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Abstract

Recent deep millimeter-wave surveys have attempted to measure the carbon monoxide (CO) luminosity function
and mean molecular gas density through blind detections of CO emission lines. While the cosmic star formation
rate density is now constrained in fields of hundreds of square arcminutes or more, molecular gas studies have been
limited to <50 arcmin®. These small fields result in significant biases that have not been accounted for in published
results. To quantify these biases, we assign CO luminosities to halos in cosmological simulations to produce mock
observations for a range of field sizes. We find that fields of <10 arcmin® alter the recovered shape of the
luminosity function, causing underestimates of the number of bright objects. Our models suggest that current
surveys are sensitive enough to detect sources responsible for approximately half of the cosmic molecular gas
density at high redshift. However, uncertainties in the gas density measurement are large, and cosmic variance may
double the uncertainty claimed in these surveys. As a result, the field size needed to detect redshift evolution in the
molecular gas at high confidence may be more than one order of magnitude larger than what current surveys have
achieved. Shot power intensity mapping measurements are particularly sensitive to Poisson variance and require
yet larger areas to constrain the gas density or its evolution. We provide a simple prescription for approximating
uncertainty in total CO emission as a function of survey area and redshift for both direct detection and intensity
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1. Introduction

Deep ultraviolet, optical, and infrared surveys have been
used to constrain the evolution of the UV and IR Iuminosity
functions and star formation rate density (SFRD) to redshifts
z > 8 (Madau & Dickinson 2014; Bouwens et al. 2015;
Finkelstein et al. 2015; Driver et al. 2018). These studies have
found that the SFRD evolves significantly with redshift,
peaking at z ~ 2 then falling by an order of magnitude to the
present day. It is thought that changes in the abundance and
properties of molecular gas, the raw material for star formation,
are the driver of the changing cosmic star formation rates
(SFRs; Tacconi et al. 2018). The history of molecular gas
abundance is therefore a necessary component of our under-
standing of galaxy evolution (Carilli & Walter 2013). Over the
past decade, advances in capabilities for millimeter astronomy
have made it possible to conduct complementary, large surveys
of molecular gas using emission from the '2CO molecule
(hereafter CO). These projects have aimed to constrain the
redshift evolution of molecular gas density through measure-
ments of the luminosity function of CO rotational emission
lines, allowing for detailed comparisons with the SFRD history.

With results from the first generation of high-redshift CO
surveys now available (Decarli et al. 2014, 2016, 2019;
Keating et al. 2016, 2020; Riechers et al. 2019; Lenki¢ et al.
2020), it is important to carefully interpret the measured
luminosity functions (Popping et al. 2019). In particular,
current surveys are limited to areas significantly smaller than
the optical and IR deep fields used in measuring SFRD. Rare
objects at the bright end of the CO luminosity function, with
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large molecular gas reservoirs, can be important contributors to
the molecular gas density (Lagos et al. 2015; Popping et al.
2015; Carilli et al. 2016). Surveys covering only a few square
arcminutes may not sample enough volume to reliably recover
such objects, which could bias many of their reported results.
Accurate comparison to both observational data at other
wavelengths and theoretical predictions using cosmological
simulations and semi-analytical models will not be possible if
these biases are not understood and accounted for.

At the same time, the number density of faint objects can
vary considerably from field to field, depending on the large-
scale structures present in the region sampled. Numerous
studies have found that this cosmic variance has a sizable effect
on galaxy number counts and luminosity functions at optical
wavelengths. Moster et al. (2011) used simulations to conclude
that uncertainty due to cosmic variance usually exceeds the
Poisson variance in the optical deep fields used for galaxy
evolution studies. Driver & Robotham (2010) came to a similar
conclusion based on empirical measurements of cosmic
variance in the local universe using the Sloan Digital Sky
Survey (SDSS). Trenti & Stiavelli (2008) even suggested that
cosmic variance can bias the shape determined by parametric
fits of the luminosity function.

These effects have not received great attention in the context
of molecular gas. Popping et al. (2019) considered sample
variance in the limited context of the 5 arcmin® Atacama Large
Millimeter/submillimeter Array (ALMA) Spectroscopic Sur-
vey in the Hubble Ultra Deep Field (ASPECS) using semi-
analytical models of the molecular gas mass function. Most
existing observational studies have instead relied on optical
results, which are not necessarily well matched to the types of
objects and surveys employed for CO, or have dismissed
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cosmic variance altogether. To clarify the role of sample
variance effects in molecular gas surveys, a more complete
exploration of the topic is warranted.

In this paper we use cosmological simulations of large
volumes to explore the biases and uncertainties present in
studies of molecular gas abundance at high redshift. Simula-
tions of millions of cubic megaparsecs with mass resolution
better than 10® M. now exist, allowing us to conduct mock
observations using thousands of realizations of a field (e.g.,
Vogelsberger et al. 2014; Schaye et al. 2015; Klypin et al.
2016; Nelson et al. 2018). Using a model for assigning CO
luminosity to dark matter halos, we construct catalogs of CO
emitters and generate ensembles of light cones that sample
different regions of the parent simulation volume. From these
light cones we assess how well surveys of different sizes do at
recovering the true values of quantities related to the CO
luminosity function, and develop a prescription for quantifying
cosmic variance optimized for molecular gas surveys.

The remainder of this paper is organized as follows: in
Section 2 we describe the methods for surveying CO at high
redshift and the quantities measured by each. In Section 3 we
describe our procedure for creating an ensemble of CO light
cones for mock observations. We describe observational biases
and uncertainties in measurements of the CO luminosity
function in Section 4 and measurements of moments of the
luminosity function in Section 5. We then consider how these
results affect efforts to detect the redshift evolution of
molecular gas properties in Section 6. In Section 7 we verify
that our results are independent of our choice of model
parameters, although their degree varies depending on the
underlying properties of the CO-emitting objects. In Section 8
we discuss our results in the context of ongoing efforts to
measure the shape of the luminosity function (Section 8.1), the
cosmic molecular gas density (Section 8.2), the CO brightness
fluctuation power spectrum (Section 8.3), and the dust mass
function (Section 8.4). We present our main conclusions in
Section 9. We present a prescription for estimating cosmic
variance in surveys at a range of redshifts and survey
geometries in Appendix A. Throughout this paper we assume
a flat ACDM cosmology with Hy=67.74 and Q, = 0.31
(Planck Collaboration et al. 2016), chosen for consistency with
the IlustrisTNG simulations from which we generate our light
cones.

2. Target Quantities and Observables

CO emission lines are the most commonly used proxy for
molecular gas (Bolatto et al. 2013). The line luminosity of the
CO(1—0) rotational transition is translated to a molecular gas
mass via

Mot = acoLlo, (1)

where M, is the mass contained in the molecular gas phase,
L is the observed CO luminosity, and acg is the conversion
factor between them. The conversion factor, including helium,*
is found to be around 4.6 M., (Kkms ' pc®) " for the Milky
Way and normal star-forming galaxies at higher redshifts
(Daddi et al. 2010; Carleton et al. 2017; Cassata et al. 2020).
Galaxies undergoing intense starbursts show lower values,

4 Note that whether M1 is defined to include the contribution of helium to
the total mass of gas in the molecular phase varies among different works.
Helium accounts for ~36% of the molecular gas mass.
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aco ~ 1 (Downes & Solomon 1998). This factor also varies as
a function of metallicity (Narayanan et al. 2012).

The CO luminosity function @eo (Lo, 2) = dnco /dLég
describes the differential number density of sources of
luminosity L{ at redshift z per unit volume (we will hereafter
drop the CO subscripts on L' and ¢ and the explicit redshift
dependence from our notation). The molecular gas density at
redshift z can be calculated as

Prmol () = Loc aCoLl(b(L/)dL/. 2)

If aco can be treated as approximately constant, at least for
galaxies responsible for the majority of the above integral, this
equation simplifies to

pmol(z) = Gcoty 3)

where p, = f L'¢(L")dL is the first moment of the luminosity
function.

2.1. Measurement Approaches

A measurement of the cosmic molecular gas density can
therefore be made by constraining the CO luminosity function.
A number of approaches to this measurement have been
pursued.

At low redshift, where complete and well-understood
catalogs of galaxies are available, the CO luminosity function
can be constructed through targeted observations of a large
sample. These surveys must have a simple selection function
(e.g., all galaxies above a stellar mass threshold). Each target
can then be weighted according to the fraction of the total
selection parameter space it represents. The Extended CO
Legacy Database for the Galaxy Evolution Explorer Arecibo
SDSS Survey (xCOLD GASS) measured the CO luminosity
function at z ~ 0 through targeted observations (Saintonge
et al. 2017) of 532 local galaxies selected in bins of stellar mass
from 10° M, to >10""> M_,. This targeted approach would be
challenging at high redshift with the sensitivity of current
instruments.

At high redshift two approaches have been employed. The
first, which we will refer to as “direct measurement,” entails
conducting blind, integral field spectroscopic surveys of a
selected volume and searching for CO emission lines. These
surveys search for CO emission lines by using large
interferometers to scan a wide frequency band. Single-line
detections are generally not enough to uniquely determine a
redshift, as multiple CO transitions or other lines can redshift to
the same frequency. Cross-matching with optical and near-IR
catalogs can allow for redshift determination and identification
of the lines (Boogaard et al. 2019). Once emission lines have
been identified, their CO luminosities can be determined from
their measured redshifts and fluxes, and the luminosity function
can be determined directly by counting sources in bins of
luminosity (Decarli et al. 2016, 2019; Riechers et al. 2019).

It is common practice to fit a parameterized form of the
luminosity function to observed galaxy counts. The form most
often assumed in the CO literature is a Schechter function
(Schechter 1976):

nar = o L) exp( - L) 4L
¢(L)dL—¢*(L*) exp( L*]L*, “
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where ¢,, Ly, and « are the fit parameters describing the
normalization, the turnover between the polynomial and
exponential shapes, and the slope of the polynomial portion
of the function. Note that numerous parameterizations of this
function exist with differing coefficients. We use the form in
Equation (4) here and summarize the other forms in
Appendix B.

A second approach, called line intensity mapping, involves
conducting spectroscopic surveys of larger volumes at lower
sensitivity and using intensity fluctuations in the resultant data
cubes to statistically measure moments of the CO luminosity
function without needing detections of individual galaxies
(Visbal & Loeb 2010; Gong et al. 2011; Lidz et al. 2011;
Breysse et al. 2014; Li et al. 2016). This type of measurement
can be done using single-dish telescopes with multi-pixel
receivers, making it possible to map large areas at much lower
cost than via the direct survey approach.

The primary observed quantity in intensity mapping
observations is the power spectrum, which describes the
contribution of intensity fluctuations on different scales to the
total power in the map. It can be parameterized as

Peo(k) = Pin(K)bio it + fios )

where Pco(k) measures the magnitude of fluctuations of spatial
wavenumber k in the CO intensity map, Pj,(k) is the
underlying matter density power spectrum, bco is the tracer
bias for CO emitters, and pu, is the second moment of the
luminosity function, 1, = fo > L2¢(L)dL.

The first term on the right side of Equation (5) is referred to
as the clustering power and is proportional to the first moment
of the CO luminosity function. The second term is frequently
referred to in intensity mapping as the shot power.

Owing to the shape of the matter power spectrum, at large
spatial scales (small k) the clustering power term dominates,
typically by multiple orders of magnitude, while at small scales
(large k) the shot power becomes similarly dominant. Thus
intensity maps covering large areas with adequate spatial and
spectral resolution can constrain both terms.

If the matter power spectrum and tracer bias can be estimated
by other means (e.g., Barkana & Loeb 2005), the clustering
power can be used to determine p;. We can then estimate p,
using Equation (3). A parameterized version of the full
luminosity function can also be inferred by jointly fitting the
two moments. Degeneracies between parameters in the
luminosity function mean that additional information is
required for an optimal fit. This may come from the intensity
mapping survey itself, which can constrain the bright end of the
luminosity function through direct detections or upper limits on
the brightest galaxies (Keating et al. 2016). It may also be
derived from the bright-end measurements from direct detec-
tion surveys. This situation is, in principle, no worse than that
for current direct detection efforts, where most surveys lack the
dynamic range in luminosity required to constrain all
parameters of the luminosity function.

Line intensity mapping is well suited to surveys over larger
areas compared to direct measurements. On the other hand,
moments of the luminosity function are weighted integrals that
upweight bright, rare galaxies and therefore may be more
susceptible to bias and Poisson variance than the direct
approach. We investigate these effects in detail in subsequent
sections.
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2.2. Units of the Measured Quantities

Following the convention used in most papers dealing with
the CO luminosity function, we present luminosities in
observer’s luminosity (frequently denoted L') units of
Kkms ™' pc®. This can be related to solar luminosity units as
(Carilli & Walter 2013):

L[Lo] =3 x 10713 L/[K km s~ pc?], (6)

where v is the rest frequency of the emission line in GHz,
115.27 GHz for CO(1-0).

For moments of the luminosity function, we convert
luminosity to units of pKMpc® by multiplying by the
conversion factor between radial velocity and Iuminosity
distance:

dr . (1+42)?

dv @ H(z) ' @

where z is the central redshift of the observations and H(z) is
the Hubble parameter at that redshift. This puts the first and
second moments in units of 1K and K> Mpc?, respectively. In
these units, the first moment is referred to as the mean
brightness temperature and denoted by (T'), and the second
moment is referred to as the shot power and denoted by Pgpey.

Note that since dr/dv depends on redshift, constant mean
brightness temperature or shot power with redshift does not
mean that the corresponding physical quantities are not
evolving. We can combine Equations (3) and (7) to write the
mean molecular gas density in terms of mean brightness
temperature as

H(2)

——(T). 8
CO(1+Z)2<> ®)

Pmol = &

2.3. Sources of Variance

If galaxies are randomly distributed throughout the universe,
with mean number density #, then the number of objects, Ny,
appearing in a survey covering a small portion of the sky with
volume Vs is well approximated by a Poisson distribution
(Kelly et al. 2008). The mean (and variance) on N will be
(N) = nVups. We will refer to the variance in survey results due
to such processes as Poisson variance.

The Poisson variance in the luminosity function around
luminosity L' in a bin of size AL’ is then given by

1 1

2

0'“ ois = — N ! =

oo = i VK= YR
where (N;/) = Vo (L')AL' is the mean number of galaxies in
the bin. The Poisson variance for the mth moment of the

luminosity function p,, is given by multiplying the above result
by L?™AL’ and summing over all bins:

P (L), €)

02 ois = % fo L2 (L))dL. (10)

In reality, objects are not randomly distributed. When
sampling the universe over volumes much larger than the
largest coherent structures, sampling uncertainty on the number
counts of galaxies should be dominated by Poisson errors
(which should in turn be fractionally small because of the large
number of objects included in such a volume). However, when
the volume probed is comparable to or smaller than the scale of
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Table 1
Parameters of Existing Direct Detection and Intensity Mapping Surveys

Redshift Coverage by CO Transition

Survey Number Total Frequency

of Fields Area (arcmin?) Range (GHz) CO(1-0) COR2-1) CO(3-2) CO®4-3) CO(5—4)
PdBI 1 0.7 79-115 1.0-1.9 2.0-33 3.0-4.38 4.0-6.2
ASPECS Pilot 1 0.9 84-115 1.0-1.7 2.0-3.1 3.0-45 4.0-5.9

212-272 0.3-0.6 0.7-1.2

ASPECS LP 1 4.6 84-115 1.0-1.7 2.0-3.1 3.0-45 4.0-5.9
COLDz 2 51+9 30-39* 2.0-2.8 4.9-6.7
PHIBSS2 110 130 Varies” 0.0-1.6 0.5-2.8 1.0-4.1 1.5-5.4
COPSS 1 44 6200 27-35 23-33 5.6-7.3
COPSS I 17 2400 27-35 23-33 5.6-7.3
mmIME 2 5415 84-115* 1.0-1.7 2.0-3.1 3.045 4.0-5.9
Notes.

4 Not the whole frequency range was observed in both fields.

b Primary targets were at a range of redshifts and the observed frequencies vary accordingly. The observed bandwidth for each target was 3.6 GHz.

large-scale structure, a given sample will contain overabun-
dances (underabundances) of galaxies because it happens to
sample overdensities (underdensities) in the underlying dark
matter field. This increased variability is referred to as cosmic
variance. High-redshift surveys can be highly susceptible to
cosmic variance because achieving the necessary depth for
high-redshift studies typically limits them to small fields.

The magnitude of cosmic variance can be expressed
analytically and computed using linear theory (Moster et al.
2011). However, nonlinear effects can increase the level of
variance over results from linear theory alone (Mufoz et al.
2010). Cosmological simulations can be used to capture the full
effect of large-scale structure on the luminosity function and its
moments. Therefore, in this paper we calculate cosmic variance
as

2 _ 2 2
O cosmic = 0~ — O pois> (11)

2 is the total sample variance, which we measure

where o

directly from our simulated observations, and oﬁois is the
Poisson variance computed using Equations (9) and (10) or that
obtained in the Poisson variance—only simulations described in

Section 3.

2.4. Summary of Existing Measurements

Table 1 summarizes the parameters of existing surveys used
to measure the CO luminosity function or its moments. We list
the number of fields observed, the survey area, the frequency
coverage, and the corresponding redshift ranges in which
CO(1—0) through CO(5—4) can be observed. We provide
further implementation details and references for these projects
in this section.

Four dedicated direct measurement surveys have been
conducted. Decarli et al. (2014) used the Plateau de Bure
Interferometer to survey the 3 mm atmospheric window in a
single pointing with a primary beamwidth of 55”. The survey
resulted in secure detections of three objects and the
identification of a number of additional candidates. Walter
et al. (2014) reported constraints on the CO luminosity function
derived from these candidates.

ASPECS consisted of two ALMA surveys. The pilot survey
(Walter et al. 2016) conducted scans of ALMA bands 3 (3 mm)
and 6 (1.2 mm) over a 0.9 arcmin? region in the Hubble Ultra
Deep Field (HUDF). The ASPECS pilot identified ~21 line

candidates (some corresponding to the same galaxy observed in
different transitions), which Decarli et al. (2016) used to
provide luminosity function constraints.

The ASPECS Large Program (hereafter referred to simply as
ASPECS; Gonzalez-Lépez et al. 2019) used the same spectral
setup as the pilot survey but surveyed a larger area covering
4.6 arcmin®. These observations resulted in the high-confidence
identification of 12 objects in CO(2—1), a further five in
CO@B—-2), and one in CO(4—3) (Aravena et al. 2019). Decarli
et al. (2019) used these objects along with a number of
additional, lower-confidence candidates to provide updated
luminosity function constraints, and Uzgil et al. (2019) explored
using intensity mapping techniques to constrain the luminosity
function below the direct detection limit in the data set.

The CO Luminosity Density at High-z (COLDz; Pavesi et al.
2018) survey used the Jansky Very Large Array to search for
CO emission in the Ka band (1 cm) over two separate areas.
The first was a 50.9 arcmin® region within GOODS-N, which
was surveyed with shallower and non-uniform depth. The
second was an 8.9 arcmin” region within COSMOS, which was
~3 times as sensitive as the GOODS-N wide field but covered
a smaller area. COLDz securely detected four objects in
CO(1-0) and three in CO(2—1). Luminosity function con-
straints based on these objects and a large number of less secure
candidates have been reported by Riechers et al. (2019).

In addition, Lenki¢ et al. (2020) used serendipitously
detected secondary sources from the Plateau de Bure High-z
Blue Sequence Survey 2 (PHIBSS2) to constrain the CO
luminosity function. PHIBSS2 was primarily designed as a
targeted CO line survey of redshifts 0.5-3.0 (Freundlich et al.
2019). However, the large total volume covered by the survey
allowed the identification of numerous secondary sources with
no preselection, which can be used to constrain the luminosity
function. PHIBSS?2 consisted of 110 individual pointings, with
a combined area of ~130 arcmin’. Because the survey’s
primary purpose was targeted observations, the frequency
range for each pointing is much narrower (3.6 GHz), and the
frequency window and corresponding redshift range vary from
pointing to pointing. Integration times also vary by a factor of
as much as ~50. Lenki¢ et al. (2020) identified 67 CO line
candidates in this data set and estimated that ~75% are likely to
correspond to real objects.

Results from a handful of intensity mapping surveys are
also available. The CO Power Spectrum Survey (COPSS;
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Keating et al. 2015, 2016) produced the first intensity mapping
constraint on the CO luminosity function. COPSS used the
Sunyaev—Zel’dovich Array (a subset of the Combined Array
for Research in Millimeter-wave Astronomy) to constrain the
CO(1—-0) power spectrum at a wavelength of 1 cm. The first
phase of the project (COPSS I) used archival data to set an
upper limit on the power spectrum, while the second phase
(COPSS 1II) consisted of an optimized intensity mapping
survey, collecting data over 17 independent pointings (each
separated by >1°). Integration times varied from pointing to
pointing with most fields receiving more than 100 hr of
observation. Keating et al. (2016) reported a detection of the
CO(1—0) power spectrum at z ~ 2.6 at 95% confidence.

The Millimeter-wave Intensity Mapping Experiment (mmIME)
consists of a series of surveys seeking to measure the shot
component of the CO power spectrum. The first phase of the
project targeted the 3 mm spectral window using a combination of
archival ASPECS data and new Atacama Compact Array
observations over an additional 15 arcmin® (Keating et al.
2020), resulting in a detection of the CO shot power from a
combination of CO2—1), CO(3—2), and CO(4—3) at a 99.99%
confidence. The second phase, a Submillimeter Array survey of
the 1 mm spectral window, is ongoing.

3. Model

To simulate the results of the measurements outlined in
Section 2, we use dark matter subhalo catalogs of the
MlustrisTNG project’s TNG300-1 simulation and a prescription
for assigning CO luminosity to halos in order to create a set of
1000 light cones. We simulate the CO(1—0) emission line in the
redshift range 0 to 10. For our fiducial survey, we extract objects
in the redshift range 2.01 < z < 3.11. This range corresponds
roughly to the redshift range of CO(1—0) for the COLDz and
COPSS observations and of CO(3—2) in Keating et al. (2020). It
is chosen to exactly match the CO(3—2) redshift coverage of the
ASPECS 3 mm observations. Most current work in this field
treats brightness ratios between CO(1—0) and higher-J lines as
constants; therefore our CO(1—0) results can be directly
compared to those of studies using other lines by rescaling the
luminosity axis. A line ratio of LC/O(3—2) /Lc/0(1—0) =042
(Daddi et al. 2015) is commonly assumed (Decarli et al. 2019;
Lenkic et al. 2020).

The IlustrisTNG simulations were a series of hydrodyna-
mical simulations designed to study galaxy evolution in large
cosmological volumes (Marinacci et al. 2018; Naiman et al.
2018; Nelson et al. 2018; Pillepich et al. 2018; Springel et al.
2018). TNG300-1 was the largest-volume simulation, with a
comoving side length of 302.6 Mpc. The simulation included
2500° dark matter particles of 5.9 x 10’ M., and additional
2500% “gas” particles of 1.1 x 10’ M., which store baryonic
information. The simulation’s halo catalogs include
~14.5 million objects at z = 0 and record position, velocity,
and halo mass, along with many baryonic/galaxy properties for
each. Catalogs are provided for 100 snapshots covering a
redshift range of 20 to 0. To construct light cones, we pick a
line-of-sight direction and a random starting location in the
simulation cube. We move along the line of sight, stepping
through snapshots as the corresponding redshift increases and
extracting all halos in a square 500 arcmin? field up to redshift
10. We use the periodic boundaries of the box to include
continuous large-scale structures in our light cones by
wrapping through the cube, and select lines of sight angled
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with respect to the cube faces so as to minimize repetition of
the same structures.

For our CO luminosity prescription, we follow Li et al.
(2016). Their model assigns an SFR to each halo using the halo
mass—SFR relationship from Behroozi et al. (2013) and
converts this to an IR Iuminosity. It then assigns CO
luminosities using the empirical correlation between IR
luminosity and CO(1—0) luminosity (Kennicutt 1998; Kenni-
cutt & Evans 2012; Carilli & Walter 2013),

10gLIR =da IOgLCO + b. (12)

Luminosities in this equation are in L, units, and resulting CO
luminosities can be converted to L' using Equation (6). A log-
normal scatter of o is then applied to each halo luminosity to
approximate astrophysical variations not accounted for in the
model. For our fiducial model, we use a = 1.37 and b = —1.8
and apply a scatter of ¢ = 0.35 dex. We study the effects of
altering our fiducial prescription in Section 7 and find that our
main results are independent of choice of parameters.

Once halos have been selected and CO luminosities
assigned, we generate a catalog containing the luminosity,
sky position, and redshift of each object. We repeat this process
1000 times, generating new realizations of the CO luminosities
each time, which result in a set of 1000 catalogs. In order to
generate smaller fields, we crop these large light cones to the
required sizes.

At times throughout this paper, we need light cones free
from cosmic variance in order to disentangle cosmic and
Poisson variance effects. To generate an additional set of light
cones with no large-scale structure we create a catalog of all
objects in the redshift range z = 2.01 to 3.11 from our original
light cones. We then calculate the mean number of objects per
light cone (N) and determine a number of objects N to include
in each new light cone by drawing from a Poisson distribution
with mean (N). Finally we select N galaxies from the combined
catalog of all objects and include them in our new light cone,
preserving their original redshifts and CO luminosities. This
results in a set of light cones with the same redshift distribution
and average luminosity function as our original simulations,
but with no cosmic variance contribution to the distribution of
these properties. We refer to these as Poisson light cones.

3.1. Independence of Large-scale Structure

The finite size of the simulation limits the number of
independent light cones that can be constructed. The TNG300-
1 simulation has a volume of 8.6 x 10° A~ Mpc’. For
redshifts z = 1.4, 2.6, 3.8, and 5.0, a box face corresponds to
solid angles of 2 = 16, 8, 6, and 5 square degrees, and the
length of the box corresponds to a redshift interval of
Az = 0.15, 0.27, 0.40, and 0.56. In this paper we use light
cones ranging in solid angle from 1 to 500 arcmin®. Table 2
lists the maximum number of light cones that can fit into the
full simulation box for a number of solid angles. Because our
light cones are constructed with a wide range of orientations to
the original box, two light cones that both sample a particular
point will still differ substantially overall, and therefore the
values in the table do not really represent a limit on the number
of light cones.
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Table 2
Number of Independent Light Cones that Can Be Drawn from the TNG300 Simulation Box

Number of Light Cones per TNG300 Volume

Redshift

5 arcmin? 15 arcmin® 50 arcmin® 150 arcmin? 500 arcmin®
1.0-1.7 2437 812 244 81 24
2.0-3.1 1379 460 138 46 14
3.0-4.5 1115 372 112 37 11
4.0-5.9 1010 337 101 34 10

3.2. “True” Properties of Our Fiducial Model

Our CO emitters are drawn not from a luminosity function
but rather from the halo mass function output by the
MlustrisTNG simulations convolved with our CO luminosity
prescription. Therefore to define the “true” luminosity func-
tions and moments of our model against which we will
compare our simulated observations, we combine our 1000
light cones into a single large catalog and measure the
luminosity functions, moments, and other relevant physical
quantities of the entire sample.

The IustrisTNG-300 simulation is large enough to capture
scales up to the baryon acoustic oscillation scale (Springel et al.
2018). We thus assume that our ensemble of light cones fairly
samples the range of densities and is minimally subject to
cosmic variance, although limited sampling of the largest scales
may result in some underestimation of these effects. Further,
since the volume of our full set of light cones significantly
exceeds the full simulation volume, we effectively produce
many realizations of the same galaxies, sampling the full
distribution of possible CO luminosities produced by scatter in
our CO prescription.

Our “true” luminosity function at redshift 2.01-3.11 is
shown in black lines in Figure 1. Constraints from ASPECS at
the same redshift range (Decarli et al. 2019), from PHIBSS2 at
z ~ 2.2 (Lenki¢ et al. 2020), and from COLDz at z ~ 2.4
(Riechers et al. 2019) are also shown as boxes. These studies
reported constraints in a series of overlapping 0.5 dex bins,
which are highly correlated representations of the same data.
We show independent measurements as filled boxes and the
remainder as open boxes. Our model is not designed to
reproduce these measurements, but we note that there is
reasonable agreement with most data sets over the range
measured. Our model also produces number counts comparable
to observations when sensitivity limits and completeness are
accounted for. This means that where we find observational
biases that are dependent on the underlying luminosity
function, our model should be close enough to measurements
that direct comparison of our simulated observations with those
of real surveys is possible.

We perform a Schechter fit of this luminosity function
following the procedure described in Section 4 and
Appendix C, obtaining Ly, = 2.81 x 10" Kkms ' pc?,
by = 3.10 x 10 *Mpc >, and a = —1.54. This Schechter
fit is shown by the dashed line in Figure 1 and compared to the
values reported around z ~ 2.5 by ASPECS and COLDz and to
the z ~ 0 fit from xCOLD GASS in Table 3. Though our
modeling does not require a luminosity function that is well
described by a Schechter function or any other parametric
model, in practice we find good agreement between the fit and
our simulated population over the luminosity range of our
sample. For very rare objects (i.e., those found in fewer than
~15% of even our largest light cones) the true luminosity

function falls more slowly than the exponential part of the
Schechter function. Our model results in « lower than the value
found by Saintonge et al. (2017) at z ~ 0, the only redshift
where this parameter is currently well constrained. However,
we find in Section 7 that a steep faint-end slope will only
slightly alter the magnitude of biases seen in our simulations
relative to real observations. The first moment of the luminosity
function (mean brightness temperature) is 0.63 uK, corresp-
onding to a mean molecular gas densitzy of 4.8 x 10’

-~ Mpc? for aco = 3.6 M, (Kkms ' pc”)~'. The second
moment (shot power) is 502.54 pK*Mpc’.

4. Implications for the Luminosity Function
4.1. Estimation of the Luminosity Function

We compute the luminosity function in each light cone from
the object counts in luminosity bins of 0.25 dex. In Figure 2 we
show the median and 16th-84th percentile range of the
luminosity functions for light cones at a range of sizes of 5
to 500 arcmin” (indicated by different-color boxes). In general,
the median value recovers the true luminosity function (black
line) up to a cutoff luminosity, above which the survey
becomes too small to reliably include brighter galaxies with
low number densities. We indicate the location of this cutoff by
vertical hashes at the top and bottom of the plot. For the
smallest survey areas shown, the cutoff coincides with the knee
of the luminosity function.

This suggests that for small-area surveys, the bright end of the
luminosity function might artificially appear to drop rapidly. It
could be argued that the luminosity functions of individual fields
might still have enough filled bright bins to recover the shape of
the bright end. However, we find that the same effect is present
in the cumulative number density of galaxies, which is not
subject to binning artifacts, so this is a real observational
consequence of a small survey. Once the expected number of
objects brighter than L’ falls below a certain threshold for a given
survey size, the majority of surveys will not detect any such
objects.” This implies that accurately identifying the knee of the
luminosity function requires a survey volume for which at least
a few objects brighter than the turnover luminosity are
expected. Otherwise, artificial cutoffs introduced by the survey
itself may be misidentified as real changes in shape.

To assess how this affects parametric fits of the luminosity
function, we use a Markov Chain Monte Carlo (MCMC) fitting
procedure to fit Schechter functions to each of our light cones.
The fitting is implemented using the emcee package (Foreman-
Mackey et al. 2013) and is described in detail in Appendix C.
Figure 3 shows the combined parameter distributions for all
1000 light cones for a range of light cone sizes. For fields in the

3 Assuming that the number of bright galaxies per field is approximately
Poisson-distributed, this threshold is Vs (n(>L")) ~ 0.7.
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Figure 1. The luminosity function produced by our fiducial model over the
redshift range 2.0 < z < 3.1, measured in bins of 0.25 dex, and the best-fitting
Schechter function are shown by the solid and dashed black lines, respectively.
The luminosity function constraints from the COLDz CO(1-0), ASPECS
CO(3—2), and PHIBSS2 CO(3—2) direct line searches at z ~ 2-3 are shown
with blue, red, and gray boxes, respectively. These studies have reported
constraints in overlapping bins, producing covariant error boxes. We present
independent luminosity ranges as filled boxes, showing only outlines for the
remainder. CO(3—2) constraints are converted to CO(1—0) using a line ratio of
0.42 (Daddi et al. 2015). The molecular gas mass function from the
semianalytic model of Popping et al. (2019), converted to a luminosity
function using aco = 3.6 M, (K km s 'pc®) 'and 0.8 M., (K km s 'pchH !,
is shown by the dashed and dashed—dotted orange lines.

Table 3
Schechter Parameters of Our Model and a Number of Observational
Constraints
Source Redshift log Ly log ¢, «a
Model 2.0-3.1 10.45 —-3.51 —1.54
ASPECS 2.0-3.1 10987332 —3.83*0133 1.2 (fixed)
CO(3—2)*

COLDZz’ 20-2.8  10.779%  —3.8770%] —0.92199%
XxCOLD GASS 0.01-0.05  9.85%1%  —2.89%1  —1.13 +0.05

Notes.

* Converted to CO(1—0) luminosity function using Léoa-a) = 0.42L¢o3-2)-
> coLDz reports Sth to 95th percentile confidence intervals. ASPECS and
xCOLD GASS errors are in the 16th to 84th percentile.

5-15 arcmin” range (shown in yellow and light green), the one-
dimensional distribution for L, becomes biased toward small
values, as expected from the cutoff effect noted above.

The magnitude of this effect is dependent on the underlying
luminosity function. In particular, luminosity functions where
normalization at L, is higher (and thus more objects above L,
are expected) will produce less severe biases, while luminosity
functions with lower normalization will exacerbate the issue.
This means that the size of the field needed to constrain the
turnover of the luminosity function is dependent on the
luminosity function itself.

Keenan, Marrone, & Keating
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Figure 2. The true luminosity function (in Mpc > dex " units) for our fiducial
model at the median redshift of 2.6 is shown as a black line. Colored lines and
filled boxes represent the median and 16th—84th percentile spread in bins of
0.25 dex for a range of survey sizes. All survey sizes recover the true
distribution up to a (field size—dependent) maximum luminosity, where there is
a sharp drop to zero as the expected number of brighter objects falls below
~0.7 per survey volume. The thresholds where the median luminosity
functions fall to zero are shown by thick vertical hashes at the top and bottom
of the plot. These cutoffs happen at lower (higher) luminosities for smaller
(larger) volumes, resulting in an apparent steepening of the luminosity function
in small-area surveys.
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=
<

Because the shape of the luminosity function is not known in
advance, caution must be exercised when using surveys of
small volumes to constrain the luminosity function. Figure 4
shows the distribution of fitted values of L, as a function of
survey area (large points with error bars). The dashed black line
shows the brightest galaxy likely to appear in a field of a given
area, and where this value drops below the true value of L,
(solid black line), the fitted value of L, tends to be biased
below the true value. For our simulated light cones this happens
for fields smaller than ~10 arcmin®. Considering individual
light cone realizations (small points), those that have zero
galaxies with L > L, have fitted values of L, below the true
value, and those with one or more such galaxies typically have
high values.

A similar effect has been encountered in optical /IR surveys
used to constrain the rest-frame 1500 A luminosity function at
high redshift. Early constraints at z < 4 had found evidence for
a decline in characteristic luminosity Ly yy (e.g., Bouwens
et al. 2008; Su et al. 2011). Later analysis using larger-area data
sets covering hundreds of square arcminutes did not replicate
this evolution, finding instead that a steepening of the faint-end
slope better fits the data (Finkelstein et al. 2015). Bouwens
et al. (2015) found that the apparent evolution of Ly yy was
partly due to the small areas used in previous analyses poorly
constraining the bright end of the luminosity function,
especially in the presence of steep faint-end slopes. This
has important consequences for models of galaxy evolution,
as a changing characteristic luminosity lends to physical
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Figure 3. Combined distributions of fitted Schechter parameters for all 1000 light cones. We show the normalization parameterized using both ¢, andn = f o(L)dL.
In the upper plot of each column the one-dimensional probability densities for each parameter are shown for five different survey areas. Gray dashed lines show the
true value of each parameter. Note that small surveys show a bias toward low L, and high ¢, in addition to wider distributions. The remaining plots show contours
containing 39.9% and 86.5% (corresponding to 1o and 20 confidence intervals in two dimensions) of the fitted values in pairs of parameters. The dashed histograms/
contours are the results for light cones with no large-scale structure, which show slightly tighter two-dimensional constraints but virtually identical one-dimensional
results for ¢, and the shape parameters L, and «. For n, which removes the shape dependence from the normalization term, a clear increase in variance can be seen

when cosmic variance is included.

interpretations other than changes in the faint-end slope (e.g.,
Jaacks et al. 2012; Somerville et al. 2012).

4.2. Cosmic Variance in Luminosity Function Constraints

The fields used for CO luminosity function studies have all
contained 15 or fewer objects per redshift window, compared
to the hundreds or thousands used in typical studies of the UV
luminosity function at comparable redshifts (e.g., Arnouts et al.
2005; Reddy & Steidel 2009). Results for the CO luminosity
function have therefore dismissed cosmic variance as negligible
in comparison to Poisson variance, owing to the small sample
sizes involved.

To validate this, we use our Poisson (large-scale structure
free) light cones. Figure 5 shows the measured luminosity
functions for 20 light cones with (black) and without (cyan)
cosmic variance in 5, 50, and 250 arcmin? areas. In the smallest
areas, the Poisson light cone luminosity functions show
behavior similar to that of the full simulation light cones, with
the counts in each bin largely uncorrelated. In volumes this

small, the counts in all bins are sufficiently low that Poisson
variance dominates.

For larger areas the Poisson light cones show reduced
spread. However, while the bins of the Poisson luminosity
functions are uncorrelated, in the luminosity functions where
large-scale structure is taken into account there is a clear
covariance between bins. This is a cosmic variance effect: as
different light cones probe underdense (overdense) regions, the
number of objects at all luminosities falls (rises). In the
50 arcmin’ area, the counts for the Poisson light cones still
show appreciable variation, indicating that Poisson variance
continues to be important at all luminosities, and dominates at
the bright end. However, as the area increases, the magnitude
of the Poisson variance falls faster than the cosmic variance
contribution, and more bins become cosmic variance
dominated.

The left panel of Figure 6 shows the relative contribution of
Poisson (dashed lines) and cosmic (solid lines) variance to the
sample variance in each luminosity bin for a range of survey
sizes. We separate the cosmic variance from the Poisson
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Figure 4. The fitted values of L, from our MCMC parameter fitting are shown
as a function of survey area. The true value of L, is marked with a horizontal
black line. Large points with vertical error bars show the median and 16th to
84th percentile spread in the fitted value of L, in the ensemble of light cones
and are color-coded by the expected number of galaxies with luminosities
greater than L,.. Small points (offset to the left) show the fits for a sample of 25
individual light cones and are colored according to the number of galaxies with
luminosities greater than L, found in the individual survey volume. The dashed
black line shows the brightest object likely to appear in the survey volume,
defined as the luminosity above which the cumulative number equals one.

variance in each luminosity function bin using Equation (11).
The total sample variance is measured from the 1000 full light
cones, and the Poisson variance is computed based on the mean
number of sources per bin. For the smallest areas, Poisson
variance is the dominant contribution in all bins and contributes
over 90% for bins above L, (2.81 X 10" Kkms™! pcz, shown
by the vertical line). As surveys become larger, cosmic
variance grows in importance for low-luminosity bins, reaching
~90% in the largest surveys. However, even for the largest
areas, Poisson variance begins to outweigh cosmic variance
around L.

The exact behavior of the curves on the left of Figure 6
depends on the underlying luminosity function, because it is
number density, not luminosity, that sets the degree of
variance. In the right panel of Figure 6 we map each luminosity
bin to its corresponding value of ¢ using the true luminosity
function for our model. Although the degree of cosmic variance
may have some secondary dependence on the exact input
model, this representation should allow reasonable, model-
independent comparisons. Note that when the line-of-sight
length, d, of the survey is greater than the characteristic scale of
clustering, both the cosmic and Poisson variance should scale
as ~1/d (Driver & Robotham 2010); thus, when different
surveys are being compared, these results should be fairly
insensitive to the exact length of the redshift interval.

We find that below 2 x 10~*Mpc > dex ' Poisson variance
is the main contributor to the variance for all survey sizes
considered. Above this density, cosmic variance begins to
dominate for large light cones. The ASPECS CO(3-2)
luminosity =~ function = measurements  cluster  around
107*¢Mpc = dex . Figure 6 shows that for a 5 arcmin® field
size cosmic variance is less than 20% of the total sample
variance. This confirms that cosmic variance is of secondary
importance for ASPECS constraints on individual bins of the
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luminosity function. However, for the lower-redshift ASPECS
CO(2—1) results, some bins are as high as 10~>°Mpc >
dex™'. For such bins cosmic variance approaches 40% of the
total sample variance and is large enough that it should not be
neglected. For surveys comparable in size to the COLDz wide
field, Poisson variance is the primary contribution below
~7 x 107*Mpc dex'. Many of the COLDz data points fall
in the range 10~ *~107> Mpc > dex ', where cosmic variance
contributes 15%-60% in a 50 arcmin’ field. We note that
COLDz and ASPECS presented their luminosity functions in
bins of 0.5 dex rather than the 0.25 dex used here. We explore
the effects of adopting larger bins and find that our results are
unchanged.

In Figure 3 we show the results of Schechter fits to our
Poisson light cones with dashed lines. The 20 contours for L.,
¢4, and o become slightly tighter after removal of the effects of
cosmic variance, but otherwise we see no discernible effect on
our fits for these parameters. At the faint end, the effect of
cosmic variance is to jointly shift bins up or down, without
affecting the overall slope, as can be seen in the individual light
cone luminosity functions of Figure 5. Thus cosmic variance
effects should leave « unaltered. Furthermore, Poisson variance
is the primary source of uncertainty for bins at or above L,
even for the largest survey considered here, so cosmic variance
should have a limited effect on the fitted value of L.

The parameter where we would expect to see the strongest
effect of cosmic variance is the normalization ¢,, but in the
formulation given in Equation (4), ¢, contains information
about both the shape and the normalization of the luminosity
function, and the dependence on the shape parameters hides the
effect of cosmic variance. Figure 3 also shows the joint
distribution of the mean number density of all CO-emitting
objects, defined as

n= o, f (L'/Ly)* exp(—L'/Ly)dL. (13)

This reparameterization separates the shape and normalization,
and we do find a significant widening of the contours in the n
direction when cosmic variance is included, even for the
smallest survey areas. This highlights the important fact that
integral quantities relating to the luminosity function are more
subject to cosmic variance than individual bins. We explore
this further in the following section.

5. Implications for Moments of the Luminosity Function

The cosmic molecular gas density is an integrated measure-
ment, corresponding to the first moment of the luminosity
function times aco. Direct detection efforts seek to constrain
this quantity by summing over the detected objects. Intensity
mapping naturally measures moments of the luminosity
function, with the clustering power proportional to the first
moment and the shot power proportional to the second. In this
section we explore measurements of the first and second
moments of the luminosity function.

The luminosity weighting of the moments gives added
importance to the bright end, where low number densities
create the largest uncertainties. Figure 7 shows the median and
16th—84th percentile range of the quantities ¢(L') x L' and
¢(L') x L'? as a function of L’ for a range of survey sizes.
These are the quantities integrated to determine the first and
second moments of the luminosity function, and the right
axes give them in units of differential mean brightness
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the left panel this is shown as the fractional contribution of each type of variance in 0.25 dex luminosity bins, and in the right panel it is shown as a function of the
number density of objects. The dashed vertical lines indicate the characteristic luminosity L, (left) and normalization ¢(L,) (right) of our model, where

Ly, =281 x 10" Kkms ™! pc?.

temperature (uK dex ') and power (uK2 Mpc3 dex™1). A wide
range of luminosities contribute to the first moment, while the
L? weighting of the second moment creates a sharp peak near
L. As shown in Figure 2, there is a survey size—dependent
cutoff luminosity above which most light cones have no bright
objects. For measurements of the moments of the luminosity
function, the effect of this cutoff is more severe. The cutoff
luminosity encroaches on the bins contributing the most to the
first moment and reaches below the dominant bins for the

10

second moment in the smallest survey areas. Small surveys can
therefore be expected to underestimate both moments of the
luminosity function, with the most severe effect seen in the
second moment.

5.1. Estimation of the Moments

We calculate the moments of our light cones by summing
over all objects down to L' = 10° Kkms ' pc®. Figure 7



THE ASTROPHYSICAL JOURNAL, 904:127 (24pp), 2020 December 1

) i 4100
S 3
™ 10’ 3 -
9 [ I
S )
{1071 ©
<N AV4
N 6 L
9 10 ; =
n i 1
[@)]
v | Survey Area {10-2 o
S 5 am? RS
2105} z =
v 3 15 am t
= [ 50 am? ©
| 150 am?
x 500 am? Il {1073
© 1l PR | PRI | L T
hSS 109 1010 1011 1012
L’ [K km s~ pc?]
1018 [T LR | T T T T
[ I =
] 103

.-I'T'
X
(V]
© |
m x
| (0]
& ©
= ma
&~ 10%7 ¢ =
O [ o~
2 X
7 4102 =
] ] |
[@)]
5 S
o
A4 <
= 1016 3 ;_i
~ [
~ [a
- i1 =
é [0 P | A NN T 101
< 10° 1010 101! 1012

L’ [K km st pc?]

Figure 7. Differential contributions from luminosity bins of 0.25 dex to the first
(top) and second (bottom) moments of the luminosity function. The left vertical
axis gives units in terms of the raw moments of the luminosity function, while
the right axis is converted to differentials of the corresponding observed
quantities. Shown in black is the true contribution from each bin over the full
sky. The thin lines and colored boxes show the median and 16th—84th
percentile range for fields of a variety of sizes. The dashed vertical lines
indicate the characteristic luminosity of our model, L,. At a given field size, the
median shows a cutoff, indicated by the vertical hashes at the top and bottom of
each panel, above which contributions are not recovered, because brighter
objects have too low a number density. This cutoff biases the measured
moments of the luminosity low, especially for the smallest surveys, where even
bins near the peak appear to have zero contribution.

shows that this cutoff excludes very little of the total
contribution to the second moment but may underestimate
the first moment. In reality, the CO luminosity function is
expected to drop off at some point, since baryonic processes are
expected to become less efficient in halos below some mass
cutoff (Pullen et al. 2013). However, the location of this cutoff
is not known. Inte%rating the Schechter fit of our fiducial model
down to L' = 10’° Kkm sflpcz, we find that our cutoff
misses approximately 23% of the first moment, with even
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lower luminosities contributing negligibly. Similarly, running
our model itself including galaxies down to L' = 107~
Kkms ™' pc? suggests 29% of the first moment is missed by
the higher cutoff (the small discrepancy between the two
approaches is due to a slight upturn in the model luminosity
function below the range for which we perform our Schechter
fitting). These corrections depend on the faint-end slope of the
luminosity function, with shallower slopes resulting in smaller
contributions below 10° Kkms 'pc”. For direct detection
surveys, this is irrelevant, as current instruments lack the
sensitivity to probe these lower luminosities. For intensity
mapping, the clustering power is proportional to the first
moment, so including these galaxies may alter the uncertainties
somewhat (shot power is unaffected as the second moment is
insensitive to these galaxies). Section 7 explores the effects of
changing the faint-end slope of the luminosity function, which
has much the same effect as including fainter galaxies, and
finds that our results are unchanged. In any case, since objects
above 10° Kkms ™' p02 contribute ~75% of the first moment,
we assume the effect of fainter objects is smaller than
uncertainties due to model selection and do not consider them
further.

In the upper panels of Figures 8 and 9 we show the medians
and distributions of the measured mean brightness temperature
(corresponding to the first moment) and measured shot power
(corresponding to the second moment) as a function of survey
area. As expected, small-area surveys tend to underestimate the
true moments. For the mean brightness temperature, and by
extension p, ;. this effect is relatively small, just 8% at 5
arcmin®. As noted previously, the left panel of Figure 7 helps
explain why: galaxies well below L, that are numerous in fields
of all sizes contribute significantly to the first moment, while
bright galaxies missed by small surveys contribute only a
fraction of the total value.

In practice direct detection surveys have been limited in
depth to around the knee of the luminosity function, and these
surveys measure only the contribution to the mean brightness
temperature from objects above the detection threshold (Decarli
et al. 2019). To represent this effect, we recompute our moment
statistics using catalogs truncated at a range of luminosities.
Figure 10 shows the median and range of truncated first
moments for a number of cutoffs, normalized by the true mean
brightness temperature of our model. The primary effect of the
cutoff is to reduce the recovered fraction of the mean brightness
temperature. For small surveys and higher luminosity cutoffs
there is also a small increase in the discrepancy between the
median and true values (dashed and solid lines).

An ASPECS-like (5 arcmin?) survey that probes 1 dex below
L, can be expected to measure between 61% and 136% (16th—
84th percentile range) of the mean brightness temperature
contribution of objects bright enough to be detected, with a
median value of 95%. This corresponds to 50%—111% of the
full mean brightness temperature, with a median of 77%. On
the other hand, for a cutoff at L., the median survey recovers
only 13% of the full mean brightness temperature, with a range
of 0% to 34%.

Figure 9 shows that small surveys face a much more severe
downward bias when constraining the shot power (second
moment). The median light cone measures a second moment
substantially lower than the true second moment at a wide
range of survey sizes. This is because a handful of bright
galaxies around the knee of the luminosity function contribute
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Figure 8. Top: Median (dashed line) and 16th—84th percentile range (filled area) of first-moment measurements as a function of survey area for light cones with (dark
gray) and without (light gray) large-scale structure. The solid horizontal line indicates the true value implied by our model. The colored vertical lines correspond to
areas for which we show the distribution of moments for all 1000 light cones in the bottom panels. On the right axis we show the units of the mean molecular gas
density, computed using Equation (8) and aco = 3.6 M, (K km s~' pc?)~'. Bottom: Distribution of mean brightness temperatures for light cones with (thick lines)

and without (thin lines) large-scale structure.

the majority of the shot power, and small surveys do not cover
enough area to reliably recover their contributions.

5.2. Cosmic Variance in Moment Constraints

Figures 8 and 9 show the distribution of moment measure-
ments for light cones with and without large-scale structure.

For the first moment, cosmic variance makes a greater
contribution to the overall spread of our measurements, even
down to very small survey areas. Inserting the variance in mean
brightness temperatures for our full and Poisson light cones
into Equation (11), we find that the cosmic variance is equal to
45% of the total sample variance for a 5 arcmin® survey. For
larger surveys this rises to 65%, 77%, 87%, and 92% of the
total for 15, 50, 150, and 500 arcmin? areas, respectively. When
cosmic variance is not accounted for, this yields error bars that
are too small by 25% for the 5 arcmin® survey, and the larger
surveys underestimate their errors by 41%, 52%, 64%, and
72%, respectively. This suggests that the error bars in plots of
the redshift evolution of p,, have been underestimated. We
explore how accounting for these errors affects the constraints
on this evolution in the next section.

For the second moment, the inclusion of large-scale structure
adds only minimally to the variance. For our 500 arcmin?
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survey, cosmic variance accounts for 33% of the sample
variance, leading to error bars too small by 19%. This follows
from the results of Section 4.2, where we find that for the
galaxies around L., to which the second moment is the most
sensitive, Poisson variance outweighs cosmic variance for all
survey sizes considered.

6. Redshift Evolution

Up to this point we have restricted our discussion to redshift
(z) = 2.6. In order to assess how the luminosity function and
its moments evolve, we have repeated our analysis for the
redshift ranges 1.0-1.7, 3.0-4.5, and 4.0-5.9, corresponding to
the redshift regimes probed in CO(2—1), CO(4—3), and CO(5
—4) by the 3mm ASPECS observations. The top panel of
Figure 11 shows the median and range of luminosity functions
along with the observational constraints on the luminosity
function from ASPECS, COLDz, and PHIBSS2 (open boxes).
The ASPECS and PHIBSS2 results are scaled from higher-J
CO luminosities to CO(l—O) using LCO(J_(J_l))/LCO(l,O) of
0.76, 0.42, and 0.31 for J = 2, 3, and 4 (Daddi et al. 2015;
Decarli et al. 2019). We also show the true luminosity function
from our model at each redshift and at redshift 2.0-3.1 with
black and gray lines, respectively.
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Figure 9. Top: Median (dashed line) and 16th—84th percentile range (filled
area) of second-moment measurements as a function of survey area for light
cones with (dark gray) and without (light gray) large-scale structure. The solid
horizontal line indicates the true value implied by our model. The colored
vertical lines correspond to areas for which we show the distribution of
moments for all 1000 light cones in the bottom panels. Bottom: Distribution of
mean brightness temperatures for light cones with (thick lines) and without
(thin lines) large-scale structure.

Our model results in the evolution of the shape and
normalization of the luminosity function. There is a drop in
the normalization between (z) = 3.8 and (z) = 4.9. Section 4
implies that this will make it more difficult for small surveys to
measure the bright end. We indeed see that some 5 arcmin?
surveys cut off well below the knee of the luminosity function.
But this effect is lessened somewhat by the larger volume
sampled at higher redshifts for a survey of fixed area and
frequency coverage.

Because the conversion between mean brightness temper-
ature and mean molecular gas density (Equation (8)) depends
on redshift, constant temperature with redshift does not imply
constant molecular gas density. Therefore to compare redshifts
we convert our mean brightness temperatures to mean
molecular gas densities using Equation (8) and aco =
3.6 M., (Kkms 'pc?)~'. The bottom panels of Figure 11
show the 16th—84th percentile range of the measured mean
molecular gas density as a function of area for each redshift
window (filled regions), along with the true value at each
redshift (horizontal lines). In the left panel we show the ranges
for Poisson light cones with no large-scale structure, while in the
right, we show light cones with large-scale structures included.
The density peaks in the redshift range 1 < z < 2 and falls at
later times. From this figure we see that surveys wishing to
constrain the cosmic evolution of molecular gas likely need very
large survey areas (hundreds of square arcminutes) in order to
reliably distinguish the evolutionary signature from Poisson and
cosmic variance for redshifts 1 < z < 3.

For the second moment, Poisson uncertainties are the
dominant contribution to the errors for all survey sizes and
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Figure 10. True value (solid lines), median value (dashed lines), and 16th—84th
percentile range (filled areas) of the measured mean brightness temgerature of
objects above a series of L’ cutoffs ranging from 10°% K km s ™' pc? (1.45 dex
below L* for this model) to 10" Kkms™! p02 (Ly). The values are
normalized by the true mean brightness temperature of all objects brighter than
10°9° K kms™' pc? (T)e = 0.63 pK). Light filled regions indicate the
Poisson contribution to the range, while darker regions include cosmic
variance.

redshifts. We show the evolution of the second moment in
Appendix D. Changes in the shape of the bright end of the
luminosity function produce an increase in the second moment
from redshift 1.4 to 2.6. As a result, for redshifts 1 < z < 3
evolution in the second moment can be detected in much
smaller fields compared to evolution in the first moment. On
the other hand, evolution at higher redshifts is more difficult to
detect in our models. This highlights the complementary
information that can be extracted from measurements of both
moments in intensity mapping surveys.

7. Effects of Altering Model Parameters

The exact degree and nature of many of the biases that we
have identified depend on the underlying shape of the
luminosity function. This is most easily seen in the left panel of
Figure 7. In the figure, a wide range of luminosities contribute
relatively equally to the first moment. If the faint-end slope of
the luminosity function were altered, the contribution of faint
galaxies would change, shifting the weight given to rarer
galaxies around the knee of the luminosity function. In the case
of very flat slopes, this would result in a larger downward bias
in the recovered mean brightness temperature for small survey
areas.

To explore these effects we modify our fiducial model in two
ways. First, we change the scatter in our IR and CO luminosity
prescription (keeping the mean value fixed). This tends to alter
the number of objects that scatter up from low-luminosity bins
to higher bins, which moves the knee of the luminosity
function to higher luminosities for larger scatter. We apply
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Figure 11. Top: From left to right we show the results of evaluating our modeled luminosity function at redshifts (z) = 1.4, 2.6, 3.8, and 4.9 corresponding to the
redshift windows probed by CO(2—1), (3—2), (4—3), and (5—4), respectively, in ASPECS. Colored lines and filled boxes show the median and 16th to 84th percentile
range of CO luminosity functions recovered by surveys of a range of sizes (colored to match Figure 2). The black and gray lines show the true model luminosity
function for the redshift window and redshift 2.6, respectively. Plotted with open boxes are the luminosity function measurements from Riechers et al. (2019; blue),
Decarli et al. (2019; red), and Lenkic et al. (2020; gray). Bottom: 16th—84th percentile range (filled regions) as a function of area and true value (horizontal lines) of
Pmol for each redshift, converted from (7') using Equation (8) and aco = 3.6 M, (K km s7! pcz)’ !, On the left side we account only for Poisson variance, while on the
right side we include both Poisson and cosmic variance, which results in considerably wider uncertainties.

scatters of o = (0.25 and 0.45 dex (0.1 dex less and more than
that in our fiducial model).

Second, we alter the slope and y-intercept of the IR-to-CO
luminosity prescription in Equation (12). Li et al. (2016) found
that the fits for this relation from a number of previous high-
redshift studies fall near

a=0.10b + 1.19 (14)
and so we use (a, b) pairs (0.97, 2.2) and (1.77, —5.8) along this
line. The primary effect of increasing a (decreasing b) is to
steepen the faint-end slope of the luminosity function. Note that
the variations we explore for (a, b) are intentionally extreme in
order to illustrate that our results are insensitive to large changes
in the luminosity function shape. Not all of these represent
realistic models; a=1.77 implies a slope for the integrated
Kennicutt—Schmidt relation much steeper than supported by
most observations at high redshift (Carilli & Walter 2013;
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Greve et al. 2014; Dessauges-Zavadsky et al. 2015; Aravena
et al. 2019; Freundlich et al. 2019).

The combination of these two model variations allows us to
explore a range of luminosity function shapes. Figure 12 shows
the luminosity functions, mean brightness temperatures, and
shot powers as a function of area for our fiducial model and the
full set of model variants described above. The mean
luminosity function and the median and range of moments
for our fiducial model are reproduced with gray lines in each
column to facilitate comparison.

Our primary findings are not affected by model choice. In all
cases, surveys of very small areas fail to recover objects above
Ly, and measure moments of the luminosity function
considerably less than their true values. The degree of these
biases is somewhat dependent on the input model.

Broadly, increasing the scatter produces brighter and rarer
objects, reducing the likelihood of the median survey
accurately measuring the bright end. As o increases from
0.25 to 0.45, L, grows relative to the luminosity of the
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Figure 12. Results from our fiducial model (column 1) and variations on our model with the scatter parameter decreased /increased by 0.1 dex (column 2/3) or the Lig
to Lco relation changed by decreasing/increasing a by 0.4 (column 4/5). In the top row we show the median and 16th-84th percentile ranges for the luminosity
functions of light cones of a range of sizes (colored to match Figure 2), along with the true luminosity function in black and the luminosity function of the fiducial
model in gray. The second row shows the median (black line) and range (filled area) of mean brightness temperatures, normalized by the true value, as a function of
survey area. Dark contours are the spread of light cones with cosmic variance included, while light colors show only the Poisson contribution. The third row shows the
same quantities for the shot power. We reproduce the median and range of our fiducial model with gray lines in each panel. The range of Poisson light cones for our

fiducial model is shown with dashed gray lines.

brightest object likely to be recovered in small surveys, making
it harder to measure the shape of the bright end. Also, the
downward bias in the moment measurements becomes more
pronounced, even for larger surveys. For the second moment, at
o = 0.45, the median does not completely converge with the
mean even for the largest survey sizes.

As Li et al. (2016) pointed out, many of the papers from
which Equation (14) is derived use similar or overlapping data
sets. To first order then, differing fits are just different ways of
drawing a line that passes through the subset of galaxies that
are both bright enough to be detected and common enough to
be selected. As such the effects of changing (a, b) are limited
mostly to the faint end.

These changes have a less pronounced effect on the
measurement of the luminosity function. The shallow faint-
end slopes produced by small values of a also decrease the
weight given to the faint end in the moment measurements,
resulting in increased fractional variance. Shallow slopes also
cause a slightly greater downward bias in the moment
measurements, although for the range of parameters explored
here this effect is negligible.
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8. Discussion
8.1. Implications for the Shape of the CO Luminosity Function

ASPECS sought to determine the CO luminosity function
out to z ~ 4 and place constraints on the redshift evolution of
the cosmic molecular gas density (Decarli et al. 2016, 2019).
The small sky area used for this survey inherently limits the
range of luminosities that can be recovered—galaxies that
determine the bright-end behavior of the luminosity function
are rare and may not reliably appear in fields the size of the
HUDF. Our modeling finds that the result of this is a downward
bias in the fitted knee of the luminosity function. Over limited
ranges in L, the parameters of the Schechter fit are highly
degenerate. Observational studies of the UV luminosity
function found that decreasing o and increasing ¢, at fixed
L, can produce fits comparable to those when decreasing L.,
(Bouwens et al. 2015). This is clear from our Figure 3, where
even using galaxies down to 1.5 orders of magnitude below L.,
there are large degeneracies in all parameters for fields smaller
than 500 arcmin® owing to incompleteness at the bright end. A
similar effect seems to have been at least partially responsible
for apparent evolution in the characteristic UV luminosity
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observed at z > 5 by studies completed before the full
CANDELS data set became available (Bouwens et al. 2015).

In reality, the range in L probed by ASPECS is
approximately 1 dex, which will worsen these degeneracies.
In fitting their luminosity functions, Decarli et al. (2019) fixed
the value of o to —1.2 at all redshifts based on results from
lower redshift (Saintonge et al. 2017). However, studies of the
UV luminosity function have found a redshift evolution of the
faint-end slope (Reddy & Steidel 2009; Bouwens et al. 2015;
Finkelstein et al. 2015), and the correlation between the star
formation powering the UV luminosity and the molecular gas
content (Kennicutt & Evans 2012) suggests that the CO
luminosity function might evolve similarly. If there is
unmodeled evolution, the parameter degeneracies will translate
the error in the assumed « to biases in the fitted values of the
other parameters. If the z ~ 2.5 slope of the CO luminosity
function is steeper than assumed by the ASPECS fits, this
would have the effect of decreasing the fitted L, value,
potentially resulting in an underestimate of both the bright- and
faint-end number densities.

The COLDz survey observed CO(1—0) at z ~ 2.4 over an
area ~10 times that of ASPECS. The sensitivity and array
setup of their wide-field observations varied over the survey
area, which changed the effective area over which COLDz was
sensitive to objects of a given brightness. Pavesi et al. (2018)
accounted for sensitivity variations by injecting simulated
sources and measuring the fraction recovered as a function of
flux and line width. The number densities of detected sources
are then corrected by this fraction. For this procedure to work,
the detected objects must be representative of the unrecovered
ones. For bright galaxies, this assumption fails, because there
may be only a handful in the whole volume. This can cause the
biases we have found for small surveys to apply in surveys with
larger nominal areas. Figure 21 of Pavesi et al. (2018) suggests
that the completeness for L, objects can fall well below 50% in
the COLDz wide field; therefore the effective area over which
L, galaxies can be detected is much less than 50 arcminz, and
their bright-end fits may be subject to considerable bias.

Lenki¢ et al. (2020) reported the results of searching many
independent data cubes from the targeted PHIBSS2 observa-
tions for additional serendipitous sources and used these
detections to constrain the CO luminosity function in a manner
similar to a blind survey. The volume searched is comparable
to that of COLDz, although spread over a wider range of
redshifts. Unfortunately, the large variations in integration time
between their fields make an assessment of the volume over
which different sources might be detected impossible here. We
note that their (z) = 2.4 luminosity function shows an excess
of bright sources compared to that of COLDz, suggesting the
volume covered by these two surveys is not yet large enough to
fully constrain the knee of the luminosity function.

When computing the UV luminosity function, Finkelstein
et al. (2015) converted their completeness corrections into
effective volumes, which they reported as a function of
luminosity. Taking a similar approach may be useful in future
CO line scan results and can be used to more fairly represent
the true volumes probed when comparing surveys.

The wide-field extension to ASPECS will search for CO
emitters over an area of ~50 arcmin® in a more limited redshift
range and may begin to improve the situation described here,
assuming that it can reach the needed depth to detect objects
around L, with more uniform coverage than COLDz.
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Experience from luminosity function studies at other wave-
lengths suggests that surveys of hundreds of square arcminutes
will likely be necessary to fully constrain the shape of the
luminosity function.

8.2. Implications for Cosmic Molecular Gas Density
8.2.1. Sensitivity Limitations

The results of Section 4 also have implications for efforts to
measure the cosmic molecular gas density from direct
measurements. Current-generation surveys likely cannot con-
strain the shape of the luminosity function with high precision.
The parameter degeneracies and lack of dynamic range in
fitting the shape of the luminosity function make it impossible
to draw conclusions about the relative importance of faint
galaxies. The COLDz fit for the faint-end slope allows a range
of @ = 0.0 to @ = —1.8 (not meaningfully different from their
uniform prior), and the PHIBSS2 fit at lower redshift
(z) = 0.7) also allows a wide range. Without better constraints
on this parameter, line scans cannot independently constrain
the contribution of faint galaxies to the total molecular gas
density.

To avoid extrapolation of the luminosity function, recent
blank-field searches have assessed the molecular gas density
from their detections alone. Figure 10 shows that this approach
can recover the true mean brightness temperature, and therefore
the pme contribution, of these galaxies with relatively little
bias. On the other hand, the fraction of the total molecular gas
density recovered is uncertain. In addition, since the luminosity
range recovered varies with redshift, directly comparing the
molecular gas density at different redshifts can produce
apparent evolution purely due to selection effects.

Popping et al. (2019) also explored biases in the ASPECS
measurement of p,. in the context of comparisons with more
sophisticated simulations of the molecular gas content of
galaxies. Their approach simulates a molecular gas mass that
must then be converted to CO luminosity by assuming a value
of aco. We show in Figure 1 the luminosity functions
produced by the semianalytic model of Popping et al. (2019)
adopting both aco = 3.6 M., (Kkms 'pc®)~', found by
Daddi et al. (2010) to be appropriate for redshift 1.5 star-
forming galaxies, and aco = 0.8 M. (Kkms 'pc?) !,
appropriate for local starburst galaxies (Downes & Solo-
mon 1998). Both models struggle to reproduce the full shape of
the luminosity function imglied by observational data. The
aco = 3.6 M, (Kkms ™' pc) ™! luminosity function drops off
sharply around the sensitivity limit of ASPECS and produces
too few bright objects. A choice of aco=0.8 M,
(Kkms 'pc®)~' gives a higher recovered fraction but still
does not match the shape of the CO luminosity, instead
producing too many faint galaxies.

Observational constraints on «aco from redshifts 1.0-1.6
favor a Milky Way-like value (Daddi et al. 2010; Carleton
et al. 2017). The models in Popping et al. (2019) would then
suggest that a survey with an ASPECS-like area and depth only
recovers ~10% of the total molecular gas mass density at
z > 2. On the other hand, our Figure 10 suggests that a survey
with a cutoff of log Lc/oufo) = 9.45 (approximately the
sensitivity reached by ASPECS and one comparable to the
threshold assumed in Popping et al. 2019) recovers 77 33% of
the CO luminosity galaxies with L' > 10° Kkms 'pc’.
Assuming fainter galaxies account for ~25% of the total
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luminosity (see Section 5.1) gives an overall recovery rate of
ssi%;‘%. In contrast to the results of Popping et al. (2019) this
suggests that ASPECS is accounting for a sizable fraction of
the total molecular gas density at least out to z ~ 3, without the
need to invoke small values of acq.

As Popping et al. (2019) pointed out, there are a number of
unresolved issues in galaxy theory that make matching
observations with physics-based models challenging. The
purpose of our models is to produce realistic forecasts using
empirical relations and scaling laws, which allow us to
circumvent many of these issues. As our model reasonably
reproduces observations over the full luminosity and redshift
range considered, it seems plausible that current surveys do
recover a substantial fraction of the total molecular gas density.

Intensity mapping experiments directly constrain the integral
of the luminosity function over all luminosities and can recover
the mean brightness temperature with no luminosity cutoff.
This will allow them to provide a check on the cutoff-related
biases identified here and in Popping et al. (2019). In addition
to filling in missing information about the faint end, upcoming
intensity mapping experiments will survey areas of hundreds to
thousands of square arcminutes, potentially making them more
robust to field-to-field variations and downward biases in
luminosity function moments.

There are a number of complications in constraining pp,q via
intensity mapping. The CO clustering power spectrum, from
which the mean brightness temperature is derived, also depends
on the tracer bias bco and the matter power spectrum Py,
which introduce their own uncertainties. In addition, the CO
luminosity to molecular gas mass conversion factor acq varies
considerably among different galaxy populations. If this results
in variations in the mean aco over different parts of the
luminosity function, then a simple scaling of the first moment
of the luminosity function does not recover p,,. Moreover,
intensity mapping experiments use higher-excitation transitions
of the CO lines and must invoke a conversion, r;;, to convert to
CO(1—0) luminosity. This conversion factor varies from
galaxy to galaxy depending on the conditions of the interstellar
matter and has only been measured for a handful of “typical”
star-forming galaxies at high redshift. In current results from
both intensity mapping and direct detection, both aco and 7,
are assumed to be known constants. In principle, direct
detection surveys provide catalogs of galaxies that can be
followed up to produce improved constraints on these
quantities for each object being considered. Intensity mapping
does not provide targets for directed follow-up.

As this field develops, joint fitting of intensity mapping and
direct detection constraints may provide insight into the shape
of the luminosity function well below the detection limit.
Combined with trends in aico with L or other galaxy properties
identified by direct detection surveys, this would allow for
computation of p,,, by integrating over the full luminosity
function.

8.2.2. The Importance of Cosmic Variance

Figure 8 shows that the variance in the mean brightness
temperature and p,,, exceeds the expectation for Poisson
statistics at all survey sizes. For an ASPECS-sized survey,
cosmic variance widens the 16th—84th percentile range by
about 30%, and for a survey the size of COLDz it fully doubles
the range. Treatments of cosmic variance in observational
papers about the CO luminosity function have tended to
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dismiss it as a secondary effect and not included it in reported
errors. Our results suggest that this results in a substantial
underestimation of the uncertainty in py,e;.

Riechers et al. (2019) and Lenki¢ et al. (2020) reported
estimates of cosmic variance using the formula from Driver &
Robotham (2010). That work considered the variance in galaxy
counts based on samples of z = 0.03 — 0.1 My galaxies,
though not the variance of the luminosity moments of those
counts, and intentionally sought to avoid effects from highly
biased galaxies that might dominate surveys of the very
brightest CO line emitters. To provide a more apposite
prediction, in Appendix A we provide a prescription for
estimating cosmic variance in p,o. A comparison between our
prescription and prior results suggests that care must be taken
in identifying applicable methods for determining sample
variance. The quantities being measured as well as the
clustering of the galaxies under consideration can significantly
alter estimates of sample variance, by up to a factor of four in
some cases.

The cosmic molecular gas density is expected to evolve in a
manner analogous to the cosmic SFRD (Tacconi et al. 2018).
Testing this expectation is a central goal of studies of molecular
gas at high redshift. Figure 11 shows that when cosmic
variance is accounted for, definitively identifying evolution in
Pmol becomes much more difficult than has been appreciated.
For surveys of a single contiguous field, we find that even a
500 arcmin® area (an order of magnitude larger than that of the
largest direct detection surveys completed thus far) cannot
detect the evolution in our model from z ~ 1 to 3 during the
peak of cosmic star formation.

The exact evolution is model-dependent, but Figure 11 gives
a sense of the degrees of evolution that are identifiable in
different survey sizes. The SFRD rises and then falls by a factor
of ~2 and from redshifts 4 to 2 (Madau & Dickinson 2014). If
the SFRD and molecular gas histories are comparable, then
comparing redshifts 1.4 and 3.8 in Figure 11 suggests factors of
~2 are indistinguishable in a 5 arcmin® survey and only reach a
significance of ~2¢ in a 50 arcmin® survey. This implies that
identifying this degree of evolution with high confidence will
require surveys of hundreds of square arcminutes, especially if
narrower redshift intervals are to be considered. Current-
generation surveys will therefore have difficulty constraining
models of galaxy evolution during the epoch of galaxy
assembly or locating the precise peak of the molecular gas
density history. Over a wider redshift range, the evolution is
likely to be more pronounced (e.g., the SFRD rises by a factor
of ~10 from redshift ~6 to 2) and should be detectable in
relatively small fields if surveys can reach the required
sensitivity to study z ~ 5 objects.

On the other hand, Figure 11 also suggests that if cosmic
variance can be mitigated, the total survey area required to
detect evolution in pp, falls substantially. This can be achieved
by combining multiple small fields in widely separated parts of
the sky. For identical fields, uncertainty due to cosmic variance
falls as 1/ / Nsields» Where Ngegs 1S the number of independent
fields (Driver & Robotham 2010; Moster et al. 2011). A 50
arcmin® survey composed of 10 x 5 arcmin® fields will
therefore have only around a third of the cosmic variance of
a contiguous field. Cosmic variance has the greatest effect for
objects at the faint end of the luminosity function; therefore this
approach may be particularly beneficial for “deep” fields aimed
at detecting the faintest objects.
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Cosmic variance may present a particular challenge for
intensity mapping studies, where achieving the needed
sensitivity to the large-scale modes of the power spectrum
containing information about the first moment requires surveys
over large contiguous volumes. This requirement will limit the
number of independent volumes upcoming intensity mapping
surveys can study. Figure 8 demonstrates that as these surveys
probe larger areas, cosmic variance greatly increases the total
sample variance over the Poisson-only case. Clustering power
measurements will have to carefully account for this uncer-
tainty in their analyses. Equation (5) shows that field-to-field
offsets in the mean CO brightness temperature will produce
real shifts in the normalization of the clustering power term of
the CO power spectrum. This is distinct from the case of the
matter power spectrum, where normalization of the density
fluctuations by the mean density should eliminate these offsets
and sampling uncertainties will fall in proportion to the number
of modes squared.

8.3. Implications for Shot Power Intensity Mapping

The first generation of CO intensity mapping experiments
lacked the volume and sensitivity to measure the (large-scale)
clustering power component of the CO power spectrum.
Therefore, they focused on measuring the shot power. The shot
power is proportional to the second moment of the luminosity
function, with no other parameter dependencies, giving it the
added benefit of being simple to interpret. In addition, it can be
measured in smaller volumes, making it possible to reduce
cosmic variance by targeting numerous moderate-size fields.
Figure 7 shows that the first and second moments are primarily
determined by different portions of the luminosity function,
with the second moment being most sensitive around the
turnover.

Because both shot power measurement and current direct
detection efforts sample around the knee of the luminosity
function, the second moment is also where existing intensity
mapping and direct detection efforts can most easily be
compared. However, care must be taken when making these
comparisons. While small fields produce relatively unbiased
measurements of the first moment of the luminosity function,
Figure 9 shows that the median shot power recovered in an
ASPECS-sized field is significantly lower than the true value.

COPSS 1I measured a power of 3000 £1300 uK> 7> Mpc?,
with most of their sensitivity coming from the shot power regime
(Keating et al. 2016). From a revised analysis of the COPSS II
data Keating et al. (2020) reported that the shot power accounts
for 200071399 1K* h* Mpc® of the total. Section 5.2 suggests
that cosmic variance has little effect on the shot power for
individual COPSS 1I fields, which have sizes of ~140 arcmin’.
Combining multiple, widely spaced fields helps to further
minimize cosmic variance. We simulate the results of a COPSS
II-like survey by averaging the shot power for sets of 17 light
cones using the same weighting scheme employed by Keating
et al. (2016) and find a fractional uncertainty of 18%, in good
agreement with their reported estimate.

Uzgil et al. (2019) used the ASPECS direct detections to
estimate the CO shot power.® They found that the direct
detections in the ASPECS field imply a lower limit to the shot

6 They also used the fitted Schechter functions in a similar analysis, but for

reasons discussed in Section 8.1, we find lower limits from direct detections to
be more reliable for comparison.
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power of 98 uK*h *Mpc® for CO3-2) at (z) = 2.6. To
compare this to the COPSS 1II result, we convert the CO(3—2)
result to CO(1—0) using L¢o -2 /Léoq—o) = 0.42, resulting in
a minimum shot power from the ASPECS field of 560
pK? 3 Mpc®. Uzgil et al. (2019) pointed out that these limits
are lower than the COPSS II central value. However, the
fractional uncertainty in the shot power for a 5 arcmin? field is
around 80%, as shown in Figure 9. Furthermore, the median
recovered shot power is only ~70% of the true value, and a full
two-thirds of our simulated fields recover less than the true
value. These effects can account for much of the discrepancy
between the two results.

The first phase of mmIME produced constraints on the CO
power spectrum at 3 mm over roughly quadruple the area of
ASPECS. Keating et al. (2020) used the simulations presented
here to correct for downward biases in the recovered shot
power. They found a CO(3—2) shot power of 2107§}°
K> h 3 Mpc® after using a model prescription to divide
their measured power between CO transitions. Converting to
CO(1—0) gives 11907¢% uK* h~* Mpc?, which is consistent
with the COPSS results. By contrast, an analysis using only
instrumental noise for uncertainties and not accounting for the
biases discussed here would have given a CO(3—2) shot
power of 160 = 40 K A~ Mpc®. This demonstrates that by
failing to account for sampling effects surveys may report
parameter estimates offset from the true mean value. Further,
they can considerably underestimate the size of their errors,
even when instrumental noise or other sources of uncertainty
are large.

8.4. Implications for Dust Continuum Studies of Molecular Gas

In recent years the use of dust continuum photometry has
been established as an alternative method of measuring
molecular gas masses. In this method, measurements at
wavelengths in the Rayleigh—Jeans tail of galaxies’ dust
emission are used to determine total gas masses using empirical
calibrations of the ratio of dust continuum to CO(1-0)
luminosity (e.g., Scoville et al. 2017; Liu et al. 2019; Magnelli
et al. 2020). This method has gained increasing attention
because dust continuum emission can be detected at high
redshift with comparatively short integration times.

A full consideration of the details of this method is beyond
the scope of this paper. We only note that as the empirical basis
of this method is a straightforward relation between CO and
dust emission, our results should be applicable to dust-based as
well as CO line-based observations. The same bright CO
emitters that are missed by small-area surveys will be absent
from dust-based molecular gas censuses over similar areas,
producing biases in deep-field searches for dust emission
similar to those reported for CO line scans.

The reduction of integration times for dust continuum
measurements relative to CO lines means that it may be
possible to probe the luminosity function of fainter galaxies
with this method. However, this method has so far only been
calibrated for fairly bright samples (Liu et al. 2019) and so may
not produce results consistent with the CO approach for low-
luminosity objects. Different systematic uncertainties of these
two methods may also make synthesis difficult.

9. Conclusion

We have used simulated light cones populated with CO-
emitting galaxies to explore some of the challenges facing
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current and upcoming efforts to measure the shape of the CO
luminosity function and the evolution of the cosmic molecular
gas density. We have found that there are a number of potential
biases due to the small volumes to which these surveys are
currently restricted. These will hinder interpretation of results if
not carefully accounted for.

Our primary conclusions are as follows:

1. The properties of the bright end of the CO luminosity
function are determined by rare objects that may not
reliably appear in survey fields with areas of 50 arcmin®
or less. As a result, fits to the measured luminosity
function may suffer from significant defects, where L,
and ¢, are offset from their true values. The exact field
size required to achieve accurate constraints will depend
on the true luminosity function and cannot be determined
in advance.

2. Cosmic variance, which has generally been dismissed as
subdominant to other sources of error for current surveys,
can have a significant effect on some, though not all,
quantities measured. The apparent shape of the luminos-
ity function is mostly unaltered by cosmic variance for
current surveys, but the normalization, when expressed in
terms of the mean number density of CO emitters, shows
considerably larger uncertainty, even in surveys compar-
able in size to ASPECS.

3. The first moment of the luminosity function, which is
proportional to the cosmic molecular gas density, is
determined by contributions from galaxies at a wide
range of luminosities. Measurements of this quantity are
relatively unbiased by small survey sizes, and surveys
sensitive to galaxies below the knee of the luminosity
function likely recover a substantial fraction of the total
molecular gas density.

4. However, cosmic variance contributes appreciably to the
uncertainty in the mean brightness temperature and
cosmic molecular gas density for surveys of all sizes.
For surveys larger than ~50 arcmin® it may be the
dominant source of error. The volume required to detect
evolution around the peak of cosmic star formation
increases by an order of magnitude, from tens of square
arcminutes to hundreds, when this is accounted for. This
uncertainty must also be accounted for in intensity
mapping analyses of the clustering term in the CO power
spectrum.

5. Appendix A provides a means to estimate the fractional
sample uncertainty, including cosmic variance, in the
mean brightness temperature and shot power as a
function of redshift, which can be scaled to different
survey areas and redshift intervals.

6. Surveys divided over multiple small fields mitigate
cosmic variance and can reduce the total field size
required to detect redshift evolution of the cosmic
molecular gas density to a scale achievable with
current-generation instruments.

7. The second moment of the luminosity function, which
has been constrained by a handful of intensity mapping
experiments, is subject to larger biases when measured in
small fields. Using surveys like ASPECS and COLDz-
COSMOS to forecast this quantity will likely result in
underestimates by as much as 30%. The apparent tension
between current direct detection and intensity mapping
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results found by Uzgil et al. (2019) is significantly
reduced when this bias is accounted for.

Recent results on the CO luminosity function and p,,,; have
estimated error bars using only Poisson uncertainties on
number counts. This practice fails to represent the full set of
uncertainties faced by these measurements.

Taken together, our results suggest that definitive measure-
ment of the CO luminosity function and cosmic molecular gas
density will require larger surveys than have been undertaken.
The combination of intensity mapping and direct detection
surveys may provide a promising path forward. Ongoing and
planned intensity mapping experiments such as the CO
Mapping Array Pathfinder (Li et al. 2016), the Tomographic
Ionized-carbon Mapping Experiment (Crites et al. 2014; G. Sun
et al. 2020, in preparation), and the Carbon CII Line in Post-
reionization and Reionization Epoch Project (Dumitru et al.
2019) will place integral constraints on the CO luminosity
function over a broad redshift range using survey areas ranging
from hundreds of square arcminutes to more than a square
degree. Meanwhile, CO-emitting galaxies identified by direct
detection can be characterized in detail providing needed
insight into how the molecular gas properties such as the CO
luminosity to molecular gas mass conversion factor and the CO
line excitation ratios vary as a function of CO Iuminosity and
other galaxy properties. These detailed snapshots can be used
to develop more sophisticated interpretations of the large-area
constraints provided by intensity mapping surveys, making it
possible to construct improved estimates of the CO luminosity
function and cosmic molecular gas density.
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Appendix A
A Prescription for Sample Variance

In this appendix, we provide a general prescription for
approximating the sample variance for fields of arbitrary
redshift and area. A number of works have provided
prescriptions for calculating the variance in number counts,
applicable to understanding the uncertainty in Iuminosity
functions (Driver & Robotham 2010; Moster et al. 2011).
However, the sample variance for moments of the luminosity
function behaves differently from that for number counts and
requires separate calculations.

A.1. Comparison to Existing Prescriptions

Two prescriptions for calculating sample variance have been
cited frequently in literature about molecular gas density at
high redshift. Driver & Robotham (2010) calculated the sample
variance in number counts for “common” Mp" galaxies at
7~ 0 and extrapolated these results to higher redshift. As
pointed out in that paper, this formula may not apply at z > 1
or for objects dissimilar to the M; galaxies studied, because the
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Figure 13. Standard deviation in the number of galaxies brighter than L’ = 10° K km s~ ' pc? (left), the mean brightness temperature (center), and the shot power
(right) over the mean value as a function of redshift in bins of Az/(1 + z) = 0.25. Different colors show different survey sizes, and solid and dotted lines show results
for light cones with and without large-scale structure, respectively. The dashed lines show the prescription of Driver & Robotham (2010), which is based on number
counts for Mj galaxies at z = 0 but has been applied to other redshifts and quantities like mean brightness temperature.

tracer bias changes with redshift and galaxy type. Moster et al.
(2011) used cosmological simulations to compute the cosmic
variance in number counts (Poisson variance was not included).
They presented results as a function of host halo mass in
addition to field geometry and redshift.

Both sets of results are for number counts, not moments,
making their use inappropriate for estimating the variance in
mean brightness temperature or pp.. Our approach, of
explicitly adding a CO luminosity to every halo, allows us to
measure sample variance in moments of the luminosity
function in a way that number count-based approaches do
not. In Figure 13 we show the standard deviation as a fraction
of the mean value for total number counts (over L' = 10°
K kms ™' pc?),” mean brightness temperature, and shot power
as a function of redshift and survey area, computed in redshift
bins of Az/(1 4+ z) = 0.25. Comparing number counts to the
moments of the luminosity function highlights the fact that the
fractional sample variance differs considerably between the
different quantities.

The dotted lines in Figure 13 show the results for our
Poisson-only light cones. At all redshifts and field sizes the
uncertainty in counts and mean brightness temperatures
increases appreciably due to cosmic variance, whereas the
shot power is Poisson variance dominated.

We also show in Figure 13 the predictions of Driver &
Robotham (2010) for the same field sizes, repeated in each
panel. For number counts, where our results and theirs can be
directly compared, our modeling gives lower fractional
variance. This suggests that the tracer bias of the CO-emitting
galaxies in our simulations is smaller than that of the My
galaxies selected by Driver & Robotham (2010). Interestingly,

7 Note that the variance for number counts depends heavily on the chosen

luminosity cutoff and our results for this quantity are not meant to serve as a
general prescription. Instead we provide them to highlight the differences in
sample variance between number counts (for which most prescriptions are
calculated) and mean brightness temperature.
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when we compare our estimated fractional variance in
mean brightness temperature to their number count results,
we find similar values for small fields, which suggests that the
use of this prescription to assess cosmic variance in Py by
Riechers et al. (2019) and Lenki¢ et al. (2020) gives answers
approximately in line with our results. We emphasize that this
is a coincidence—the Driver & Robotham (2010) estimates
were derived for a different quantity and for tracers with a
different bias.

The right panel of Figure 13 shows that using results
calibrated for number counts to estimate uncertainty in shot
power measurements is especially misleading. Uzgil et al.
(2019) used the Moster et al. (2011) results to estimate the
fractional error due to cosmic variance in ASPECS to be 23%
at redshift 2.5. Moster et al. (2011) estimated only cosmic
variance, while the sample variance in shot power was
primarily driven by Poisson variance. As a result, while this
value is comparable to our estimate for uncertainty in number
counts for ASPECS, it underestimates the total sample variance
in shot power by roughly a factor of four. This highlights the
importance of providing a prescription for sample variance that
is tailored to the types of galaxies under study and the
particular quantities being measured.

A.2. Sample Variance as a Function of Redshift and
Survey Area

Table 4 gives the standard deviation as a fraction of the mean
value for mean brightness temperature and shot power for a
50 arcmin® survey with a redshift interval Az/(1 + z) = 0.25
for a range of redshifts. These values include the effects of both
Poisson and cosmic variance.

To estimate the sample variance in fields of other sizes and
redshift intervals, the values given in Table 4 can be rescaled.
We expect that altering the survey area will result in a scaling
of 0 o A™"™, where A is the survey area. When sample variance
is primarily Poissonian, we expect m ~ 0.5. Cosmic variance
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Table 4
Fractional Sample Variance in a Field of 50 arcmin® and Az/(1 + z) = 0.25 for Mean Brightness Temperature and Shot Power
z=05 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0 55
% (T) 0.26 0.18 0.17 0.18 0.19 0.20 0.21 0.22 0.22 0.22 0.22
Phot 0.48 0.35 0.31 0.35 0.41 0.45 0.47 0.49 0.60 0.70 0.61
will cause the sample variance to fall more slowly with an For the shot power, fractional uncertamtles stay W1th1n the
increasing area, leading to 0.0 < m < 0.5. We fit for m using range of 0.75-1.25 times their value at 10° Kkm s~ pc? for
fields from 1.5 to 500 arcmin® and find that m is approximately cutoffs from 107 to L' = 10> Kkms ' pc? before growing
constant for each moment in the redshift range of 1 to 6. Over considerably for higher cutoffs.
this range we find m = 0.30 for mean brightness temperature This means Equation (Al) should apply to any direct
and m = 0.41 for shot power. The increasing values of m for detection survey sensitive down to L' = 10" Kkms ' pc?.
higher moments reflect the greater importance of Poisson This includes all of the surveys described in Table 1, except for
variance relative to cosmic variance. the wide field of COLDz, which has a sensitivity limit of
So long as the transverse dimension is larger than a few L' ~ 10'%° Kkms™ ' pc®. For this field, our simulations imply
hundred comoving megaparsecs, the variance should scale in a a sample variance 1.6 times that given by Equation (Al).
Poissonian manner when changing the redshift interval (Driver Equations (A1) and (A2) should be applicable to all intensity
& Robotham 2010; Moster et al. 2011). We confirm this by mapping experiments, which have no lumlnos1ty cutoff and
varying redshift intervals from Az = 0.05 / (1 +2z) to generally survey areas larger than 15 arcmin®. However, the
Az =0.40/(1 + z) and find that indeed o Az 03, sample uncertainty for using direct detection results to set limits
With these scalings combined, the fractional uncertainty o/ on the shot power will be larger than implied by Equation (A2)
for an arbitrary survey area and redshift range can be found when the direct detectlon survey has a sensitivity limit above
using ~10%° Kkms ' pc?.
)/ Iy ( A )‘0'30( Az 03 (Al) A.4. Sample Variance for Existing Surveys
ory/ ) Dref {50 am? 0.25(1 + 2) In Figure 14 we use Equation (A1) to calculate the fractional

sample uncertainties in p,, for the direct detection surveys

and listed in Table 1. These uncertainties are for the density of
molecular gas only from galaxies bright enough to be detected

Op/ fip, A —0.41 Az —0.5 in each survey, and do not include corrections for fainter

—— = ( 2) (7) (A2) objects. We find that the most recent ASPECS and COLDz

(O H et 50 am 0.25(1 + 2) surveys both achieve fractional sample uncertainties in the

30%—40% range. For the COLDz wide field, Equation (Al)

where (0/ et 1s the value from Table 4. Note that the implies an uncertainty closer to 20% (shown with gray markers

appropriate area is the contiguous field area, not the total area in Figure 14); however the sensitivity limits in this field
of a survey spread among many fields. In the case of fields that increase the uncertainties to be more in line with ASPECS and
are separated on the sky by at least hundreds of comoving the deeper COLDz field.
megaparsecs, the fractional uncertainty per field can be derived
from the equation above, and the fields can be treated as Appendix B
independent samples to derive a total uncertainty. Finally, the Parameterizations of the Schechter Function
sky-plane geometry of each field affects the variance from Here we use the Schechter function in the form
large-scale structure, as described in Moster et al. (2011) and (Equation (4))
Driver & Robotham (2010). The numbers above are derived for N
square foonnnts; small correctlons.for ﬁeIQd geome.try could be dn — $(LydL = ¢>*( L ) exp (_ L ) dL ) (B1)
necessary in cases of extremely anisotropic footprints. Ly ) Ly

A.3. Accounting for Survey Sensitivity This was the form given by Schechter (1976) and was also used

for fitting the COPSS 1I results in Keating et al. (2016).

Other works dealing with Schechter fits have parameterized
the function in a number of forms. In their discussion of the
effects of cosmic variance on fitted Schechter parameters,
Trenti & Stiavelli (2008) used

The above fits are performed assummg our fiducial
luminosity cutoff of L’ = 10° Kkms ' pc’. We investigate
how changing this cutoff alters the fractional uncertainties
reported above by con51der1ng cutoffs of L' = 10", 10°~,
10'%°, and 10'%° K kms ™' pc”. Fractional uncertainties in the
mean brl%htness temperature show little change for cutoffs @
from 107 to 10'%° K km s_lpc in fields of 15 arcmin® or d(LYdL = ¢, TSOS(L) exp(—i)dL. (B2)
larger (shifting by no more than 25% of the fractional ' Ly Ly
uncertainty computed at 10° Kkms ' pc?). For smaller

fields the fractional uncertainties do not change much for This differs from Equation (B1) by the use of dL in place of
cutoffs from 10°° to 10'*° Kkms™! p(:2 but grow for the dL/L,. The result is that the normalization ¢,1ggg is a factor
107> Kkms ™' pc? cutoff. of L* smaller than our normalization: ¢4rs0s = Ps/Ly-
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Figure 14. We show the fractional uncertainty in recovered py,, estimated
using Equation (A1) for a number of direct detection surveys that have been
completed to date. The marker color indicates the median redshift of the
survey, while the marker style designates the CO line used. For the COLDz
wide field, we scale up the values from Equation (Al) by a factor of 1.6 to
account for the shallow survey depth. We show the unscaled values for this
field in gray.

Kelly et al. (2008) replaced the ¢, parameter with a
normalization depending on the number density of galaxies, n:®

Ly
¢(L)dL=f(LL*)ae:p(_;)ﬁ(L_*)
X exp(—i)i—i. (B3)

Comparing Equations (B1) and (B3), we see that n =
qb*f(Li) exp(—Li)'Z—L, which
Equation (13).

It is common practice (including in this work) to plot the
luminosity function on a logarithmic scale. For such plots the
appropriate units are number per unit volume per dex

. d . ..
rather than linear ﬁ. The conversion between these units is

given by noting that dL = L In(10)d log L, so that

Puex (L) = L1In(10)p(L).

gives rise to our

dn
> dlogL’

(B4)

The data from COLDz and ASPECS were directly fit in these
units. The parameterization for these fits was given by Riechers
et al. (2019):

L QR19 L
Ggex(L)d log L = qb*(L—) exp (L—)ln 10dlogL. (B5S)

* *

8 Technically Kelly et al. defined the luminosity function in terms of the total
number of galaxies in the observable universe, N, rather than the number
density n, and used N as their parameter. The luminosity function ¢gog(L)
presented there is then related to the one given here by ¢gos(L) = Vini (L) and
our N = nVy,;, where V,,; is the volume of the observable universe.

22

Keenan, Marrone, & Keating

40"I ! L ! L]
(2)

35

T
=
H

3.8 7
4.9

30

25

20

15

10+

5_

' |

100

0

“100 102
Survey Area [am?]

Figure 15. The 16th—84th percentile range as a function of the survey area
(filled regions) and true value (horizontal line) of the second moment for the
same redshifts in Figure 11. Here we show only the combined Poisson and
cosmic uncertainties, as the latter contributes minimally to the sample
uncertainty in the second moment. Note that we elect to present results in
terms of pi, rather than Pg,. in order to capture only physical changes due to
redshift evolution in the luminosity function.

Inserting Equation (BS) into Equation (B4) gives

S(LYAL = e, (L) 75 dL

agrig—1
= d)*(i) * exp(i)i—idL,

which shows that the faint-end slope of this parameterization
differs from that of Equation (B1) with agj9 = a + 1.

To summarize, Equations (B1) and (B2) both give the
number density per linear interval in L and have the same L,
and « parameters, with different but related ¢, parameters.
Equation (B5) gives the number density per logarithmic
interval, which can be converted to the number density per
linear interval through division by L In 10. Equation (BS5) has
the same value for L, and ¢, as Equation (B1) but has a value
of « that is greater by 1 than the « in either of the other
parameterizations. In all cases, the “normalization” parameter
¢4 depends on both the number of objects and the shape of the
luminosity function. This parameter can be replaced by a mean
number density n, which separates the normalization and shape,
following Equations (B3) and (13).

(B6)

Appendix C
Schechter Function Fitting

For the Schechter fits reported in this paper, we use the
package emcee (Foreman-Mackey et al. 2013), which employs
an affine-invariant MCMC ensemble sampler to explore the
posterior distribution of a set of parameters, ®, given a set of
observations, x, and a posterior probability function

p(®lx) x p(x|@)p(©), (ChH
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where p(©) is a prior on the model parameters and p(x|®) is
the likelihood of the observations for a given set of parameters.

We perform our fits using unbinned data, so each
observation is the luminosity of an individual object L;. The
likelihood of L; being drawn from a luminosity function with
parameters © is

Li|©®
p(Lje) = 2L )
[ow®)dL
It is common to fit luminosity functions by maximizing
pLI®) =[] p(Li1©). (C3)

However, this procedure has no dependence on the normal-
ization of the luminosity function. In other words, maximizing
Equation (C3) only determines the shape of the luminosity
function. The normalization is usually determined by fixing the
integral of the luminosity function times the survey selection
function to be equal to the number of observed objects. This
procedure does not account for uncertainty in the normalization
due to field-to-field variations in the number of objects.

Kelly et al. (2008) corrected this by fitting the mean number
density of objects of interest n and the shape parameters Og of
the luminosity function. For a given number of observed
objects Nyps the required likelihood is given by

p(Lin, Os) = (";b) x (1 — p(det|n, ©g))Vmi—Novs

X jv"bls(p(detilLi)P(Lil”, ©s)). (C4)
Here V,,,;; is the volume of the universe over which the objects
of interest can be observed, so that nV,, is the number of
objects in the observable universe; 1 — p(det|n, ®g) is the
probability of an object drawn from a luminosity function
parameterized by n and ®g being undetected in a given survey,
which accounts for both the survey sky coverage and the
sensitivity limits of the observation. The product is taken over
all objects observed by the survey, with p(det;|L;) being the
probability of source i of luminosity L; being detected by the
survey and p(L;n, ®g) given by Equation (C2).

As fitting ¢(L|n, ®s) requires only relative likelihoods for
different sets of parameters, we can drop terms independent of
n or O to get

p(Lin, ©9) o (") x (1 = p(detln, @9y

x Nop(Lijn, ). (C5)
In many situations, nV,,; is large and the binomial coefficients
can become difficult to evaluate. Assuming that the detection
probability is small, as is the case for a survey covering only a
small part of the sky, we can use the Poisson approximation of
the binomial distribution to write the likelihood

p(Ln, ©s) o (nVypj)Nors e Vi pldetn.O5)
x Nop(Liln, ©). (C6)
i=1
This gives the likelihood we use for Equation (C1).
We parameterize the luminosity function as a Schechter
function in the form of Equation (B3), modified with a lower
luminosity cutoff, L.;, which accounts for the faintest
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detectable galaxy in our survey:

SLydL = —o " (L)
S (@) ew(-)E
y exp(_LL*)‘L’_i. )

This gives ® = (n, Ly, o). Our inclusion of the luminosity
cutoff has the effect of redefining » as the mean number density
of galaxies brighter than L,,;,. The likelihood for each object is

given by
Li)* _Liy L
r.) P\7L )L,

Lin,L,a == >
P Lo O = L T Lo L)

(C8)

where T is the upper incomplete gamma function.” Our model
surveys assume that all galaxies within the survey volume
above L., are detected. Therefore the selection function is

L; > Lin, i € Vobs

det; — { ! , (C9)
0 otherwise

where 1, € V,ps indicates the object falls within our survey
volume, and

p(detly, Ly, a) = Yobs (C10)
uni
Substituting these into Equation (C6) gives
p(Lln, Ly, ) o< (nVyni)Nos exp(—nVibs)
e (12) eo(-12)i
obs
<[] = b/ L C11)

i=1 P(OZ + 1, Lmin/L*)'

The priors p(®) = p(n, Ly, o) could be used to incorporate
external constraints on the parameters. Here we are interested
in how well individual observations do at constraining the
luminosity function; therefore we adopt uninformative priors
on logn, log Ly, and a.

Appendix D
Redshift Evolution of the Second Moment

Due to the redshift-dependent conversion between temper-
ature and luminosity units, shot power that is constant with
redshift is not equivalent to a constant second moment of the
luminosity function. Therefore, to obtain a quantity that shows
only evolution in the underlying luminosity function, we
convert the shot power units to units of (K kms™' pc?)? Mpc ™2
using

H@) Y
= Rhot-
= ((1 +z)2) et

In Figure 15 we show this quantity for our fiducial model and
the redshifts considered in Section 6.

(D1)

° The gamma function is only formally defined when o + 1 > 0, but as long

as Ly, > 0 the integral defining the upper gamma function converges and the
probability can be evaluated.
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