ Cn be a pseudoconvex real hypersurface with n ≥ 3. Then for any 1 ≤ s ≤ n − 2
and p ∈ M ,

t(s)(M, p) = c(s)(M, p) = a(s)(M, p).

The goal of the present paper is to prove the following theorem:
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Theorem 2.3. Let M ⊂ Cn be a smooth pseudoconvex real hypersurface with n ≥ 3. Then for s = n − 2 and 
any p ∈ M , it holds that

t(n−2)(M, p) = a(n−2)(M, p) = c(n−2)(M, p).

In particular, we answer affirmatively the Bloom conjecture in the case of complex dimension three 
(namely, n = 3):

Theorem 2.4. The Bloom conjecture holds in the case of complex dimension three. Namely, for a smooth 
pseudoconvex real hypersurface M ⊂ C3 and p ∈ M , it holds that

t(1)(M, p) = a(1)(M, p) = c(1)(M, p).

Our proof of Theorem 2.3 is a combination of analytic and geometric arguments along the lines of singular 
foliation theory and CR geometry. Our arguments are quite different from what has appeared in the literature 
in many aspects. Our paper focuses on understanding the commutator of vector fields evaluated in a certain 
subbundle, for the Levi form type can be easily reduced to the study of the commutator type case. Notice 
that Kohn’s multiple ideal sheaf type and Catlin’s type are more about differentiations of the Levi form in 
a certain way and thus are more relate to the Levi form type here. Commutators of vector fields are not 
just important in complex analysis but also play a fundamental role in many problems bordering complex 
analysis and sub-elliptic analysis. In the paper of Adwan-Berhanu [1], the commutator type condition of 
vector fields is crucially applied to get various real analytic hypo-ellipticity results. See also the book of 
Berhanu-Cordaro-Hounie [5] and a paper of Derridj [19] for many references and historical discussions on 
this matter. In §3, we give a general set-up and provide a normalization of the related vector fields. In §4, 
we give a proof of Theorem 2.3 assuming Theorem 6.1. §5 and §6 are dedicated to the long and very much 
involved proof of Theorem 6.1 which is about a weak version of the uniqueness property of a complex linear 
PDE associated with a CR singular submanifold contained in a pseudoconvex hypersurface [22][28][29].

Already from the work of Chern-Moser [16], it is clear that a good weight system is always important 
to single out the boundary holomorphic invariants for real hypersurfaces in a complex Euclidean space. 
In this regard, we mention at least the works in [12,10,14,28,29,40,31,36,37] and many references therein 
concerning different weight systems used in different settings. In this work, for a smooth subbundle B of 
T (1,0)M of complex dimension s ≤ n − 1, the CR directions along the subbundle are assigned weight one 
and the missing CR direction is then assigned to have the weight equal to the first Hörmander number 
[2] of B ⊕ B. Once the weights of the CR directions are determined, the weight of the complex normal 
direction is determined by the order of the degree of the weighted lowest order of the defining function 
of the hypersurface. These weights can be used to apply the singular Frobenius-Nagano theorem to the 
truncated manifold if the theorem fails. Then we are led to two very different scenarios: the CR setting [2]
and the CR singular setting [31,22,28,29]. To attack the Bloom conjecture, it is crucial to find a good use of 
the pseudo-convexity. Our fundamental new ideas for applying pseudoconvexity are to deduce the problem 
to the setting where the classical Hopf lemma (Proposition 4.6) can be applied in the first scenario; and 
to deduce the problem to a weak version of the uniqueness theorem for solutions of a certain geometrically 
oriented complex linear equation with real part plurisubharmonic (Theorem 6.1) in the second scenario. 
The other new ingredients in this work include the crucial use of the Euler vector field, which does not seem 
to have appeared before in the study of the finite type conditions.

Before proceeding to the proof of our main theorem, we mention the work of D’Angelo [18] and Fassina 
[21], where results have been obtained related to the following question: Let M ⊂ Cn (n ≥ 3) and for p ∈ M , 
when does it hold that t(1)(B1, p) ≥ c(1)(B1, p)? Here B1 is a one dimensional complex smooth subbundle 
of T (1,0)M .
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3. Normalization of CR vector fields

In this section, we present a normalization for a basis of cross sections of a complex subbundle B of 
T (1,0)M of CR codimension one. This will lead us to define the right weight system needed for the purpose 
of applying the Nagano theorem. The basic idea behind the complicated normalization procedure in this 
section is to apply holomorphic changes of coordinates to normalize as much as possible the lowest order 
holomorphic terms in the coefficients of the vector fields with respect to a standard CR frame of M .

Denote by (z1, · · · , zn−1, w) = (z, w) the coordinates in Cn. Let M ⊂ U be a smooth real hypersurface 
in Cn with p ∈ M and let ρ be a defining function of M near p. After a holomorphic change of coordinates, 
we may assume that p = 0 and ρ takes the following form:

ρ(z, w, z, w) = −2Re(w) + χ(z, w, z, w), χ(z, w, z, w) = O(|z2| + |zw|). (3.1)

In what follows, when there is no risk of causing confusion, we use 0 to denote the number 0 or the origin 
of Cn. We will assume that a(n−2)(M, 0) < ∞ in all that follows, for otherwise

t(n−2)(M, 0), c(n−2)(M, 0) ≥ a(n−2)(M, 0) = ∞

and thus all these invariants coincide. After a holomorphic change of coordinates of the form (z′, w′) =
(z, w + O(2)), we assume that

χ(z, 0, · · · , 0) = O(a(n−2)(M, 0) + 1) (3.2)

in the sense that the partial derivatives of χ up to order a(n−2)(M, 0) along z-directions vanish at 0. Shrinking 
U if necessary, we assume ∂ρ

∂w �= 0 for (z, w) ∈ U . For a defining function ρ defined over U as in (3.1), write

Li = ∂

∂zi
− ∂ρ

∂zi

( ∂ρ

∂w

)−1 ∂

∂w
for i = 1, · · · , n − 1. (3.3)

Then {Li}n−1
i=1 forms a basis for the space of CR vector fields along M . Let B be an (n − 2) dimensional 

subbundle of T 1,0M . Assume that the sections of B are generated by a certain linearly independent smooth 
CR vector fields S1, · · · , Sn−2 along M near 0. After a linear holomorphic change of coordinates, we assume 
that Sj(0) = Lj(0) = ∂

∂zj
|0 for 1 ≤ j ≤ n − 2. Write

Sj =
n−1∑
h=1

ajhLh with ajh(0, · · · , 0) = δjh for 1 ≤ j, h ≤ n − 2. (3.4)

We start with the following simple transformation law for {L′
j , ρ′} and {Lj , ρ} under a holomorphic 

change of coordinates (z′, w′) = F (z, w) with ρ = ρ′ ◦ F , F (0) = 0.

Lemma 3.1. Let (z′, w′) = F (z, w) = (z′
1, · · · , z′

n−1, w′) be a new holomorphic coordinate system where 
z′

j = z′
j(z1, · · · , zn−1) for j = 1, · · · , n − 1, w′ = w with z′(0) = 0. Then we have

F∗(Li) =
n−1∑ ∂z′

j

∂zi
L′

j for i = 1, · · · , n − 1. (3.5)

j=1
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With Sj and the frame {Lj} being given as above, we define

�∗
0 =: min{kj : kj = vanishing order of aj(n−1)(z1, · · · , zn−2, 0, 0, z1. · · · , zn−2, 0, 0) at 0}. (3.6)

Here aj(n−1)(z, w, z, w) for j = 1, · · · , n − 2 are as in (3.4). In this section, for a smooth function A, we 
write A(τ)(z, z) for the sum of monomials of (ordinary) degree τ in its Taylor expansion at 0; also when we 
mention a holomorphic change of coordinates, we refer to a special type of holomorphic maps of the form 
(z′, w′) = F (z, w) as in Lemma 3.1.

Lemma 3.2. Suppose �∗
0 �= ∞. After a holomorphic change of coordinates, we have

a
(�∗

0)
j(n−1)(0, · · · , 0, zj , · · · , zn−2, 0, · · · , 0) = 0 for all 1 ≤ j ≤ n − 2.

Proof. Let

z′
j = zj for 1 ≤ j ≤ n − 2, z′

n−1 = zn−1 −
z1∫

0

a
(�∗

0)
1(n−1)(ξ, z2, · · · , zn−2, 0, · · · , 0)dξ, w = w′.

Then in the new coordinates (z′, w′), we have

∂

∂z1
= ∂

∂z′
1

− a
(�∗

0)
1(n−1)(z1, · · · , zn−2, 0, · · · , 0) ∂

∂z′
n−1

,

∂

∂zj
= ∂

∂z′
j

+ O(�∗
0) ∂

∂z′
n−1

for 2 ≤ j ≤ n − 2,

∂

∂zn−1
= ∂

∂z′
n−1

.

(3.7)

In the new coordinates, by Lemma 3.1, we have

S1 =
n−1∑
h=1

a1hLh = a11(L′
1 − a

(�∗
0)

1(n−1)(z1, · · · , zn−2, 0, · · · , 0)L′
n−1)

+
n−2∑
h=2

a1h(L′
h + O(�∗

0)L′
n−1) + a1(n−1)L

′
n−1.

(3.8)

Hence in the new coordinates, the coefficient a1(n−1) is changed to

−a11a
(�∗

0)
1(n−1)(z1, · · · , zn−2, 0, · · · , 0) +

n−2∑
h=2

a1h · O(�∗
0) + a1(n−1). (3.9)

Recall that a1j = δ1j + O(1) for 1 ≤ j ≤ n − 2. Hence in these new coordinates, which are still denoted 

by (z, w), we have a(�∗
0)

1(n−1)(z1, · · · , zn−2, 0, · · · , 0) = 0. We remark that with such a change of holomorphic 

coordinates, the non-holomorphic terms remain the same for a(�∗
0)

1(n−1).
Suppose that we have achieved a

(�∗
0)

h(n−1)(0, · · · , 0, zh, · · · , zn−2, 0, · · · , 0) = 0 for 1 ≤ h ≤ j − 1. We 

next show that we can make a
(�∗

0)
j(n−1)(0, · · · , 0, zj , · · · , zn−2, 0, · · · , 0) = 0 after a holomorphic change of 

coordinates. Set w = w′ and
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z′
j = zj , 1 ≤ j ≤ n − 2, z′

n−1 = zn−1 −
zj∫

0

a
(�∗

0)
j(n−1)(0, · · · , 0, ξ, zj+1, · · · , zn−2, 0, · · · , 0)dξ.

By a similar argument as in the proof for a(�∗
0)

1(n−1)(z1, · · · , zn−2, 0, · · · , 0) = 0, we have in the new coordinates 
that

a
(�∗

0)
j(n−1)(0, · · · , 0, zj , · · · , zn−2, 0, · · · , 0) = 0.

Notice that this transformation of coordinates preserves the property:

a
(�∗

0)
h(n−1)(0, · · · , 0, zh, · · · , zn−2, 0, · · · , 0) = 0 for 1 ≤ h ≤ j − 1.

By induction, this completes the proof of Lemma 3.2. �
Next, when �∗

0 = ∞, we set �0 = a(n−2)(M, 0). Otherwise, we define

�′
0 := min

1≤j≤n−2
{kj : kj = ordz=0 aj(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0)},

�0 = min{�′
0, a(n−2)(M, 0)},

(3.10)

where aj(n−1)’s are normalized as in Lemma 3.2.

Proposition 3.3. Assume that �0 ≤ a(n−2)(M, 0) − 1. After a holomorphic change of coordinates we can 
normalize the coefficients of {Sj} to further satisfy one of the following two normalization properties with 
�0 being unchanged.

(I) a
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) is holomorphic in z1, · · · , zn−2 for each j, and there ex-

ists j0 ∈ [2, n − 2] such that a
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) = 0 for 1 ≤ j ≤ j0 − 1, 

a
(�0)
j0(n−1)(0, · · · , 0, zj0 , · · · , zn−2, 0, · · · , 0) = 0, but

a
(l0)
j0(n−1)(z1, · · · , zn−2, 0, · · · , 0) �≡ 0.

(II) a
(�0)
1(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) is not a holomorphic polynomial

and a(�0)
1(n−1)(z1, · · · , zn−2, 0, · · · , 0) = 0.

Proof. (I): First, we assume that each a(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) is holomorphic and each 

a
(�0)
j(n−1) satisfies the properties as in Lemma 3.2. Then

a
(�0)
1(n−1)(z1, · · · , zn−2, 0, · · · , 0) = 0.

By the definition of �0, we can find the smallest j0 ∈ [2, n − 2] such that

a
(�0)
j(n−1)(z1, · · · , zn−2, 0, · · · , 0) ≡ 0

for all 1 ≤ j ≤ j0 − 1, but a(�0)
j0(n−1)(z1, · · · , zn−2, 0, · · · , 0) �≡ 0. By Lemma 3.2, this j0 satisfies the property 

in part (I) of the proposition.
(II): Next, assume that a

(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) is not holomorphic for a certain 

j ∈ [1, n − 2]. Switching j with the index 1 and repeating the proof in Lemma 3.2, we can make 
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a
(�0)
1(n−1)(z1, · · · , zn−2, 0, · · · , 0) = 0 and achieve the other normalization properties as in Lemma 3.2. Notice 

that �0 is not changed after this normalization procedure. This completes the proof of the proposition. �
Define the weight of zj and zj for 1 ≤ j ≤ n −2 to be 1. The weight of zn−1 and zn−1 is defined to be �0+1

and the weight of w is defined to be m that is the lowest weighted vanishing order of ρ in the expansion of 
ρ(z, 0, z, 0) at 0 with respect to the weights of {z1, · · · , zn−2, zn−1} just defined. Later, we will see the only 
non-trivial weight �0 + 1 for the missing CR direction along zn−1 is precisely the first Hörmander number 
associated with the lowest part of the system {Sj}. In what follows, for a smooth function A, we write 
A[σ](z1, · · · , zn−1, z1, · · · , zn−1) for the weighted homogeneous part of weighted degree σ with the weight 
system just defined in its Taylor expansion at 0. Notice that when A does not contain zn−1 then A[σ] = A(σ). 
Then we have the following

Proposition 3.4. In the case of Proposition 3.3 (II), we can further apply a holomorphic transformation of 
coordinates and change the basis {Sj} if needed to make the coefficients of {Sj} in the expansion with respect 
to {Lj} satisfy one of the following two normalizations with �0 being unchanged:

(1) a
(�0)
1(n−1)(z1, 0, · · · , 0, z1, 0, · · · , 0) �≡ 0, a(�0)

1(n−1)(z1, 0, · · · , 0) = 0
(a(�0)

1(n−1)(z1, · · · , zn−2, 0, · · · , 0) = 0, in fact),

ρ[m](z1, 0, · · · , 0, zn−1, 0, z1, 0, · · · , 0, zn−1, 0)

is not identically zero (and contains no non-trivial holomorphic terms).
(2) For a certain j ∈ [1, n − 2], a(�0)

j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) is not holomorphic,∑n−2
k=1 zka

(�0)
k(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) = 0,

ρ[m](z1, · · · , zn−1, 0, z1, · · · , zn−1, 0) is not identically zero (and contains no non-trivial holomorphic 
terms).

Proof. Consider the following change of coordinates:

z′
1 = z1, z′

j = zj − αjz1, for 2 ≤ j ≤ n − 2, z′
n−1 = zn−1, w′ = w. (3.11)

We first give a sufficient condition under which, for a generic choice of αj with 2 ≤ j ≤ n − 2, we have

ρ[m](z1, 0, · · · , 0, zn−1, 0, z1, 0, · · · , 0, zn−1, 0) �≡ 0,

a
(�0)
1(n−1)(z1, 0, · · · , 0, z1, 0, · · · , 0) contains a non holomorphic term.

(3.12)

Notice that

ρ[m](z1, · · · , zn−1, 0, z1, · · · , zn−1, 0)

=ρ[m](z′
1, z′

2 + α2z′
1, · · · , z′

n−2 + αn−2z′
1, z′

n−1, 0, z′
1, z′

2 + α2z′
1, · · · , z′

n−2 + αn−2z′
1, z′

n−1, 0).

The coefficient of z′t
1z′μ

n−1z′1
s
z′

n−1
ν with t + s + (�0 + 1)(μ + ν) = m in its Taylor expansion is∑
∑

hλ=t,
∑

jλ=s
H=(h1,··· ,hn−2),J=(j1,··· ,jn−2)

ρ
[m]
(Hμ0)(Jν0)α

HαJ .

Here α1 = 1, α = (α1, · · · , αn−2), and ρ[m] is the coefficient of
(Hμ0)(Jν0)
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zh1
1 · · · z

hn−2
n−2 zμ

n−1zj1
1 · · · z

jn−2
n−2 zν

n−1

in the Taylor expansion of ρ at 0.
Notice that this term is 0 for a generic choice of α if and only if ρ[m]

(Hμ0)(Jν0) = 0 for any pair (H, J) with ∑
hλ = t, 

∑
jλ = s. By our choice of the weight m, there exists a pair (Hμ0)(Jν0) with |J | + (�0 + 1)ν > 0

such that ρ[m]
(Hμ0)(Jν0) �= 0. Thus for a generic choice of α′

js, we have

ρ′ [m](z′
1, 0, · · · , 0, z′

n−1, 0, z′
1, 0, · · · , 0, z′

n−1, 0) �≡ 0.

Since ρ[m] contains no holomorphic terms, so is

ρ′ [m](z′
1, 0, · · · , 0, z′

n−1, 0, z′
1, 0, · · · , 0, z′

n−1, 0).

Hence for a generic choice of α, the statement in the first line of (3.12) holds.
Next notice that

∂

∂z1
= ∂

∂z′
1

−
n−2∑
λ=2

αλ
∂

∂z′
λ

,
∂

∂zj
= ∂

∂z′
j

for 2 ≤ j ≤ n − 1. (3.13)

And by Lemma 3.1, we have

L1 = L′
1 −

n−2∑
λ=2

αλL′
λ, Lj = L′

j for 2 ≤ j ≤ n − 1. (3.14)

Set S′
1 = S1 +

∑n−2
λ=2 αλSλ, S′

j = Sj . Then

S′
1 =

n−1∑
h=1

a1hLh +
n−2∑
λ=2

αλ

n−1∑
h=1

aλhLh

=
(
a11 +

n−2∑
λ=2

αλaλ1
)(

L′
1 −

n−2∑
λ=2

αλL′
λ

)
+

n−2∑
h=2

(
a1h +

n−2∑
λ=2

αλaλh

)
L′

h

+
(
a1(n−1) +

n−2∑
λ=2

αλaλ(n−1)
)
L′

n−1 :=
n−1∑
λ=1

a′
1λL′

λ.

(3.15)

Hence

a′
1(n−1)(z′

1, 0, · · · , 0, z1
′, 0, · · · , 0)

=a1(n−1)(z′
1, α2z′

1, · · · , αn−2z′
1, 0, 0, z′

1, α2z′
1, · · · , αn−2z′

1, 0, 0)

+
n−2∑
λ=2

αλaλ(n−1)(z′
1, α2z′

1, · · · , αn−2z′
1, 0, 0, z′

1, α2z′
1, · · · , αn−2z′

1, 0, 0).

(3.16)

Then the coefficient of z1
′ tz1′ s with t + s = �0 in a′

1(n−1)(z′
1, 0, · · · , 0, z1

′, 0, · · · , 0) is the following

n−2∑ ∑
(a(�0)

λ(n−1))HJαH+eλαJ =
n−2∑ ∑

(a(�0)
λ(n−1))(H−eλ)JαHαJ , (3.17)
λ=1 |H|=t,|J|=s λ=1 |H|=t+1,|J|=s
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where eλ = (0, · · · , 0, 1, 0 · · · , 0) with 1 at the λ-th position. This term is 0 for a generic choice of α if and 
only if 

∑n−2
λ=1(a(�0)

λ(n−1))(H−eλ)J = 0. We next proceed in two steps:
(1). First, we suppose that there exists a pair (H, J) with |J | �= 0 such that

n−2∑
λ=1

(a(�0)
λ(n−1))(H−eλ)J �= 0.

Then for a generic choice of α, a′ (�0)
1(n−1)(z

′
1, 0, · · · , 0, z1

′, 0, · · · , 0) contains a non-holomorphic term. Through 
the normalization procedure as in Lemma 3.2, we can make

a
′ (�0)
1(n−1)(z

′
1, · · · , z′

n−2, 0, · · · , 0) = 0

and thus, in particular, a
′ (�0)
1(n−1)(z

′
1, 0, · · · , 0) = 0. We point out that this transformation preserves the 

statement in the first line of (3.12). Then by (3.9), the new a(�0)
1(n−1) and ρ[m] satisfy the desired properties 

in (1) of Proposition 3.4 and thus �0 is not changed. Next, we can repeat the same argument in Lemma 3.2
to normalize a(�0)

j(n−1) for j ≥ 2 and thus obtain the normalization for a(�0)
j(n−1) with j = 2, · · · , n − 2.

(2). We now suppose

n−2∑
λ=1

(a(�0)
λ(n−1))(H−eλ)J = 0 for any |H| + |J | = �0 + 1, |J | �= 0. (3.18)

We will show that by a suitable change of coordinates of the form z′
j = zj , z′

n−1 = zn−1 + g(z1, · · · , zn−2), 
w′ = w, we can make

n−2∑
λ=1

(a(�0)
λ(n−1))(H−eλ)0 = 0 for any |H| = �0 + 1. (3.19)

Here g(z1, · · · , zn−2) is a homogeneous holomorphic polynomial of degree �0 + 1.
In fact, under this transformation, we have

∂

∂zj
= ∂

∂z′
j

+ gzj

∂

∂z′
n−1

,
∂

∂zn−1
= ∂

∂z′
n−1

.

And by Lemma 3.2, we have

Sj =
n−1∑
j=1

ajhLh =
n−2∑
j=1

ajh(L′
h + gzh

L′
n−1) + aj(n−1)L

′
n−1

=
n−2∑
j=1

ajhL′
h + (aj(n−1) +

n−2∑
j=1

ajhgzh
)L′

n−1.

Hence

a
′ (�0)
λ(n−1) = a

(�0)
λ(n−1) + gzλ

. (3.20)

Thus 
∑n−2

λ=1(a′ (�0)
λ(n−1))(H−eλ)0 = 0 for any H with |H| = �0+1, which is equivalent to 

∑n−2
λ=1 zλa

′ (l0)
λ(n−1)(z1, · · · ,

zn−2, 0, · · · , 0) = 0, if and only if
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n−2∑
λ=1

zλgzλ
+

n−2∑
λ=1

zλa
(�0)
λ(n−1)(z1, · · · , zn−2, 0, · · · , 0) = 0.

This is the well-known Euler equation and can be solved as follows:
Notice that if we write g =

∑
|J|=�0+1 ΓJzJ , then

n−2∑
λ=1

zλgzλ
=

n−2∑
λ=1

∑
|J|=�0+1

jλΓJzJ = (�0 + 1)g.

Hence g can be uniquely solved as

g = − 1
�0 + 1

n−2∑
λ=1

zλa
(�0)
λ(n−1)(z1, · · · , zn−2, 0, · · · , 0).

Thus we get the desired normalization property in (3.19). Notice that by (3.20), we conclude that �0 is 
not changed because any non-holomorphic term in a�0

λ(n−1) can not removed by this transform. Moreover, 
(a(l0)

λ(n−1))(H−eλ)J with |H| + |J | = �0 + 1, |J | �= 0 is not changed under this transformation. Hence (3.18)
still holds to be true.

Notice that (3.18) and (3.19) are equivalent to the normalization property in (2) of Proposition 3.4. In 
fact,

n−2∑
j=1

zja
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0)

=
∑

|H|+|J|=�0+1

n−2∑
j=1

(a(�0)
j(n−1))(H−ej)JzHzJ = 0.

This completes the proof of Proposition 3.4. �
We summarize what we did in this section in the following theorem to facilitate our future quotation:

Theorem 3.5. Let M ⊂ Cn be as defined in (3.1) and let B be a smooth subbundle of T (1,0)M of complex 
dimension s = n − 2. Let {Lh}n−1

h=1, {Sj}n−2
j=1 and {ajh} be as in (3.3) and (3.4). Suppose that �0 is defined 

as in (3.10) and m is the weight of w. Assumption that �0 ≤ a(n−2)(M, 0) − 1. Then, after a holomorphic 
change of coordinates and after re-choosing a suitable basis {Sj}n−2

j=1 of the cross sections of B, if needed, 
we have one of the following three normalizations for the system

{a
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0), ρ[m](z, 0, z, 0)}n−2

j=1 :

(I) a
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) is holomorphic in z1, · · · , zn−2 for each j, and there exists

j0 ∈ [2, n − 2] such that

a
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) = 0

for 1 ≤ j ≤ j0 − 1, a(�0)
j0(n−1)(0, · · · , 0, zj0 , · · · , zn−2, 0, · · · , 0) = 0, but

a
(�0) (z1, · · · , zn−2, 0, · · · , 0) �≡ 0.
j0(n−1)
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(II) a
(�0)
1(n−1)(z1, 0, · · · , 0, z1, 0, · · · , 0) �≡ 0, a(�0)

1(n−1)(z1, 0, · · · , 0) = 0,
ρ[m](z1, 0, · · · , 0, zn−1, 0, z1, 0, · · · , 0, zn−1, 0) is not identically zero (and contains no non-trivial holo-
morphic terms).

(III) For a certain j ∈ [1, n − 2], a
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) is not holomorphic, ∑n−2

j=1 zja
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) = 0. Moreover

ρ[m](z1, · · · , zn−1, 0, z1, · · · , zn−1, 0)

is not identically zero and contains no non-trivial holomorphic terms.

4. Proof of Theorem 2.3

We now present a proof of Theorem 2.3, assuming Theorem 6.1 whose proof is very much involved and 
will be given in §5 and §6. As we mentioned before, our focus is on the equality of the commutator type 
with the contact type. The Levi-form type can be easily reduced to the commutator type case.

Proof of the equality: t(n−2)(M, p) = a(n−2)(M, p). We keep the notations set up in §2 and §3 with p = 0. 
Assume that M is defined as in (3.1) and (3.2). As we mentioned there, we assume that a(n−2)(M, p = 0) <
∞. Supposing that t(n−2)(M, 0) > a(n−2)(M, 0), we will then seek a contradiction.

Let B be an (n −2)-dimensional smooth vector subbundle of T 1,0M such that t(n−2)(M, 0) = t(n−2)(B, 0). 
By the assumption that t(n−2)(M, 0) > a(n−2)(M, 0), for any l ≤ a(n−2)(M, 0) we have

〈F, ∂ρ〉(0) = 0 for any F = [Fl, Fl−1, · · · [F2, F1] · · · ] with F1, · · · , Fl ∈ M1(B). (4.1)

We assume the normalization of §2 up to (3.10) such that we can well define �0.
Recall that the weight of zj for 1 ≤ j ≤ n − 2 and their conjugates is 1. Define the weight of zn−1 and its 

conjugate to be k = �0 + 1. Denote the weight of w to be m, which is the lowest weighted vanishing order 
of ρ(z, 0, z, 0) with respect to the weights just given. We also define

wt( ∂

∂zj
) = wt( ∂

∂zj
) = −1 for 1 ≤ j ≤ n − 2,

wt( ∂

∂zn−1
) = wt( ∂

∂zn−1
) = −k, wt( ∂

∂w
) = wt( ∂

∂w
) = −m.

(4.2)

By the definition of a(n−2)(M, 0), when restricted to the (n − 2)-manifold {(z, w) : zn−1 = w = 0}, 
the vanishing order of ρ is bounded by a(n−2)(M, 0). Thus m ≤ a(n−2)(M, 0). When k ≤ a(n−2)(M, 0), we 
further assume that Sj and ρ are normalized as in Theorem 3.5.

Write

S0
j = ∂

∂zj
+ a

[k−1]
j(n−1)

∂

∂zn−1
+ a

[m−1]
jn

∂

∂w
.

Then S0
j is the sum of terms in Sj of weighted degree −1.

Now, let M0 be the C∞(M0)-module spanned by S0
j and S0

j for all 1 ≤ j ≤ n − 2, where M0 = {(z, w) :
ρ[m] = −2Rew + χ[m](z, 0, z, 0) = 0} and M0

l be the C∞(M0) module formed by taking the Lie bracket of 
length ≤ l of sections from M0 for l = 2, · · · . M0

∞ = ∪l∈NM0
l . Notice that S0

j is a CR vector field along 
M0 for each j. We start with the following lemma:

Lemma 4.1. It holds that k < m, namely, �0 < m − 1.
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Proof. Suppose that k ≥ m. Then the weight of zn−1 is no less than m. Hence χ[m](z, 0, z, 0) is independent 
of zn−1. Write

S̃0
j = S0

j − a
[k−1]
j(n−1)

∂

∂zn−1
= ∂

∂zj
+ a

[m−1]
jn

∂

∂w
.

Since S0
j is tangent to M0, whose defining function is independent of zn−1, we see that S̃0

j is also tangent 
to M0 and a[m−1]

jn = ∂χ[m]

∂zj
. Hence a[m−1]

jn is independent of zn−1.

Regarding M0 as a real hypersurface in Cn−1. Let M̃0 be the C∞(M0) module spanned by S̃0
j

and S̃0
j for all 1 ≤ j ≤ n − 2. Define Q : M0 → M̃0 by sending 

∑
dj(z, z) ∂

∂zj
∈ M0 to ∑

j �=n−1 dj(z1, · · · , zn−2, 0, z1, · · · , zn−2, 0) ∂
∂zj

∈ M̃0. Then by (4.1), for any Z0
j ∈ M̃0, there exists 

Y 0
j ∈ M0 with Q(Y 0

j ) = Z0
j such that

〈[Z0
j , [Z0

j1
, · · · , [Z0

2 , Z0
1 ] · · · ], ∂ρ〉(0) = 〈[Y 0

j , [Y 0
j−1, · · · , [Y 0

2 , Y 0
1 ] · · · ], ∂ρ〉(0) = 0 for j ≤ m.

(Indeed, we can simply take Y 0
j to be Z0

j , but regard it as a CR vector field of M0 as a real hypersurface 
in Cn.) Hence we have t((n−1)−1)(M0, 0) > m. However, by our construction, a((n−1)−1)(M0, 0) = m. This 
contradicts a result of Bloom-Graham for the equalities of regular (n − 1)-types in [9], which says that 
t((n−1)−1)(M0, 0) = a((n−1)−1)(M0, 0) for M0 ⊂ Cn−1. �
Lemma 4.2. For any Y 0 ∈ M0

l , we have 〈Y 0, ∂ρ[m]〉(0) = 0.

Proof. We can assume, without loss of generality, that Y 0 = [X0
l , · · · , [X0

2 , X0
1 ] · · · ] with X0

j ∈ M0 being 
weighted homogeneous of degree −1. Write

X0
j = Z0

j + Bj
∂

∂w
+ Cj

∂

∂w
with Z0

j =
n−1∑
k=1

(bjk
∂

∂zk
+ cjk

∂

∂zk
).

Here Z0
j is weighted homogeneous of degree −1 and wt(Bj) = wt(Cj) = m − 1. A direct computation shows

[X0
2 , X0

1 ] = (Z0
2 (B1) − Z0

1 (B2)) ∂

∂w
mod ( ∂

∂z
,

∂

∂z
,

∂

∂w
)

and by an induction,

Y 0 = C0
l

∂

∂w
mod ( ∂

∂z
,

∂

∂z
,

∂

∂w
)

with C0
l a weighted homogeneous polynomial of weighted degree equal to −l+m. Hence Y 0 ≡ 0 when l > m

and Y 0|0 = 0 when l < m mod ( ∂
∂z , ∂

∂z , ∂
∂w ).

When l = m, suppose that Zj ∈ M1 such that (Zj)0 = X0
j . Then [Zj , Zk]0 = [X0

j , X0
k ]. Hence if Z ∈ Ml

with l = m such that (Z)0 = Y 0, then Z = C0
mY 0 + Dm

∂
∂w mod ( ∂

∂z , ∂
∂z , ∂

∂w ) with wt(Y 0) = −m and 
thus wt(Dm) > wt(C0

m) = 0. From (4.1), Z|0 = 0 mod ( ∂
∂z , ∂

∂z , ∂
∂w ). Thus we obtain C0

m ≡ 0. Hence 
〈Y 0, ∂ρ[m]〉(0) = 0 for all l ∈ N. �

Then we have ∂
∂v |0 /∈ M0

∞. Now applying the Nagano theorem (see [2]) to M0
∞,ω we obtain a unique 

real analytic integral submanifold N0 with 0 ∈ N0 ⊂ M0 = {−2Rew + χ[m](z, 0, z, 0) = 0}. Moreover, 
dimRN0 = dimRM0

∞,ω = dimRM0
∞. Here M0

∞,ω ⊂ M0
∞ is the submodule generated by the aforementioned 

homogenous frames over Cω(M0).
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Since ∂
∂v |0 /∈ T0N0, N0 is contained in the graph of v = f1(z, z, u) for a certain real analytic function f1

near 0. Since u = 1
2χ[m](z, 0, z, 0), we conclude that N0 is contained in the graph of

w = f(z, z) = 1
2χ[m](z, 0, z, 0) + if1

(
z, z,

1
2χ[m](z, 0, z, 0)

)
.

We mention that from the pseudoconvexity of M , we immediately conclude the pseudoconvexity of M0, 
which is equivalent to the plurisubharmonicity of Re(f) = χ[m](z, 0, z, 0).

Lemma 4.3. The real dimension of N0 is either 2n − 3 or 2n − 2.

Proof. The proof is carried out in two steps according to the properties of

a
(�0)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0)

in Proposition 3.3.

(1): Suppose we have the normalization in (I) of Proposition 3.3. We suppose that (a(k−1)
j0(n−1))H+eμ

�= 0
with H = (h1, · · · , hn−2) and 1 ≤ μ ≤ j0 − 1. Then

[S0
μ, S0

j0
] = ∂

∂zμ
(a(k−1)

j0(n−1))
∂

∂zn−1
mod ( ∂

∂w
,

∂

∂w
).

Write

(

h1 times︷ ︸︸ ︷
S0

1 , · · · , S0
1 ,

h2 times︷ ︸︸ ︷
S0

2 , · · · , S0
2 , · · · ,

hn−2 times︷ ︸︸ ︷
S0

n−2, · · · , S0
n−2) as (X1, · · · , X|H|).

(4.3)

Then

[X1, [· · · [X|H|, [S0
μ, S0

j0
]] · · · ]]

=(hμ + 1) · h1! · · · hn−2!(a(k−1)
j0(n−1))H+eμ

∂

∂zn−1
mod ( ∂

∂w
,

∂

∂w
).

Since its conjugate is also in M0
∞, we conclude that the dimension of N0 is 2n − 2.

(2): Suppose we have the normalization in (II) of Proposition 3.3. Then there is a (H, J) =
(h1, · · · , hn−2, j1, · · · , jn−2) such that (a(k−1)

1(n−1))H(J+eμ) �= 0. Then

[S0
μ, S0

1 ] = ∂

∂zμ
(a(k−1)

1(n−1))
∂

∂zn−1
mod ( ∂

∂zn−1
,

∂

∂w
,

∂

∂w
).

Write (X1, · · · , X|H|) as in (4.3) and write

(

j1 times︷ ︸︸ ︷
S0

1 , · · · , S0
1 ,

j2 times︷ ︸︸ ︷
S0

2 , · · · , S0
2 , · · · ,

jn−2 times︷ ︸︸ ︷
S0

n−2, · · · , S0
n−2) as (Y1, · · · , Y|J|).

Then

YHJ :=[X1, [· · · , [X|H|, [Y1, [· · · , [Y|J|, [S0
μ, S0

1 ]] · · · ]

=(jμ + 1) · h1! · · · hn−2!j1! · · · jn−2!(a(k−1)
j(n−1))H(J+eμ)

∂ mod ( ∂
,

∂
,

∂ ).

∂zn−1 ∂zn−1 ∂w ∂w
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Hence YHJ /∈ spanC{S0
j , S0

j , 1 ≤ j ≤ n − 2}. Thus either ReYHJ |0 �= 0 or ImYHJ |0 �= 0.
Since ∂

∂w |0 and ∂
∂w |0 are not tangent to N0 at 0, the dimension of N0 is either 2n − 3 or 2n − 2. �

Lemma 4.4. When N0 has real dimension 2n − 2, f is a weighted homogeneous polynomial of weighted 
degree m.

Proof. Let X0 be a (weighted) homogeneous vector field from M0
∞. Then from the equality that X0(−w +

f) = X0(−w + f) ≡ 0, it follows that X0(−w + f [m]) = X0(−w + f [m]) ≡ 0. Hence the manifold defined 
by w = f [m] is also an integral manifold of the module M0

∞ through 0. By the uniqueness of the integrable 
manifold, we conclude that f [m] = f . �

Before proceeding further, we need the following lemma:

Lemma 4.5. Let h(z, z) be a real analytic function in z ∈ Cn near the origin. Assume that h is holomorphic 
in its variable (z1, · · · , zk) with k ≤ n for each fixed (zk+1, · · · , zn) near the origin. Assume that Ref(z, z)
is a plurisubharmonic function without non-trivial holomorphic terms in its Taylor expansion at 0. Then 
h(z, z) is independent of z1, · · · , zk and z1, · · · zk.

Proof. We need only to prove the lemma with k = 1 and the other case follows from an induction argument. 
Since Reh(z, z) is plurisubharmonic, for each j with 2 ≤ j ≤ n, we have

(2Reh)z1z1(2Reh)zjzj
− (2Reh)z1zj

(2Reh)zjz1 ≥ 0. (4.4)

Since h(z, z) is holomorphic in z1, we have

(2Reh)z1z1 = 0, (2Reh)z1zj
= hz1zj

, (2Reh)zjz1 = hzjz1 .

Substituting these relations back to (4.4), we obtain −|hz1zj
|2 ≥ 0. Thus hz1zj

≡ 0. Since h(z, z) is holo-
morphic in z1, we see that

g(z, z) = h(z, z) − h(0, z2, · · · , zn, 0, z2, · · · , zn) :=
∑
k≥1

gk(z2, · · · , zn, z2, · · · , zn)zk
1

with (gk)zj
≡ 0 for j = 2, · · · , n. Hence g is a holomorphic function. By our assumption,

Reh = Reg(z, z) + Reh(0, z2, · · · , zn, 0, z2, · · · , zn)

contains no non-trivial holomorphic terms. Hence g(z, z) is independent of z1. This shows that h(z, z) is 
independent of z1 and z1. �

The rest of the argument is carried out according to the dimension of N0. We remark that when the real 
dimension of N0 is 2n − 3, it is a CR submanifold of hypersurface type, for it has a constant CR dimension 
n − 2 everywhere. When its dimension is 2n − 2, it has CR dimension n − 1 at the origin. Since it cannot 
be Levi-flat due to the fact that Re(f) �≡ 0, it is thus a codimension two CR singular submanifold [22].

Step I. In this step, we suppose N0 is of real dimension 2n − 2. Since S0
j is tangent to N0, and since N0

is defined by w = f(z, z) for z ≈ 0 in Cn−1, we have

∂
f(z, z) + a

(k−1)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) ∂

f(z, z) = 0, z ∈ Cn−1. (4.5)

∂zj ∂zn−1
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By Lemma 4.1, we have k < m ≤ a(n−2)(M, 0). Our further discussions are divided into the following 
cases according to the normalizations in Theorem 3.5.

Case (1): In this case, suppose that we have the normalization in (I) of Theorem 3.5. For 1 ≤ j ≤ j0 − 1, 
a

(k−1)
j(n−1) ≡ 0. Thus (4.5) takes the form ∂f

∂zj
= 0. Hence f is holomorphic in z1, · · · , zj0−1 for each fixed 

zj0 , · · · , zn−1. By the following Lemma 4.5, since Re(f) is plurisubharmonic and contains no non-trivial 
holomorphic terms, f is in fact independent of z1, · · · , zj0−1. Setting j = j0 in (4.5), we obtain

∂f

∂zj0

= −a
(k−1)
j0(n−1)

∂f

∂zn−1
.

Notice that the left hand side is independent of z1, · · · , zj0−1. On the other hand, the right hand side is 
divisible by a(k−1)

j0(n−1)(�≡ 0), in which each term depends on z1, · · · , zj0−1. Thus ∂f
∂zj0

= ∂f
∂zn−1

= 0. Substituting 

this back to (4.5), we obtain ∂f
∂zj

= 0 for each 1 ≤ j ≤ n −2. Thus f is holomorphic in z1, · · · , zn−1. However, 
χ[m] = Re(f) �= 0 does not contain any non-trivial holomorphic term. We thus reach a contraction.

Case (2): In this case, suppose we have the normalization in (II) of Theorem 3.5. Letting j = 1 in (4.5)
and restricting the equation to z1 and zn−1 spaces, we obtain:

( ∂f

∂z1
+ a

(k−1)
1(n−1)

∂

∂zn−1
f

)
(z1, 0, · · · , 0, zn−1, z1, 0, · · · , 0, zn−1) = 0. (4.6)

By our assumption, a(k−1)
1(n−1)(z1, 0, · · · , 0, zn−2, 0, 0, z1, 0, · · · , 0, zn−2, 0, 0) is not identically zero and contains 

no non-trivial holomorphic terms. By Theorem 6.1, we know χ[m] = Re(f) = 0 when restricted to z1 and 
zn−1 spaces. This contradicts the last normalization in (II) of Theorem 3.5.

Case (3): In this case, suppose we have the normalization in (III) of Theorem 3.5. Then we have ∑n−2
j=1 zja

(k−1)
j(n−1)(z1, · · · , zn−2, 0, 0, z1, · · · , zn−2, 0, 0) = 0. Since fzj

+ a
(k−1)
j(n−1)fzn−1 = 0 and a

(k−1)
j(n−1) is in-

dependent of zn−1 and w, we get

n−2∑
j=1

zjfzj
(z1, · · · , zn−1, z1, · · · , zn−1) = 0.

This is again the well-known Euler equation on f . Write f(z, z) =
∑

|α|≥0 gα(z)zα, where g(z) is holomorphic 
in z. Then

n−2∑
j=1

zjfzj
=

n−2∑
j=1

∑
|α|≥0

gα(z)αjzα =
∑

|α|≥0

(
n−2∑
j=1

αj)gα(z)zα = 0.

Hence gα(z) = 0 for 
∑n−2

j=1 |αj | > 0. Thus f(z1, · · · , zn−1, z1, · · · , zn−1) is holomorphic in z1, · · · , zn−2. 

Hence fzj
= 0 for each 1 ≤ j ≤ n − 2. Substituting this back to fzj

+ a
(k−1)
j(n−1)fzn−1 = 0, we know 

a
(k−1)
j(n−1)fzn−1 = 0. Recall that at least one a(k−1)

j(n−1) is not holomorphic and thus is nonzero. Thus fzn−1 =
0. Hence f(z1, · · · , zn−1, z1, · · · , zn−1) is holomorphic in z1, · · · , zn−1. Since Ref contains no non-trivial 
holomorphic terms, we reach a contradiction.

Step II. In this step, we suppose N is of real dimension 2n − 3.

Without loss of generality, we assume ReYHJ |0 �= 0. Then

CTN0 = SpanC{S0
1 , · · · , S0

n−2, S0
1 , · · · , S0

n−2, ReYHJ} near 0.
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Thus N0 is a CR manifold of hypersurface type of finite type in the sense of Hömander-Bloom-Graham. 
With a rotation in zn−1-variable, we can assume, without loss of generality, that ReYHJ |0 = ∂

∂xn−1
|0. Now, 

we define π : N0 → Cn−1 by sending (z1, · · · , zn−1, w) to (z1, · · · , zn−1). π is a CR immersion near 0. Write 
π(N0) = Ñ0 ⊂ Cn−1. Then Ñ0 is a real hypersurface in Cn−1 and π−1 : Ñ0 → N0 is a local real analytic 
CR diffeomorphism with π−1(0) = 0. Write

π−1(z1, · · · , zn−1) = (z1, · · · , zn−1, h(z1, · · · , zn−1)).

Since real analytic CR functions are restrictions of holomorphic functions, we can assume that h(z1, · · · ,

zn−1) is a holomorphic function. Notice that h = O(|z|2) and define (ξ1, · · · , ξn−1, η) = F (z1, · · · , zn−1, w) =
(z1, · · · , zn−1, w − h(z1, · · · , zn−1)). Then

F (N0) ⊂ Cn−1 × {0} = {(ξ1, · · · , ξn−1, 0) : ξ1, · · · , ξn−1 ∈ C}.

Also, F (M0) is defined by −2Reη + 2Reh(ξ) + χ[m](ξ, 0, ξ, 0) = 0 or 2Reη = 2Reh(ξ) + χ[m](ξ, 0, ξ, 0) :=
ρ̃(ξ, ξ). Notice that F (M0) is holomorphically equivalent to M0. Hence F (M0) is also pseudo-convex and 
of finite type in the sense of Hömander-Bloom-Graham. Notice that Ñ0 = F (N0) ⊂ M̃0 = F (M0). Hence, 
∀ξ ∈ Ñ0, ρ̃(ξ, ξ) = 0. Notice that ρ̃ = O(|ξ|2) and is plurisubharmonic. By the following proposition, we 
reach a contradiction to the assumption that 2Reh(ξ) + χ[m] �≡ 0.

Proposition 4.6. Let N be a real analytic hypersurface in Cn−1 with 0 ∈ N with n ≥ 3. Let ρ(z, z) be a real 
analytic plurisubharmonic function with ρ = O(|z|2) as z → 0 defined over a neighborhood of Cn−1. Assume 
that N is of finite type in the sense of Hömander–Bloom-Graham and N ⊂ {ρ = 0}. Then ρ ≡ 0.

Proof. Let φ : Δ → Cn−1 be a smooth small holomorphic disk attached to N with φ(1) = 0. Namely, we 
assume that φ ∈ C∞(Δ) ∩ Hol(Δ), φ(∂Δ) ⊂ N , φ(1) = 0, φ(Δ) is close to 0. Since ρ(φ(ξ), φ(ξ)) = 0 on ∂Δ
and ∂

∂ξ∂ξ
ρ(φ(ξ), φ(ξ)) ≥ 0 for ξ ∈ Δ, ρ(φ(ξ), φ(ξ)) is a subharmonic function in Δ smooth up to ∂Δ. By the 

maximum principle, we have ρ(φ(ξ), φ(ξ)) < 0 for ξ ∈ Δ unless ρ(φ(ξ), φ(ξ)) ≡ 0 for ξ ∈ Δ. Now, we apply 
the Hopf Lemma to get

d

dξ
ρ(φ(ξ), φ(ξ))|ξ=1 ≥ 0

and the equality holds if and only if ρ(φ(ξ), φ(ξ)) ≡ 0. On the other hand,

ρ(φ(ξ), φ(ξ)) = O(|φ(ξ)|2) = O(|φ(ξ) − φ(1)|2) = O(|ξ − 1|2)

as ξ(∈ (0, 1)) → 1. We conclude that ρ(φ(ξ), φ(ξ)) ≡ 0.
Next, by a result of Trépreau [44], since the union φ(Δ) of all attached discs fill in at least one side of 

N near 0, we see that ρ ≡ 0 in one side of N . Since we assumed that ρ is real analytic, we conclude that 
ρ ≡ 0. This completes the proof of Proposition 4.6. �

We thus complete the proof of the equality that t(n−2)(M, p) = a(n−2)(M, p). �
Proof of the equality: c(n−2)(M, p) = a(n−2)(M, p). We will reduce this case to the commutator case that 
we just achieved.

We continue to use the notations and initial setups as in §2 and §3. By [12], we have c(n−2)(M, p = 0) ≥
a(n−2)(M, p = 0). We will seek a contradiction supposing that c(n−2)(M, 0) > a(n−2)(M, 0).

Let B be an (n −2)-dimensional smooth subbundle of T 1,0M such that c(n−2)(M, 0) = c(n−2)(B, 0). With 
a biholomorphic change of coordinates, we can find a basis {Sj} of B and a defining function ρ that satisfy 
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the normalization conditions up to (3.10) so that �0 is well defined. Since c(n−2)(M, 0) > a(n−2)(M, 0), for 
any 2 ≤ l ≤ a(n−2)(M, 0), we have

F1 · · · Fl−2

n−2∑
j=1

∂∂ρ(Sj , Sj)(0) = 0 for any F1, · · · , Fl−2 ∈ M1(B). (4.7)

As in the proof of t(n−2)(M, p) = a(n−2)(M, p), we can similarly define the weights of z1, · · · , zn−1, w, 
and define S0

j , M0, M0, M0
l , M0

∞. By the same argument as that in Lemma 4.1, we have k < m. Then we 
can further assume the normalization in Theorem 3.5. Similar to Lemma 4.2, we have the following:

Lemma 4.7. For any l and Y 0
1 , · · · , Y 0

l−2 ∈ M0
1, we have

Y 0
1 · · · Y 0

l−2

n−2∑
j=1

∂∂ρ[m](S0
j , S0

j )(0) = 0.

Proof. Similar to the previous case, we can assume that each Y 0
j is weighted homogeneous of degree −1. 

First notice that Y 0 := Y 0
1 · · · Y 0

l−2
∑n−2

j=1 ∂∂ρ[m](S0
j , S0

j ) is a weighted homogeneous polynomial of weighted 
degree −l + m. Hence Y 0 = 0 when l > m and Y 0|0 = 0 when l < m.

Next we suppose l = m. For any 1 ≤ j ≤ l − 2, suppose Zj ∈ M1 such that (Zj)0 = Y 0
j . By (4.7), we 

have

Z1 · · · Zm−2

n−2∑
j=1

∂∂ρ(Sj , Sj)(0) = 0.

Notice that

Z1 · · · Zm−2

n−2∑
j=1

∂∂ρ(Sj , Sj) = Y 0
1 · · · Y 0

m−2

n−2∑
j=1

∂∂ρ[m](S0
j , S0

j ) + o(1).

We thus have Y 0(0) = 0 for l = m. This completes the proof of Lemma 4.7. �
Now we similarly apply the Nagano theorem to conclude that M0

∞,ω gives a unique real analytic integral 
submanifold N0 with N0 ⊂ M0 = {−2Rew + χ[m](z, 0, z, 0) = 0}. Since the tangent space at each point of 
N0 is generated by ReM0

∞, by Lemma 4.7, we have

n−2∑
j=1

∂∂ρ[m](S0
j , S0

j ) ≡ 0 on N0,

for ρ[m](S0
j , S0

j ) is real-analytic and it vanishes to infinite order at 0 along N0. Since ρ[m] is plurisubharmonic, 
we have ∂∂ρ[m](S0

j , S0
j ) ≥ 0 on M0. Notice that N0 ⊂ M0, we have ∂∂ρ[m](S0

j , S0
j ) ≡ 0 on N0. Hence 

Re(S0
j ), Im(S0

j ) ∈ T N (M0). By [20, Proposition 2] (see also Freedman [25]), which says the Lie-bracket 
operation is closed for sections in the null space of Levi-form T N M0, for any vector field Y 0 in M0

j , 
Re(Y 0), Im(Y 0) ∈ T N (N0) for each j. Hence for any Y 0 ∈ M0

j , we have 〈Y 0, ∂ρ[m]〉(0) = 0, for both the real 
part and the imaginary part of Y 0|0 are in Re(T (1,0)

0 N0). This then reduces the rest of the proof to that in the 
proof of the equality of t(n−2)(M, 0) = a(n−2)(M, 0). The proof of the equality c(n−2)(M, p) = a(n−2)(M, p)
is now complete. �
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Finally, we make a remark for the Hörmander number of a subbundle B of T (1,0) at p ∈ M . Let M1 be as 
defined in §2 for B. We define the first Hörmander number �0(B) to be the minimum length of Lie-Bracket 
of sections of M1 that produces a vector at p no longer in M1. From our discussion in this and last sections, 
it is clear that our weight �0 is �0(B) at p = 0.

5. Further application of positivity: proofs of three lemmas

In this section, we prove three lemmas concerning a homogeneous polynomial whose real part is plurisub-
harmonic. Plurisubharmonicity is an inequality. The basic idea behind the complicated computations of 
this section is that when the plurisubharmonicity is combined with weighted homogeneous polynomials, we 
often obtain identities with the help of Hölder inequality. This idea was already appeared in the proof of 
Lemma 4.5.

We begin with the following two simple folklore lemmas.

Lemma 5.1. Let h(ξ, ξ) be a homogeneous polynomial of (ξ, ξ) ∈ C × C. Suppose that

hhξξ − hξhξ = 0. (5.1)

Then h must be a monomial. Namely, h = cξjξ
k for a certain complex number c.

Proof. Suppose that h is not a monomial and takes the following form:

h = αξjξ
h + βξtξ

s + O(ξt+1) with j < t, α, β �= 0.

Here and in what follows, we write O(ξk) for a homogeneous polynomial with degree in ξ at least k. Then(
h hξ

hξ hξξ

)
=

(
αξjξ

h + βξtξ
s + O(ξt+1) jαξj−1ξ

h + tβξt−1ξ
s + O(ξt)

hαξjξ
h−1 + sβξtξ

s−1 + O(ξt+1) jhαξj−1ξ
h−1 + tsβξt−1ξ

s−1 + O(ξt)

)
.

Thus

hhξξ − hξhξ = αβ(ts + jh − th − js)ξj+t−1ξ
h+s−1 + O(ξj+t).

On the other hand, j + h = t + s, j < t. Thus j �= t and h �= s. Hence ts + jh − th − js = (j − t)(h − s) �= 0. 
Thus hhξξ − hξhξ is not identically 0, which contradicts our hypothesis in (5.1). �
Lemma 5.2. Let h(z, z) =

∑
IJ aIJzIzJ be a real nonzero plurisubharmonic polynomial in (z, z) ∈ Cn × Cn, 

where I = (i1, · · · , in), J = (j1, · · · , jn) with il+jl being a fixed positive integer (independent of I, J) denoted 
by kl for each l ∈ [1, n]. Assume that hz1z1 �≡ 0. Then each kl is even and the coefficient of Πn

l=1|zl|kl is 
positive.

Proof. By the plurisubharmonicity of h(z, z), we know hz1z1 ≥ 0. Since hz1z1 �≡ 0, each kl is even. Write 
zi = rie

iθi . Then for any Ri ∈ (0, ∞), we have

1
(2π)n

R1∫
0

· · ·
Rn∫
0

·
2π∫

0

· · ·
2π∫

0

hz1z1dr1 · · · drndθ1 · · · dθn

=the coefficient of Π|z |ki · some positive constant ≥ 0.

(5.2)
j
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If the coefficient of Πn
j=1|zj |kj is 0, then the above integral is 0. Combining with hz1z1 ≥ 0, we obtain 

hz1z1 ≡ 0. This contradicts our assumption that hz1z1 �≡ 0. This proves Lemma 5.2. �
Lemma 5.3. Let B(z1, z1), f(z2, z2) and g(z2, z2) be three homogeneous polynomials of degree k ≥ 2, m ≥ 1
and m ≥ 1, respectively, in the ordinary sense with B(z1, z1) �≡ 0, f(z2, z2) �≡ 0. Suppose that B(z1, 0) =
B(0, z1) = 0. Suppose that F = Bf + zk

1 g with ReF being a non zero plurisubharmonic polynomial without 
any non-trivial holomorphic term. Then k and m are even. Moreover g ≡ 0 and ReF = α|z1|k|z2|m for 
some α > 0.

Proof. By the assumption that ReF is non-zero and plurisubharmonic, (Re(F ))z1z1
≥ 0. Since B(z1, 0) =

B(0, z1) = 0 and ReF contains no non-trivial holomorphic terms, one further concludes that (Re(F ))z1z1
is 

not identically 0. By Lemma 5.2, m and k are even. Set k = 2k3 and m = 2m3. Write

B =
∑

j+h=k

Bjhzj
1z1

h, f =
∑

t+s=m

ftszt
2z2

s, g =
∑

t+s=m

gtszt
2z2

s.

First we claim that Bk3k3 �= 0 and fm3m3 �= 0. Otherwise the coefficient of the |z1|2k3−2|z2|2m3 in 
(Re(F ))z1z1

is zero, and thus by Lemma 5.2, we reach a contradiction. After writing F = cB · 1
c f + zk

1 g, we 
can assume that Bk3k3 = 1.

By the plurisubharmonicity of Re(F ), we have

(ReF )z1z1(ReF )z2z2 − (ReF )z1z2(ReF )z2z1 ≥ 0. (5.3)

The idea behind the next complicated computation is to write the left hand side of (5.3) into a negative 
sum of squares modified some terms under control so that the Hölder inequality can be applied. This is 
made possible due to the homogeneity of the functions under study.

Notice that

2(ReF )z1z1 = Bz1z1f + Bz1z1f, 2(ReF )z2z2 = Bfz2z2 + Bfz2z2
+ 2Re(zk

1 gz2z2). (5.4)

Thus

4(ReF )z1z1(ReF )z2z2 = 2Re
(

BBz1z1ffz2z2 + BBz1z1ffz2z2
+ Bz1z1f · 2Re(zk

1 gz2z2)
)

. (5.5)

The coefficients of |z1|2k−2 in BBz1z1 and BBz1z1 are, respectively,∑
j+h=k

jhBjhBhj ,
∑

j+h=k

jh|Bhj |2.

The coefficients of |z2|2m−2 in ffz2z2 and ffz2z2
are, respectively,∑

t+s=m

tsftsfst,
∑

t+s=m

ts|fts|2

Notice that Bz1z1f · Re(zk
1 gz2z2) is not divisible by |z1|2k−2 (unless it is identically zero). Hence the 

coefficient of |z1|2k−2|z2|2m−2 in 4(Ref)z1z1(Ref)z2z2 is∑
2Re

(
jhBjhBhjtsftsfst + jh|Bhj |2ts|fts|2

)
. (5.6)
j+h=k,t+s=m
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We similarly compute the coefficient of |z1|2k−2|z2|2m−2 in 4(ReF )z1z2(ReF )z2z1 as follows:

2(ReF )z1z2 =Bz1fz2 + Bz1fz2
+ kzk−1

1 gz2 ,

2(ReF )z2z1 =Bz1fz2 + Bz1fz2
+ kz1

k−1gz2
.

(5.7)

Thus

4(ReF )z1z2(ReF )z2z1 =Bz1Bz1fz2fz2 + Bz1Bz1fz2
fz2

+ Bz1Bz1fz2fz2
+ Bz1Bz1fz2

fz2

+ 2Re
(

kzk−1
1 gz2(Bz1fz2 + Bz1fz2

)
)

+ k2|z1|2k−2|gz2 |2.

(5.8)

The coefficients of |z1|2k−2 in Bz1Bz1 , Bz1Bz1 , Bz1Bz1 and Bz1Bz1 are, respectively∑
j+h=k

h2BhjBjh,
∑

j+h=k

h2|Bhj |2,
∑

j+h=k

j2|Bhj |2,
∑

j+h=k

j2BhjBjh.

The coefficients of |z2|2m−2 in fz2fz2 , fz2fz2
, fz2fz2

and fz2
fz2

are, respectively,∑
t+s=m

s2ftsfst,
∑

t+s=m

s2|fts|2,
∑

t+s=m

t2|fts|2,
∑

t+s=m

t2ftsfst.

Notice that kzk−1
1 gz2(Bz1fz2 + Bz1fz2

) is not divisible by |z1|2k−2 (when not identically zero). Hence the 
coefficient of |z1|2k−2|z2|2m−2 in 4(ReF )z1z2(ReF )z2z1 is∑

j+h=k,t+s=m

(
h2BjhBhjs2ftsfst + h2|Bhj |2s2|fts|2 + j2|Bhj |2t2|fts|2

+ j2BjhBhjt2f tsfst

)
+

∑
t+s=m

k2s2|gts|2.

Hence the coefficient of |z1|2k−2|z2|2m−2 in 4(ReF )z1z1(ReF )z2z2 − 4(ReF )z1z2(ReF )z2z1 is∑
j+h=k,t+s=m

{
2Re

(
jhBjhBhjtsftsfst + jh|Bhj |2ts|fts|2

)
−

(
h2BhjBjhs2ftsfst

+ h2|Bhj |2s2|fts|2 + j2|Bhj |2t2|fts|2 + j2BjhBhjt2f tsfst

)}
−

∑
t+s=m

k2s2|gts|2

= −
∑

j+h=k,t+s=m

{
(hs − jt)2|Bhj |2|fts|2 + hs(hs − jt)BjhBhjftsfst

+ jt(jt − hs)BjhBhjf tsfst

}
−

∑
t+s=m

k2s2|gts|2

= −
∑

h≤j,t≤s

Γts
hj

{
(hs − jt)2|Bhj |2|fts|2 + (js − ht)2|Bjh|2|fts|2 + (ht − js)2|Bhj |2|fst|2

+ (jt − hs)2|Bjh|2|fst|2 +
(

hs(hs − jt) + js(js − ht) + ht(ht − js) + jt(jt − hs)
)

BjhBhjftsfst

+
(

jt(jt − hs) + ht(ht − js) + js(js − ht) + hs(hs − jt)
)

BjhBhjf tsfst

}
−

∑
t+s=m

k2s2|gts|2

= −
∑

Γts
hj

{
(hs − jt)2|Bhj |2|fts|2 + (js − ht)2|Bjh|2|fts|2 + (ht − js)2|Bhj |2|fst|2
h≤j,t≤s
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+ (jt − hs)2|Bjh|2|fst|2 +
(

(hs − jt)2 + (js − ht)2
)

BjhBhjftsfst

+
(

(ht − js)2 + (jt − hs)2
)

BjhBhjf tsfst

}
−

∑
t+s=m

k2s2|gts|2.

Here we have set

Γts
hj =

⎧⎪⎨⎪⎩
1 h < j, t < s,
1
2 h = j, t < s or h < j, t = s,

0 h = j, t = s.

Notice, by the Hölder inequality, that

|
(

(js − ht)2 + (hs − jt)2
)

BjhBhjftsfst +
(

(ht − js)2 + (jt − hs)2
)

BjhBhjf tsfst|

≤ (js − ht)2(|Bhjfst|2 + |Bjhfts|2) + (jt − hs)2(|Bhjfts|2 + |Bjhfst|2).
(5.9)

Thus we see that the coefficient of |z1|2k−2|z2|2m−2 in

4(ReF )z1z1(ReF )z2z2 − 4(ReF )z1z2(ReF )z2z1

is non positive. Furthermore, this coefficient is 0 if and only if for h ≤ j, t ≤ s and for any j∗ + l∗ = m − 1
with l∗ �= 0:

Bhjfst = −Bjhfts for js �= ht, Bjhfts = −Bhjfst for jt �= hs, gj∗l∗ = 0. (5.10)

Hence, we conclude from (5.3) that (5.10) holds and moreover

(ReF )z1z1(ReF )z2z2 − (ReF )z1z2(ReF )z2z1 = 0. (5.11)

Since ReF and Bf contain no non-trivial holomorphic terms, we see g ≡ 0.
We next prove that ReF = α|z1|k|z2|m for some α > 0 to complete the proof of the lemma. To this aim, 

setting j = h = k3 in (5.10) and using the normalization that Bk3k3 = 1, we obtain fts = −fst for t �= s.
Now, if f is of the form f = fm3m3 |z2|m and ReF = |z2|mp(z1, z1), then (5.11) is equivalent to

ppz1z1 − pz1pz1 = 0.

By Lemma 5.1, p is a monomial. On the other hand, since p is real valued, p = α|z1|k for some α > 0. 
Namely, ReF = α|z1|k|z2|m. This proves the lemma.

For the rest of the proof, we suppose that f is not of the form f = fm3m3 |z2|m. Since fm3m3 �= 0, f is 
not a monomial.

We can now write

ReF = zh
1 z1

jq(z2, z2) + O(zh+1
1 ), q �= 0. (5.12)

Since B(z1, 0) = B(0, z1) = 0, we have h, j ≥ 1. From (5.11), we get

hjz2h−1
1 z1

2j−1(qqz2z2 − qz2qz2) + O(z2h
1 ) = 0.

This gives
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qqz2z2 − qz2qz2 = 0,

which further forces q to be a monomial. In the following, let h, j be as in (5.12).

(1) If Bhj = 0 or Bjh = 0, then q = 1
2Bjhf or q = 1

2Bhjf , respectively. In either case, since f is not a 
monomial, q is not a monomial and thus we reach a contradiction.

(2) Assume that Bhj �= 0, Bjh �= 0 and h < j. In this case, Bhjfm3m3 = −Bjhfm3m3 . Hence q �= c|z2|m
for some constant c.

Setting h = j in (5.10), we see fts = −fst for t �= s. Thus Bhjfm3m3 |z2|m + Bjhfm3m3 |z2|m = 0 and 
f − fm3m3 |z2|m = −(f − fm3m3 |z2|m). Hence ReF can be computed as follows:

Re(F ) =1
2(Bhjf + Bjhf)zh

1 z1
j + O(zh+1

1 )

=1
2(Bhj − Bjh)zh

1 z1
j · (f − fm3m3 |z2|m) + O(zh+1

1 ).
(5.13)

Thus we conclude that q = 1
2 (Bhj − Bjh)(f − fm3m3 |z2|m), which can not be a monomial for f is not a 

monomial. This thus gives a contradiction.
Hence we must have h ≥ j. But from the reality of ReF and our choice of h, we must have h = j and 

B = |z1|k. Hence ReF takes the form 1
2 |z1|k(f(z2, z2) + f(z2, z2)). Since fts = −fst for s �= t, we conclude 

that ReF takes the form α|z1|k|z2|m with α > 0.
This finally completes the proof of the lemma. �

6. Proof of Theorem 6.1

In this section, we provide a detailed proof of Theorem 6.1, which played a key role in the proof of our 
main theorem. We write z = (z1, z2) for the coordinates in C2 in this section.

Theorem 6.1. Define the weight of z1 and z1 to be 1, the weight of z2 and z2 to be k ∈ N with k > 1. Let 
A = A(z1, z1) be a homogenous polynomial of degree k −1 in (z1, z1) without non-trivial holomorphic terms. 
Suppose that f is a weighted homogeneous polynomial in (z, z) of weighted degree m > k. Further assume 
that Re(f) is plurisubharmonic, contains no non-trivial holomorphic terms and assume that f satisfies the 
following equation:

fz1(z, z) + A(z1, z1)fz2(z, z) = 0. (6.1)

Then Re(f) ≡ 0.

Without the plurisubharmonicity on Re(f), the above theorem can not be true as the following simple 
example demonstrates:

Example 6.2. Let L = ∂
∂z1

− |z1|2 ∂
∂z2

, k = 3 and let f = z1z2 + 1
2 |z1|4. Then L(f) ≡ 0. Notice that Re(f) is 

not plurisubharmonic neither is 0. Notice that A = A = −|z1|2, Re(f)( �≡ 0) has no non-trivial holomorphic 
terms.

We also mention that in Theorem 6.1, we can not conclude f ≡ 0 as demonstrated by the following 
example:

Example 6.3. Let L = ∂
∂z1

+ kzk
1 zk−1

1
∂

∂z2
and f = i(z2 + z2 − |z1|2k)2. The weight of z2 and z2 are 2k. Then 

Lf = 0 and Re(f) ≡ 0. However f �≡ 0.



X. Huang, W. Yin / J. Math. Pures Appl. 146 (2021) 69–98 93
Remarks 6.4. Theorem 6.1 also holds if we simply assume that f is real analytic near the origin. Then we 
just need to do a weighted Taylor expansion of f at the origin and apply Theorem 6.1 inductively on each 
weighted truncation.

Proof of Theorem 6.1. The proof of Theorem 6.1 is long. The idea is to find a good use of the plurisubhar-
monicity of Re(f). We will proceed according to the four different scenarios, two of which are reduced to CR 
equations along finite type hypersurfaces where Proposition 4.6 can be applied. (Hence, plurisubharmonicity 
is used to apply the Hopf lemma.) The other two easier scenarios are treated by a formal theory method 
with the help of Lemma 5.3.

Recall that the degree of A is k − 1 and the weight of z2 and z2 is k.
For 0 ≤ j ≤ [ m

k ] := m0, denoted by f [j] the sum of terms (monomial terms) in f which has ordinary 
degree j in z2 and z2. Then

f = f [m0] + f [m0−1] + · · · + f [0].

In the course of the proof, for j = 1, 2, we write O(|zj |k) for a homogeneous polynomial with (the ordinary 
or un-weighted) degree in zj and zj at least k. We also denote by L(|zj |k) a homogeneous polynomial with 
the un-weighted degree in zj and zj at most k. For a homogeneous polynomial P =

∑
h+j=l Chjzh

1 z1
j , we 

denote the integral of P along z1 as

F (P ) =
∑

h+j=l

1
j + 1Chjzh

1 z1
j+1. (6.2)

We remark that after a transformation of the form: (z1, z2) → (z1, δ−1z2), A and f , in the new coordinates 
still denoted by (z1, z2), takes the form

δ−1A and f(z1, δz2, z1, δz2). (6.3)

We will need this transformation to normalize certain coefficients in our proof.

Case I: In this case, we suppose km0 < m or km0 = m, f [m0] = 0.

Suppose h is the largest integer such that f [h] �≡ 0. From (6.1), f [h] is holomorphic in z1. We suppose 
that

f [h] = zj
1

∑
t+s=h

ftszt
2z2

s, here j + kh = m. (6.4)

We then have j ≥ 1. Since Ref contains no non-trivial holomorphic terms, fh0 = 0. In particular, we see 
that we must have h ≥ 1. In what follows, we regard any term with a negative power in some variable to 
be zero to simplify the notations.

First, we claim fts = 0 for any t ≥ 1. Since Ref is plurisubharmonic, we obtain

(
Re(f)

)
z2z2

=
(
Re(f [h])

)
z2z2

+ L(|z2|h−3) ≥ 0.

For 1
2 ≤ |z1| ≤ 1, we then have C0 >> 1 such that whenever |z2| ≥ C0 we have

zj
1

∑
tsftszt−1

2 z2
s−1 + z1

j
∑

tsftszs−1
2 z2

t−1 ≥ 0.

t+s=h,t,s≥1 t+s=h,t,s≥1
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Since j ≥ 1, this is possible only when the left hand side is identically 0. This implies that fts = 0 for all 
t, s ≥ 1 and thus for t ≥ 1. Thus

f [h] = f0hzj
1z2

h with j, h ≥ 1, j + kh = m.

Then

Re(f [h]) = 1
2f0hzj

1z2
h + 1

2f0hz2
hz1

j .

Since Re(f) is plurisubharmonic, we have(
Re(f)

)
z1z1

(
Re(f)

)
z2z2

−
(
Re(f)

)
z1z2

(
Re(f)

)
z2z1

≥ 0.

Notice that (
Re(f)

)
z1z1

= O(|z1|j−1),
(
Re(f)

)
z2z2

= O(|z1|j+1)(
Re(f)

)
z1z2

= 1
2f0hjhzj−1

1 z2
h−1 + O(|z1|j),(

Re(f)
)

z2z1
= 1

2f0hjhzh−1
2 z1

j−1 + O(|z1|j).

Hence (
Re(f)

)
z1z1

(
Re(f)

)
z2z2

−
(
Re(f)

)
z1z2

(
Re(f)

)
z2z1

= − 1
4j2h2|f0h|2|z1|2j−2|z2|2h−2 + O(|z1|2j−1) ≥ 0.

(6.5)

Now, for each fixed z2 and letting |z1| sufficiently small, we get −j2h2|f0h|2|z1|2j−2|z2|2h−2 ≥ 0. Hence 
f0h = 0, which means that f [h] ≡ 0. This contradicts our assumption that f [h] �= 0. This completes the 
proof in Case I, for we must then have f [h] ≡ 0 for any h.

Case II: We now assume that km0 = m, Re(f [m0]) �= 0.

Suppose

f [m0] =
∑

t+s=m0

ftszt
2z2

s.

Since Re(f [m0]) contains no non-trivial holomorphic terms, we have f0m0 = −fm00. By the plurisubhar-
monicity of Re(f), we get (Re(f [m0]))z2z2 ≥ 0 and can not be identically zero. By Lemma 5.2, m0 is even 
and Refm1m1 > 0. Here m0 = 2m1.

After a rotational transformation of the form (z1, z2) → (z1, δ−1z2) for some constant δ �= 0, by (6.3), we 
can make

f(m1−1)(m1+1) = cfm1m1 for a certain c ≥ 0. (6.6)

We remark that this transformation does not change our original hypotheses in this case. Now (6.1) can be 
solved as

f = −F (A)fz2 +
m0∑

zjk
1 h[m0−j](z2, z2), h[m0−j](z2, 0) = 0, for each j. (6.7)
j=0



X. Huang, W. Yin / J. Math. Pures Appl. 146 (2021) 69–98 95
In particular, we get

f [m0−1] = −F (A) · f
[m0]
z2

+ zk
1 g[m0−1](z2, z2), g(z2, 0) = 0. (6.8)

By the plurisubharmonicity of Ref , we have (Ref)z1z1 ≥ 0. Notice that F (A) is divisible by |z1|2. Hence

(Ref)z1z1 = (Ref [m0−1])z1z1 + L(|z2|m0−2) ≥ 0.

Hence

(Ref [m0−1])z1z1 ≥ 0.

Notice that the (ordinary) degree of (Ref [m0−1])z1z1 in z2 and z2 is m0 −1 which is an odd number, we have 
(Ref [m0−1])z1z1 ≡ 0. Again since F (A) is divisible by |z1|2, it follows from (6.8) that Re(F (A) · f

[m0]
z2

) = 0.
Next, write A =

∑
j+h=k−1,h≥1 Ajhzh

1 z1
j . Then

F (A) =
∑

j+h=k−1,h≥1

1
j + 1Ajhzh

1 z1
j+1.

Hence

Re(F (A) · f
[m0]
z2

) = Re
( ∑

j+h=k−1,h≥1

1
j + 1Ajhzh

1 z1
j+1 ·

∑
t+s=m0,s≥1

sftszt
2z2

s−1
)

= 0. (6.9)

Hence for h + j = k, t + s = m0 − 1, we have

1
j

A(j−1)h · (s + 1)ft(s+1) = − 1
h

A(h−1)j · (t + 1)fs(t+1). (6.10)

Setting t = m1 − 1, s = m1 in the above equation and making use of (6.6), we get

1
j

A(j−1)h · (m1 + 1)c = − 1
h

A(h−1)j · m1. (6.11)

If c = 0, then A(h−1)j = 0 for all h + j = k, h ≥ 1, j ≥ 1. This implies that A ≡ 0, which is impossible. 
Thus c �= 0. From (6.11), we get

A(j−1)hA(h−1)j ≤ 0 and the equality holds only when A(j−1)h = A(h−1)j = 0. (6.12)

Next, by (6.1), (6.7), we compute the following:

f [m0−2] = F (AF (A)) · f
[m0]
z22 − F (Azk

1 )φ[m0−1]
z2

(z2, z2) + z2k
1 φ[m0−2](z2, z2).

We will compute the coefficient of |z1|2k|z2|m0−2 in f [m0−2]. First, the coefficient of |z2|m0−2 in f
[m0]
z22 is 

(m1 + 1)m1f(m1−1)(m1+1). Notice that

AF (A) =
∑

j+h=k−1

Ajhzh
1 z1

j ·
∑

t+s=k−1

1
t + 1Atszs

1z1
t+1

(6.13)

Hence
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F (AF (A)) =
∑

j+h=k−1,t+s=k−1

1
(t + 1)(j + t + 2)AjhAtszh+s

1 z1
j+t+2

(6.14)

When k = h + s = j + t + 2, j + h = k − 1, t + s = k − 1, we have j = k − 1 − h, t = h − 1, s = k − h. 
Hence the coefficient in F (AF (A)) with the factor |z1|2k is

∑
1≤h≤k−1

1
hk

A(k−1−h)hA(h−1)(k−h) := H.

By (6.12), H ≤ 0. Moreover H = 0 if and if A(k−1−h)h = 0 for all h ≥ 1, which is equivalent to A = 0. This 
is impossible and thus H < 0.

Notice that A is divisible by z1, thus F (Azk
1 ) does not contain |z1|2k term.

Thus the coefficient of |z1|2k|z2|m0−2 in f [m0−2] is (m1 + 1)m1f(m1−1)(m1+1)H. Recall that Refm1m1 > 0
and c > 0. Together with (6.6), we get Ref(m1−1)(m1+1) > 0. Hence the real part of the coefficient of 
|z1|2k|z2|m0−2 in f [m0−2] must be negative. This contradicts the following(

Re(f [m0−2])
)

z1z1
≥ 0,

which is true due to the fact that 
(

Re(f [m0])
)

z1z1
and

(
Re(f [m0−1])

)
z1z1

= 0.

The following two cases are more subtle. Fortunately, we have more geometry in these two settings to 
enable us to Proposition 4.6.

Case III: m = km0, f [m0] �= 0, Re(f [m0]) = 0 and Re(f [m0−1]) �= 0.

Here, we reduce f to the solution of a CR vector field of a real hypersurface of finite type in C2 and then 
apply Proposition 4.6 to reach a contradiction. Write B := −F (A) =

∑
j+h=k Bjhzj

1z1
h. By Lemma 5.2, 

both k and m0 − 1 are even. Define k = 2k2, m0 = 2m2 + 1. Then Bk2k2 �= 0 by Lemma 5.2, which implies 
that A(k2−1)k2 �= 0. After a dilation transform of the form as in (6.3), we assume that A(k2−1)k2 = −k2. 
Then Bk2k2 = 1. A direct computation shows

f [m0−1] = Bf
[m0]
z2

+ zk
1 g(z2, z2).

From our assumption, Ref [m0−1] is plurisubharmonic. By Lemma 5.3,

g(z2, z2) = 0, Re(f [m0−1]) = Re(Bf
[m0]
z2

) = λ|z1|k|z2|m0−1, λ > 0. (6.15)

Notice that Bk2k2 = 1 and (m2 + 1)Re(fm2(m2+1)) = λ �= 0. Since Re(f [m0]) = 0, we have f(m2+1)m2 +
fm2(m2+1) = 0. Notice that f [m0]

z2
− (m2 + 1)fm2(m2+1)|z2|2m2 has no term divisible by |z2|2m2 . Hence we 

conclude from (6.15)

Re(Bfm2(m2+1)(m2 + 1))|z2|m0−1 = λ|z1|k|z2|m0−1.

Collecting terms divisible by zm2+1
2 z2

m2−1 in (6.15), we get

m2Bf(m2+1)m2 + B(m2 + 2)f(m2−1)(m2+2) = 0.

Hence B is different from B by a constant. Since we normalized Bk2k2 = 1, we see that B is real-valued. 
But f

[m0]
z2

contains a term of the form μ|z2|m0−1 with Reμ �= 0. Thus −F (A) = |z1|k, namely, A =
−k2zk2−1

1 z1
k2 .
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Now, L = ∂
∂z1

+ A(z1, z1) ∂
∂z2

forms a basis for the sections of CR vector fields along the real algebraic 
finite type hypersurface M0 in C2 defined by −z2 − z2 = |z1|2k2 and L(f) ≡ 0. Thus f is a CR polynomial 
on M0 and g = f(z1, z1, z2, −z2 − |z1|2k2) is a weighted homogeneous holomorphic polynomial of degree 
m > k. Since f − g ≡ 0 over M0, M0 is contained in the zero set of the plurisubharmonic ρ = Re(f − g)
with 0 ∈ M0. Notice that ρ = O(|z|2), we conclude by Proposition 4.6 that ρ ≡ 0 or Re(f) is pluriharmonic. 
This is a contradiction. Hence Case III cannot occur.

Case IV: m = km0, f [m0] �= 0 but Re(f [m0]) = Re(f [m0−1]) = 0.

Write

A =
∑

h+j=k−1

Ahjzhzj , B = −F (A) =
∑

h+j=k

Bhjzhzj , f [m0] =
∑

t+s=m0

ftszt
2z2

s.

Then by our assumption that Re(f [m0]) = Re(f [m0−1]) = 0 and F (A) is divisible by |z1|2. By Lemma 5.3, 
as in Case (III), we have the following

f [m0−1] = B · f
[m0]
z2

. (6.16)

Still write f [m0] =
∑

t+s=m0
ftszt

2zs
2. Then we similarly have from the hypotheses that Re(f [m0]) =

Re(f [m0−1]) = 0 the following

fts = −fst, Bhj(s + 1)ft(s+1) = −(t + 1)Bjhfs(t+1). (6.17)

Hence for each pair (h, j), if Bhj �= 0, then Bjh �= 0; for otherwise we get fts = 0 for any t + s = m0 and 
reach a contradiction. Since B is nonzero, we can suppose there is a pair (h0, j0) such that Bh0j0 �= 0 and 
thus Bj0h0 �= 0. Since f [m0] �= 0, there is a certain ft0(s0+1) �= 0 and thus fs0(t0+1) �= 0. By (6.17), we have

Bh0j0(s0 + 1)ft0(s0+1) = −(t0 + 1)Bj0h0fs0(t0+1),

Bj0h0(s0 + 1)ft0(s0+1) = −(t0 + 1)Bh0j0fs0(t0+1).

Since ft0(s0+1) �= 0 and fs0(t0+1) �= 0, we have |Bh0j0 | = |Bj0h0 |. After a rotational transformation as in 
(6.3) with a suitable choice of δ, we can assume that Bh0j0 = Bj0h0 . Then by (6.17), we have

fts = −fst, (s + 1)ft(s+1) = −(t + 1)fs(t+1). (6.18)

By (6.18), f [m0]
z2

is pure imaginary. Also, it is not identically zero for the absolute value of each coefficient 
is a non-zero multiple of the others and at least one of them is non-zero. Now, by (6.16), we easily conclude 
that B = F (A) is a real-valued homogeneous polynomial divisible by |z1|2. Hence, L = ∂

∂z1
+ A(z1, z1) ∂

∂z2

forms a basis for the sections of CR vector fields along the real algebraic finite type hypersurface M0 in C2

defined by z2 + z2 = F (A) and L(f) ≡ 0. Now, following the same argument as in Case (III), we achieve a 
contradiction by Proposition 4.6 unless Re(f) ≡ 0.

Combining our arguments in Cases I-IV, we conclude the proof of Theorem 6.1. �
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