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Abstract

Despite its importance, understanding the early phases of human development has been
significantly limited by availability of human samples. The recent emergence of stem cell-
derived embryo models, a new field aiming to use stem cells to construct in vitro models to
recapitulate snapshots of the development of the mammalian conceptus, opens up exciting
opportunities to promote fundamental understanding of human development and advance
reproductive and regenerative medicine. This review provides a summary of the current
knowledge of early mammalian development, using mouse and human conceptuses as models,
and emphasizes their similarities and critical differences. We then highlight existing embryo
models that mimic different aspects of mouse and human development. We further discuss
bioengineering tools used for controlling multicellular interactions and self-organization critical
for the development of these models. We conclude with a discussion of the important next steps
and exciting future opportunities of stem cell-derived embryo models for fundamental discovery

and translation.
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The development of a multicellular organism from a single fertilized egg is a brilliant triumph of
evolution that has fascinated generations of scientists (Box 1). Understanding our own
development is of particular fundamental and practical interest; however, it poses a unique set of
technical and ethical challenges. Our current knowledge of embryonic development is derived
from a number of animal species, chosen because they are convenient to study and amenable to
experimental manipulation or genetic analysis'. These studies have revealed developmental
principles (Box 2) and signaling and transcriptional networks that underlie cell fate patterning
and tissue morphogenesis. In particular, most of our knowledge of mammalian development
derives from the mouse model. However, it is becoming evident that there are morphological
and genetic differences between mice and humans that make cross-species comparisons
problematic?.

Knowledge of human embryogenesis, which is critical for assisted reproductive
technologies and prevention of pregnancy loss, birth defects and teratogenesis (Box 3), should
ideally be learned from studying the human embryo per se; however, such studies have been
challenging, due to limited access to and bioethical constraints on human embryo specimens.
Excess pre-implantation human embryos generated in in vitro fertilization (IVF) clinics are
available for research®*; however, once a human embryo implants into the uterus, subsequent
development is hidden from direct observation. Recent progress in prolonged in vitro culture of
IVF human embryos has opened the door for genetic and molecular studies of human embryos
directly>’. However, international guidelines prohibit in vitro culture of human embryos beyond
14 days post-fertilization (embryonic day 14, E14) or reaching the onset of primitive streak (PS)
development (“the 14-day rule”)®°, which marks the outset of gastrulation. The bioethical
regulation of human embryo culture has significantly limited studies of IVF human embryos for
understanding post-implantation human development. There is significant progress in studying

non-human primate (NHP) monkey embryos'®!?

, whose developments are similar to humans.
However, NHP monkey models remain costly, are difficult to modify genetically, and have their
own ethical challenges.

Recent advances in mammalian embryology, stem cell biology, organoid technology, and
bioengineering have contributed to a significant interest in the development of multicellular
systems based on emergent self-organization and tissue patterning. Importantly, different

models of the mammalian conceptus have been developed using mouse and human stem cells'-
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28 This emerging field aims to use stem cell cultures to create organized embryo-like structures
(or embryoids), whose development and architecture bear significant similarities to their in vivo
counterparts. Embryoids are distinct from organoids, as organoids are organized multicellular
structures that mimic the development, regeneration and homeostasis of a single tissue or organ.
In contrast, embryoids aim to model integrated development of the entire conceptus or a
significant portion thereof. In general, embryoids have a more reproducible cellular organization
and architecture than organoids, as bioengineering approaches are commonly deployed to guide
their development and culture time is limited to a few days. In addition, the stem cells used in
embryoids have been well established and their cultures are robust. This review discusses the
developmental principles manifested in the development of embryoids and their applications for
advancing human embryology (particularly at the post-implantation stages) and reproductive and
regenerative medicine. Bioengineering tools used for controlling multicellular interactions and
self-organization critical for embryoid development are highlighted. We conclude with a
discussion of important next steps to leverage advanced bioengineering controls of multicellular

interactions to promote the continuous, progressive development of this exciting nascent field.

Mammalian development as a reference framework

The development of embryoids, like that of embryos, involves the emergence of organized
multicellular structures, through coordinated cellular processes including pattern formation,
morphogenesis, cell differentiation and growth. Here we first discuss the principles of early
mouse and human development before turning to how these are manifest in embryoids.

During early development, both mouse and human embryos develop from a zygote and
proceed through recognizable stages of morula, blastula, gastrula, neurula and organogenesis
(Figure 1, Box 1, Box 4). The overall program of pre-implantation development from a zygote
to a blastocyst is conserved between mice and humans, leading to the formation of the blastocyst,
containing an outer trophectoderm (TE) layer surrounding a cavity (blastocoel) and an inner cell
mass (ICM) on one side of the cavity?*>** (Figure 1, Box 4). As the blastocyst develops, the
ICM becomes further segregated into two cell populations: the pluripotent epiblast (EPI) and
primitive endoderm (PE; or hypoblast in human)*>-*°.

The timing of blastocyst implantation differs between mice and humans (ES in mouse

and E7 in human). Furthermore, morphogenesis and lineage developments during early post-
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implantation mouse and human development show distinct features>! (Figure 1, Box 4).

Mouse development from ES - E6.5 leads to the formation of a cup-shaped EPI juxtaposed with
TE-derived extraembryonic ectoderm (EXE), enclosing the pro-amniotic cavity. Concurrently,
the PE forms the visceral endoderm (VE) that envelops both EPI and EXE. In contrast, soon
after human blastocyst implantation, while the EPI undergoes epithelization and lumenogenesis
to form the pro-amniotic cavity>’, EPI cells closer to invading TE cells become specified into the
amniotic ectoderm (AM)*2, with remaining pluripotent EPI cells forming the embryonic disc.
Thus, in pre-gastrulation human embryo, the pro-amniotic cavity is surrounded by a continuous
epithelium with AM cells on one side and EPI cells on the other.

Studies of mouse gastrulation support the importance of extraembryonic tissues®>**
(Figure 1, Box 4). In particular, regional patterning of VE in pre-gastrulation mouse embryo
leads to a gradient of WNT and NODAL signaling and the establishment of the anterior (A) -
posterior (P) axis of the embryo®>*. Importantly, developmental signals involving WNT,
NODAL and BMP at the proximal, posterior end of the EPI instruct EPI cells to form the PS by
E6.5 and ingress through the PS to acquire mesoderm and endoderm fates*’*°. Human
gastrulation initiates around E14. However, given limited access to post-implantation human
tissues, gastrulation remains one of the most mysterious phases of human development.

During mouse gastrulation, primordial germ cells (PGCs), precursors of sperm and egg,

emerge at the boundary between posterior EPI and ExE**#!

. Data on human PGC specification
remain sparse*’. Existing data from NHP monkey embryos*’ suggest that primate PGCs may
emerge in the nascent AM prior to the gastrulation. Additional studies are required to determine
whether the same is true for human PGCs.

In mouse and human embryos, gastrulation transforms the EPI into a trilaminar structure
consisting of definitive ectoderm, mesoderm and endoderm. The three germ layers undergo
inductive interactions to pattern layers and specify new cell types, driving organ rudiment
development (Box 4). Following gastrulation, the ectoderm undergoes neurulation, in which the
neural plate is first patterned in the dorsal ectoderm before folding into the neural tube (NT)**4
(Box 4). Cells in the NT continue to differentiate into different classes of neuronal
progenitors*®*”. Concomitantly, mesodermal cells are organized into different regions to from

the primordia of major organ systems including cardiovascular and lymphatic systems and



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

skeletal muscle cells. Simultaneously, the endoderm will fold to form the primitive gut tube,

which will produce the digestive and respiratory systems.

Embryonic and extraembryonic stem cells as building blocks
As a bottom-up approach, the development of embryoids uses embryonic and extraembryonic
stem cells, including those derived from embryos, as building blocks to construct models to

recapitulate embryonic development (Figure 2).

Mouse stem cells
The EPI cells of the mouse blastocyst are pluripotent, and their functional, epigenetic, and
signaling properties have been extensively characterized. These studies reveal that pluripotency
is dynamic and progressive. As the mouse embryo develops from blastula to gastrula, EPI cells
transit from a naive state, in which they do not respond to inductive signals, to a primed state in
which they readily differentiate®®. The transition between naive and primed states has been
referred to as formative pluripotency during which EPI cells gain the capacity to make lineage
decisions®.

Mouse pluripotent stem cells (mPSCs) in culture display a similar continuum of states.
Mouse embryonic stem cells (mESCs) with naive pluripotency can be isolated directly from the

50,51

ICM of the mouse blastocyst and maintained in culture™". In contrast, mouse stem cells

corresponding to the primed state, known as mouse epiblast stem cells (mEpiSCs), are derived

from the post-implantation mouse EPI°>3

. mEpiSCs exhibit more advanced developmental
features consistent with the early-gastrulation EPI°*. Mouse EPI-like cells (mEpiLCs) with
formative pluripotency have been generated from mESCs in vitro, with a transcriptional profile
consistent with early post-implantation mouse EPI*°.

Stem cell lines representative of extraembryonic lineages in the mouse blastocyst have
also been established, including mouse trophoblast stem cells (mTSCs)>® and extraembryonic

endoderm (XEN) cells representing the stem cell population of the PE*’.

Human stem cells

Human ESCs (hESCs) have also been successfully derived from human blastocysts>®. However,

hESCs have transcriptome and methylome different from the EPI of the human blastocyst>**,
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suggesting that the conditions in which hESCs are cultured fail to capture the pre-implantation
developmental program of the human embryo. Instead, hESCs are developmentally similar to
the post-implantation, pre-gastrulation EPI in cynomolgus monkey embryos'?. Consistently,
hESCs more closely resemble mEpiSCs than mESCs in terms of molecular properties, lineage
potency, and culture conditions*®*>33, However, there are still some notable differences in gene
expression®! and in the propensity for PGC formation between hESCs and mEpiSCs, as hESCs
can initiate PGC formation whereas mEpiSCs cannot®>%*. There are recent reports showing

6465 and of

derivations of hESC lines from human blastocysts with naive pluripotency features
chemical reprogramming cocktails capable of converting hESCs from primed to naive
pluripotency®®®’. However, functional validations of naive pluripotency including chimera
formation and germline transmission as well as tetraploid complementation, which have been
used for mESCs, cannot be implement with human cells for ethical reasons. To address this
issue, there are ongoing discussions of a testable functional framework to assess naive
pluripotency in human cells?!.

Somatic human cells can also be converted to a pluripotent state by cell fusion, somatic
cell nuclear transfer, transcription factor-based reprogramming, and chemical reprogramming®®.
Pluripotent stem cells generated by these reprogramming strategies are called induced
pluripotent stem cells, or iPSCs. Human iPSCs (hiPSCs) are considered molecularly and
functionally equivalent to hESCs®.

Recently, through chemical screening, individual blastomeres isolated from eight-cell
stage mouse morula were successfully cultured to establish mouse expanded potential stem cells
(mEPSCs) that appear to possess developmental potency for all embryonic and extraembryonic

lineages in blastocyst chimaera assays’%"!

. Using similar approaches, human EPSCs (hEPSCs)
were also derived from primed hESCs and hiPSCs, and hEPSCs are shown to have the potency
to form trophoblast stem cells’.

In contrast to mouse extraembryonic stem cells, human extraembryonic stem cells have
only emerged recently. Using chemical screening, human trophoblast stem cells (hTSCs) were
first derived from human blastocysts and first-trimester placental tissues’>. Human hypoblast
stem cells (hypoSCs) were also recently reported using chemically reset naive hESC lines’ .

Recent work showed that chemically reprogrammed naive hESCs could give rise to hTSCs when

cultured in appropriate conditions’, and that both chemically reset and embryo-derived naive
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hESCs could be used to derive hTSC lines’®. With the emergence of these human
extraembryonic cell lines as well as hEPSCs, it becomes imperative for additional molecular and
functional characterizations for authentication and establishing their developmental identities

compared to their in vivo counterparts’®’”.

A rapidly growing toolbox of embryoids

Stem cells serve as building blocks for the development of embryoids that recapitulate different
stages of mammalian development, from blastula through gastrula or early neurula and
organogenesis (Figure 3). Development of embryoids use the same developmental principles
that manifest in mammalian development. Importantly, embryoids have already generated new

insights into early mammalian development.

Embryoid to model blastocyst development

The first embryoid to model blastocyst formation (or blastoid) was successfully developed by
mixing mESCs with mTSCs at a defined ratio under appropriate culture conditions, leading to
their self-assembly into a tissue organization reminiscent of the mouse blastocyst®>. As in vivo,
mouse blastoids possess an outer TE layer surrounding a compact ICM-like compartment, and
their transcriptome is more similar to mouse blastocyst than is achieved by simply combining
mESC and mTSC transcriptomes. Mouse blastoids have been used to dissect interactions
between embryonic and extraembryonic compartments, revealing that NODAL and BMP signals
from the ICM-like compartment are important for growth and morphogenesis of TE cells??>. This
insight has proven useful for improving culture conditions of mTSCs’®. In the initial blastoid
protocol, further cell segregation and sorting of ICM-like cells into PE-like cells was inefficient.
Optimization studies yielded improved conditions in which the relative proportions of the three
cell lineages (EPI-, TE- and PE-like cells) more closely resemble that of mouse blastocyst”’.
Remarkably, culture of mEPSCs in appropriate conditions yields self-organized blastoids
consisting of EPI-, TE- and PE-like cells?®. Another recent work mixing mEPSCs with mTSCs
also led to the formation of blastoids that showed developmental progression from the pre- to
post-implantation egg cylinder morphology in vitro®, similar to the mouse ETX embryoid
described below. Although capable of implanting in the mouse uterus, all of the mouse blastoids

fail to develop much further than the blastocyst stage either in vitro or in vivo. The reasons for
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this are not currently understood and may point to a requirement for greater organization than
currently achieved in mouse blastoids. It remains to be determined whether human blastoids can
be generated by using either naive hPSCs or hEPSCs with or without hTSCs or hypoSCs under

suitable culture environments.

Human amniotic sac embryoid

During early post-implantation human development, a patterned bipolar EPI-AM structure arises
from the EPI. It was recently shown that culturing primed hPSCs on a soft culture surface
together with native extracellular matrix (ECM) proteins (i.e., Geltrex) diluted in culture medium
leads to the formation of a spherical lumenal hPSC colony?’. This observation is consistent with
the intrinsic lumenogenic property associated with primed but not naive hPSCs®!#2, Interesting,
hPSCs in the colony lose pluripotency and differentiate into amniotic cells, even without
exogenous inductive factors in the culture medium?’. If only one of these culture elements is
present, either a soft substrate or diluted gel in the culture medium, primed hPSCs form lumenal
sacs but retain pluripotency, suggesting that amniotic differentiation of hPSCs is
mechanosensitive?®. Amniotic differentiation of hPSCs requires endogenous BMP signaling, and
its inhibition under amnion-differentiation conditions is sufficient for rescuing hPSC
pluripotency?’.

A small fraction of lumenal sacs, rather than differentiating entirely into squamous
amniotic tissues, spontaneously break symmetry and form a bipolar structure with columnar
pluripotent cells on one side and squamous amniotic cells on the other, mimicking EPI-AM
patterning in the pre-gastrulation human embryo?’. This model is termed the post-implantation
amniotic sac embryoid (PASE). Symmetry breaking in the PASE also depends on BMP activity,
and active BMP signaling is only evident at the prospective AM-like pole?®. Progressive
development of the PASE results in EPI-like cells further differentiating into PS-like cells. This
spontaneous symmetry breaking occurs in only 5 - 10% of lumenal hPSC sacs. To increase
efficiency of PASE formation, a microfluidic PASE model has recently been developed®’. This
microfluidic device allows small clusters of primed hPSCs to be grown in small indentations
with separate channels supplying culture medium to each side?’. Flowing BMP4 in only one of
these channels leads reproducible pattering of amniotic cells only on the side exposed to BMP4%’.

The opposite side remains pluripotent but soon goes on to differentiate into PS-like cells?’. The
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identity of PS derivatives can be modulated by stimulating this side of the cell clusters with
additional ligands: WNT stimulation together with either BMP4 or ACTIVIN-A leads to
posterior and anterior PS derivatives, respectively?’. Importantly, human PGC-like cells
(hPGCLCs) emerge in the microfluidic PASE before it initiates gastrulation-like events?’,
suggesting applications of the microfluidic PASE model for studying the origin and specification
of hPGCs.

The PASE represents the first embryoid to model early post-implantation development of
the EPI and AM compartments of the human embryo. It also suggests the inductive role of AM
in triggering human gastrulation. Although the microfluidic PASE model significantly improves
the controllability of EPI-AM patterning, further asymmetries are not demonstrated and the EPI-
like compartment is either entirely anterior or posterior in character. Prolonged culture of the
PASE is also limited by the confined space in the microfluidic device. Furthermore,
disseminating cells from the PASE mimicking gastrulation would lead to its disassembly. Future
efforts should be devoted to identifying a strategy to prolong the culture of the PASE and
promote self-organization of gastrulating cells. It is possible that adding human extraembryonic

stem cells including hypoSCs to the PASE will be helpful for these efforts.

2D models of gastrulation

Treatment of primed hPSCs confined to micropatterned colonies with BMP4 reproducibly leads
to organized differentiation with putative TE-like cells on the colony outer edge, ectodermal cells
in the colony center, and mesodermal and endodermal cells forming two layers in between!38384,
This multicellular pattern is consistent as in the gastrulating mammalian embryo. However, the
fate territories in the 2D gastrulation model are adjacent on a 2D surface rather than layered one
on top of the other as in in vivo. Although the 2D geometry is artificial and distinct from the 3D
topology of mammalian embryos, the reproducibility and compatibility with live imaging of the
2D gastrulation model has allowed quantification of the self-organized signaling dynamics that
drive these patterning events®> 8. These studies have revealed that rather than creating stable
gradients, cells generate dynamic expanding fronts of endogenous WNT and NODAL signaling
that are interpreted combinatorially to pattern different germ layers. These studies can serve as a

template for investigating the mechanisms of patterning through signaling dynamics in other

embryoids. Interestingly, in colonies treated with WNT rather than BMP4, similar cell fate

10
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patterns are observed but with a different mechanism, which involves a wave of EMT that

sensitizes cells to the exogenous WNT signal®

. Mouse gastrulation has also been successfully
modeled using the 2D gastrulation embryoid with mouse EpiLCs’°. Importantly, findings from
this mouse embryoid have been compared to the mouse embryo, providing a more direct
validation, which for obvious reasons is not possible for human gastrulation embryoids.
Micropatterning can be readily combined with other bioengineering approaches. For example,
recent work has shown that overlaying gradients of exogenous ligands on micropatterned 2D
gastrulation embryoids can bias the resulting fate pattern in a reproducible way®!. Specifically, a
gradient of BMP4 (and in some cases a counteracting gradient of BMP antagonist NOGGIN)
generated in a microfluidic device induced axially organized patterning of the germ layers along

the gradient, breaking the radial symmetry of 2D circular colonies®!.

3D models of gastrulation

In addition to blastoids, mESCs and mTSCs can be cultured together in conditions that promote
their self-organization to model post-implantation mouse development. In such models, rather
than forming structures that morphologically resemble the mouse blastocyst, mESCs and mTSCs
form separate compartments before fusing together. Each compartment undergo lumenogenesis,
with the resulting lumens merging together, resulting in a structure resembling the egg cylinder
stage mouse embryo (referred to as the ETS embryoid)!®. Remarkably, the ETS embryoid
initiates developmental events mimicking both germ cell formation and PS development in an
asymmetric manner!®. This is surprising as VE, which is critical for A-P symmetry breaking in
vivo, is not present in the ETS embryoid, although further studies show that adding XEN cells
into the ETS embryoid improves this model (called the ETX embryoid)®.

A 3D embryoid for modeling symmetry breaking of the EPI has also been developed
starting from primed hPSCs?®. In this model, hPSCs grown in 3D and treated with a low dose of
BMP4 form lumenal sacs before polarizing into two opposing regions displaying gene
expression patterns associated with ectoderm and mesoderm induction?®. This observation is
similar to cell fate patterning that emerges from the 2D human gastrulation embryoid'®.
However, as the initial degree of symmetry is higher in 3D (sphere vs. disk), the development of
the 3D human gastrulation embryoid involves spontaneous symmetry breaking while in 2D it

does not.

11
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Finally, an embryoid model beginning from only mESCs or primed hPSCs has been
shown to be able to model the post-gastrulation development of the posterior portion of the
mouse and human embryos, respetively!”?"?92 Growing these cells in aggregates of defined
size and exposing them to a properly timed pulse of WNT activation leads to the formation of a
tail-bud-like structure on one end of the aggregate that continues with axial organization,
somitogenesis, PGC specification and even NT formation'’?1?®92 These structures, known as
gastruloids, recapitulate some essential features of A-P axial patterning of the post-gastrulation
mouse and human embryos as revealed by HOX gene expression and somite formation?!2%%2,

The mouse gastruloid can even be coaxed to generate a primitive beating heart following
pathways similar to those of the mouse embryo”>. These mouse and human gastruloids all lack
anterior structures, such as the forebrain, likely due to the posteriorizing effect of WNT signaling.

While the 3D embryoid models of gastrulation show remarkable emergence of patterning
and morphogenesis, they lack the controllability and reproducibility of the 2D gastrulation
models. Bioengineering approaches, which can control cell-cell interactions and modulate
symmetry breaking and patterning, as in the microfluidic PASE?’, will be useful for improving

the controllability and reproducibility of the 3D gastrulation models.

Models of neurulation
The nervous system acquires its form and pattern during the neurulation stage. Several stem
cell-based neurulation models have been developed, which focus on the ectodermal germ layer,
the source of the nervous system. One of the earliest studies showed that 3D spherical lumenal
sacs composed of NE cells, reminiscent of the NT, could be grown from single mESCs under
appropriate neural differentiation conditions'®>. These neural sacs were entirely dorsal in
character but could be patterned by exogenous ventralizing or posteriorizing signals. Optimizing
the gel matrix in which neural sacs were embedded also improved their dorsal (D)-ventral (V)
patterning, showing the power of bioengineering approaches to optimize conditions for embryoid
self-organization’. D-V patterned neural sacs mimicking human NT development were recently
demonstrated using primed hPSCs under a culture condition similar to that used for mESCs?’.
Recently, several 2D models have been reported to recapitulate patterning of a significant
portion of the ectodermal germ layer. One study with primed hPSCs showed that regional

patterning of neural crest and NE cells could be created on micropatterned surfaces, mimicking

12
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neural induction as the first step of the neurulation process, and that this emergent regional
patterning was regulated by mechanical control of BMP-SMAD signaling?*. Other recent studies
have recapitulated patterning of all four major fates within the ectoderm during neural induction
— neural, neural crest, placode and epidermis***>. Modulating both BMP and WNT signaling
enabled control over the fates that emerged at the border between neural and non-neural
ectoderm®®, and one of these models was shown to be useful for modeling developmental effects
of the mutations that cause Huntington’s disease®. In the future, models that recapitulate not
only regional fate patterning, but also morphogenesis involved in neural plate folding and neural
fold closure, could both lead to new fundamental knowledge of this stage of human development

and provide essential systems for research into human NT closure defects.

Bioengineering tools to control embryoid development

Mammalian embryogenesis is a context-dependent process, involving interactions between
multiple, co-emerging embryonic and extraembryonic cell lineages that are intricately organized
in 3D. This 3D context provides spatial boundary conditions, as well as biochemical and
biomechanical inputs and positional information that are often absent in conventional 2D culture
vessels. Although mouse and human stem cells can be efficiently differentiated into specialized
cell types under classical 2D cultures, poor control over initial seeding conditions and tissue
growth lead to disorganized cell fate patterns and tissue shapes. Bioengineering tools such as
microfluidics or microfabricated cell culture substrates have been proven highly effective to
‘reconstruct’, in a bottom-up fashion, the missing 3D physical and biochemical context of the
early embryo (Figure 4). Indeed, recent advances in bioengineering and biomaterials not only
promote the reproducibility of embryoids, e.g. to facilitate the development of quantitative
assays, but also enable systematic studies of how the complex array of extrinsic inputs influences

embryonic development.

Micropatterning to control tissue shape

The simplest and perhaps most adopted approach to influence multicellular self-organization is
based on cultures of cell colonies selectively on cell adhesive substrates that are designed to
spatially control tissue size and shape. This can be readily achieved through micropatterning, a

classical microfabrication technique widely used to study how cell or tissue shape affects cellular

13
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phenotypes®®. As illustrated in 2D embryoid models, 2D micropatterning provides significant
advantages as an assay technology, given their scalability and reproducibility, coupled with the
ability to manipulate culture conditions and the simplicity of live imaging. Importantly, 2D
micropatterning can be integrated with microfluidics® and cell mechanics tools (such as
micropost force sensors or traction force microscopy’’) for dynamic, quantitative measurements
and perturbations of soluble biochemical signals and insoluble biophysical cues. These unique
features have not been fully exploited to date, but are important for future studies to examine the
roles of tissue geometry and mechanical forces in influencing cell signaling and cell-cell
communication to regulate patterning in 2D embryoids.

Using similar microfabrication approaches, micropatterning can be extended from 2D to
3D, such as to embed cells within microscale cavities in soft materials such as hydrogels or
viscoelastic polymers. This approach has been demonstrated for tubular mammary epithelia,
shedding light on mechanisms of branching morphogenesis’®. When single primed hPSCs are
grown in microcavities overlaid with Matrigel, the cells self-organize and form a single central
lumen with a defined geometry®!. Such tissues might serve as precursors for the generation of

new embryoids, e.g. for modeling NT patterning along the A-P and/or D-V axes.

Microwell arrays for controlling initial cell aggregation

Another simple yet useful microfabrication approach for improving the consistency of embryoid
development is the microwell array. The microwell array can be used to trap cells in suspension
to promote their initial aggregation into spheroids of controlled sizes and multicellular
compositions. This approach, for example, has been exploited to reproducibly generate blastoids
from mESC / mTSC aggregates in microwell arrays composed of agarose hydrogels fabricated

lTM

by micromolding with PDMS stamps®?. Along similar lines, the AggreWell™ plate, a

commercial microwell array, was used to improve the reproducibility and efficiency in
generating ETX embryoids and mEPSC-based blastoids?*262°,

For both micropatterning and microwell arrays, their impacts on embryoid development
seem to derive from their influences on setting up the initial number of cells in each cell colony
and colony geometrical boundaries. Colony geometry can directly influence cell signaling and
cell-cell communication through regulatory mechanisms involving dynamic morphogenetic cues

24,84,85

and diffusible signals . It remains elusive how the initial number of cells (or cell density) in
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each cell colony affects progressive embryoid development. Existing data suggest its effect on
cell polarity, paracrine signaling, the actin cytoskeleton, and mechanotransduction, which are

known to regulate classic developmental signaling events.

Microfluidics for establishing signaling centers and gradients and stem cell niches

Whereas micropatterned substrates and microwell arrays offer an effective means to control cell
colony shape and aggregate composition, the environment in which the cells are grown is
typically isotropic and static, and thus poorly suited to recapitulate the spatiotemporal dynamics
of morphogen signaling operating in vivo. Because of its ability to precisely manipulate tiny
quantities of fluids and establish dynamic chemical gradients, microfluidics offers exciting
opportunities to control morphogen signaling in space and time such as to establish artificial
signaling centers to direct multicellular self-organization and patterning.

An example along this line reported the development of microfluidic devices to expose
micropatterned 2D gastrulation embryoids to linear morphogen gradients generated via passive
diffusion (i.e. a “source and sink” type gradient system)’!. Beyond establishing controlled
biomolecular gradients, microfluidics offers a powerful way to optimize and standardize
advanced embryoid cultures, as demonstrated by the microfluidic PASE?’. This and similar
microengineered 3D culture systems should be particularly useful for designing multicellular
embryoid systems with the robustness and scalability needed in translational applications such as
high-content screening.

It is worth noting that artificial signaling centers in multicellular self-organization and
development can also be established using microbeads loaded with signaling molecules®’,

101~ A recent work

optogenetics'®, or through co-culture with morphogen-secreting cells
demonstrated optogenetic stimulation for local activation of WNT signals in both 2D and 3D
human gastrulation models to drive mesendoderm differentiation!?’. In another work, an
inducible Shh-producing cell aggregate was embedded at one pole of an hPSC spheroid,
mimicking a developmental organizer, to promote ordered self-organization along D-V and A-P

axes in a forebrain organoid model'°!.

Advanced biomaterials to mimic ECM
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Mammalian development involves not only cell-cell interactions, but also cell-ECM interactions
that guide embryonic organization, cellular differentiation and morphogenesis. The ECM is
synthesized and secreted by embryonic cells beginning at the earliest stages of development.
Providing adhesive substrates in a 3D context, the ECM further defines tissue boundaries to
guide cell migration and functions as a dynamic repository for growth factors to regulate
morphogen signaling. Importantly, embryonic cells sense and respond to the 3D organization
and physical properties of the ECM through mechanotransductive processes involving integrin-
mediated adhesions and the intracellular actin cytoskeleton'%?. An exciting contemporary
research question is how these mechanotransduction processes interact with growth-factor-
mediated developmental signaling to regulate cellular differentiation and patterning!®.

The importance of basement membrane-mediated integrin signaling in transforming
amorphous EPI cells into an apico-basally polarized lumenal EPI sac was first shown in the peri-
implantation mouse embryo!®. Indeed, the use of 3D ECM cultures to promote the development
of mESCs and primed hPSCs into lumenal EPI-like structures has been an important first step for
the development of different embryoids!*?*?*2¢ In view of these data, how can one then explain
the remarkable level of self-organization and patterning seen in the mouse and human gastruloids
grown in suspension, i.e. without a surrounding 3D matrix support?'*172! Two recent papers that
report the exposure of mouse gastruloids to low percentage Matrigel at a later culture time point
might shed light on the role of ECM in morphogenesis in the gastruloid. Intriguingly, instead of
observing gene expression patterns in the absence of any visible morphogenesis, as in mouse
gastruloids derived in suspension culture!”?!, the provision of Matrigel resulted in the
development of somites and a NT?%2 suggesting that fate patterns could arise even in
morphologically rather disorganized tissues and elaborate morphogenesis and tissue formation
might be dependent on physical contacts with ECM. However, whether Matrigel exerts its
function in the mouse gastruloid through adhesive signaling or mechanical interactions or both
remains to be elucidated.

All of the above examples have relied on native ECM isolated from animal tissues, in
particular Matrigel and Geltrex, basement membrane extracts derived from mouse tumor tissues.
The main limitations of these native ECM, e.g. its batch-to-batch variability and potential
immunogenicity, are widely documented. However, despite sizeable efforts in biomaterial

development over the last decade, it has not yet been possible to identify synthetic alternatives
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that can completely replace native ECM in 3D cultures. However, some progress has been
reported in the use of Matrigel alternatives for embryoid cultures. For example, Poh and
colleagues utilized fibrin matrices, a clinically approved biomaterial generated from fibrinogen,
to coax mESC colonies to differentiate and form spatially organized germ layers'. Interestingly,
the authors reported the roles of matrix dimensionality, stiffness, as well as cell-cell adhesion in
promoting germ layer self-organization'®.

An approach based on chemically defined, poly(ethylene glycol) (PEG)-based hydrogels
was explored in the context of 3D NT models generated from mESCs'>*. By systematically
screening PEG matrices of variable stiffness, degradability, and ECM composition, the authors
identified a parameter window in which apico-basally polarized NE sacs with proper D-V
patterning robustly emerged, with an efficiency greater than achieved in Matrigel®*. More
recently, synthetic hydrogels were applied to the 3D human gastrulation embryoid, by using two
commercially available hydrogel systems (physically crosslinked PNIPAAmM-PEG gel and an

Fmoc-based supramolecular gel) that were admixed with Matrigel*®

. Beyond assisting
translational applications of embryoids, the exquisite modularity of such chemically and
physically defined hydrogel systems will facilitate a systematic dissection of the independent
roles of extrinsic ECM factors (including matrix stiffness, porosity, degradability, and ECM

composition) in early development.

Conclusions and future directions

Understanding human development has been one of the central goals of modern biology. To
circumvent the limited availability of human samples, conventional mammalian developmental
biology studies have relied heavily on animal models, including NHP monkeys. In all of these
models, the need for in utero development prevents precise manipulations and high-resolution
observation. As a matter of fact, there will never be sufficient embryonic materials - from
humans, NHP monkeys, or other mammalian species - available for quantitative assays with a
level of resolution offered by synthetic in vitro embryoid systems. As a bottom-up approach
using stem cells to model embryonic development without using intact embryos, embryoids are
quickly becoming an essential experimental tool for advancing mammalian embryology. In
particular, human embryoids are the only method available to study human embryological events

between the onset of gastrulation and 4 — 5 weeks post-fertilization when the earliest fetal tissues
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from elective terminations are available. By this time point, the primordia of most of the major
organ systems have formed in the recognizable fetal body, so it is imperative to develop
alternative models to understand the origins of the human body plan.

The development of embryoids integrates knowledge and methodologies from stem cell
biology, developmental biology, synthetic biology, tissue engineering, and bioengineering.
Coupled with the ease of genetically modifying stem cell lines, the ability to manipulate culture
conditions and the simplicity of live imaging, embryoids are becoming robust and attractive
systems to disentangle cellular behaviors and signaling interactions that drive mammalian
embryogenesis. Using lineage and signaling reporter lines, embryoids offer exciting trackable
systems to study pattern formation, morphogenesis, cell differentiation, and growth and how
these developmental processes are dynamically regulated and coordinated during embryonic
development. Embryoids are also useful for elucidating intracellular signaling dynamics and
gene regulatory networks and their cross-regulation with cell mechanics and morphogenetic
signals during embryonic development and for studying classic developmental biology questions,
such as symmetry breaking, scaling and induction.

Directed differentiations of hPSCs towards clinically relevant cell lineages using
conventional 2D cultures have made significant progress over the last two decades and are
largely based on developmental biology knowledge generated from model organisms to optimize
growth and differentiation factors to modulate relevant developmental signaling pathways.
However, intricate cell-cell interactions involved in embryonic development, which are
important for lineage specification and functional maturation, are often missing and difficult to
recapitulate in conventional 2D cultures. Thus, it is possible that continuous development of
human embryoids can lead to advanced 3D cultures in which human stem cells can undergo
successive developmental stages to produce tissue progenitors and fully differentiated cells with
better fidelity to their in vivo counterparts in terms of gene expression, epigenetics, and function.

Nonetheless, the widespread utility of embryoids and their broad impact on human
embryology and reproductive medicine will depend upon continuous improvements of their
controllability, scalability, reproducibility and standardization and the commercial availability of
culture platforms used for embryoid development. More sophisticated embryoid platforms, such
as the microfluidic PASE, will require additional collaborative efforts between bioengineers and

stem cell and developmental biologists for their dissemination to the broad research community.
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In principle, embryoids can be integrated with multi-well plate formats to achieve highly
parallelized assays compatible with existing automation workflows and screening infrastructure.

Mouse embryoids, which contain all embryonic and extraembryonic lineages and their
correct organizations to mimic mouse development from pre-implantation to early gastrulation,
have been successfully developed!®?22>26, Since culture protocols are available to enable whole
mouse embryos to develop in vitro from the pre-gastrula to the early organogenesis stages'®, it is
conceivable that mouse embryoids will eventually be able to mimick whole mouse embryonic
development to the organogenesis stages. Compared to mouse embryoids, human embryoids
developed so far have only used primed hPSCs to model post-implantation developmental events
associated with the EPI lineage. It is foreseeable that as hTSCs and human hypoblast stem cell
lines become available and further authenticated, these extraembryonic cells will be integrated
into existing human embryoids (as in the mouse blastoids and ETS and ETX embryoids!'®?%23),
allowing their prolonged and organized development and studies of the roles of embryonic-
extraembryonic interactions in guiding implantation, placentation, embryonic patterning and
gastrulation. Another future direction will be to leverage hPSCs possessing developmental
potency for both embryonic and extraembryonic cell lineages (such as naive hPSCs and hEPSCs)
and 1dentify suitable culture conditions to guide their development into embryoids that contain
organized embryonic and extraembryonic structures®. Architecturally and functionally
competent endometrial culture systems are available using both human primary cultures and
established cell lines!%. In the future, it will be important to use human embryoids containing
TE-like cells coupled with endometrial culture systems to model human implantation and
placentation, in the hope of understanding the interrelationship between embryonic and placental
development.

We envision that continuous developments of mouse and human embryoids in the next 5
— 10 years will incorporate new advances of developmental biology, stem cell biology and
bioengineering and will lead to new understanding of intracellular signaling and cell fate
dynamics at single-cell resolution, extracellular movement of developmental signals at cellular
and tissue scales, and embryonic-extraembryonic interactions and their critical roles in guiding
embryonic development. It is foreseeable that advanced approaches integrating different

bioengineering tools will further promote the controllability and reproducibility of different

embryoids. Bioengineering tools to dynamically control the cellular environment, such as by
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modulating morphogen gradients, symmetry breaking and local signaling centers, will be
essential for improving embryoids and gleaning new insights in their developments. Next-
generation 3D human embryoids (such as human ETX embryoids) or even new human embryoid
systems mimicking organogenesis (including the brain, heart, blood and gut) will likely emerge.
We also envision that in the next 5 - 10 years initial translational applications of human
embryoids will allow studying genetic and environmental causes of recurrent implantation
failure (by combining human embryoids with endometrial culture systems) and early birth
structural defects such as NT defects (NTDs) and congenital heart defects. Embryoids also have
the potential to replace in vivo teratoma assays commonly used for establishing stem cell
pluripotency. ‘Organism-level’, high-throughput, embryoid-based screening pipelines will likely
emerge in the near future. We also envision that an important next technological milestone is to
achieve a human embryoid that can recapitulate the entire gastrulation process and the
development of the trilaminar germ disc containing the three organized definitive germ layers.
Validation of findings from embryoids using in vivo controls will be important to
evaluate their developmental relevance®. However, this is challenging for human embryoids
that aim to recapitulate post-gastrulation human development, given the scarcity of relevant
human embryo data!®. This challenge will be partially addressed by the recent progress of NHP

monkey embryo studies'®!?

, which provide quantitative transcriptomic and epigenomic profiles
of monkey cells at post-gastrulation developmental stages. Nonetheless, it becomes imperative
to establish a molecular and cellular standard to assess the authenticity and equivalency and
establish developmental identities of human embryoids compared to their in vivo counterparts.
This might require the current 14-day rule governing the in vitro human embryo research to be
extended to a post-gastrulation developmental stage’.

Accompanying the emergence of different human embryoids, there are ongoing
discussions and recommendations from the bioethics community on their regulation'®”-!%®, Even
though the existing human embryoids are far from being equivalent to human embryos, as we
continue to improve and generate new human embryoids, they are expected to more closely
mimic human embryos, in terms of cell organization, morphogenesis and gene expression. The
continuous development and progression of this nascent field will inevitably lead to important

bioethical questions: What should the ethical status of human embryoids be and how should they

be regulated? What does determine the developmental potential of human embryoids in culture
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and equally as important, can it be functionally assessed? Discussions about these questions are
clearly out of the scope of this review, and the readers are referred to recent commentaries

elsewhere!07-108

. Currently there is little explicit regulation of human embryoid research.
However, a consensus among researchers working in this field (including the authors) has urged
regulators to prohibit implantation of human embryoids into mammalian uterus and ban the use

107.108 = A5 this nascent field moves forward, we

of human embryoids for reproductive purposes
should keep in mind social responsibility as an essential part of the responsible conduct of
research. Transparency and effective engagement with all stakeholders including the public is
essential to ensure that promising avenues for research proceed with due caution, especially

given the complexity and rapid progress of this field.
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BOXES and FIGURES

Box 1. Glossary

Conceptus

The products of conception at all stages of development from zygote to birth. These include
the embryo proper, the fetus, the placenta, and all extraembryonic membranes. The term
“embryo proper” refers to those parts of the conceptus that will form the new body and
excludes extraembryonic tissues. Often, the terms “embryo” and “conceptus” are used
interchangeably.

Pre-implantation development

The first few days of development, from fertilization to implantation, during which the
conceptus travels down the oviduct toward the uterus. It encompasses the first 7 - 9 days
after fertilization in humans.

Morula

The very early stage in a conceptus when cleavage has resulted in a sold ball of cells.
Implantation

The process of attachment and invasion of the conceptus to the uterine tissues that occurs
around day 7-9 after fertilization in humans. Implantation establishes the fetal-maternal
interface leading to later placental development.

Blastula and blastocyst

The stage of the conceptus prior to implantation is termed blastula. At this stage, the
conceptus is call a blastocyst.

Peri-implantation development

The development of the conceptus in the uterine tissues prior to gastrulation.

Gastrula and gastrulation

Gastrulation describes the process by which the three definitive germ layers of the embryonic
compartment of the conceptus are formed. Gastrulation begins around day 14 in humans.
The gastrulation stage conceptus is termed gastrula.

Primitive streak

The embryonic structure that breaks radially symmetry by establishing the anterior-posterior

axis and establishes bilateral symmetry (alignment of equivalent structures on both sides of
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646 the anterior-posterior axis), the site of gastrulation, and the formation of the germ layers. In
647 the human embryo, the primitive streak appears around day 14 after fertilization.

648 = Neurula and neurulation

649 Neurulation describes the process by which the neural tube is formed from the ectodermal
650 neural plate. The neural tube will give rise to the brain and spinal cord. The neurulation
651 stage conceptus is termed neurula.

652 = Organogenesis

653 The development of specific organs in the embryo such as the brain and heart.
654 Organogenesis starts soon after gastrulation. In humans, organogenesis commences during
655 the 4th week after fertilization.

656 = Embryonic and fetal stages

657 The embryonic stage begins with the division of the zygote and encompasses the

658 development of the body plan and formation of the organs. This is followed by the fetal

659 stage, during which growth and maturation of tissues and organs occurs. In humans, the fetal
660 stage begins during the 9th week after fertilization and continues to birth.

661

662  Box 2. Classic developmental concepts and principles

663 = Developmental potency

664 Developmental potency describes the ability of a cell in the embryo to differentiate into other
665 cell types. There is a continuum of developmental potency following progressive

666 development of the embryo, from totipotency, pluripotency, multipotency, oligopotency, and
667 finally unipotency.

668 =  Pattern formation

669 Pattern formation is the process by which initially equivalent cells in a developing tissue
670 acquire identities that lead to a well-ordered spatial pattern of cell activities. Pattern
671 formation can involve positional information or cell sorting (see below).

672 = Positional information

673 The concept of positional information proposes that cells in a developing tissue acquire
674 positional values as in a coordinate system, which they interpret by developing in particular
675 ways to give rise to spatial patterns. Positional information often involves diffusion of
676 morphogens, leading to signaling gradients and differential gene expression in a morphogen
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677 concentration-dependent manner. A key feature of positional information being the basis for
678 pattern formation is that there is no pre-pattern in the developing tissue.

679 = Cell sorting

680 Pattern formation in a developing tissue can initiate from the specification of different cell
681 types in the tissue in a salt-and-pepper fashion, which is followed by sorting of different cell
682 types into distinct domains from where different tissues are formed. Cell sorting involves a
683 morphogenetic process during which individual cells exchange neighbors, increasing the
684 number of homotypic contacts and decreasing the number of heterotypic contacts.

685 = Symmetry breaking

686 Symmetry breaking is the process by which an initially homogeneous system acquires an
687 asymmetry along an axis. While external cues can induce or assist symmetry breaking,

688 asymmetries can emerge spontaneously without such input, guided by self-organization (see
689 below).

690 = Self-organization

691 Self-organization, as a non-equilibrium process, can be defined as the formation of complex
692 patterned structures from units of less complexity by collective, non-linear interactions,

693 without referring to an external blueprint or template. These local internal interactions

694 typically form feedback loops, thereby conferring robustness to the system. Other common
695 features found in self-organizing systems are non-linearity, symmetry breaking, and the

696 emergence of patterns through amplifications of stochastic fluctuations.

697 = Embryonic induction

698 Embryonic induction is an interaction between one (inducing) tissue and another (responding)
699 tissue, as a result of which the responding tissue undergoes a change in its direction of
700 differentiation.

701 = Signaling center

702 A localized region of the embryo that exerts a special influence on surrounding cells, usually
703 by means of secreted signaling molecules, and thus instructs how those cells develop.

704 = Organizer

705 A signaling center that directs the development of the whole embryo or of part of the embryo.
706 = Community effect
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Community effect describes cell-cell communication among a group of nearby cells in a
developing tissue, which is necessary for them to maintain coordinated behaviors.

= Morphogenetic regulation
Tissue-scale morphogenetic changes, including changes in cell shape, number, position and
force, can work in concert with classic developmental signaling events mediated by

diffusible signals to mediate gene expression and cell fate specification.

Box 3. Clinical benefits of human embryology

Advancing fundamental understanding of human embryogenesis can provide a scientific
foundation for improving assisted human reproduction and prevention of pregnancy loss, birth
defects and teratogenesis. It will also advance the biology of germ cells and treatment of
infertility. Advancing understanding of human implantation will help develop effective
contraception technologies and treatments of recurrent implantation failure. Detailed
understanding of the widespread epigenetic programming during human embryonic development
can provide important insights for disease progression in later life. Studying human

development is critical for improving stem cell differentiation protocols to mimic embryogenesis,

in order to achieve desired cell functions for research and therapy.

Box 4. Early mouse and human development

Pre-implantation development

Pre-implantation mouse and human development displays intricate self-organization and
autonomy. After fertilization, the one-cell zygote undergoes cleavage cell divisions to form a
solid ball of cells resembling a mulberry (and hence the name morula). Cells of the morula begin
to differentiate, leading to blastocyst formation. In the blastocyst, the trophectoderm (TE)
surrounds a fluid-filled cavity (blastocoel) with an inner cell mass (ICM) on one side. The TE is
an extraembryonic tissue and will give rise to the placenta. As the blastocyst develops, the ICM
becomes segregated into two distinct cell populations: the embryonic epiblast (EPI), which will
give rise to the embryo proper, and a second extraembryonic tissue known as the primitive
endoderm (PE; or hypoblast in human). Pre-implantation development has been extensively
studied using the mouse embryo, revealing important cellular and morphogenetic events

including position-dependent TE / ICM patterning, the blastocoelic cavity formation, and lineage
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segregation and sorting of EPI and PE in the ICM. The readers are referred to some excellent
reviews on the mouse blastocyst development®>**. Human blastocyst formation remains
incompletely understood®!'?”. Existing data suggests that there are differences in timing, in gene
expression and potentially in mechanisms of lineage development and function between mice

and humans during pre-implantation development?.

Peri-implantation development

Successful implantation involves a bilateral interaction between a competent blastocyst and a
receptive uterus. Implantation of the blastocyst (ES in mouse and E7 in human) triggers major
morphological reorganization and lineage developments. Upon implantation of the mouse
blastocyst, the TE adjacent to the EPI (polar TE) forms the extraembryonic ectoderm (ExE) and
ectoplacental cone. Concomitantly, the EPI and EXE each undergo lumenogenesis so that
separate apical lumens are formed in each compartment®>!%. The two lumenal cavities soon
fuse to establish the pro-amniotic cavity, leading to the formation of a cup-shaped EPI
juxtaposed with the EXE at E6 (the egg cylinder). From E5 to E6, the PE forms the parietal
endoderm and visceral endoderm (VE). By E6, the VE envelops both the EPI and EXE, setting
the stage for gastrulation.

Morphogenesis and lineage development in the peri-implantation human embryo show
distinct features compared with mice*?>. Upon implantation, the EPI undergoes lumenogenesis to
form the pro-amniotic cavity’”, similar to the mouse EPI. Distinctly, the lumenal EPI soon
breaks symmetry and resolves into the bipolar patterned EPI-amnion sac’3!. Specifically, EPI
cells adjacent to invading polar TE cells differentiate into the amniotic ectoderm (AM)”!, an
extraembryonic tissue involved in future fetal membrane development. The EPI cells at the
opposite pole adjacent to the hypoblast remain pluripotent and become thickened and more
columnar, forming the embryonic disc. Thus, the pre-gastrulation EPI displays distinct
topologies between humans and mice: discoid in human and cup-shaped in mouse. The mouse
embryo does not develop the bipolar EPI-amnion structure. In mice, the AM emerges as

amniotic folds at the junction of the EPI and ExE during gastrulation'!%!!!,

Gastrulation
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Prior to mouse gastrulation, reciprocal interactions between EPI, EXE and VE lead to
regionalized patterning in these tissues®>4. Regionalization of VE is particularly important,
leading to the formation of the anterior VE or AVE at the prospective anterior side of the
embryo®>3. The AVE secrets antagonists to shield overlying EPI cells from differentiation.
Development of the AVE thus breaks radial symmetry and marks anterior-posterior (A-P) axis
formation in the mouse embryo. Soon after, gastrulation is initiated at the proximal, posterior
end of the EPI by a convergence of BMP-WNT-NODAL signaling interactions between EP]I,
ExE and VE**°. The antagonists secreted by the AVE block signaling and impart

neuroectoderm characters at the anterior pole of the EPI*®

, whereas signals at the proximal,
posterior end of the EPI instruct cells to undergo an epithelial-mesenchymal transition (EMT)
and ingress through the PS to acquire mesendodermal fates’’. During mouse gastrulation,
primordial germ cells (PGCs) emerge at the proximal, posterior end of the EPI**#!,
Experimental evidence supports that prospective PGCs are selected from somatic, gastrulating
EPI cells by dose-dependent BMP signals that originate from the ExE''2.

Gastrulation remains one of the most mysterious phases of human development. Recent
studies of NHP monkey embryos suggest conserved mechanisms are likely in play for A-P
patterning during human gastrulation!>*’. Limited data from NHP monkey* and in vitro
cultured human*? embryos suggest that PGCs may emerge in the dorsal nascent AM soon after
implantation. This unexpected finding will require additional confirmation.

After gastrulation, the EPI in mouse and human embryos transforms into a trilaminar
structure consisting of ectoderm, mesoderm and endoderm. As gastrulation proceeds, it brings
subpopulations of cells in the three germ layer linages into proximity so that they can undergo

inductive interactions to pattern layers and specify new cell types, driving the development of

organ rudiments.

Neurulation

Gastrulation is followed by neurulation. During neurulation, the ectoderm is first patterned into
the neuroectoderm (neural plate) in the medial portion of the embryo flanked by future epidermis.
At the border between these regions, the neural crest and placodes form in response to BMP and
WNT signals emanated from surrounding tissues'!*!!*. The neural plate soon folds into the

neural tube (NT)**°, with its anterior and posterior regions giving rise to the brain and spinal
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cord, respectively. Cells in the NT continue to differentiate under the influence of inductive
factors emanating from surrounding tissues. Sonic hedgehog (Shh)-mediated transcriptional
networks that control ventral patterning of the mouse spinal cord have been well elucidated*®*’,

Human neurulation remains challenging to study, even though NT closure defects remain
one of the most common birth defects***°. Recent studies suggest that late-manifesting
neurodegenerative disorders, such as Huntington’s disease, may have a neurodevelopmental
component®>!'3. The role of early nervous system development in late-onset neurodegenerative
disorders remains a debated topic.

While the ectoderm undergoes neurulation, the mesoderm and endoderm also become
further specified. Specifically, mesodermal cells are organized into cardiogenic mesoderm, axial
mesoderm of the prechordal plate and notochord, paraxial mesoderm, intermediate mesoderm
and lateral plate mesoderm. Each of these mesodermal regions undergoes some form of
segmentation. The most evident and complete segmentation occurs in the paraxial trunk
mesoderm, where each segment becomes an entirely separate somite. Much of the other
mesodermal regions develop into embryonic connective tissues, cardiovascular and lymphatic
systems, skeletal muscle cells, most of the urogenital system, and the lining of the pericardial,
pleural and peritoneal cavities. Following gastrulation, the endoderm folds to form the primitive
gut tube consisting of three subdivisions: foregut, midgut, and hindgut, which subsequently give

rise to the epithelial lining of the digestive and respiratory systems.
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823  Figure 1. Overview of mouse and human development from pre-implantation to the onset
824  of gastrulation. Prior to implantation, both mouse and human embryos undergo cell divisions
825  culminating in the development of a blastocyst, comprising an outer trophectoderm (TE) layer
826 and an inner cell mass (ICM) that further segregates into epiblast (EPI) and primitive endoderm
827  (PE; hypoblast in humans). The timing of blastocyst implantation differs between mice and
828  humans (E5 in mouse and E7 in human). Furthermore, morphogenesis and lineage

829  developments during peri-implantation mouse and human development show distinct features.
830  Mouse development from E5 - E6.5 leads to the formation of a cup-shaped EPI juxtaposed with
831  TE-derived extraembryonic ectoderm (EXE), enclosing the pro-amniotic cavity. Concurrently,
832  the PE forms the visceral endoderm (VE) that envelops both EPI and ExE. In contrast, soon
833  after human blastocyst implantation, while the EPI undergoes lumenogenesis to form the pro-
834  amniotic cavity, EPI cells adjacent to polar TE cells become specified into the amniotic ectoderm
835 (AM), with remaining pluripotent EPI cells forming the embryonic disc. By E6.5 for mice and
836  E14 for humans, gastrulation is initiated in the posterior EPI compartment. Mouse primordial
837  germ cells (PGCs) emerge at the boundary between posterior EPI and ExE at the onset of

838  gastrulation. Data on primate PGC specification remain sparse. Existing data suggest that

839  human PGCs may emerge in the nascent AM prior to the gastrulation. Human PGC specification

29



840  requires additional studies for clarification. For peri-implantation mouse and human embryos,
841  only their embryonic regions are shown.
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Figure 2. Mouse and human embryonic and extraembryonic stem cells and their
corresponding developmental potencies. Expanded potential stem cells (EPSCs) are
established by isolating individual cells (or blastomeres) from eight-cell stage mouse and human
embryos (or morula). By isolating cells from mouse blastocysts, mouse embryonic stem cells
(mESCs) with naive pluripotency, trophoblast stem cells (mTSCs), and extraembryonic
endoderm (mXEN) cells representing the stem cell population of the primitive endoderm (PE)
have been established. Similarly, human trophoblast stem cells (hTSCs) have been derived from
human blastocyst. Primed mouse ESCs, known as mouse epiblast stem cells (mEpiSCs), are
derived from the late post-implantation, pre-gastrulation mouse epiblast (EPI). Mouse EPI-like
cells (EpiLCs) with an intermediate or formative state between naive and primed pluripotency
have been generated from mESCs in vitro, with a transcriptional profile similar to the early post-
implantation mouse EPI. Human ESCs (hESCs) with primed pluripotency have also been
derived from pre-implantation human blastocysts. Using strategies such as reprogramming,
differentiated somatic mouse and human cells can be converted to a pluripotent state to establish
induced pluripotent stem cells, or iPSCs. Using chemical cocktails, primed hESCs can be
reverted into a naive-like pluripotent state. Human hypoblast stem cells (hypoSCs) can be

generated using these chemically reset naive hESC lines.
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Figure 3. Existing embryoids that recapitulate different stages of mouse (top) and human
development (bottom), from pre-implantation through gastrulation or early neurulation
and organogenesis. 3D blastoid: Embryoid to model pre-implantation blastocyst development.
3D ETX embryoid: Embryoid to model post-implantation embryo development up to early
gastrulation. 3D gastruloid and trunk-like structure: Embryoid to model post-gastrulation
development of the posterior portion of the embryo. 2D gastrulation model: Embryoid to model
germ layer patterning during gastrulation. 3D epiblast patterning model: Embryoid to model
epiblast morphogenesis and patterning during early post-implantation development. 3D post-
implantation amniotic sac embryoid (PASE): Embryoid to model post-implantation human
development up to early gastrulation. 2D neurulation model: Embryoid to model the neurulation

process, leading to neural tube development and patterning.
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Figure 4. Bioengineering tools to promote multicellular interaction and self-organization in
embryoid development. (a) Micropatterning to generate 2D circular colonies of hPSCs to
model germ layer patterning during gastrulation. Immunofluorescence image shows emergence
of concentric gene expression regions, mimicking development of the germ layers (SOX2+
ectoderm, blue; TBXT+ mesendoderm, red) as well as a GATA3+ extraembryonic layer (green).
Image from A. Yoney and E.D. Siggia. (b) Microwell array to promote cell aggregation and
development of mouse blastoids. Top: Microwell arrays composed of agarose hydrogels to
promote aggression of mESCs and mTSCs. Bottom: Merged image showing two blastoids, with
a layer of mTSCs surrounding a cavity and a cluster of mESCs mimicking the inner cell mass.
Immunostaining: NANOG (red) and GATAG6 (green). Images from N. Rivron. (¢) Microfluidics
to control spatiotemporal morphogen signaling and tissue patterning. Bright-field (top) and
immunofluorescence (bottom) images of an array of post-implantation amniotic sac embryoids
(PASESs), showing molecular asymmetry and tissue patterning, with TFAP2A+ amniotic cells on
one pole (green) and TBXT+ gastrulating cells (magenta) on the opposite pole. Images from Y.
Zheng. (d) Chemically and physically defined hydrogels for 3D embryoid development.
Immunofluorescence image of a 3D human gastrulation embryoid for modeling epiblast

morphogenesis and patterning (SOX2, green; TBXT, magenta). Image from M. Simunovic.
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