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Abstract

Substantive changes in gene expression, metabolism, and the proteome are manifested in
overall changes in microbial population growth. Quantifying how microbes grow is therefore
fundamental to areas such as genetics, bioengineering, and food safety. Traditional
parametric growth curve models capture the population growth behavior through a set of
summarizing parameters. However, estimation of these parameters from data is con-
founded by random effects such as experimental variability, batch effects or differences in
experimental material. A systematic statistical method to identify and correct for such con-
founding effects in population growth data is not currently available. Further, our previous
work has demonstrated that parametric models are insufficient to explain and predict micro-
bial response under non-standard growth conditions. Here we develop a hierarchical Bayes-
ian non-parametric model of population growth that identifies the latent growth behavior and
response to perturbation, while simultaneously correcting for random effects in the data.
This model enables more accurate estimates of the biological effect of interest, while better
accounting for the uncertainty due to technical variation. Additionally, modeling hierarchical
variation provides estimates of the relative impact of various confounding effects on mea-
sured population growth.

Author summary

Quantifying how microbes grow in response to stress is required for effective treatment
of microbial infections, food safety, and understanding the effects of environmental
change. Current models that quantify microbial growth characteristics such as exponen-
tial growth rate are based on assumptions that microbial growth curves will adopt a sig-
moid form with characteristic lag, logarithmic, and stationary phases. These models are
therefore inaccurate when applied to microbes growing under stress. Substantial variabil-
ity across experiments that measure microbial growth further compounds the issue. Here
we report a new statistical model freed from the assumption of optimum growth. This
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model also properly corrects for experimental variability, enabling researchers to moni-
tor, quantify, and understand how microbial growth changes in response to gradations of
stress. We apply this model to two microbial test systems to accurately quantify how path-
ogenic bacteria respond to acidic antimicrobial treatments, and how environmentally
important microbes withstand stress.

This is a PLOS Computational Biology Methods paper.

Introduction

Microbial growth phenotypes inform studies in microbiology, including gene functional dis-
covery, bioengineering process development, and food safety testing [1-3]. For example,
recent advances in microbial functional genomics and phenotyping, or “phenomics”, have
enabled transformative insights into gene functions, proving critical for mapping the genotype
to phenotype relationship [4]. Methods such as genome-wide CRISPRi [5] and targeted
genome-scale deletion libraries [6, 7] frequently rely upon accurate quantitation of microbial
population growth as an assay to identify novel mutants with significant growth phenotypes.
Population growth, as measured by the growth curve of a microbial culture, is an aggregate
measure of all cellular processes and captures how microbial cells adapt and survive in their
environmental niche [8]. Because microbial culturing is a necessary precursor to many experi-
mental procedures in microbiology [9], reproducible results require accurate quantification of
the variability in culture state measured through growth [9, 10].

Typical analyses of microbial population growth involve estimating parametric models
under the assumptions of standard growth conditions comprised of three successive growth
phases: (1) lag phase, in which the population adapts to a new environment, typically fresh
growth medium at culture inoculation; (2) log phase, when the population grows exponentially
at a rate dependent on nutrients in the environment; and (3) stationary phase, where measur-
able population growth terminates thereby reaching the culture carrying capacity [11]. Recent
studies have shown that the estimates of parameters in these models are highly uncertain [12-
14]. This uncertainty arises both from factors of biological interest, such as differences in
genetic background and environment, as well as uncontrolled technical noise from experimen-
tal manipulation of microbial cultures. While such sources of variability can be modeled using
fixed and random effects [15-19], parametric population growth models have additional limi-
tations. Specifically, the parametric assumptions of these growth models require that growth
measurements match the sigmoid shape expected for the growth curve under optimum condi-
tions. When population growth deviates from the standard sigmoid shape assumed in these
models, model extensions must be developed on a case by case basis for each new experimental
perturbation [20, 21]. Additionally, we have shown in previous work that in cases such as
extreme stress or strongly deleterious mutations, no parametric growth model accurately rep-
resents the growth curve, regardless of extension [19, 22, 23].

Factors affecting microbial growth measurements include both fixed and random effects
[24]. Fixed effects are assumed to be drawn from a finite set of perturbations of interest, for
example the effect of different concentrations of a chemical on growth that are entirely rep-
resented in the dataset. Random effects, conversely, can be viewed as a random sample from
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a larger set of interest. For example, repeating the same design over many experiments cor-
responds to sampling the random experimental effect from the theoretical set of all possible
experiments that could be conducted with this design [3, 25]. Random effects arising from
repeated experimental design are typically referred to as batch effects [26, 27]. Batch effects
are often a significant component of measurement noise in high-throughput genomics
experiments [28]. However, random effects are not always due to experimental noise, and
may represent quantities of direct scientific interest; for example, assaying a set of genetic
backgrounds may be viewed as sampling from the set of all possible genetic variants [29-
33]. Models which include both fixed and random effects are referred to as mixed effects
models.

In this study we present phenom, a general model for analysis of phenomic growth curve
experiments based on a Bayesian non-parametric functional mixed effects model of micro-
bial growth. We demonstrate the utility of phenom to analyze population growth measure-
ments of two microorganisms: the hypersaline adapted archaeon, Halobacterium salinarums;
and the opportunistic bacterial pathogen, Pseudomonas aeruginosa. H. salinarum is a model
organism for transcriptional regulation of stress response in the domain of life Archaea [34-
36]. H. salinarum is particularly well adapted to resisting oxidative stress (OS), which arises
from the buildup of reactive oxygen species and causes damage to many critical cellular
components, including DNA, protein, and lipids [37-43]. Population growth measurements
of H. salinarum under OS have been used previously to quantify these harmful effects on
physiology, as well as identify regulatory factors important for OS survival [22, 40-42]. The
presence of batch effects in H. salinarum OS response was reported (and corrected for) pre-
viously [19], but these efforts did not include modeling of individual batch effects for each
term in the model. This motivated the explicit deconstruction of batch effects between dif-
ferent factors (e.g. strain and stress), which we have implemented in phenom and reported
here.

Pseudomonas aeruginosa is an opportunistic microbial pathogen and a growing problem in
hospital-borne infections. Rising antimicrobial resistance of these organisms has necessitated
the development of alternative treatment strategies. For example, topical treatment of infected
burn wounds with acetic or organic acids (OAs) has been successful [44]. OA impact on
growth depends on external pH levels—in acidic environments the OA does not dissociate,
but rather freely traverses the cellular membrane as an uncharged particle. Within the neutral
cytoplasm, the OA dissociates, and the protons released induce acid stress [45]. Here we apply
phenom to the P. aeruginosa dataset, which is foundational for a larger study of P. aeruginosa
strains responding to pH and OA perturbation as a potential novel treatment of pathogenic
bacterial infections [23].

Stress occurs constantly in the environment: as conditions change, mild to severe cellular
damage occurs, and cells must regulate their molecular components to survive [46-49].
Population growth measurements are particularly vital to the study of stress response by
providing a quantitative measure of growth differences against a non-stressed control [1].
Our model recovers fixed effects due to high and low levels of OS in H. salinarum and inter-
actions between organic acid concentration and pH in P. geruginosa. Random effects from
multiple sources are corrected, thus enabling more accurate estimates of the biological sig-
nificance of the stress treatment effect. Notably, in cases where random effect and fixed
effect sizes are comparable, we demonstrate that mixed modeling is critical for accurate
quantification of model uncertainty. If random effects are not included in the model, the
significance of the effect of stress treatments on population growth can be erroneously over-
estimated. We discuss the implications of these findings for multiple areas of microbiology
research.
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Materials and methods
Experimental growth data

H. salinarum growth was performed as described previously [22]. Briefly, starter cultures of H.
salinarum NRC-1 Aura3 control strain [50] were recovered from frozen stock and streaked on
solid medium for single colonies. Four individual colonies per strain were grown at 42°C with
shaking at 225 r.p.m. to an optical density at 600 nm (ODgg) ~1.8-2.0 in 3 mL of Complete
Medium (CM; 250 NaCl, 20 g/l MgSO47H20, 3 g/l sodium citrate, 2 g/l KCI, 10 g/l peptone)
supplemented with uracil (50 pg/ml). These starter cultures were diluted to ODgpo ~0.05 in
200 ul CM (“biological replicates”) then transferred in triplicate (“technical replicates”) into
individual wells of a microplate. Cultures were grown in a high throughput microplate reader
(Bioscreen C, Growth Curves USA, Piscataway, NJ), and culture density was monitored auto-
matically by ODgg, every 30 minutes for 48 hours at 42°C. High and low levels of OS were
induced by adding 0.333 mM and 0.083 mM of paraquat to the media, respectively, at culture
inoculation.

For P. aeruginosa, laboratory strain PAO1 (ATCC 15692) was grown as described in refer-
ence [23]. Briefly, cultures were grown in M9 minimal media supplemented with 0.4% (w/v)
glucose and 0.2% (w/v) casamino acids and buffered with 100 mM each of MES and MOPS
buffers. Initial cultures were diluted to a starting OD of 0.05 before growth in a microplate
reader at a total volume of 200 ul per well. Population growth was measured with a CLARIOs-
tar automated microplate reader (BMG Labtech) at 37°C with 300 rpm continuous shaking.
The ODgqo was recorded automatically every 15 minutes for a total of 24 hours. A full factorial
design of pH and OA concentration was performed for benzoate, citric acid, and malic acid.
An experimental batch corresponded to two repetitions of the experiment on separate days
with a minimum of three biological replicates of each condition on each day. Two batches for
each OA were performed.

All data generated or analyzed during this study are included in this published article (see
github repository associated with this study, https://github.com/ptonner/phenom).

Parametric growth curve estimation

For comparison with our non-parametric methods, parametric growth curve models were esti-
mated using the grofit package in R with default parameters [51]. The logistic model was used
to fit each curve. Kernel density estimates of parameter distributions were calculated with the
Python scipy package with default kernel bandwidth parameters [52].

phenom: A hierarchical Gaussian process model of microbial growth

Gaussian processes. A Gaussian process (GP) defines a non-parametric distribution over
functions f{t), defined by the property that any finite set of observations of f follow a multivari-

ate normal distribution [53]. A GP is fully defined by a mean function f () and a covariance
function x(¢, ¥') (Eq (1)):

f() ~ GP(f(t),k(t,1)) (1)

GPs are commonly used for non-parametric curve fitting [53] where f (¢) is typically set to
0, which we do here. Similarly, we use a common choice for covariance function defined by a
radial basis function (RBF) kernel (Eq (2)).

Kk(t,f) = 62 - exp (_|t€_ﬂ|z> (2)
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Where o” is the variance and ¢ is the length-scale. The parameter o> controls the overall magni-
tude of fluctuation in the population of functions described in the GP distribution, while £
controls the expected smoothness, with larger £ making smoother, slower varying functions
more likely. In the process of non-parametric modeling of growth curves, these parameters are
adaptively estimated from the dataset.

Fixed effects. We first define the fixed effects models used in this study; these will be aug-
mented with random effects in the next section. We consider fixed effects models of increasing
complexity: a mean growth phenotype, a single treatment phenotype, and a combinatorial
phenotype with interactions between treatments. All of these models fall under the functional
analysis of variance (ANOVA) framework [22, 54]. To estimate a mean growth profile, as
in the case of measuring a single condition, a mean function m(?) is estimated from the data by
modeling each replicate y,(t) for 1 <r < R as consisting of an unknown mean function
observed with additive noise (Eq (3)).

y,(t) = m(t) + €(1) (3)

Where m(t) ~ GP(0, k,,,(t, t')) provides a prior distribution over m, and k., is an RBF kernel
with hyperparameters {a7,, /,,}. Here ¢ (t) ~ N(0, 0}I) is Gaussian white noise.

When estimating the effect of a perturbation on growth, as in the case of OS, we add a sec-
ond function §(¢) that represents the effect of the stress being considered. The model then

becomes (Eq (4)):

(4)

m(t) + €,(t) if standard growth
¥, (1) =

m(t) + 0(t) + €,(t) otherwise

where 8(t) ~ GP(0, xs(t, t')) also follows a GP prior independently of m, and x5 has hyperpara-
meters {03, (,}.

When incorporating possible interaction effects such as those between pH and organic
acids in the P. aeruginosa dataset, the model becomes (Eq (5)):

Y (t,p,ym) = m(t) + o, (1) + B.(1) + (@), (£) + €.(8), (5)

for pH p and molar acid concentration c, with a,(t) representing the main effect of pH, B.()
the main effect of acid concentration, and (a8),.(t) the interaction between them. Each effect
is drawn from a treatment specific GP prior (Eq (6)).

pe(t) ~ GP(0, k4(t, ) (6)
(@B),(t) ~ GP(0, K, (t, 1))

Again, each covariance function is specified by a RBF kernel with corresponding variance
and lengthscale hyperparameters that adapt to the observed data. All models in this section
correspond to M, for their respective analyses, as they do not include any random effects.

Random effects. The first random effects added to the model were those used to account
for batch effects, in the model My ,. Under this model, each fixed functional effect is modi-
fied by a GP describing the population of possible batch-specific curves. For example, under
the model of interaction effects on growth (Eq 5), replicate r from batch k is modeled as
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(Eq 7)):

Myl

M+ i, (6.0, m) = m(6) + 2,(0) + B.6) + (4B), (1) )
+m® (£) + a9 (1) + (@B) (1) + PO (1) + €, (1)

where the functions shared with M,y are highlighted, the functions m®(t), AON ® (), and

c

(afp );kj (t) are the corresponding random batch effects, and ¢, (t) ~ N(0, ¢}I). Similar to the
fixed effects, the batch effect functions are drawn from shared GP priors (Eq (8)):

oa(t) ~  GP(0,K, e (t: 1))
ﬁik)(t) ~  GP(0, Kﬂ,batch(ta t')) (8)
(@ﬁ)ffz(f) ~  GP(0, Ka(/)’,batch(t’ t)),

with kernel hyperparameters {a. .., £, vuen > 107 baicns Eppatcn 1> 30 {075 s € ) that are
distinct from those for the corresponding fixed effects, allowing for different variance and
lengthscales between fixed and random effects. Other M,,,; models are converted to My e
similarly, with each fixed effect becoming a mean of a GP prior for each batch effect.

My develops the hierarchy one step deeper by adding replicate effects to My (Eq 7).
Specifically, the error model €, is now described by a GP: ¢, ~ GP(0, k,(t, t')) with corre-
sponding hyperparameters, accounting for replicate-specific variability rather than simply
white noise.

Bayesian inference. The unknown functions (m(%), 8(1), (1), B(t), and (o), (t)), kernel
hyperparameters (a7 and ¢;) for each group of latent functions, and observation noise parame-
ters (¢}) are all estimated by Bayesian statistical inference. In Bayesian inference, prior distri-
butions on unknown quantities (e.g. p(m(t), 0,,) = p(m(#)|6,,,) x p(6,,)) are combined with the
likelihood, p(y(#)|m(t)) to obtain the posterior distribution p(m(t), 6,,|y(t)).

Latent functions are grouped by shared kernel hyperparameters 0, = {7, {,} into related
sets (e.g. treatment effects, interaction effects, batch effects), which then provide the GP prior
for the latent function. For each group, o7 is assigned a Gamma(a, 8) prior, with fixed effects
assigned as a Gamma(10, 10) prior and random effects assigned a Gamma(7, 10) prior. €, was
assigned an inverse- Gamma(a, f§) prior, with parameter a = 6 and B = 1 for H. salinarum, and
o =2, =3 for P. aeruginosa fixed effects and a = 10, f = 1 for P. aeruginosa random effects.
Noise variance aﬁ was also assigned a gamma prior.

Bayesian inference was then performed, with the posterior distribution obtained by sam-
pling using Markov chain Monte Carlo (MCMC) implemented with the Stan library, which
uses a Hamilitonian Monte-Carlo procedure with No-U-turn sampling [55]. Multiple chains
were run to diagnose convergence, with all parameter posterior means confirmed to have con-

verged within R < 1.1 as recommended [56].

Results
Hierarchical batch effects typical in phenomics datasets render parametric
models ineffective

In the dataset used here, population growth for each of P. aeruginosa and H. salinarum cul-
tures was monitored under standard (non-stressed) conditions vs. stress conditions (see
Materials and methods and references [22, 23] for precise definition of “standard conditions”
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Fig 1. Batch variation in high throughput phenomics studies. A: Population growth measurements of H. salinarum under standard conditions
(blue), and low (orange) and high (green) levels of OS. Individual measurement curves are replicates and each graph panel is a different batch. B:
Growth of P. aeruginosa strain PAO1 under gradient of pH (5-7) and citric acid (0-20 mM). Colors represent different batches.

https://doi.org/10.1371/journal.pcbi.1008366.9001

for each organism). Specifically, cultures were grown in liquid medium in a high throughput
growth plate reader that measured population density at 30 minute intervals over the course
of 24 hours (P. aeruginosa) or 48 hours (H. salinarum); the resulting data are shown in Fig 1.
Experimental designs for each organism included biological replicates (growth curves from
different colonies on a plate), technical replicates (multiple growth curves from the same col-
ony), varying conditions (stress vs standard), and batches. Throughout, we define “batch” as a
single run of the high throughput growth plate reader. In each run, this plate reader measures
the growth of 200 individual cultures across a range of perturbations, including varying stress
conditions and genetic mutations (see Methods). H. salinarum was grown under high (0.333
mM paraquat (PQ)) and low (0.083 mM PQ) levels of oxidative stress (OS); the data are com-
bined from published [19, 22, 41] and unpublished studies (Fig 1A). The OS responses of H.
salinarum were compared to a control of standard growth in rich medium, representing opti-
mal conditions for the population. The experimental design was replicated in biological qua-
druplicate and technical triplicate, across nine batches (Fig 1A, individual curves and axes). P.
aeruginosa was grown in the presence of increasing concentrations of three different organic
acid (OA) chemicals (0-20mM; benzoate, citric acid, and malic acid), each combined with a
gradient of pH (5.0-7.0) [23]. Each P. aeruginosa growth condition was repeated across 3 bio-
logical replicates and two batches (Fig 1B). The different P. aeruginosa and H. salinarum exper-
imental designs with varying numbers of replicates at each level provides a rich test bed for
modeling the impact of random effects with phenom (Fig 1B, S1 and S2 Figs).

Figs 1 and 2 demonstrate the two key issues described above and addressed in this paper.
First, batch effects are present in both H. salinarum and the P. aeruginosa datasets. For H. sali-
narum, clear differences in growth under both standard and stress conditions are observed in
the raw data across experimental batches (i.e. separate runs of the growth plate reader instru-
ment; Fig 1). Some batches show a different phenotype, with either a complete cessation of
growth or an intermediate effect with decreased growth relative to standard conditions. For
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Measurement of P. aeruginosa growth under 10mM citric acid at 5.5 pH. Measurements for each condition vary significantly with batch.

https://doi.org/10.1371/journal.pchi.1008366.g002

example, in some batches, populations stressed with low OS grow at the same rate and reach
the same carrying capacity as populations grown under standard conditions. For P. aeruginosa,
a clear difference between batches grown under 10 mM citric acid at pH = 5.5 is observed [Fig
1B (graph in fourth column, third row) and Fig 2D]. Like with citric acid, batch effects were
also found in some of the other conditions considered (e.g. growth under malic acid, S1 and
S2 Figs).

Second, standard parametric growth curve models fail to describe experimental measure-
ments adequately (Fig 2A and 2B), as we have shown previously with both datasets [19, 22,
23]. In Fig 2, we examined the impact of batch and replicate effects on our data by considering
how they change parameters estimated from a mixed effects parametric model of population
growth [32]. We focused on calculating g,y the maximum instantaneous growth rate
attained by the population, as this is a commonly used parameter for comparisons between
conditions [19, 57]. Variation in g,y estimates were observed both on the replicate and batch
level, as shown by the kernel density estimates (KDE) of y,,.x for each stress level (S3 Fig). The
variance in y,,, is remarkably high: the 95% confidence interval for g, under standard
growth is 0.050-0.141, a nearly 3-fold change between the lower and upper interval limits.
Thus, while the t-test conducted on .. estimates between standard conditions and each
stress level is statistically significant (S3 Fig), it is difficult to conclude: (a) what the true magni-
tude of the stress effects may be; and (b) to what degree the variation due to replicate and
batch should inform biological conclusions. The error of the logistic growth model under each
PQ condition was also examined. Error increased under high OS (S4 Fig). High OS induces a
growth phenotype that deviates heavily from the sigmoidal growth curve assumed in the logis-
tic model as well as in other commonly used growth models. This leads to a poor fit under the
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high OS condition as has been shown previously (54 Fig, [19]). The residuals under standard,
low, and high OS conditions also appear to be dependent. Our previous work also demon-
strated poor fits to the P. aeruginosa data using parametric models [23]. Taken together, the
initial assessment of these two datasets indicates that: (a) technical variation due to batch and
replicate in growth curve data can be high; and (b) commonly used standard parametric mod-
els are not able to adequately capture or correct for these sources of variability. These sources
of error need to be corrected in order to model true growth behavior and inform biological
conclusions from the data.

A hierarchical Bayesian model of functional random effects in microbial
growth

We previously established the ability of non-parametric Bayesian methods to improve the
modeling of growth phenotypes [19, 22, 23]. Here, we describe phenom, a fully hierarchical
Bayesian non-parametric functional mixed effects model for population growth data. We high-
light the utility of phenom to correct for confounding, random effects in growth phenotypes.

In order to model both biological and technical variation in microbial growth (Fig 3), we
first assume that a set of population growth measurements are driven by an (unobserved) pop-
ulation curve m(t) (Fig 3A, blue curve) of unknown shape. For example, m(t) might represent
the average growth behavior of an organism under standard conditions. This mean growth
behavior may be altered by a treatment effect, represented by an additional unknown curve
o(1) (Fig 3A, orange curve). For example 6(f) may represent the effects on growth induced by
low or high levels of OS (Fig 2A). The average growth behavior of a population under stress
conditions would then be described by the curve f(t) = m(t) + 6(t).

When considering a combinatorial experimental design, such as that described for P. aeru-
ginosa growth (Fig 1B), we model independent effects of different treatments as well as their
interaction via the form (Eq (9)):

y(t7 i7j) = m(t) + (xi(t) + Bj(t) + (O‘B)i,j(t)' (9)

Here, y(t, 1, j) denotes the observed population size at time ¢ with treatments i and j of two
independent stress conditions. Additionally, a;(t) and f(t) are the independent effects of each
stress condition, and (af); j(f) is their interaction. This model corresponds to a functional anal-
ysis of variance [58], which we have previously used to estimate independent and interaction
effects of microbial genetics and stress [22]. For the analysis of P. aeruginosa, we model the
effect of pH (e, for pH = p), organic acid combination (8. for concentration = ¢) and their
interaction ((a8),,c), as well as their random functional effect equivalents (see Section “phe-
nom: A hierarchical Gaussian process model of microbial growth”).

Variability around these fixed effect growth models is described by additional, random
curves associated with two major sources of variation: batch and replicate (Fig 3B and 3C).
Batches correspond to a single high-throughput growth experiment and replicates are the indi-
vidual curve observations within a batch. Using phenom throughout this study, we only com-
pare replicates that are contained within the same batch. This is due to the nested structure
between batch and replicates (Fig 3). Noise due to both replicate and batch do not appear to be
independent identically distributed (iid), as observed in the correlated residuals around the
mean for each experimental variate (S5A and S5B Fig). Each observed growth curve is there-
fore described by a combination of the fixed effects and the corresponding batch and replicate
effects (Fig 3D). Both replicate and batch variation are modeled as random effects because the
variation due to both sources cannot be replicated, i.e. a specific batch effect cannot be pur-
posefully re-introduced in subsequent experiments. Instead, these variates are assumed to be
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Fig 3. Hierarchical model of functional data. Representative diagram of hierarchical variation present in microbial growth data. Each tier of graphs
represents a different variation source, and lines indicate relationship between them: experimental condition is the true growth behavior of interest,
with the condition repeated across batches, and replicates repeated within each batch. (A) Functional phenotypes m(t) (blue), m(t) + 6(t) (orange), and
4(t) (green curve in inset). (B) Batch effects on m(t) and m(t) + 8(t). Each plot is a different batch, solid lines are the true functions as in (A), and the
dashed lines are the observed batch effect of m(t) and m(t) + 5(¢) for the corresponding batch. (C) Replicate effect within batches. Each axis is a different
replicate, solid and dashed lines as in (B), dotted-dashed line is the observed replicate function. (D) Observations from the model described in (A-C).
Each curve is sampled with a mean drawn from the global mean, with added batch and replicate effects (dotted-dashed lines in C) and iid observation
noise. Each axis is a different batch. The smooth solid lines are the true functions m(t) and m(t) + 6(¢) in (A).

https://doi.org/10.1371/journal.pcbi.1008366.9003

sampled from a latent distribution [59]. Combining the fixed and random effects, we arrive at
a mixed-effects model of microbial phenotypes.

We adopted a hierarchical Bayesian framework to model these mixed effects. In this frame-
work, batch effects are described by a shared generative distribution, allowing them to take on
distinct values while still pooling across replicates for accurately estimating the generating dis-
tribution [60]. We use Gaussian process (GP) distributions for all groups in the model. GPs
are flexible, non-parametric distributions suitable for smooth functions [53]. To assess the
impact of incorporating random effects on estimation of the treatment effect of interest, we
analyze three models of increasing complexity: M, excludes all hierarchical random effects,
Mpatch incorporates batch variation only, and Mg, incorporates both batch and replicate
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variation. These models, collectively called phenom, were implemented using the probabilistic
programming language Stan [55] to perform Bayesian statistical inference for all unknown
functions and model parameters through Hamiltonian Monte Carlo sampling (see Materials
and methods).

In previous work [19] we identified and corrected for batch effects in a single transcription
factor mutant’s stress response, but this model did not provide an explicit deconstruction of
batch effects between different factors (e.g. strain and stress) and could therefore not deter-
mine which factors were most strongly impacted by batch effects. Moreover, this approach uti-
lized a standard GP regression framework, which has well-established limitations on dataset
size, limiting its applicability to the large datasets we consider here. In reference [22] we
described a functional ANOVA model for microbial growth phenotypes, which corresponds
to the M,,,y model in the phenom case. Again, a global batch effects term was included but
individual batch effects were not modeled, and the computational approach utilized (Gibbs
sampling) was prohibitively slow for the complete phenom model. phenom represents a signifi-
cant advance on these previous modeling approaches and computational methodologies.

In order to demonstrate the impact of batch effects on the conclusions drawn from the anal-
ysis of microbial growth data, we estimated the latent functions driving both H. salinarum and
P. aeruginosa growth using the M,,,;; model of phenom, with each batch analyzed separately
(Fig 4). This corresponds to the analysis that would be conducted after generating any single
set of experiments from a batch, without considering or controlling for batch effects, and
therefore provides a test of the impact of ignoring batch effects.

For H. salinarum, growth data under standard conditions was used to estimate a single
mean function, m(t), and fixed effects were estimated for differential growth under low and
high OS as &(f) (Fig 4A). For the P. aeruginosa dataset, batch effects on the interaction between
pH and organic acid concentration was represented by a function (@), (t), again estimated
non-parametrically (Fig 4B). However, rather than reporting (af),.(t) directly, we report its
time derivative, which has the interpretation of instantaneous growth rate rather than absolute
amount of growth, and provides an alternative metric for assessing the significance of a treat-
ment effect on growth [61]. Specifically, assessing growth curve models can benefit from the
estimates of derivatives as they may more accurately represent the differences between growth
curves [58].

Fitting the M,y model to each separate batch reveals that the posterior distributions
obtained for each function of interest (m(t), 6(t), and (a),(t)) are highly variable across
batches (Fig 4). This is observed in both the H. salinarum and P. aeruginosa datasets, where
the experimental conditions, and therefore the underlying true mean functions, remain con-
stant across batches in each case. Such variability can impact conclusions. We specifically
assess the changes in statistically significant treatment effects, i.e. at time points where the
effect (6(¢) or (aB),(t)) has a 95% posterior credible interval excluding zero, indicating high
confidence that the treatment effect at that time-point differs from the control. For example, in
the low OS condition in the H. salinarum dataset, both the statistical significance of §(t) and
the sign (improved vs. impaired growth) differs between batches (Fig 4A, center). Additionally,
the effect of low oxidative stress at time zero is estimated to be non-zero for many of the
batches. This is due to technical variation that introduces an artificial offset in OD measure-
ments at the beginning of the growth experiment. Such variation can arise from various fac-
tors, including variation between growth state in starter cultures and technical variation in
plate reader measurements at low OD (Fig 1A). A similar batch variability was observed under
high OS, but due to the stronger effect of the stress perturbation, estimates of 5(¢) are less
affected by batch and replicate variation (Fig 4A, right). Similarly, the batch variability
observed in the raw P. aeruginosa growth data (Fig 1B) results in significantly different
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posterior estimates of the interaction effect (a3),, (t) across batches, as seen by the lack of over-
lap between 95% credible intervals (Fig 4B). Differences observed include the timing and
length of negative growth impact (benzoate and citric acid), and completely opposite effects
with either strong or no interaction (malic acid). In addition, the posterior variance of each
function, which indicates the level of uncertainty remaining, is low for each batch modeled
separately. This indicates high confidence in the estimated function despite observed differ-
ences across batches. These analyses suggest that use of a single experimental batch leads to
overconfidence in explaining the true underlying growth behavior.

Hierarchical models correct for batch effects in growth data

To demonstrate the use of phenom to combat the impact of batch effects on growth curve anal-
ysis, we combined data across all batches and performed the analysis using each of the M,,,;,
Mypateh, and Mg models (Fig 5). Estimates of mi(f) between each model were largely similar,
likely due to the abundance of data present to estimate this variable (S6 Fig). Instead, we

focus on the estimates of 5(¢) for low and high OS response of H. salinarum (Fig 5A) and the
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https://doi.org/10.1371/journal.pcbi.1008366.g005

interaction (o8),,. between pH and OA concentration effects on P. aeruginosa growth (Fig
5B). In cases where M,y differs from My, and Mgy, this indicates an inability for this
model to correctly represent the uncertainty due to random effects in the data, which have
been shown to be prevalent across different batches of experiments (Fig 4).

Growth impairment in the presence of low OS relative to standard conditions (i.e. 5(f)) is
estimated to be significant during the time points of ~0-13 and ~19-40 hours under M, ;. In
contrast, only time points ~23-31 are significantly non-zero under My, and no significant
effect is identified under Mg, (Fig 5A, left). Conversely, due to the stronger stress effect in the
high OS condition (Fig 5A, right), estimates of () were significantly non-zero under all three
models, with only minor differences between the three model estimates. This highlights the
importance of controlling for batch and replicate variability as in Mg,: even when estimating
the low OS treatment effect under M, with all available data, without accounting for batch
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and replicate random effects the posterior estimates of §(¢) are overconfident and do not accu-
rately represent the uncertainty with respect to the true treatment effect. The lack of signifi-
cance under Mg, suggests that additional data are needed to confidently identify the true
treatment effect in the presence of batch and replicate variation. Modeling the batch effects has
also corrected for variability in treatment effects due to technical variation at the inoculation
of the growth plate (time zero of the experiments) (57 Fig).

The impact of modeling hierarchical variation on estimating interaction effects in P. aerugi-
nosa growth was condition dependent (Fig 5B). Across all conditions, a decrease in posterior
certainty on the true shape of the underlying function was again observed under My, and
M,y For benzoate and malic acid, the interaction between pH and acid concentration no lon-
ger appears to be a significant effect after accounting for batch and replicate variation, while
the larger interaction under citric acid remains significant. As in the comparison of oxidative
stress treatments in H. salinarum, stronger effect sizes are required to be confidently distin-
guished in the face of batch and replicate variability. Finally, the relative conclusions made for
the absolute function scale are comparable to those of the derivative estimates for P. aerugi-
nosa, highlighting the flexibility with which treatment effects can be analyzed as most relevant
to the researcher (S8 Fig).

For both H. salinarum response to OS and P. aeruginosa growth under pH and OA expo-
sure, an increase in posterior variance was observed under My, and Mg, compared to M,y
(S9 Fig). However, posterior variance of §(t) in the H. salinarum OS response was higher
under My, compared to Mg,. In this case, controlling for replicate effects appears to
increase the signal needed to identify 5(¢). In contrast, these variances are equal in the P. aeru-
ginosa data, indicating that the relative improvement in variance afforded by modeling batch
vs. replicate effects may be dataset dependent.

Variance components demonstrate the importance of controlling for batch
effects

Variance components, which correspond to the estimated variance of each effect in the model,
can be used to compare the impact each group has on the process of interest [24]. To better
understand sources of variability in growth curve studies, we used phenom to estimate the vari-
ance components for each dataset above. In our hierarchical non-parametric setup, these vari-
ance components are the variance hyperparameters (e.g. 0°) of the Gaussian process kernels
for each fixed and random effect group. These parameters control the magnitude of function
fluctuations modeled by the GP distribution. Larger variance implies higher effect sizes and
therefore a larger impact on the observations.

We show the value of variance components by considering the effects identified by Mg, for
H. salinarum under low OS (Fig 6). The variance of the data is partitioned between the mean
growth (m(t)), the OS (6(1)), batch effects (batch curves of m(t) and 8(t)), biological noise (e.g.
replicate variability) and instrument noise (¢7). This analysis confirms that batch effects, com-
pared to the other sources of experimental variability in the dataset (replicate noise and mea-
surement error), are between 2 to 10 times more impactful on the phenotype measurements.
Additionally, variance components enable comparisons between the experimental and treat-
ment factors in the data. Of particular note is that the variance of the treatment of interest,
4(1), and the batch effects are similar in magnitude, at least in the case of a low-magnitude
stress such as 0.083 PQ for H. salinarum. This suggests that proper modeling of this treatment
requires both sufficient batch replication and accurate modeling of batch effects in those data.
Future studies of similar phenotypes can be guided by these estimates in experimental design,
choosing an appropriate batch replication for the degree of noise expected [62]. However, the
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extent of replication required may depend upon the dataset (factorial design, treatment sever-
ity, etc). Taken together, variance components provide an aggregated view of the contribution
by various factors and guide future experimentation. Iterative rounds of phenom analysis and
growth experiments can then determine the best suited designs, for example by leveraging the
estimated batch effect variance from pilot experiments to determine the number of batch repli-
cations necessary to reliably estimate a treatment effect of given magnitude. The use of phenom
for such formal statistical experimental design calculations represents an exciting direction for
future work.

Discussion

We have provided a framework to test and control for random effects in microbial growth
data using the hierarchical non-parametric Bayesian model, phenom (Fig 3). Analysis with phe-
nom indicates that random effects (both batch and replicate) appear in the two microbial pop-
ulation growth datasets studied here, and constitute significant portions of the variability (Fig
1). Failure to correct for these effects confounds the interpretation of growth phenotypes for
factors of interest in a large scale phenotyping analysis (Fig 4). phenom controls for these ran-
dom effects and provides accurate estimates of the growth behavior of interest (Fig 5). Addi-
tionally, phenom can be used to estimate variance components, providing information about
the relative impact of various sources of noise in the data (Fig 6). Controlling for batch effects
in these datasets was therefore key to making accurate biological conclusions.

Related fields of functional genomics, such as transcriptomics, have seen considerable inter-
est in controlling for different experimental sources of variation, broadly labeled as batch
effects [28, 62—67]. These studies have shown that differences between batches first need to be
corrected to avoid erroneous conclusions [68]. Here we have shown that, like in transcrip-
tomics data, controlling for sources of variation in phenomics data—particularly due to batch
—are an important step in making accurate biological conclusions regarding population
growth. Additionally, the use of random batch effects in phenom highlights cases where addi-
tional information may be gained by further experimentation. Specifically, in cases where
treatment effects differ strongly across batches, there may be underlying biological differences
driving the variation. Follow-up experimental designs can then aim to delineate these effects
directly in a way not confounded by batch. phenom establishes a complete and general method
of controlling batch effects in microbial growth phenotypes, overcoming significant weak-
nesses of previously developed techniques.
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Although we focus here on replicate and batch variation, the phenom model is easily
extended to incorporate alternative or additional random and fixed effects appropriate for set-
tings with other sources of variation. For example, depending on the experimental design, phe-
nom could control for variation among labs, experimental material, culture history, or genetic
background [25, 69-75]. phenom flexibly incorporates additional sources of variation and/or
interaction between design variables, as demonstrated with the two different designs analyzed
for H. salinarum and P. aeruginosa here. This flexibility allows phenom to be applied to control
for many sources of technical variation within microbial population growth data, thereby
improving the analysis and resulting conclusions regarding quantitative microbial phenotypes.
We therefore expect our model to find broad applications in fields such as bioprocess control,
microbial bioengineering, and microbial physiology.

Supporting information

S1 Fig. P. aeruginosa growth under benzoate and pH gradient. Growth of P. aeruginosa
strain PAO1 under gradient of pH (7-5) and benzoate (0-20). Colors represent different
batches.

(EPS)

S2 Fig. P. aeruginosa growth under malic acid and pH gradient. Growth of P. aeruginosa
strain PAO1 under gradient of pH (7-5) and malic acid (0-20). Colors represent different
batches.

(EPS)

S3 Fig. KDE of p,.x for H. salinarum growth across batches. Crosses indicate significant dif-
ference between p,,« standard conditions and each OS level (one-sided t-test, p < 0.05).
(EPS)

S4 Fig. Error in parametric growth models. Distribution of error (MSE) for each condition
when fit with a logistic growth curve. The box show shows the inter-quartile range, red line is
the median, whiskers show the 1.5 inter-quartile range, and the individual points are outliers.
(EPS)

S5 Fig. Residual structure of microbial growth data across batches. (A) Individual replicate
curve residuals around the mean of the respective batch. Only standard conditions are shown.
(B) Residual of the mean behavior for each batch around the global mean (standard condition
only).
(EPS)

S6 Fig. Posterior comparison of m(t) for H. salinarum growth across batches. Posterior
interval of m(¢t) for H. salinarum standard growth.
(EPS)

S7 Fig. Posterior intervals of low oxidative stress batch effects estimated from Mg,y. Full
estimates of the d(t) batch effect under Mg, are shown, with solid lines representing posterior
mean and shaded region representing 95% credible intervals (left). 95% posterior credible
interval of batch effects for (¢) at time zero are shown (right), with crosses marking posterior
means. Many of the batch effects for J(t) are estimated to be non-zero at the start of the experi-
ment, reflecting the impact of technical variation in the high-throughput readings at the start
of the growth curves.

(EPS)
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S8 Fig. Posterior intervals of interactions for P. aeruginosa on an absolute growth scale.
Posterior intervals of interactions in Fig 5B, but reported here on an absolute (log OD) scale.
The same data is reported on the derivative (d log OD / dt) scale in the main text Fig 5B.
(EPS)

S9 Fig. Posterior variance of function estimates under different models. Each plot shows
the posterior variance of a function at each time point under each of My, and Mgy versus
Mun- (A) 8(8) estimated for H. salinarum growth under low (left) and high (right) OS. (B)
(@) ,.(t) at pH = 5, mM malic acid = 10.

(EPS)
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