
Compiler Support for Near Data Computing

Mahmut Taylan
Kandemir

Penn State University
USA

mtk2@cse.psu.edu

Jihyun Ryoo
Penn State University

USA
jihyunryoo@gmail.com

Xulong Tang
University of Pittsburgh

USA
tax6@pitt.edu

Mustafa Karakoy
TUBITAK-BILGEM

Turkey
m.karakoy@yahoo.co.uk

Abstract

Recent works from both hardware and software domains
offer various optimizations that try to take advantage of near
data computing (NDC) opportunities. While the results from
these works indicate performance improvements of various
magnitudes, the existing literature lacks a detailed quan-
tification of the potential of NDC and analysis of compiler
optimizations on tapping into that potential. This paper first
presents an analysis of the NDC potential when executing
multithreaded applications on manycore platforms. It then
presents two compiler schemes designed to take advantage
of NDC. The first of these schemes try to increase the amount
of computation that can be performed in a hardware compo-
nent, whereas the second compiler strategy strikes a balance
between optimizing NDC and exploiting data reuse, by being
more selective on when to perform NDC (even if the oppor-
tunity presents itself) and how. The collected experimental
results on a 5×5 manycore system reveal that our first and
second compiler schemes improve the overall performance
of our multithreaded applications by, respectively, 22.5% and
25.2%, on average. Furthermore, these two compiler schemes
are only 6.8% and 4.1% worse than an oracle scheme that
makes the best near data computing decisions for each and
every computation.

CCS Concepts: · Computer systems organization →
Multicore architectures.

Keywords: near-data computing, data locality, code trans-
formation, manycore architectures

1 Introduction

With the end of Dennard scaling, the gap between the com-
putational demand exhibited by large-scale datasets and
computational capabilities that can cater to that demand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00
https://doi.org/10.1145/3437801.3441600

is widening. As a result, the conventional computational
paradigm based on the clear separation of storage location
(cache/memory/SSD/disk) and compute location (cores) that
has prevailed for more than six decades now is becoming
increasingly less successful in meeting the needs of emerg-
ing big data computations. Lacking a holistic perspective on
how this widening gap between what is desired and what
can actually be delivered, application, computer architecture,
compiler, and runtime systems/OS communities each are
proposing their own various solutions to the problem.
One of the research directions promoted in recent years

is based on the idea of Near Data Computing (NDC), which
brings computation closer to the data, as opposed to the
more conventional paradigm which brings data to compu-
tation. A typical example of NDC is processing-in-memory
(PIM) where simple operations (e.g., transpose operation or
addition operation) are computed inside memory array [56].
One can roughly divide the existing body of NDC-related
studies into two broad categories. The first category includes
the studies that try to reorder computations in an attempt to
reduce the distance between the memory location that holds
data and the core that requests the data. In such approaches,
the computation is still executed by conventional compute
units (cores) in the architecture, and as such, these ap-
proaches can just be considered as a variant of conventional
data locality optimizations [7, 14, 27, 32, 36, 37, 40, 54, 61ś
63]. In contrast, the works in the second category enhance
an underlying (baseline) architecture with additional (cus-
tom) compute units to execute computations near data. Ex-
ample locations augmented with compute units include
DRAM [3, 5, 24, 25, 56], memory controllers [15, 16, 28, 52],
cache controllers [2, 46, 65], and on-chip network controllers
[19, 47, 60]. Clearly, one of the main questions that the works
in this second category need to tackle is how frequently all
of the data needed by a given computation happen to re-
side at the same time in the same hardware component of
interest (e.g., cache controller or memory controller). For
example, if a computation 𝑐 needs data elements 𝐴 and 𝐵,
these two data elements should meet in the same hardware
component at the same time, so that 𝑐 can be performed in
that component (assuming that the component in question
has been equipped with proper compute units to perform 𝑐).
More frequently than not, one of the required data elements,
say 𝐴, arrives in a hardware component but the other, say
𝐵, has not arrived yet. A critical question is then when 𝐵

90

https://doi.org/10.1145/3437801.3441600

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Kandemir, et al.

will arrive at the same component, or whether it will ar-
rive at all. A related question is how long we can tolerate
to wait for 𝐵 to arrive, beyond which further waiting does
not make sense. Yet, another critical question is what can be
done to make 𝐴 wait less for 𝐵 ś or better, is it possible to
rearrange computations such that 𝐴 and 𝐵 meet łaround the
same timež in the target component? Unfortunately, in spite
of a flurry of recent works in NDC, these critical questions
have not been properly addressed in the literature. Going
back to our simple example above that involves computation
𝑐 and data elements 𝐴 and 𝐵, one can make the following
observations:

• Making sure that 𝐴 and 𝐵 arrive at the target component
at around the same time is critical, mainly because i) if 𝐵
is late, 𝐴 will occupy resources till 𝐵 arrives and ii) more
𝐴 waits, lower the chances that exploiting NDC will lead
to more efficient execution.

• When there are multiple potential hardware components
where 𝑐 can be performed (i.e., multiple locations 𝐴 and 𝐵
can potentially meet), selecting the most appropriate one
will be important. Note that, at a particular time, 𝐴 can be
in one component, whereas 𝐵 in another one. Depending
on timing and nature of computation, it may be better to
move 𝐴 to 𝐵, or 𝐵 to 𝐴, or to move both 𝐴 and 𝐵 to a third
component, to perform computation.

• In a manycore/multithreaded execution scenario, the best
component to perform a given computation near its data
depends, in general, on the behavior of all threads that
affect the movement of the data involved. In particular,
any NDC decision made solely based on the viewpoint of
one thread may not be globally optimal when all threads
are considered together.

• It is not trivial to decide when to exploit NDC oppor-
tunities versus just going ahead with the conventional
execution paradigm. In particular, there are cases where
performing NDC conflicts with what a potential data lo-
cality optimization prefers. In such cases, performing the
right tradeoff, depending on the context (mostly dictated
by the degree of data reuse), can be critical.

Based on the observations above, focusing on manycore
architectures andmultithreaded CPU applications, this paper
makes the following two contributions:

• It presents results from a detailed analysis of the NDC
potential when executing multithreaded applications on
manycore platforms. In particular, i) for a given (hardware
component, computation) pair, it presents data measur-
ing how long each involved data item is waited for, if the
computation is to be performed in that component; ii)
conversely, it also provides data measuring the amount
of computation that can be performed in a component
if the maximum waiting time is set to a specific value;
and iii) the ideal hardware component to perform a given
computation and the related performance improvements.

Our detailed experimental analysis reveals that an ora-

cle scheme, which i) makes the right łtradeoffž between
NDC and data locality optimization and ii) selects the
łidealž hardware component to perform NDC, brings an
average performance improvement of 29.3% across 20 mul-
tithreaded application programs tested.

• It presents two compiler-based NDC schemes designed to
take advantage of NDC. The first scheme tries to increase
the amount of computation that can be performed in a
hardware component by bringing the operands needed
for the computation close to one another in time. The
collected experimental data reveals that the proposed ap-
proach brings about 22.5% performance improvement over
the original application programs. Our second compiler
strategy on the other hand strikes a balance between opti-
mizing NDC and exploiting data reuse (cache locality), by
being more selective on when to perform NDC (even if the
opportunity presents itself) and how. Our experimental
evaluation of this second strategy indicates around 25.2%
average improvement over the original applications.

2 Assumptions on Architecture

In this work, we focus on a manycore architecture (shown in
Figure 1) in which multiple nodes are connected to one an-
other using a scalable on-chip network (also called network-
on-chip (NoC)). Each node in this architecture can have one
or more cores, a private L1 cache per core, and an L2 bank
shared with other nodes. We assume static x-y routing as it
is the most frequently used routing in NoC-based manycores.
As for the management of data, we assume a static NUCA
(non-uniform cache access) architecture for our discussion,
where each cache block is assigned to one of the L2 banks
and one of the memory banks in the system (based on its
address). Therefore, a data access issued by a core in this
architecture first checks the local L1 cache of the core, then
(if it misses in the L1 cache) the L2 bank (determined by the
address of the data), and then (if it misses in the L2 bank)
the off-chip memory bank (again, determined by the address
of the requested data). Note that this architectural template
is similar to several commercial manycores [1, 21, 53].
To enable the NDC capability in this architecture, we

leverage a similar design from prior work [48]. We consider
near data computing in four hardware locations, namely,
link buffers/routers, cache controllers, memory controllers, and
main memory itself, as highlighted in Figure 1 using a , b , c ,
and d , respectively. Specifically, the load/store (LD/ST) unit
is augmented with an offload table that tracks the offload
operations, which are also called łpre-computež instructions
defined shortly. Each NDC ALU in the NDC architecture is
also equipped with a service table. The service table is used
to track the received NDC packages. The operations queued
in the service table are processed in order. If the service
table is full, the time-out mechanism will be triggered and

91

Compiler Support for Near Data Computing PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

MC2

MC3MC4

MC1
DDR4DDR4

DDR4 DDR4

Core

L1

L2 Bank

d

b

Link

buffer?
L2 Bank?

N

NI

isNdcCompute?

ALU

M
o

d
if

ic
a

ti
o

n
 a

t

th
e

 L
2

 N
o

d
e

s
to

su
p

p
o

rt
 N

D
C

c

Router

a

Y

N

ALU

Y

N

Fetch

Decode

Issue/Execute

Memory (LD/ST)

Write back

Computing core

D
a

ta
 $

Injection Port Buffer

LD/ST Unit

Address generator
O

ff
lo

a
d

T
a

b
le

Send pre-compute
op for NdcPacket

Local $
probe. If
found,

skip NDC

Control

Reg

Time-

out Reg

e Time-

out Reg

Service Table

Y

Figure 1. Target manycore architecture (one core per node).
To enable the NDC capability, the LD/ST unit is enhanced
with an offload table to track the offload instructions (i.e.,
pre-compute instructions). The NDC components (e.g., link
buffer and L2 bank) are enhanced with ALU and time-out
registers. The architecture also includes a control register in
the CPU to control which NDC components are disabled.

the operation is eventually performed in the original loca-
tion. Specifically, the time-out mechanism sends signal to the
original core and updates an offload table there in the LD/ST
unit, indicating that the computation will be performed in
the original core.
Throughout our discussion, we use "+" for "op" but our

proposed approach handles any arithmetic or logic opera-
tion (op) implemented in a given location of interest (i.e.,
any of the four locations mentioned above). In the case of
near data computing in memory (in-memory computing),
we assume that𝐴 op 𝐵 is performed in memory if both𝐴 and
𝐵 are currently residing in the same memory bank. In the
case of cache controller, we assume a compute unit attached
to each cache controller and can perform an operation in
there within "arrival window" (to be defined shortly) if both
the operands are available in the cache. Each (L2) cache con-
troller in the system is assumed to be equipped with the
same compute unit. In the case of link routers/buffers, on
the other hand, we assume that a compute unit is attached
to each router that can perform a computation there if both
the operands are available in the corresponding link buffer.
Similarly, we also assume that each memory controller in
the system is equipped with a compute unit that can perform
computations that need operands currently queued in the
memory queue. Note that, while we assume that each mem-
ory bank is augmented with a compute unit that can perform
select computations there, a computation will be performed
in the memory bank only if the most updated values of both
of the required operands are currently in that bank. Note also
that if the offloaded instructions have register operands, they

are also transferred to the location where the computation
will be performed.

The NDC capabilities offered by this architecture can be
exploited in multiple ways. First, in the most general case,
before offloading, the LD/ST unit first probes if any of the
operands is in the local cache. If so, the operation is per-
formed within the core to take advantage of the locality
in the local cache. Otherwise, an łNDC compute packagež
is formed and injected into the network port buffer. In the
routers’ network interface, the NDC compute package is
checked whether the operands are available in the link buffer.
If so, computation is performed by leveraging the ALUs at-
tached to the link buffer. Otherwise, if the node contains
the L2 home bank of both operands and the operands are
available in the L2 bank, computation is performed at the
L2 bank. Similarly, the NDC compute package is checked
in the memory controller and the main memory, and is per-
formed in the corresponding component when the operands
are available there.

Alternatively, using a specialized łcontrol registerž, shown
as e in Figure 1, the specific components can be skipped as
potential NDC locations. For example, we can indicate that
NDC needs to be performed only in network router/link
buffer, or only in link buffer or cache controller, etc. In such
cases, the NDC compute package is directly sent to the target
NDC location. In both the usage scenarios explained above,
when an NDC compute package arrives at a target NDC
location, the execution waits for the operands. Optionally,
łtime-outž registers (also shown in Figure 1) can be used to
limit the amount of time to wait in each NDC component,
before resorting to the default (non-NDC) computation. Fig-
ure 1 shows the time-out registers in link buffer/router and
the L2 bank. Similarly, there are time-out registers in the
memory controller and the main memory to bound the wait-
ing time of operands. That is, once the first operand arrives
at the destination, we can limit the time period it stays there
before aborting NDC and performing the computation in a
conventional fashion (i.e., in the original target core). Also,
when the computation is performed near data, the CPU is
signaled using a łCPU-feedž signal.

We want to emphasize that, such NDC-enabling architec-
ture designs have been explored by prior work, and are not
the main focus of this paper. We refer the reader to recent
works [5, 9, 22, 28, 48] for further details. Instead, our main
focus in this work is on the evaluation of the potential of
NDC and exploring compiler optimizations that enhance
NDC opportunities. Note that, in our approach, the com-
piler explicitly marks the instructions to be performed near
data using one of the unused fields in the instruction for-
mat. In particular, we introduce a new instruction called
łpre-computež for the offloaded operations, which will be
discussed later. The contents of this pre-compute instruction
are mapped to an NDC compute package.

92

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Kandemir, et al.

3 Applications and Setup

In this study, we evaluated application programs from two
different benchmark suites, SPECOMP [10] and SPLASH-2
[8], to conduct our experimental evaluations. The input sizes
of these benchmarks are increased from their original values
to put more pressure on on-chip hardware resources (e.g.,
caches, network, and memory controllers). In our evalua-
tions, the dataset sizes for the SPECOMP benchmarks vary
between 754 MB and 4.2 GB, and those for the SPLASH-2
benchmarks range from 821 MB to 5.1 GB.

Since current commercial systems do not include compute
units to implement the near data computing strategies evalu-
ated in this work, we conduct a simulation-based study. Also,
since we are interested in measuring the potential and limits
of near data computing, we make an assumption where the
cycle cost of performing the computation in our compute
units (added to the baseline architecture) is the same as per-
forming it on the original core (note however that NDC still
cuts overall data access latencies significantly as it performs
computations in locations close to data). Of course, if the
result an operation that has been performed near data is
required by a subsequent operation in a different place, the
cost of transferring it there is included/modeled in the simu-
lator. Also, all our presented results include the additional
overheads brought by near data computing.

We enhanced a multicore/manycore simulator, GEM5 [12],
to collect our results. GEM5 is a modular toolset for com-
puter system architecture research, including system-level
architecture as well as processor microarchitecture. Using
GEM5, we modeled a manycore architecture whose main
characteristics are given in Table 1. Note that our simulator
models all the components of the NDC-enabling architecture
discussed in Section 2. The proposed compiler support has
been implemented using LLVM-9.0.1 [13].

4 Quantification of NDC

This section first introduces the metrics used in our evalua-
tions of NDC and then presents the detailed characterization
results collected from the executions of our original applica-
tion programs.

4.1 Evaluation Metrics

We start below by first introducing the three evaluation met-
rics considered in this work, focusing on a single operation
and two operands (𝐴 + 𝐵) and a location of interest (referred
to as loc) where the said operation is to be performed.1

• Arrival Window: This metric represents the period of
time the first arriving operand waits for the second one. That
is, it captures the difference in cycles between the arrivals

1As will be discussed later, in this work, we consider four potential locations
to performNDC, namely, link buffers, cache controllers, memory controllers,
and memory banks. These locations are selected mainly because they are
natural station over the path of a data access.

Table 1. The simulated configuration.
Parameter Default Value

Processor: two-issue OoO, SPARC processor
Cores Data/Instr. L1 Config.: 32 KB (per node), 64 byte lines,
and 2 ways, 2 cycle access latency

Caches L2 Config.: 512 KB (per node), 256 byte lines,
64 ways, cache line interleaved,
20 cycle access latency

On-Chip Size: 5 × 5 2D Mesh
Network (NoC) Delays/Routing: 16B links, 3-cycle pipeline, XY-routing

Number of Memory Controllers: 4 [same as page size]
Interleaving Granularity: 4KB
Scheduling Policy: FR-FCFS

Memory Capacity: 32GB
System Device Parameters: Micron MT47H64M8 DDR2-800

4 banks/device, 16384 rows/bank,
512 columns/row
Row Buffer Size: 4KB [same as page size]
4 active row buffers per DIMM

Computation/ Thread count per core: 1
Mapping Types of offloading: All arithmetic and logic operations

of operands 𝐴 and 𝐵 at loc. Clearly, in the ideal case, we
want the value of this metric to be 0, indicating that both the
operands arrive at loc at łexactly" the same time. However,
in many cases, 𝐴 can tolerate some waiting time for 𝐵 (and
the resulting NDC can still be more efficient than performing
the computation in the conventional way).

• Breakeven Point: The breakeven point refers to the time
(arrival window size), which leads to a better result compared
to the conventional execution. That is, if the breakeven point
is 25 cycles, it means that, if the arrival window (the time the
first operand waits for the second operand to arrive at the lo-
cation of interest) is less than or equal to 25 cycles, near data
computing will generate a "better result" than the conven-
tional computing in the core. If however the arrival window
is more than 25 cycles, it means the NDCwill generate worse
results than the conventional computing.

• Performance Benefit: This metric captures the relative
improvement brought by an NDC optimization scheme (mea-
sured in execution cycles saved). Note that, the optimal deci-
sion either performs near data computation if the breakeven
point is within the arrival window, or resorts to the con-
ventional computation if the breakeven point is outside the
arrival window.

Below, we present an experimental analysis of these met-
rics, and identify the potential of near data computing, when
the original benchmark programs are executed without any
near data computing-specific code optimization.

4.2 Arrival Window Analysis

Each graph in Figure 2 gives an analysis of arrival windows
(in the form of cumulative distribution function (CDF) that
is truncated to 50%) for different locations of interest (loc)
and different application programs. Note that in these plots
500+ represents arrival window lengths that are larger than
500 cycles, and also includes the cases where the second
operand never arrives at the location of interest (e.g., when
the location of interest is the link buffer but the paths of the
two operands do not intersect on the network).

93

Compiler Support for Near Data Computing PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

It can be observed from the CDF plots in Figure 2 that,
the arrival window lengths vary significantly depending on
the benchmark and the specific location under consideration.
For example, in swim, approximately 14.3% of the arrival win-
dows at cache controller are less than or equal to 20 cycles,
whereas, for the same benchmark, only 7.71% of the arrival
times are less than 20 cycles when considering memory con-
troller. Further, given a location (loc), the arrival windows
of two benchmark programs can exhibit quite different be-
haviors. For instance, consider applu and raytrace and cache
controller. In applu, around 26.7% of all arrival windows are
less than or equal to 20 cycles, whereas in raytrace the cor-
responding fraction is 8.6%. Since arrival window puts an
upper limit for the waiting time (our second metric defined
above), we can conclude from the results in Figure 2 that
different applications are expected to get different amounts
of benefits from near data computing.

4.3 Breakeven Point Analysis

The first arriving operand has the option of leaving the loca-
tion (loc) any time within the arrival window. A question
at this point is how breakeven points compare against the
arrival windows. Figure 3 plots the distribution of arrival
windows and breakeven points when averaged over all 20
benchmark programs. It can be observed from these results
that breakeven points are in general much lower than the
arrival windows, meaning that, if the early operand waits for

the late operand, it would be waiting beyond the breakeven

point, and as a result, the performance would degrade. Al-
though the graph in Figure 3 shows the results averaged over
all benchmarks, we found that, in each of our benchmarks,
the breakeven points were lower than the arrival windows.

4.4 Benefit Analysis

Figure 4 plots the performance benefits over the original
case when the first operand that arrives at the location of
interest uses different waiting strategies (times). The first bar
corresponds to the performance benefits (a negative benefit
value indicates an increase in execution time over the original
version), when the first arriving operand waits until the
second operand arrives. It can be seen that, this strategy
does not perform well at all, leading, on average, to 16.7%
increase in the original execution times. That is, waiting until
both the operands meet in a location to perform computation
is not a promising NDC strategy.
The second bar, for each benchmark, gives the benefits

when an oracle strategy guarantees that the first thread waits
only till the breakeven point. That is, if the first operand needs
to wait beyond the breakeven point, this oracle strategy
chooses not to perform the corresponding computation near
data, i.e., it resorts to the conventional computing. Further,
this oracle scheme also exercises NDC łmore selectivelyž.
More specifically, if there is a reuse of one of the operands fol-
lowing the target computation, the oracle scheme favors data

0
10
20
30
40
50

m
d

b
w

a
v
e
s

n
a

b b
t

fm
a
3

d
s
w

im
im

a
g
ic

k
m

g
ri

d
a
p
p
lu

s
m

it
h

.w
a

k
d
tr

e
e

b
a
rn

e
s

c
h
o
le

s
k
y ff
t

lu
o
c
e
a
n

ra
d
io

s
it
y

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r

%

1 10 20 50 100 500 500+

(a)

0
10
20
30
40
50

m
d

b
w

a
v
e
s

n
a

b b
t

fm
a
3
d

s
w

im
im

a
g
ic

k
m

g
ri
d

a
p
p
lu

s
m

it
h

.w
a

k
d
tr

e
e

b
a
rn

e
s

c
h
o
le

s
k
y ff
t

lu
o
c
e
a
n

ra
d
io

s
it
y

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r

%

1 10 20 50 100 500 500+

(b)

0
10
20
30
40
50

m
d

b
w

a
v
e
s

n
a
b b
t

fm
a
3
d

s
w

im
im

a
g

ic
k

m
g

ri
d

a
p
p
lu

s
m

it
h

.w
a

k
d
tr

e
e

b
a
r n

e
s

c
h
o
le

s
k
y ff
t

lu
o
c
e
a
n

ra
d
io

s
it
y

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r

%

1 10 20 50 100 500 500+

(c)

0
10
20
30
40
50

m
d

b
w

a
v
e
s

n
a
b b
t

fm
a

3
d

s
w

im
im

a
g
ic

k
m

g
ri

d
a
p
p
lu

s
m

it
h

.w
a

k
d
tr

e
e

b
a
rn

e
s

c
h
o
le

s
k
y ff
t

lu
o
c
e
a
n

ra
d
i o

s
it
y

ra
y
tr

a
c
e

v
o
lr
e
n
d

w
a
te

r

%

1 10 20 50 100 500 500+

(d)

Figure 2. Distribution of arrival windows, (a) Link buffer, (b)
L2 controller, (c) Memory controller, and (d) Main memory.

0
20
40
60

A
rr

iv
a
l

W
in

d
o
w

B
re

a
k
e

v
e

n
P

o
in

t

A
rr

iv
a
l

W
in

d
o
w

B
re

a
k
e

v
e

n
P

o
in

t

A
rr

iv
a
l

W
in

d
o
w

B
re

a
k
e
v
e

n
P

o
in

t

A
rr

iv
a
l

W
in

d
o
w

B
re

a
k
e
v
e

n
P

o
in

t

link buffer cache controller memory
controller

main memory

%

1 10 20 50 100 500 500+

Figure 3. Comparison of breakeven points versus arrival
windows.

locality and skips NDC.2 That is, it strikes a balance between
NDC and data locality optimization. Therefore, the second
bar for each benchmark, represents, in a sense, the maximum

2In this evaluation, we assumed a single reuse is sufficient to favor data
locality over NDC; but a similar, analysis can be made by requiring more
than one reuse as well. Also, the reuse does not need to occur within a given
number of cycles.

94

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Kandemir, et al.

potential benefits. Clearly, since the oracle scheme uses fu-
ture information, it is not practical. However, it provides an
łupper-boundž for NDC potential (within the limits of our
assumptions) and we use it in this paper as a bar against
which our practical compiler-based strategies (discussed in
Section 5) are compared. Note that, all benchmark programs
benefit from the oracle scheme, leading to an average execu-
tion time improvement of 29.3% (geometric mean).
Figure 6 plots how the NDC opportunities exploited by

the oracle scheme are distributed across our four target com-
ponents. It can be observed from these results that the oracle
scheme is able to exploit the NDC opportunities across all
four components, leading to an average distribution of 25.9%,
36%, 21.7% and 16.4% for cache, network, memory controller
and memory, respectively. Wait(x%) in Figure 4, on the other
hand, gives the benefits when the first thread waits (for the
second one) in the location of interest at most x% of the entire
arrival window. That is, if the second operand arrives be-
fore x% of the arrival window, the computation is performed
at the location; if not, the first operand leaves the location
(and the computation is eventually performed in a core). The
graph gives the results for x=5, 10, 25 and 50. While these
results are better than those collected when waiting for the
second operand to arrive, they are still below the original
performance numbers. More specifically, wait(5%), wait(10%),
wait(25%), and wait(50%) bring average slowdowns, by 15.1%,
14.7%, 13.9% and 13.4%, respectively.

At this point, one may consider employing a predictor, us-
ing which one can predict how much to wait for the second
operand. A simple strategy would be assuming that, for a
given program counter (PC) value, the next arrival window
(i.e., the arrival window in the next invocation of the same
instruction) is going to be the same as the current arrival
window. Note that, if this prediction turns out to be accurate,
then we can decide the optimal strategy for the first operand
(i.e., the amount of time it needs to wait or not wait at all).
The bar tagged as łLast Wait" shows the results (execution
time improvements) when using such an arrival time predic-
tor. The results shown in Figure 4 reveal that this predictor
does not perform very well, bringing an average slowdown
of 4.3%. To explain why this is the case, we give in Figure 5
two representative curves, one belonging to a PC value dur-
ing the execution of ocean and the other belonging to a PC
value during the execution of radiosity. Each curve plots 30
consecutive arrival windows. We see that the arrival times
are not easily predictable (although not presented here, even
a Markov Chain-based predictor generated similar results),
which explains why the predictor-based approach brings
improvement over the original execution only in two cases
(mgrid and volrend). Overall, the results plotted in Figure 4
clearly show that neither implementing a fixed waiting time
nor employing a prediction-based waiting strategy generates
better results than the original case, and they are clearly far
from the optimal savings achieved by the oracle scheme.

-40

-20

0

20

40

60

P
e

rf
o

rm
a

n
c
e

Im

p
ro

v
e

m
e

n
t
(%

)

Default Oracle Wait (5%) Wait (10%) Wait (25%)

Wait (50%) Last Wait Algorithm-1 Algorithm-2

Figure 4. Performance benefits with different NDC schemes.

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

A
rr

iv
a

l
W

in
d

o
w

 (
c
y
c
le

s
)

ocean radiosity

Figure 5.Arrival window sizes for 30 consecutive executions
of a given instruction in two applications.

0

20

40

60

80

100

m
d

b
w

a
v
e

s

n
a
b b
t

fm
a

3
d

s
w

im

im
a
g

ic
k

m
g
ri
d

a
p
p

lu

s
m

it
h

.w
a

k
d

tr
e
e

b
a
rn

e
s

c
h

o
le

s
k
y ff
t

lu

o
c
e
a

n

ra
d

io
s
it
y

ra
y
tr

a
c
e

v
o

lr
e

n
d

w
a

te
r

a
v
e
ra

g
e

N
D

C
 B

re
a

k
d

o
w

n
 (

%
)

cache network MC memory

Figure 6.Distribution of locations where NDC is performed.

5 Enhancing NDC Opportunities

The results presented in the previous section clearly show
that (i) the original execution style of the applications does
not lend itself well to exploiting near data computing oppor-
tunities, and (ii) yet an oracle scheme can potentially bring
significant benefits. (i) can be easily seen by comparing the
first and second bars in Figure 4. Furthermore, strategies such
as waiting for a specific duration (for the second operand
to arrive at the location of interest) or using a predictor to
predict the arrival window length do not bring much bene-
fits either. Motivated by these observations, in this section,
we present two novel compiler-directed approaches to near
data computing. The primary goal of the first approach is
to reduce the arrival window lengths, ideally making them
small enough so that they become closer to breakeven points,
whereas the second approach tries to balance between NDC
and data locality optimization.

5.1 High-Level View of the Compiler

Figure 7 shows where our two compiler algorithms fit in the
overall compilation process. After conventional parallelism
(if needed) and locality optimizations, one of our algorithms
(either Algorithm 1 or Algorithm 2) is invoked. The input to
the algorithms are application code (coming from the paral-
lelization and locality optimization steps) and an architecture
description, which captures the hardware parameters such
as the number of nodes, cores per core, target NDC locations,
types of computations that can be performed in NDC loca-
tions. Both our algorithms also use a cache miss estimator.

95

Compiler Support for Near Data Computing PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Parallelization

(if input code is

sequential)

Input Code

Architecture

Description
Data Locality

Optimizations

Algorithm

1

Algorithm

2
OR

Low-Level Optimizations

and Code Generation

Output Code

Cache

Miss

Estimation

Figure 7. Illustration of where our compiler algorithms fit
in the overall compilation process.

Following our algorithms, the low-level code optimizations
are performed and the output code is generated.

5.2 Compiler-Directed NDC Optimizations

Recall from Section 2 that, in this work, we consider near data
computing in four different hardware locations: link buffers,
cache controllers, memory controllers, and memory banks.
Accordingly, in this section, we evaluate a code restructuring
strategy that helps one increase the NDC opportunities in
one or more of these four locations. As stated earlier, the
main goal of this restructuring is to reduce arrival window
lengths. One necessary component is the identification of
cache hits and misses in both the L1 and L2 layers.
For this cache miss estimation, we employ a variant of

the approach described in [23], called Cache Miss Equations
(CME). CME is built upon traditional compiler reuse anal-
ysis to generate linear Diophantine equations that summa-
rize a given computation’s memory behavior. Each solution
of these Diophantine equations corresponds to a potential
cache miss. The mathematical precision of CMEs allows one
to reason about the impact of compiler optimizations on
cache performance. The version of the CME implemented in
our compiler closely follows the original work [23], and accu-
rately models cold, capacity and conflict misses. In addition, it
adds a few enhancements over [23]. In particular, our imple-
mentation can handle imperfectly nested loops, non-affine
loop bounds and subscript expressions, and non-constant
array sizes/loop bounds. It also works with record/union
based data structures. In addition to these enhancements, we
also engineered CME to reduce the time needed to solve the
Diophantine equations resulting from data reuse analysis.
However, at the time of this writing, our CME implementa-
tion does not model coherence misses.
Table 2 gives the cache hit/miss estimation accuracies in

both L1 and L2 layers. It can be observed from these results
that, on average, the accuracy of miss predictor is about
81.1% for L1 and 72.9% for L2. In the majority of the cases
where our estimator mispredicts, the reason is coherence

…
…
S1: … x …
…
…
…
S2: … y …
…
…
…
S3: … x+y …
…
…

…
…
S1: … x …
S2’: … y …
S3’: … x+y …
…
S2: … y …
…
…
…
S3: … x+y …
…
…

…
…
S1: … x …
…
…
S1’: … x …
S2: … y …
S3’: … x+y …
…
…
S3: … x+y …
…
…

…
…
S1: … x …
S1’: … x …
S2’: … y …
S3’: … x+y …
S2: … y …
…
…
…
S3: … x+y …
…
…

(a) (b) (c) (d)

Figure 8. (a) An example code fragment. (b-d) Different
access and computation movement strategies.

Table 2. L1 and L2 miss estimation accuracies.

md bwaves nab bt fma3d swim imagick
L1 80.5 82.5 78.4 76.7 86.1 85 82.3
L2 77.7 79.2 74.4 66.7 81 80.6 80.1

mgrid applu smith.wa kdtree barnes cholesky fft
L1 88.6 90.6 86.7 78 84.3 66.8 91.1
L2 83.4 85.6 74.4 71.2 70.5 55.3 72.3

lu ocean radiosity raytrace volrend water average
L1 89 68 77.2 83.3 80.6 66.6 81.115
L2 70.7 55.4 74.1 80.1 70.6 55.5 72.94

misses, which are not modeled in our estimator. Overall, we
believe that the estimation accuracies shown in Table 2 are
reasonable and acceptable, considering the fact that they are
achieved through static compile-time analysis alone.
Let us now discuss the details of our compiler-directed

code restructuring strategy (our first compiler algorithm).
Consider the code fragment shown in Figure 8(a). In this frag-
ment, first, variable 𝑥 is accessed in statement S1 and then
variable 𝑦 is accessed in statement S2. After these accesses,
in statement S3, the program performs 𝑥 + 𝑦. Now, from an
NDC viewpoint, we want to perform this computation in,
say, L2 controller (assuming that both 𝑥 and 𝑦 are destined
for the same L2 bank). Note that if, for a given period of time,
both 𝑥 and 𝑦 happen to be in the L2 bank, we can perform
𝑥 + 𝑦 there, before the execution even reaches S3. However,
this may not always be the case. For example, it is possible
that the distance between S1 and S2 is too long and, as a
result, 𝑥 is replaced from the L2 cache before 𝑦 reaches there.

In general, our compiler optimization tries to reduce what
can be termed as use-use distance ś in our example the
distance between 𝑥 and 𝑦 with respect to a target location
(L2 bank in the example above). This, in general, is a difficult
optimization to implement because of the reasons explained
below. However, first, we want to emphasize that, just bring-
ing accesses to 𝑥 and 𝑦 close to one another in the "program
code" would not work, as they can be in locations with dif-
ferent (physical) distances from the target location where
the computation is to be performed (e.g., L2 bank).

5.2.1 Challenges and Solutions. First, as stated earlier,
the main goal is to ensure that, 𝑥 and 𝑦 are in the same
location of interest around the same time so that we can
perform 𝑥 + 𝑦. For example, if 𝑥 and 𝑦 are in the same L2
bank, we can compute 𝑥 +𝑦 there. For this to happen, i) both
𝑥 and 𝑦 should miss in the L1 cache (so that they access

96

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Kandemir, et al.

L2) and ii) there should be a period of time during which
both 𝑥 and 𝑦 should be L2 resident. Note that, i) can be
checked using CME (explained earlier), but for ii), we need
to make sure that the difference between the time 𝑥 reaches
the L2 bank and the time 𝑦 reaches the same L2 bank is
as small as possible. The solution we propose for this is
to employ a novel instruction (an addition to ISA) called
łpre-compute".3 This pre-compute instruction is similar to
conventional compute instructions in the ISA, except that
it performs the specified computation in one of our four
(łnon-conventional") target locations. Our compiler inserts
a pre-compute instruction for each computation it wants to
offload to one of the four target locations.

Now, let us assume, for the sake of concreteness, that we
want to perform 𝑥 + 𝑦 in the L2 cache. Our compiler first
checks whether 𝑥 in S1 and 𝑦 in S2 result in L1 misses. If this
is the case, it then moves either 𝑥 or 𝑦 or both such that the
time difference between their arrival time at the L2 bank is
as small as possible. Following that, it moves computation
𝑥 + 𝑦 to the point right after accesses to 𝑥 and 𝑦.

Figures 8(b) through (d) show three potential data access (𝑥
and/or𝑦) and computation (𝑥+𝑦) movements for the example
code fragment in Figure 8(a). For a given 𝑥 + 𝑦, our current
implementation explores these three access movements in
order. More specifically, first, it estimates the time at which
𝑥 will be in the cache and then moves 𝑦 with the goal of
ensuring that it arrives the cache at around the same time
as 𝑥 . Finally, 𝑥 + 𝑦 is moved. It needs to be noted that, such
access movement is subject to the inherent data and control

dependencies in the program code, i.e., the compiler moves
the access to 𝑦, only if doing so does not violate any data or
control dependencies in the program. If this movement of 𝑦
is not possible (e.g., due to data dependencies), the compiler
then tries to bring 𝑥 close to 𝑦. If this also fails, the compiler
then tries to bring both 𝑥 and 𝑦 close to one another. If this
final attempt fails too, the next target component in the list
(e.g., on-chip network) is tried (for more details, please see
the discussion of the second challenge below). Note that,
no matter what data access movement option is exercised
(whether 𝑥 or 𝑦 or both are moved), the computation itself
(𝑥 + 𝑦) is always moved to the point (place in the program
code) right after the second variable is accessed.

…
…
S1: … x …
S2’: … y …
S3’: … x+y …
…
S2: … y …
…
…
…
S3: … x+y …
…
…

(a) (b) (c) (d)

…
S2’: … y …
S1: … x …
S3’: … x+y …
…
…
S2: … y …
…
…
…
S3: … x+y …
…
…

…
…
S1: … x …
…
…
…
S2: … y …
…
S2’: … y …
S3’: … x+y …
S3: … x+y …
…
…

S2’: … y …
…
…
…
…
S1: … x …
S3’: … x+y …
S2: … y …
…
…
…
S3: … x+y …
…

Figure 9. Different possible new locations for a variable (𝑦).
3Note that many ISAs provide means to define new instructions.

To explain what estimations and tasks need to be per-
formed by the compiler to enable such data access and com-
putation movements, let us now focus on the scenario de-
picted in Figure 8(b). In this scenario, access to 𝑥 is kept in
its original place and 𝑦 will be moved (by Δ). To determine
Δ, our compiler i) considers the physical locations of 𝑥 and 𝑦
and determine (if we want to perform 𝑥 + 𝑦 in the L2 bank)
when 𝑥 is expected to be in the L2 bank. It then moves 𝑦 to a
place in the code such that 𝑦 will be co-residing in the cache
with 𝑥 . To do this, the compiler first estimates how many
cycles the access to 𝑦 needs to be moved and then translates
this cycle count to program instructions. It is to be noted
that, depending on the distances of 𝑥 and 𝑦 to the target L2
bank, the new location of𝑦 can be, with respect to its original
position, (a) closer to 𝑥 but still after 𝑥 , or (b) closer to 𝑥 but
now before 𝑥 , or (c) farther from 𝑥 but above 𝑥 , or (d) farther
from 𝑥 but still below 𝑥 . These four possibilities (the new
positions the access to variable 𝑦 can take) are illustrated
in Figure 9. (b) can occur, for example, when 𝑦 is close to
the target L2 bank, whereas (c) may be necessary when 𝑦 is
really far away from the target L2 bank and, as a result, its
access needs to start earlier than the access to 𝑥 . The second
challenge is that we have 4 potential target locations (loc) to
perform 𝑥 + 𝑦 (not just L2 banks). For a given computation,
our current implementation checks these possibilities one
by one, in the order of network routers, L2 banks, network
routers (the second attempt, since NoC is accessed in both L1
misses and L2 misses), memory queues, and memory banks.
That is, first the on-chip network router is considered to
perform the computation. If this fails, the approach tries to
perform 𝑥 + 𝑦 in the L2 bank. If this attempt also fails, the
on-chip network router is tried again (this time the routers
on the path of L2 miss). If that also fails, the memory queue
is tried, and finally, if this attempt also fails, memory bank is
tried. This trial order makes sense as it tries to perform 𝑥 +𝑦
at the earliest component first, and the order of components
tried exactly matches the path followed by a data access.

So far, our explanation focused on scalar (non-array/non-
record) variables and their computations (e.g., 𝑥 and 𝑥 + 𝑦).
We now explain how our approach extends to loops and
arrays. The main difference between the scalar and array
computations arises from the definition of "distance". As
stated earlier, in scalar computations, we can define distance
as the distance between two program statements (or equally,
between the last use and a program statement). In array
computations, on the other hand, we need to measure it in
terms of "loop iterations", as, for a given program statement,
each loop iteration can be thought of as a separate statement
(a different dynamic instance). As an example, let us consider
the code fragment in Figure 10.
In this code fragment, a reuse of array elements in array

𝑋 occurs along with the iterator (𝑖 , 𝑗). For instance, array
element 𝑋 [5, 4] is first accessed in iteration (5, 4), and then
accessed in iteration (6, 3). The distance between these two

97

Compiler Support for Near Data Computing PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

iterations is (1,−1). Let us assume the loop bound for 𝑖 is
𝑛 and the loop bound for 𝑗 is𝑚. The distance between the
reuse of 𝑋 [5, 4] is𝑚 − 1 statements.

for i 2 … n

for j 1 … m

X[i,j] = … X[i-1, j+1]

Figure 10. An ex-
ample loop nest.

In the most general case, the
problem of finding a loop transfor-
mation to achieve our goal can be
expressed, in mathematical terms,
as follows. We represent loop nests,
loop bounds and array accesses us-
ing matrices and vectors. Specifi-
cally, for a loop nest with 𝑖𝑘 being
the index of the 𝑘th loop from top (where 1 ≤ 𝑘 ≤ 𝑛), ®𝐼
= (𝑖1𝑖2 · · · 𝑖𝑛)

𝑇 represents the iteration vector, and a given
access to𝑚-dimensional array 𝑋 is represented by 𝑋 (𝑓 (®𝐼))

where 𝑓 is 𝐹 ®𝐼 + ®𝑓 , where 𝐹 is an m×n matrix and ®𝑓 is an
𝑚-entry vector. For example, if ®𝐼 = (𝑖1 𝑖2)

𝑇 and 𝑓 (®𝐼) =

(𝑖1 + 1 𝑖2− 1)𝑇 , then 𝐹 is the identity matrix and 𝑓 = (1 − 1)𝑇 .
Further, in loop transformation theory [64], on applying a
loop transformation 𝑇 , a given original loop iteration vector
®𝐼 is mapped (transformed) to a new loop iteration 𝑇 ®𝐼 .
Now, let ®𝐼𝑥 be the iteration at which 𝑋 (𝑓 (®𝐼𝑥)) is accessed

and ®𝐼𝑦 be the iteration at which 𝑌 (𝑔(®𝐼𝑦)) is accessed, where
®𝐼𝑏 ≤ ®𝐼𝑥 , ®𝐼𝑦 ≤ ®𝐼𝑒 , and ®𝐼𝑏 and ®𝐼𝑒 being the lower and upper

bounds, respectively, for the loop nest. Similarly, let ®𝐼𝑐 be the

iteration at which 𝑋 (ℎ(®𝑘𝑥)) + 𝑌 (𝑙 (®𝑘𝑦)), for some ®𝑘𝑥 and ®𝑘𝑦 ,
is originally to be performed. If the compiler determines that

access to 𝑌 (𝑔(®𝑘𝑦)) needs to be moved to iteration, say, ®𝑘 ′
𝑦 ,

it tries to find a loop transformation matrix 𝑇 such that, we

have 𝑇 ®𝐼𝑦 =
®𝑘 ′
𝑦 , that is, the original loop iteration ®𝐼𝑦 should

be mapped, by𝑇 , to ®𝑘 ′
𝑦 . Assuming that 𝐷 is the dependence

matrix for the loop nest in question, for this transformation
to be valid (semantics-preserving), each column of𝑇𝐷 should
be lexicographically positive.4 Similarly,𝑇 also needs to map
®𝐼𝑐 (the original iteration where the computation is scheduled
to be performed) to ®𝐼 ′𝑐 = 𝑇 ®𝐼𝑐 where ®𝐼 ′𝑐 is the iteration that

immediately follows ®𝑘 ′
𝑦 , in the "new" iteration space. Thus,

for a given access and a computation, the compiler needs to

find a loop transformation matrix 𝑇 that satisfies both ®𝑘 ′
𝑦 =

𝑇 ®𝐼𝑦 and ®𝐼 ′𝑐 = 𝑇 ®𝐼𝑐 . Our compiler constructs such constraints
for each data access-computation pair for which it wants to
perform NDC, and then tries to solve them, as explained in
Section 5.2.2.

The third challenge is that, different from the cache bank,
memory queue and memory bank cases, in the case of on-
chip network, our compiler also considers "alternate data
access paths" (routes), in an attempt to increase chances
for NDC. It is known from prior research [39] that, in a
2D space there exist multiple paths with the same short-
est distance from node (𝑝1, 𝑞1) to node (𝑝2, 𝑞2). Using the

4This directly follows from the legality constraint of any loop transformation
[64].

(a) (b)

Figure 11. Two different routings with the same distance
on a 6 × 6 NoC-based manycore.

same terminology from [39], each such (minimum distance)
path from (𝑝1, 𝑞1) to (𝑝2, 𝑞2) is represented using a signature
𝑆{(𝑝1, 𝑞1), (𝑝2, 𝑞2)}. Note that, for an on-chip network with a
total 𝐿 communication links, a signature can be represented
using an 𝐿 −𝑏𝑖𝑡 sequence in which the 𝑘𝑡ℎ bit is 1 if the com-
munication uses the 𝑘𝑡ℎ link; otherwise, it is set to 0. Note
that, given (𝑝1, 𝑞1) and (𝑝2, 𝑞2), the compiler can choose an
signature 𝑆{(𝑝1, 𝑞1), (𝑝2, 𝑞2)}, depending on its goal.

Now, given two data accesses, 𝑥 and 𝑦, issued respectively
from cores (𝑝𝑥 , 𝑞𝑥) and (𝑝𝑦, 𝑞𝑦), and accessing, respectively,
L2 caches located at (𝑝𝑟 , 𝑞𝑟) and (𝑝𝑠 , 𝑞𝑠), our goal is to se-
lect signatures 𝑆{(𝑝𝑥 , 𝑞𝑥), (𝑝𝑟 , 𝑞𝑟)} and 𝑆{(𝑝𝑦, 𝑞𝑦), (𝑝𝑠 , 𝑞𝑠)}
such that the number of common links between them
is maximized, or equivalently, the total number of 1s
in 𝑆{(𝑝𝑥 , 𝑞𝑥), (𝑝𝑟 , 𝑞𝑟)} ∩ 𝑆{(𝑝𝑦, 𝑞𝑦), (𝑝𝑠 , 𝑞𝑠)} is maximized,
where ∩ represents bitwise-and operation. Figure 11 illus-
trates an example scenario where in (a) the two data accesses
do not have any common link but in (b) they have two com-
mon links. Clearly, the maximizing the number of common
links between 𝑆{(𝑝𝑥 , 𝑞𝑥), (𝑝𝑟 , 𝑞𝑟)} and 𝑆{(𝑝𝑦, 𝑞𝑦), (𝑝𝑠 , 𝑞𝑠)}
is beneficial from an NDC perspective, as each common
link represents an "opportunity" to perform computation
𝑥 + 𝑦 in one of the associated link routers. Therefore, in
the case of on-chip network, our current implementation
selects signatures carefully in an attempt to maximize 1s in
𝑆{(𝑝𝑥 , 𝑞𝑥), (𝑝𝑟 , 𝑞𝑟)} ∩ 𝑆{(𝑝𝑦, 𝑞𝑦), (𝑝𝑠 , 𝑞𝑠)}.

Fourth, in some cases, it is simply impossible for 𝑥 and𝑦 to
meet in any target location. For example, 𝑥 and𝑦 are mapped
to different cache banks and different memory banks, or
their paths on the on-chip network could not be intersected
(unless we are willing to increase the number of links to be
traversed by the data accesses). While in such cases changing
the mapping between data space and cache/memory banks
can help (to create more NDC opportunities), we postpone
such data layout optimizations to a future study.

5.2.2 Compiler Algorithm. Algorithm 1 provides our
compiler approach to achieve the NDC optimization. For clar-
ity of presentation, we present the code for the array access
case, and the scalar version is similar.5. Our approach first
generates the use-use chains and, data dependency graph by
analyzing the targeted loop nest 𝐿. As we mentioned earlier,
our approach tries different locations one-by-one to exploit

5Due to space concern, we do not show the code generation algorithm.
Further details can be found in [34]

98

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Kandemir, et al.

NDC opportunities there (lines 45 - 49). For a particular lo-
cation, e.g., using L2 bank as an example, we try different
strategies of moving the data access and computation, as we
discussed earlier in Figure 8. Specifically, we first move𝑦 and
computation (𝑧) without changing the iterator of 𝑥 (lines 13
- 16). If moving 𝑦 and computation to 𝑥 does not generate a
legal loop transformation 𝑇 with all available strides, we try
to move 𝑥 and computation 𝑧 to 𝑦 (lines 18 - 21). Similarly,
if both do not generate legal loop transformations, we try
to move 𝑥 , 𝑦, and 𝑧 (lines 23 - 26). If there is no opportunity
to compute the 𝑧 at L2 bank (e.g., due to 𝑥 and 𝑦 are not
present in L2 on time), we try to exploit NDC at routers (line
44). Note that, the process is similar to exploiting NDC at L2
bank, and the only difference is that we first need to select
optimal signatures of NoC links for NDC (line 29). Then,
the CME is replaced with checking whether 𝑥 and 𝑦 will be
arriving at the same NoC router.

5.3 Exploring NDC-Data Locality Tradeoff

…
S1: … x …
…
…
S2: … y …
…
…
S3: … x+y …
…
…
S4: … y*z …
…
S5: … t/y …

Figure 12.

An example
code frag-
ment with
reuse of 𝑦.

In this section, we explore the tradeoffs
between NDC and data locality optimiza-
tion. More specifically, we try to identify
the cases where exercising NDCmay not
be the best (most beneficial) option, and
one would rather consider bringing data
to core. Consider for instance, the code
fragment given in Figure 12. In this code,
while it is possible to exercise near data
computing for 𝑥 + 𝑦 (say in L2), doing
so may not be the best option. This is
because, one of the operands, 𝑦, has two
more reuses following the computation
(𝑥 + 𝑦), and while potentially the associ-
ated two computations can also be per-
formed in L2, this option may not be any
faster than bringing 𝑦 (and 𝑥) to L1 and

performing the computation in the original core.
We propose a data reuse-aware version of NDC where

the NDC is exercised, only if the operands involved in the
target computation do not have any reuse beyond the com-
putation. Note that this is clearly only one of the potential
ways of tuning the "aggressiveness" of NDC based on "subse-
quent data reuse" (and it is the only one our current compiler
implementation employs). An alternate strategy would be
exercising NDC, only if the operands involved in the tar-
get computation are not reused more than 𝑘 times beyond
the target computation to be offloaded. Clearly, this version
can be more successful in general; however, determining the
right value for 𝑘 may not be trivial. Thus, we postpone it to a
future study. In a sense, our current implementation is a spe-
cial case where 𝑘 = 0, i.e., we favor data reuse over NDC even
if there exists only 1 reuse of one of the operands beyond
the target computation (being considered to be offloaded).

Algorithm 1 Exploiting NDC through computation restruc-
turing.
INPUT: Loop nest (L); architecture configuration: number of cores, on-chip network

topology;
OUTPUT: Transformed loop nest with NDC optimization;
1: function Loop_Transformation(iteration𝑘𝑥 , iteration𝑘𝑦 , loop 𝐿, dependency

graph 𝐷)

2: Let ®𝐼𝑥 , ®𝐼𝑦 , and ®𝐼𝑐 be the iteration at which x, y, z are accessed

3: Solve𝑇 for ®𝑘𝑥 = 𝑇 ®𝐼𝑥 , ®𝑘𝑦 = 𝑇 ®𝐼𝑦 and ®𝐼 ′𝑐 = 𝑇 ®𝐼𝑐 .
4: if 𝑇 𝑒𝑥𝑖𝑠𝑡 then
5: return L’ = TL
6: else
7: return L
8: function L2_bank_compute(x,y,z, L,D)
9: if CME (x, y) in L2 bank then

10: Loop_Transformation(®𝑘𝑥 , ®𝑘𝑦 , x,y,z, L, D)
11: return TRUE;
12: /** Fix x and try to move y close to x */

13: move y from iteration ®𝑘𝑦 to ®𝑘′𝑦 with Δ

14: if CME (x, y) in L2 bank then

15: L← Loop_Transformation(®𝑘𝑥 , ®𝑘′𝑦 , x,y,z, L, D)
16: return TRUE;
17: /** Fix y and try to move x close to y */

18: move x from iteration ®𝑘𝑥 to ®𝑘′𝑥 with Δ

19: if CME (x, y) in L2 bank then

20: L← Loop_Transformation(®𝑘′𝑥 , ®𝑘𝑦 , x,y,z, L, D)
21: return TRUE;
22: /** Move both x and y */

23: move (x,y) from iteration (®𝑘𝑥 , ®𝑘𝑦) to (®𝑘′𝑥 , ®𝑘′𝑦) with Δ

24: if CME (x, y) in L2 bank then

25: L← Loop_Transformation(®𝑘′𝑥 , ®𝑘′𝑦 , x,y,z, L, D)
26: return TRUE;
27: function Router_compute(𝐶 , L,D)
28: /** get signatures of x, y, and reshape the routing to create more NDC oppor-

tunity*/
29: find the signatures with maximized 𝑆𝑥 ∩ 𝑆𝑦
30: Similar procedure compared with L2_bank_compute, except CME estimation

is replaced with same router check under the selected signature.

31: function Memory_qeue_compute(𝐶 , L,D)
32: Similar procedure compared with L2_bank_compute, except CME estimation

is replaced with same memory queue check.

33: function Memory_bank_compute(𝐶 , L,D)
34: Similar procedure compared with L2_bank_compute, except CME estimation

is replaced with same memory bank check.

35: /** construct all use-use chains */
36: S← extract_use-use_chains(L)
37: D← dependency_analysis(L)
38: for each use-use chain𝐶 𝑗 in S do
39: /** get data accesses from𝐶 𝑗 */

40: x← 𝑋 (ℎ (®𝑘𝑥)) , y← 𝑌 (𝑙 (®𝑘𝑦)

41: z← 𝑋 (ℎ (®𝑘𝑥)) +𝑌 (𝑙 (®𝑘𝑦))
42: if L2_bank_compute (x,y,z, L,D) then
43: break;

44: if Router_compute (x,y,z, L,D) then
45: break;

46: if Memory_queue_compute (x,y,z, L,D) then
47: break;

48: if Memory_bank_compute (x,y,z, L,D) then
49: break;

We now give the mathematical formulation of this data
reuse-aware NDC optimization problem, for array computa-
tions. Let ®𝐼𝑥 be the iteration at which 𝑋 (𝑓 (®𝐼𝑥)) is accessed
and ®𝐼𝑦 be the iteration at which 𝑌 (𝑔(®𝐼𝑦)) is accessed. Fur-

ther, let ®𝐼𝑐 be the iteration at which 𝑋 (ℎ(®𝑘𝑥)) +𝑌 (𝑙 (®𝑘𝑦)), for

some ®𝑘𝑥 and ®𝑘𝑦 , is originally to be performed. As we have
discussed earlier in Section 5.2.1, if the compiler determines

that access to 𝑌 (𝑔(®𝑘𝑦)) needs to be moved to iteration, say,
®𝑘 ′
𝑦 , it needs to find a loop transformation matrix 𝑇 such

99

Compiler Support for Near Data Computing PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Algorithm 2 Exploring NDC-data locality tradeoff.
INPUT: Loop nest (L); architecture configuration: number of cores, on-chip network

topology;
OUTPUT: Transformed loop nest with NDC optimization;
1: function Loop_Transformation(iteration𝑘𝑥 , iteration𝑘𝑦 , loop 𝐿, dependency

graph 𝐷)

2: Let ®𝐼𝑥 , ®𝐼𝑦 , and ®𝐼𝑐 be the iteration at which x, y, z are accessed

3: Solve𝑇 for ®𝑘𝑥 = 𝑇 ®𝐼𝑥 , ®𝑘𝑦 = 𝑇 ®𝐼𝑦 and ®𝐼 ′𝑐 = 𝑇 ®𝐼𝑐 .
4: /** consider data reuse */
5: if Exist ®𝐼𝑚 and references 𝑝 , 𝑞. & ®𝐼𝑒 > ®𝐼𝑚 > ®𝐼𝑐 & {𝑓 (®𝐼𝑥) = 𝑝 (®𝐼𝑚) or

𝑔 (®𝐼𝑦) = 𝑙 (®𝐼𝑚) } then
6: return L
7: if 𝑇 𝑒𝑥𝑖𝑠𝑡 then
8: return L’ = TL
9: else
10: return L
11: ... The rest is the same as in Algorithm 1

0

20

40

60

80

100

m
d

b
w

a
v
e

s

n
a
b b
t

fm
a

3
d

s
w

im

im
a
g

ic
k

m
g

ri
d

a
p
p

lu

s
m

it
h

.w
a

k
d

tr
e
e

b
a
rn

e
s

c
h

o
le

s
k
y ff
t

lu

o
c
e
a

n

ra
d

io
s
it
y

ra
y
tr

a
c
e

v
o

lr
e

n
d

w
a

te
r

a
v
e
ra

g
e

N
D

C
 B

re
a

k
d

o
w

n
 (

%
)

cache network MC memory

Figure 13. Distribution of locations where NDC is per-
formed (Algorithm 1).

that, we have𝑇 ®𝐼𝑦 =
®𝑘 ′
𝑦 , that is, the original loop iteration ®𝐼𝑦

should be mapped, by𝑇 , to ®𝑘 ′
𝑦 . However, now, in the case of

the data reuse-aware version, in addition to the dependency
constraint, we also need to make sure that neither 𝑋 (𝑓 (®𝐼𝑥))

nor 𝑌 (𝑔(®𝐼𝑦)) is reused beyond ®𝐼𝑐 . So, the compiler checks

whether there exists any ®𝐼𝑚 such that ®𝐼𝑒 > ®𝐼𝑚 > ®𝐼𝑐 and
{𝑓 (®𝐼𝑥) = 𝑝 (®𝐼𝑚) or 𝑔(®𝐼𝑦) = 𝑙 (®𝐼𝑚)} for some references 𝑝 and 𝑞
to data structures𝑋 and𝑌 , respectively. That is, the compiler
will determine a 𝑇 (i.e., try to exercise near data computing)
only if there exists no ®𝐼𝑚 that satisfies the constraint given
above. The algorithm given in Section 5.3.1 presents this
idea in a pseudo-code form. If desired, this algorithm can be
easily modified to check for the existence of multiple data
reuses of the operands beyond ®𝐼𝑐 .

5.3.1 Compiler Algorithm. The data reuse-aware ver-
sion of our NDC algorithm is presented in Algorithm 2. In-
stead of returning the transformation matrix 𝑇 (if found) as
we discussed in Algorithm 1, Algorithm 2 checks whether
any data reuse opportunities are compromised when apply-
ing the determined 𝑇 . If any data reuse opportunity could
be missed, then the compiler skips that transformation and
tries to explore other potential transformations (lines 4 - 6).

5.4 Experimental Evaluation

The eighth bar for each benchmark program in Figure 4
gives the performance improvement brought by our first
algorithm, Algorithm 1. We see that our approach brings
about 22.5% average performance improvement (execution
time reduction) over the baseline, and the improvements
range between 11.4% (cholesky) and 37% (kdtree).

0
5

10
15
20
25
30
35
40

m
d

b
w

a
v
e

s

n
a
b b
t

fm
a

3
d

s
w

im

im
a
g

ic
k

m
g
ri
d

a
p
p

lu

s
m

it
h

.w
a

k
d

tr
e
e

b
a
rn

e
s

c
h

o
le

s
k
y ff
t

lu

o
c
e
a

n

ra
d

io
s
it
y

ra
y
tr

a
c
e

v
o

lr
e

n
d

w
a

te
r

P
e

rf
.
Im

p
ro

v
e

m
e

n
t
(%

)

cache network MC memory all (Algorithm-1)

Figure 14. Results when Algorithm 1 is applied to a specific
component alone.

To explain where these benefits are coming from, we give
in Figure 13 the near data computations performed in dif-
ferent locations, as a fraction of the total amount of near
data computations (when considering all four locations we
target).6 It can be observed that most of the near data com-
putations are performed in on-chip network followed by
cache banks and memory controllers. These results can be
explained as follows. First, it is to be noted that, on-chip
network is used in both L1 misses and L2 misses; so, it inher-
ently has a large scope for NDC optimization. Second and
more importantly, recall from our discussion in Section 5.2
that, our approach has an additional knob when considering
NDC in on-chip network ś changing the message routes to
improve chances for two data accesses to intersect/overlap
on the on-chip network. In comparison, NDC optimization
targeting the remaining three locations uses only the knob
of reducing the time distance between two data accesses. We
also see from Figure 13 that, since the L2 cache banks receive
many more data accesses than memory banks, they contain
more opportunities for NDC. Finally, a memory controller
controls a number of banks and is accessed before the mem-
ory banks and, therefore, it enjoys more NDC opportunities
than the off-chip memory. We also performed experiments
with a version where the message re-routing flexibility in the
network is not exercised. Although the results are not pre-
sented here in detail, we observed that this version of NDC
reduced the amount of near data computations performed
in message routers by nearly 40%, on average.
It is interesting to compare these distribution results to

those of the oracle scheme in Figure 6. We observe that the
two distribution plots are quite similar, indicating that our
compiler-based approach exploits, in most cases, the same
set of NDC opportunities exploited by the oracle scheme.
On the other hand, Figure 14 shows the percentage of

performance improvements achieved when our approach
(Algorithm 1) is applied only to a specific location in an
isolated fashion. We want to point out that the sum of the
savings in this graph (for a given application) is more than
the total saving shown for the same application in Figure 13.
This is because, when NDC is enabled in all four locations, it

6Although we do not present here detailed results due to space limit, we
want to mention that, when Algorithm 1 is used, on average, about 32% of
the total arithmetic and logical instructions are executed in some form of
NDC.

100

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Kandemir, et al.

0

20

40

60

80

100

m
d

bw
av

es

na
b bt

fm
a3

d

sw
i m

im
ag

ic
k

m
gr

id

ap
pl

u

sm
ith

.w
a

kd
tr

ee

ba
rn

es

ch
ol

es
ky fft lu

oc
e a

n

ra
di

os
ity

ra
yt

ra
ce

vo
lre

nd

w
at

erP
er

ce
nt

ag
e

of
 N

D
C

O

pp
or

tu
ni

tie
s

E
xp

lo
ite

d

Figure 15. Fraction of NDC opportunities exercised by Al-
gorithm 2.

0
20
40
60
80

Algorithm-1 Algorithm-2 Algorithm-1 Algorithm-2

L1 L2

M
is

s
R

at
e

(%
)

md bwaves nab bt fma3d

swim imagick mgrid applu smith.wa

kdtree barnes cholesky fft lu

ocean radiosity raytrace volrend water

Figure 16. L1 and L2 miss rates with Algorithms 1 and 2.

will be performed in only one them and not the others. For
example, once an 𝑥+𝑦 is performed during themessage traffic
from L1 to L2, it will not be performed at L2. Similarly, if it is
performed in a memory controller, it will not be performed in
the memory bank itself. The results plotted in Figure 14 also
indicate that it is critical to exploit the NDC opportunities
in all four locations, for maximizing performance savings.
Next, we discuss the effectiveness of Algorithm 2 (Sec-

tion 5.3). The last bar for each benchmark program in Fig-
ure 4 gives the performance improvement brought by this
algorithm. We observe that this data reuse-aware version of
the algorithm brings an average performance improvement
of 25.2%. Comparing this with the results of Algorithm 1, we
see that it brings further improvements over Algorithm 1
in all but three benchmark programs (bt, kdtree, and lu). To
explain this further, we plot, in Figure 16, L1 and L2 miss
rates of the Algorithm 1 and Algorithm 2. It can be seen that,
in all 20 benchmark programs tested, Algorithm 2 gener-
ates lower cache miss rates than Algorithm 1. As explained
earlier, this is because Algorithm 2 exercises near data com-
puting more selectively, compared to Algorithm 1, which
performs near data computing whenever opportunity arises.
In fact, Figure 15 gives the number of NDC opportunities
exercised by Algorithm 2, as a fraction of the total number
of NDC opportunities seen during execution. It can be ob-
served that, on average, Algorithm 2 exploits 81.8% of NDC
opportunities; the remaining opportunities are bypassed due
to data locality concerns (i.e., there is at least one reuse of
one of the operands after the target (offloaded) computation
is performed). In three benchmark programs (bt, kdtree, and
lu) however, Algorithm 2 generates (less than 5%) worse re-
sults than Algorithm 1, primarily due to the inaccuracy in
identifying the existence of data reuse.

Let us now discuss where the differences between the ora-
cle scheme and Algorithms 1/2 are coming from. In the case
of Algorithm 1, most of the time when it makes the wrong
decision, it is due to mispredicting the cache hits/misses. At

0

10

20

30

40

P
e

rf
.
Im

p
ro

v
e

m
e

n
t
(%

)

Algorithm-1 Algorithm-2 Oracle

Figure 17. Results from the sensitivity experiments. The
first three bars use the default simulation parameters.

other times, it fails to identify the right hardware compo-
nent on which to perform NDC. Recall that, Algorithm 1
considers hardware components in a certain order and this
order, while works very well in the overwhelming majority
of cases, sometimes causes the algorithm to perform NDC
prematurely in a non-optimal location. On the other hand,
in the case of Algorithm 2, it sometimes wrongly favors data
locality optimization over NDC when it catches even only
1 reuse of data. In our future work, we plan to explore the
problem of optimal selection of the 𝑘 parameter’s value. We
believe that, in the long run, these shortcomings of our al-
gorithms can be fixed by employing more accurate cache
miss predictors, more flexible NDC search space exploration
strategies, and carefully determined 𝑘 values.
Finally, we change the default values of some of our ex-

perimental parameters and conduct a sensitivity study. In
each experiment, the value of only one parameter is modified
and the values of the remaining parameters are kept at their
default values given in Table 1. The results of our sensitivity
experiments are shown in Figure 17. Note that each bar in
this graph represents the geometric mean of performance
improvements across all 20 application programs. In the first
sensitivity experiment, we change the manycore size. Recall
that the default size was 5 × 5 cores with 1 thread per core.
The results with manycores of sizes 4 × 4 and 6 × 6 (again, 1
thread per core) indicate that the benefits of our approach
get better with increased cores. This is mainly because a
large manycore provides more locations for performing near
data computing. On the other hand, the experiments with
different L2 bank capacities (recall that the default L2 bank
capacity per node was 512 KB) indicate that our savings are
not very sensitive to the cache capacity. This is because as
the cache capacity is increased, the amount of near data com-
putation that can be done in the cache controller increases;
but, this in turn reduces the amount of near data computa-
tion performed in network, memory controllers and main
memory. In other words, the location at which near data
computation is done changes and the amount of near data
computation does not; consequently, the results are similar
across the different L2 cache capacities tested. In our last
set of experiments, we restricted the types of computations
that can be performed near data. Recall that by default we
assumed that all types of computations arithmetic and logic
computations can be performed near data. The results in
Figure 17 indicate that, even if we restrict the types of the

101

Compiler Support for Near Data Computing PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

computations that can be performed near data to only "+"
and "-", our two compiler algorithms still achieve average
performance improvements of 14.1% and 16.5%.

We also implemented a version of our algorithms in which,
instead of individual computations, a large number of com-
putations (e.g., entire loop nest) are mapped to a location
for NDC. Our experiments with this version reveal that it
performs not very well in most cases, bringing only 1.2% and
2.5% average improvements for our two algorithms. Hence,
we believe that fine grain (instruction level) mapping is criti-
cal to take full advantage of NDC.

6 Related Work

The idea of moving data close to the memory and computing
there (processing-in-memory, PIM) is suggested in the early
70s [56]; however at that time, due to the hardware limita-
tions, it could not be fully utilized. Recently, there is renewed
interest in PIM mainly due to 3D stacked memory. Hybrid
Memory Cube (HMC) [30] employs 3D stacked DRAM with
computation units inside the memory component.
Software Optimizations for NDC There has been various
software approaches [26, 29, 50, 58] that utilize NDC. Tang et
al. [58] suggested a compiler approach that takes advantage
of NDC. They could reduce the distance-to-data on the on-
chip network by partitioning the computations in a nested
loop into subcomputations, each assigned a different core.
Hsieh et al. [29] proposed schemes for offloading code to 3D
stacked memory which can minimize off-chip bandwidth
usage. Hadidi et al. [26] explored a compiler-assisted strat-
egy that takes advantage of instruction-level PIM offloading.
Rafique et al. [50] proposed a conflict-aware memory-side
prefetching scheme for HMC main memory to exploit the
TSV bandwidth. Kim et al. [35] explored the potential of
spreading data across multiple memory stacks.
Hardware Optimizations for NDC Besides software ap-
proaches, there are also numerous hardware optimizations
for NDC [4, 6, 18, 49, 55]. Ahn et al. [6] proposed a processing-
in-memory (PIM) architecture that automatically decides
whether to run on either PIM or processors depending on
the data locality. Likewise, Ahn et al. [4] proposed Tesseract,
which is a programmable PIM accelerator for graph process-
ing. Farmahini-Farahani [18] proposed and evaluated the
DRAM-Accelerator (DRAMA) architecture, which can of-
fload compute- and data-intensive operations to 3D stacked
DRAM device on top of CGRAs. Pugsley et al. [49] focused
on MapReduce workloads and improved performance and
energy consumption by utilizing massive parallelism and
largely localized memory accesses. Sterling et al. [55] de-
signed a PIM-based architecture, which facilitates the virtu-
alization of tasks/data and providing resource management
for load balancing and latency tolerance.
Optimizations Similar to NDC Tang et al. [57] proposed
compiler-driven approaches to reduce the data movement by
replacing a costly data access with a few less expensive data

accesses with some extra computation. Prior works such as
[20, 44, 45] improved performance by keeping frequently
used data close to the processor. Also, in the context of the
network-on-chip (NoC) architectures, minimizing datamove-
ments has been used as a strategy to improve performance
and power consumption [31, 33, 51].
In addition, there exists a large body of prior work on

conventional data locality optimizations [11, 17, 38, 41ś43,
59]. Since these works do not attempt to take advantage of
near data computing, we do not discuss them here in detail.
How Do We Differ? To the best of our knowledge, none
of the prior works explored the potential of NDC in de-
tail. The oracle scheme presented in our paper gives us an
upper-bound for potential gains that could be achieved when
employing NDC. We also present two novel compiler ap-
proaches, one of which considers the tradeoff between NDC
optimization and data locality optimization, a perspective
that has not been considered by prior works.

7 Concluding Remarks

This paper presents a detailed evaluation of near data com-
puting (NDC) opportunities, targeting two benchmark suites.
Our results indicate that it is not trivial to take full advan-
tage of near data computing, even if one is willing to provide
specialized hardware to implement it. In particular, our exper-
imental analysis reveals that: i) different applications achieve
different amounts of gain when performing NDC in different
hardware locations, ii) however, for the best results, each
application typically needs to exercise near data computing
in all available locations (e.g., cache controllers, memory
controllers, on-chip network, and off-chip memory), and iii)
if performed in an optimal fashion (an oracle scheme), near
data computing can return significant performance benefits.
In this paper, We also implemented and evaluated two differ-
ent compiler-based NDC strategies. These compiler schemes
improved the performance of 20 multithreaded application
programs by 22.5% and 25.2%, on average.
Our future work includes performing a similar evalua-

tion and investigating similar compiler strategies targeting
GPUs. Work is also underway in developing NDC strategies
targeting emerging deep learning workloads. We also plan
to explore NDC opportunities when targeting large scale
(multi-node) ensembles of CPUs and GPUs.

Acknowledgement

The authors would like to thank the PACT 2020 reviewers
for their constructive feedback and suggestions. The authors
would also like to thank Dr.David A Padua for shepherding
the paper. This work is supported in part by NSF grants
#1908793, #1629915, #1629129, #1763681, #2028929, #2008398,
#2011146, and #1931531, as well as a startup funding from
the University of Pittsburgh.

102

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Kandemir, et al.

References
[1] 2012. The Architecture and Performance of the TILE-Gx Processor

Family. http://www.tilera.com/products/processors/TILE-Gx_Family.
[2] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish

Narayanasamy, David Blaauw, and Reetuparna Das. 2017. Compute
Caches. In Proceedings of the International Symposium on High

Performance Computer Architecture (HPCA).
[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-

oung Choi. 2015. A Scalable Processing-in-memory Accelerator for
Parallel Graph Processing. In Proceedings of the 42nd Annual Interna-

tional Symposium on Computer Architecture (ISCA).
[4] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-

oung Choi. 2015. A Scalable Processing-in-memory Accelerator for
Parallel Graph Processing. In Proc. of the International Symposium on

Computer Architecture (ISCA).
[5] JunwhanAhn, Sungjoo Yoo, OnurMutlu, and Kiyoung Choi. 2015. PIM-

enabled Instructions: A Low-overhead, Locality-aware Processing-in-
memory Architecture. In Proceedings of the 42Nd Annual International

Symposium on Computer Architecture (ISCA).
[6] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015.

PIM-enabled instructions: A low-overhead, locality-aware processing-
in-memory architecture. In Proc. of the International Symposium on

Computer Architecture (ISCA).
[7] Jennifer M. Anderson and Monica S. Lam. 1993. Global Optimizations

for Parallelism and Locality on Scalable Parallel Machines. In Proceed-

ings of the ACM SIGPLAN 1993 Conference on Programming Language

Design and Implementation (PLDI).
[8] Jeffery M. Arnold, Duncan A. Buell, and Elaine G. Davis. 1992. SPLASH

2. In Proceedings of the Symposium on Parallel Algorithms and Archi-

tectures.
[9] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and

Nam Sung Kim. 2016. Chameleon: Versatile and practical near-DRAM
acceleration architecture for large memory systems. In 2016 49th an-

nual IEEE/ACM international symposium on Microarchitecture (MICRO).
IEEE, 1ś13.

[10] Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wes-
ley B. Jones, and Bodo Parady. 2001. SPEComp: A New Benchmark
Suite forMeasuring Parallel Computer Performance. InOpenMP Shared

Memory Parallel Programming, Rudolf Eigenmann and Michael J. Voss
(Eds.).

[11] Kristof Beyls and Erik H. D’Hollander. 2009. Refactoring for Data
Locality. Computer 42, 2 (2009).

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The Gem5
Simulator. SIGARCH Comput. Archit. News (2011).

[13] Uday Bondhugula, J. Ramanujam, and et al. 2008. PLuTo: A prac-
tical and fully automatic polyhedral program optimization system.
In Proceedings of Programming Language Design And Implementation

(PLDI).
[14] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. 1994. Compiler

Optimizations for Improving Data Locality. In Proceedings of Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS).
[15] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang,

Erik Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael
Parker, Lambert Schaelicke, and Terry Tateyama. 1999. Impulse: build-
ing a smarter memory controller. In Proceedings of International Sym-

posium on High-Performance Computer Architecture.
[16] Benjamin Y. Cho, Yongkee Kwon, Sangkug Lym, andMattan Erez. 2020.

Near Data Acceleration with Concurrent Host Access. In ISCA.

[17] Wei Ding, Xulong Tang, Mahmut Kandemir, Yuanrui Zhang, and Emre
Kultursay. 2015. Optimizing Off-chip Accesses in Multicores. In Pro-

ceedings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI).
[18] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam

Sung Kim. 2015. DRAMA: An Architecture for Accelerated Processing
Near Memory. IEEE Computer Architecture Letters 14, 1 (2015).

[19] Sílvio Fernandes, Bruno C. Oliveira, and Ivan Saraiva Silva. 2009. Using
NoC Routers as Processing Elements. In Proceedings of the Symposium

on Integrated Circuits and System Design: Chip on the Dunes.
[20] Pierfrancesco Foglia, Cosimo A. Prete, Marco Solinas, and Giovanna

Monni. 2010. Re-NUCA: Boosting CMP Performance Through Block
Replication. In Proc. of the Euromicro Conference on Digital System

Design: Architectures, Methods and Tools.
[21] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,

Xiaomeng Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao, Wei
Zhao, Xunqiang Yin, Chaofeng Hou, Chenglong Zhang, Wei Ge, Jian
Zhang, Yangang Wang, Chunbo Zhou, and Guangwen Yang. 2016. The
Sunway TaihuLight supercomputer: system and applications. Science
China Information Sciences 59, 7 (21 Jun 2016), 072001. https://doi.org/

10.1007/s11432-016-5588-7

[22] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical
near-data processing for in-memory analytics frameworks. In 2015 In-

ternational Conference on Parallel Architecture and Compilation (PACT).
IEEE, 113ś124.

[23] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. 1999. Cache
Miss Equations: A Compiler Framework for Analyzing and Tuning
Memory Behavior. ACM Trans. Program. Lang. Syst. (TOPLAS) (1999).

[24] Maya Gokhale, Bill Holmes, and Ken Iobst. 1995. Processing in Mem-
ory: the Terasys Massively Parallel PIM Array. IEEE Computer (1995).

[25] Peng Gu, yufei Ding, Guoyang Chen, Weifeng Zhang, Dimin Niu, and
Yuan Xie. 2020. iPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture. In ISCA.

[26] Ramyad Hadidi, Lifeng Nai, Hyojong Kim, and Hyesoon Kim. 2017.
CAIRO: A Compiler-Assisted Technique for Enabling Instruction-Level
Offloading of Processing-In-Memory. Trans. Archit. Code Optim. 14, 4
(2017).

[27] Mary H. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao,
and Monica S. Lam. 1995. Detecting Coarse-grain Parallelism Using
an Interprocedural Parallelizing Compiler. In Supercomputing.

[28] Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N.
Patt. 2016. Accelerating Dependent Cache Misses with an Enhanced
Memory Controller. In Proccedings of the International Symposium on

Computer Architecture (ISCA).
[29] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,

Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W.
Keckler. 2016. Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent near-Data Processing in GPU Systems. In
Proc. of the International Symposium on Computer Architecture.

[30] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM
architecture increases density and performance. In Proc. of the Sympo-

sium on VLSI Technology (VLSIT).
[31] Yuho Jin. 2015. Unifying Router Power Gating with Data Placement

for Energy-Efficient NoC. In Proc. of the International Symposium on

Computer Architecture and High Performance Computing.
[32] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee. 2001. A

layout-conscious iteration space transformation technique. IEEE Trans.
Comput. (2001).

[33] Mahmut Kandemir, Yuanrui Zhang, Jun Liu, and Taylan Yemliha. 2011.
Neighborhood-Aware Data Locality Optimization for NoC-Based Mul-
ticores. In Proc. of the International Symposium on Code Generation and

Optimization.

103

https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1007/s11432-016-5588-7

Compiler Support for Near Data Computing PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

[34] Mahmut Taylan Kandemir, Jihyun Ryoo, Xulong Tang, and Mustafa
Karakoy. 2021. Compiler Support for Near Data Computing. Tech-
nical Report, Department of Computer Science and Engineering, The

Pennsylvania State University (2021).
[35] GwangsunKim, Niladrish Chatterjee,MikeO’Connor, and KevinHsieh.

2017. Toward standardized near-data processing with unrestricted
data placement for GPUs. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis.
1ś12.

[36] Orhan Kislal, Jagadish Kotra, Xulong Tang, Mahmut Taylan Kandemir,
and Myoungsoo Jung. 2018. Enhancing Computation-to-core Assign-
ment with Physical Location Information. In Proceedings of the 39th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI).
[37] Orhan Kislal, Jagadish Kotra, Xulong Tang, Mahmut Taylan Kandemir,

and Myoungsoo Jung. 2017. POSTER: Location-Aware Computation
Mapping for Manycore Processors.. In Proceedings of the 2017 Interna-

tional Conference on Parallel Architectures and Compilation.
[38] Monica S. Lam and Michael E. Wolf. 2004. A Data Locality Optimizing

Algorithm. SIGPLAN Not. 39, 4 (2004).
[39] Feihui Li, Guangyu Chen, Mahmut Kandemir, and Ibrahim Kolcu. 2007.

Profile-Driven Energy Reduction in Network-on-Chips. SIGPLAN Not.

42, 6 (2007), 394ś404.
[40] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. 1999. An Affine

Partitioning Algorithm to Maximize Parallelism and Minimize Com-
munication. In ICS.

[41] Qingda Lu, Christophe Alias, Uday Bondhugula, Thomas Henretty,
Sriram Krishnamoorthy, J. Ramanujam, Atanas Rountev, P. Sadayap-
pan, Yongjian Chen, Haibo Lin, and Tin-Fook Ngai. 2009. Data Layout
Transformation for Enhancing Data Locality on NUCA Chip Multipro-
cessors. In Proc. of the International Conference on Parallel Architectures

and Compilation Techniques (PACT).
[42] Chikeung Luk and Todd C. Mowry. 1996. Compiler-based prefetching

for recursive data structures. SIGPLAN Not. 31, 9 (1996).
[43] Kathryn S. Mckinley, Steve Carr, and Chauwen Tseng. 1996. Improving

Data Locality with Loop Transformations. Transactions on Program-

ming Languages and Systems (TOPLAS) 18, 4 (1996).
[44] Javier Merino, Valentin Puente, and Jose A. Gregorio. 2010. ESP-NUCA:

A low-cost adaptive Non-Uniform Cache Architecture. In Proc. of the

International Symposium on High-Performance Computer Architecture.
[45] Javier Merino, Valentín Puente, Pablo Prieto, and José Ángel Grego-

rio. 2008. SP-NUCA: A Cost Effective Dynamic Non-Uniform Cache
Architecture. SIGARCH Comput. Archit. News 36, 2 (2008).

[46] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata
Ausavarungnirun. 2019. Enabling Practical Processing in and near
Memory for Data-Intensive Computing. In Proceedings of the Design

Automation Conference 2019.
[47] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit

Mishra, Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R.
Das. 2019. Opportunistic Computing in GPU Architectures. In Pro-

ceedings of the International Symposium on Computer Architecture.
[48] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit

Mishra, Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R
Das. 2019. Opportunistic computing in gpu architectures. In 2019

ACM/IEEE 46th Annual International Symposium on Computer Archi-

tecture (ISCA). IEEE, 210ś223.
[49] Seth H. Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian,

Vijayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei
Li. 2014. NDC: Analyzing the impact of 3D-stacked memory+logic de-
vices onMapReduce workloads. In Proc. of the International Symposium

on Performance Analysis of Systems and Software (ISPASS).
[50] Muhammad M. Rafique and Zhichun Zhu. 2018. CAMPS: Conflict-

Aware Memory-Side Prefetching Scheme for Hybrid Memory Cube.
In Proc. of the International Conference on Parallel Processing.

[51] Qingchuan Shi, Farrukh Hijaz, and Omer Khan. 2013. Towards effi-
cient dynamic data placement in NoC-based multicores. In Proc. of the

International Conference on Computer Design (ICCD).
[52] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. 2017. Page-

forge: A near-Memory Content-Aware Page-Merging Architecture. In
Proceedings of the International Symposium on Microarchitecture.

[53] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu. 2016. Knights Landing: Second-
Generation Intel Xeon Phi Product. IEEE Micro (2016).

[54] Yonghong Song and Zhiyuan Li. 1999. New Tiling Techniques to
Improve Cache Temporal Locality. In PLDI.

[55] Thomas L. Sterling and Hans P. Zima. 2002. Gilgamesh: A Multi-
threaded Processor-in-Memory Architecture for Petaflops Computing.
In Proc. of the Conference on Supercomputing.

[56] Harold S. Stone. 1970. A Logic-in-Memory Computer. Computers C-19,
1 (1970).

[57] Xulong Tang, Mahmut Taylan Kandemir, Hui Zhao, Myoungsoo Jung,
and Mustafa Karakoy. 2018. Computing with Near Data. Proc. ACM
Meas. Anal. Comput. Syst. 2, 3 (2018).

[58] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy.
2017. Data Movement Aware Computation Partitioning. In Proc. of the

International Symposium on Microarchitecture.
[59] Xulong Tang, Mahmut Taylan Kandemir, Mustafa Karakoy, and Meena

Arunachalam. 2019. Co-Optimizing Memory-Level Parallelism and
Cache-Level Parallelism. In Proceedings of the 40th annual ACM SIG-

PLAN conference on Programming Language Design and Implementa-

tion.
[60] Gabriel Urzaiz, David Villa, Felix Villanueva, and Juan Carlos Lopez.

2012. Process-in-Network: A Comprehensive Network Processing
Approach. Sensors (Basel) 12, 6 (2012), 8112ś8134.

[61] S. Verdoolaege, M. Bruynooghe, G. Janssens, and P. Catthoor. 2003.
Multi-dimensional incremental loop fusion for data locality. In ASAP.

[62] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum.
1996. Operating System Support for Improving Data Locality on CC-
NUMA Compute Servers. In ASPLOS.

[63] M. E. Wolf and M. S. Lam. 1991. A loop transformation theory and an
algorithm to maximize parallelism. IEEE Transactions on Parallel and

Distributed Systems (1991).
[64] Michael Wolfe. 1995. high performance compilers for parallel comput-

ing.
[65] Xu Yang, Yumin Hou, and Hu He. 2019. A Processing-in-Memory

Architecture Programming Paradigm for Wireless Internet-of-Things
Applications. Sensors (Basel) 19, 1 (2019), 140.

104

	Abstract
	1 Introduction
	2 Assumptions on Architecture
	3 Applications and Setup
	4 Quantification of NDC
	4.1 Evaluation Metrics
	4.2 Arrival Window Analysis
	4.3 Breakeven Point Analysis
	4.4 Benefit Analysis

	5 Enhancing NDC Opportunities
	5.1 High-Level View of the Compiler
	5.2 Compiler-Directed NDC Optimizations
	5.3 Exploring NDC-Data Locality Tradeoff
	5.4 Experimental Evaluation

	6 Related Work
	7 Concluding Remarks
	References

