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POINTWISE ERROR ESTIMATES FOR C° INTERIOR PENALTY
APPROXIMATION OF BIHARMONIC PROBLEMS

D. LEYKEKHMAN

ABSTRACT. The aim of this paper is to derive pointwise global and local best
approximation type error estimates for biharmonic problems using the C? inte-
rior penalty method. The analysis uses the technique of dyadic decompositions
of the domain, which is assumed to be a convex polygon. The proofs require
local energy estimates and new pointwise Green’s function estimates for the
continuous problem which has independent interest.

1. INTRODUCTION

We consider the fourth order problem:

Ay =f inQ) |
1
@ u:a—uzo on 012,
on

whereQ) C R? is a convex polygonal domain, f € L?*(f2), and n denotes the out-
ward unit normal of 9€). Finite element discretization of the above problem is not
straightforward and various approaches to approximate the above problem were
proposed over the years. However, they all have some drawbacks. For instance,
conformal C! elements are rather complicated even in two dimensions [2, 7], the
classical non-conformal elements [13,20] must be altered in the presence of low or-
der terms (cf. [14]). Furthermore, the construction of higher order nonconforming
finite elements for fourth order problems is also not easy. The C? interior penalty
method is a sound alternative. This method is attractive since the finite elements
consist of usual Lagrange elements of arbitrary order and straightforward to imple-
ment. A detailed description of the method with energy based error estimates on
convex and nonconvex domains can be found in [4].

Pointwise error estimates is well developed area for the second order problems.
However, there are few such results for fourth order problems. Many such pointwise
error estimates are obtained via Sobolev embedding. This is not satisfactory since
such results are usually not optimal and often the discrepancy between norms makes
them hard to use for applications, for example in optimal control problems. In
addition, it is hard to localize them. The only exceptions we are aware of are
the papers by Rolf Rannacher [16] and Ming Wang [23], where pointwise error
estimates were established for some nonconforming and mixed elements. Both
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42 D. LEYKEKHMAN

papers used a weighted technique, and their W1 error estimates are in the form
of quasi-optimal order error estimates with H?3(2) norm on the right hand side,
which is consistent with regularity of the biharmonic problem on convex domains.
However, the error estimate for the second derivatives in [16], which is important
for computing bending moments, requires W3 and H* regularity for the solution,
that can not be guaranteed on convex polygons. In addition, it is not clear how to
localize those results.

In this paper we take a different approach and show the following best approxi-
mation type results.

Theorem 1.1. Let u satisfy (1) and uy be its CV interior penalty finite element
approximation, and xg be an arbitrary point of ). Then there exists a constant C
independent of h such that

2 3 .
02— un)(a0)] < Pkl min flu = xllyz = o)

where D? denotes a general second order differential operator and W,?’Oo is a mesh
dependent norm defined in (17c).

There is some ambiguity in the meaning of D?uy (o) in the case of zg be on
the edge of two elements. In this situation the value of D?up(x¢) can be taken
by restricting up to either element. We also want to point out that from the
Theorem 3.4.4 from [8], for example, it follows that on convex polygonal domains
the solution u to (1) is in H37¢(Q) for some € > 0 and by the Sobolev embedding
in two dimensions u € W2%>(). As a result the theorem makes sense without
any additional smoothness assumptions on the solution or domain. In general, we
can not expect even a first order convergence since the solution is not in W3°°(2).
However, similarly to the second order elliptic equations [17,18], we can establish
the following local result using which we can obtain first order convergence in the
interior of the convex domains without any additional assumptions on the regularity.

Theorem 1.2 (Local error estimate). Let and xo be an arbitrary point of Q and
define By = Bg(x) N Q, where By(xg) denotes a ball of radius d centered at .
Then there exists a constant C independent of h and d such that

2,h,Q) )

where ||| - |||W§,oo(Bd) and ||| - Il , o are mesh dependent norms defined in the next

3 —
D2 (u = un)(wo)| < Clnhl (Jlu = Xl ) + 7w = x|

section.

The analysis of the method uses a combination of well-established technique of
dyadic decomposition together with local energy estimates for second order elliptic
problem [22] and pointwise Green’s function estimates. In this paper we only con-
sider two-dimensional convex polygonal domains. However, even on such simple
domains we had to overcome several technical difficulties in order to obtain the
results. Our error analysis framework has a lot in common with pointwise error
analysis for discontinuous Galerkin methods for the second order elliptic problem
[5,9]. The details are of course rather different and the main difficulty lies in the reg-
ularity results. In contrast to the second order elliptic problems on convex domains,
where H? norm of the solution is bounded by the L? of the right hand side, for the
biharmonic problem we can control H? norm of the solution by H~! norm of the
right hand side, which causes many difficulties due to the global nature of the H~!
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POINTWISE ERROR ESTIMATES FOR BIHARMONIC PROBLEMS 43

norm. Although pointwise error analysis for the second order problem is available
in three dimensions too, the pointwise Green’s function estimates and the duality
argument are the main obstacles for extending our main results to non-convex case
or to three dimensions.

The rest of the paper is organized as follows. In the next chapter we introduce
notation and some basic results for continuous problem. In chapter 3, we define
the C? interior penalty discretization, and establish key lemmas. The central result
is the Local Energy Estimates, Lemma 3.9. In chapter 4 we provide a proof of
the global pointwise error estimate, namely Theorem 1.1 and in the chapter 5, we
establish a localized version, Theorem 1.2.

2. NOTATION AND PRELIMINARY RESULTS

In the paper we use the usual notation for Sobolev and Lebesgue spaces. We
denote by (-,-) the inner product in L?(f2), and by (-,)q, the L? inner product in
over a subdomainS) o C €.

We let D denote a general first order differential operator, D? - second order
differential operator, D3 - third and etc. The partial derivatives we will denote by
0. We will also use the multi-index notation when it is important.

The weak solution u to (1) given by

(2)  Bluyp):=(Du,D*0) = > (Fu.0}0) = (f0), Ve HF(9Q),

ij=1
is naturally in H2(Q) with the following estimate
(3) lull2(0) < Cllf |l H-2(0)-

On convex domains we also have that v € HZ(Q) N H3(Q) with the following
estimate (cf. [10] sec. 5.9)

(4) lullzrs ) < Cllflla-1(0)-

2.1. Green’s function estimates. In the proof of our main results we will make
a heavy use of pointwise estimates for the Green’s function and its derivatives. The
following form of the estimate seems to be new for convex polygons, but follows
rather easily from available results.

Lemma 2.1. Let Q be a bounded convex polygonal domain in R? and G(x,y) be
the corresponding Green’s function for the problem (1). Then for all multi-indices
a = (a1,a9) and B = (B1, B2) with the range 1 < |af,|B] <2 and 3 < |a| + |8 < 4
the following estimates hold,

a 2—|a]—
(5) |Dg DY G(x,y)| < Cla — y|*~ 1= 1A1,

Proof. The estimate (5) essentially follows from the estimates from [12] (see also
[11, p. 286]). Let wy,ws,...,wy be the interior angles of the convex polygon €. Let
w be an arbitrary angle, and let p(z) denotes a distance from x to the vertex of w.
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44 D. LEYKEKHMAN

Theorem 2.1 in [12] states that the for Green’s function the following estimates hold
(6a)

|DS Dy G(x,y)| < Clo —yP~1*171PL - for p(x)/2 < ply) < 2p(x), 3 <ol +8],
(6b)

IDEDEG(x,y)| < Cp(x) 1 p(y) 7211 for 2p(x) < p(y), 0< |a|+ 8],

(6¢)
|DYDEG(z,y)| < Cp(a) 12712 p(y) 1P for  2p(y) < p(z), 0<|a|+ |8,

where 7 is any real number that satisfies inequality |y — 1| < C,,. Since w < T,
according to Lemma 1.2 in [12] (see also [3]), C,, > 1 and as a result we may take
v = 2+ ¢ for some £ > 0.

With this choice of v from (6b) it follows that

|D§‘D5G($,y)| < COp(z)2relelp(y) 2= 2=180 < Op(y)2~lel=181

where we used that this is the case when 2p(z) < p(y) and 2 + ¢ — |a| > 0. Using
the triangle inequality

[z =yl < ply) + plx) < gp(y)
and that by the assumptions on 2 — |a| — | 5| < 0 we have that in this case
(7) IDEDEG(z,y)| < Cp(y)>~ 11181 < Cl — y[2-lol=181,
The case 2p(y) < p(z) is very similar. From (6¢) with v = 2 + & we have
ID2DEG(,y)| < Cpl)~2-+2719] p(y) =181 < Cp(a)2-1al-18,

Again using the triangle inequality

[z =yl < p(x) + p(y) < gp(ﬂc)
together with the assumption 2 — || — |3| < 0 we obtain
(8) D3 DG, y)| < Cp(a)* 147101 < Ol — y[>~1I= 1AL,
Combining (7), (8), and (6a), we obtain the lemma. O

3. DISCRETIZATION

To define finite element approximation of the solution to (1), for h € (0, hol;
ho > 0, we let 7; denote a quasi-uniform triangulation of 2 with mesh size h,
ie., Tp, = {T} is a partition of Q into triangles T' of diameter hp such that for
h = max, hr,

diam(T) < h < C|T|?, forall T € T,.

Let SI C HJ(£2) denote the Lagrange finite element space consisting of polynomials
of degree r > 2; that is,

Sh = {vn € Hy(Q); vp|, € P(T) VT € Ty}
By I, : C°(Q2) — SI we denote the usual nodal interpolant which safisfies
(9) lv = Invllwisery < CR* 7 ollwen(ry, Yo WH(T),

for 1§p§oo,j§s§r+1,ands>%.
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POINTWISE ERROR ESTIMATES FOR BIHARMONIC PROBLEMS 45

3.1. Trace and inverse inequalities. We will frequently use the following trace
and inverse inequalities. For T € T, and v € HZ(Q), v, € S} there exist positive
constants Cy,. and Cj,, independent of 7 and v, v, such that

(102)  [[vllZ207y < ChllollL2yIVOllL2ry < Co (W HIvl|Z2 ¢y + PIVOlZ2(1)),
(10b)  [[Vonllzzry < Cinoh™ HonllLzer),
(10c)  |lvnllz2ory < Cor(1 4+ Cim;)hilﬂ”vhHL?(T)-

3.2. The CV interior penalty method. To define the method, we need some
additional notation. Let &, be the set of edges in T;,. For e € &, and v € H2(Q, Ty),
where

H*(Q,Th) ={ve L*(Q):v|rc HX(T) VT € Tp},
we define the jump [[g—:’b]] of the normal derivative of v across an edge e and the
average of the second normal derivate {{g%}} of v on an edge e as follows. If

e C Q, we take n. to be one of the two unit vectors normal to e. Then e is the
common side of two triangles 7'y € T, and T_ € Tj, where n. is pointing from 7_
to T. Thus, on such e we define

ov _(%T+ Ovp_ 0% B UT+ OUT_
[[% -~ On e = on | and on? | o + e

We note that the above definitions do not depend on the choice of n.. If e C 02,
we take n. to be the unit normal pointing outside Qand

R T T
on”  One & on2 [ On?’

Next, we define the bilinear form By,(+,-) by

By (v,w) = /D% D*wdzx
TeTh
-3 [ G {5 ) e
where

2
D*v: D*w = Z 8%11 8i2jw

ij=1
The discrete problem is to find uj € S}, s.t.
(11) Bh(uh,vh) = (f, Uh), Yup, € S;;

Similarly to [4] we define the following mesh-dependent norm

ol = 32 ID%0laery + > ('6' {5}

T€Th e€lp
Easy to see that the bilinear form By, (-, -) is bounded

(12) Bh(v,w) < C|vflly 1wl p,

2

+le|™!
L2(e)

2
LQ(G)) ‘

and for n sufficiently large, the bilinear form By, (-, -) is coersive (cf. [4]) on S},

(13) Bu(vn,vn) > Cllvall3,,,  Yon € S5

lgn

Licensed to Univ of Conn, Storrs. Prepared on Thu Jun 3 10:32:33 EDT 2021 for download from IP 67.221.77.74.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



46 D. LEYKEKHMAN

As a result by the Lax-Milgram lemma, uy, is well-defined. From [4, eq. (4.9)] we
also have that the exact solution u satisfies

Bp(u,x) = (f.x), Vx €Sk,
and as a result v and wuy, satisfy the usual Galerkin orthogonality

(14) Bp(u—wup,x) =0 Vxe€Sj.
In [4, Theorem 3], on convex domains the following error estimate was established
(15) e = unllly, < ChIFll-1(0)-

Note that for vj, € S}, using the inequality (10c), we have

= ulfEH,

ec&y,
and thus on S} the [ - [||, ;, norm is equivalent to the following norm without the
terms involving averages, namely

lol3. = > I1D*0llZa(ry + D lel™

Ten eEé’h

<C Y ID*0nli2r,
L2(6) TETh

2

ov
b

L2(e)
We will also require the following norms on subsets D C 2. First we define

(16) ThND={TeT,:TND#0} and & ND={e€ &, :enD #0}.

Then,
0%v v
01) lellwziny = 3 bowosn+ 3 [ (1| {55 P+ |1501]) s
TeTnND ecEpND
(17b)
0%v 2 ov_|I?
2 _
olo= Y I+ 3 (|e| {5l ez ).
TeT,ND e€EnND L2(e) L2(e)
and
(17c)
Hollopze o
— max [lyamen + r + max o[ 12
~ retanp WEEM T IS 1 an2 Lo (e) ceernp ! | oo ey
Using the above norms we also have
(18) Ba(v,0) < Cllollyy 2 o ol 2= e

3.3. Superapporximation. Superapproximation is an essential tool in pointwise
finite element error estimates [15]. To describe them we denote by B, (x) a ball of
radius 7 > 0 centered at xy and introduce a smooth cut-off function w € C*°(Q)
with the properties:

(19a) w(x) =1, x € Bg(zo)
(19D) w(x) =0, € Biyy(xo)
(19¢) wlys <Cd™7, j=0,1,2.
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POINTWISE ERROR ESTIMATES FOR BIHARMONIC PROBLEMS 47

In [6] an improved superapproximation result was obtained

h _ r
[w?x = In(w?X) || () < CFT (IV(wx)llz2ery + d7 Ixllz2ery) , X € Sh-

We will follow the ideas from that paper. Let P;(w) and Pp(w) be linear and
constant order approximations to w on element 7', respectively, such that

(20) lw = Po(w)|| 1y < Chrllwlw )y < Chpd ™
(21) lw — Pr(w)lws (1) < Chg*|wllwz () < Ch37°d 2, s =0, 1.

We take Py(w) =@ = |T|™! [, w and Pi(w) a linear interpolant of w.

Lemma 3.1 (Superapproximation). Let w be as above and x € S} with r > 2.
Then there exists a constant C independent of w, d and h such that for s =1,2,3

3—s
wx = In(w*x)|ge(r) < C 7;1 (lw®X| 27y + d™ x| gy + d72 xl 22 cr)) -

Proof. We give a detailed proof for piecewise quadratic elements » = 2 only. The
proof for general » > 2 is very similar. By the standard approximation theory we
have

(22) ’W4X - Ih(w4X)|HS(T) < Chg)"is|w4X|H3(T)> for s = 1,2,3.
Then
(23) D3(w'x) = D3(w")x+3D*(w")Dx+3D(w") D*x+w' D3y i= [+ I, + I3+ 1.

Since we are dealing with quadratic elements, I, = 0. Using (19¢), I; can easily be
estimated as

(24) I = | D*(wh) x| 27y < Cd™2 (Xl z2(1)-

Using

(25) D(w') =4w?Dw and D?*(w?) =4D(w3Dw) = 4(3w?|Dw|? 4+ w?D*w),
we have

(26)

Ig = H3D(w4)D2XHL2(T) S H12w2]Dw]2Dx||Lz(T) + ||w3D2waHL2(T) == 121 + IQQ.

Using (19¢) and adding and subtracting &, where & = |T|~* Jw, we have

Iy < Cd?||wDx|| 2(m)
(27) < Cd™?||(w — ®)Dx||p2(ry + Cd?|@Dx|| L2 (1)
= Iz11 + I212.

Using the approximation and the inverse estimate

Iy < Cd™*hpd ™| Dx|lL2¢r) < Cd™2|Ixl 2 (1)
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48 D. LEYKEKHMAN

By using that & is constant on T and using the triangle inequality, properties of w
and the inverse estimates, we have

Inig = Cd™?|D(@xX) |22 (m)
< Cd™2 (|D((@ — w)x) | 2y + 1D(wWx) | L2(7))
< Od™? ([(Dw)xll L2y + 1@ — w) Dxll 27y + lwx| a1 7))
< Cd™?|Ix||2(ry + Cd*hpd ™ | Dx|| L2y + Cd™?|wx| a1 (1)
< Cd™3| x|l La(ry + Cd™ 2wl ()
Similarly to the analysis above, by the properties of w
Iy < Cd™?||w’ Dx|| 2y < Cd™?||wDxl| L2 (m
< Cd™?||(@ — w)Dx|lL2 () + Cd™?| D(@x)|I 2 (1)
< Cd™?|Ixll L2y + Cd ™ |wx| (1)
The next term,
(28) Is = [3D() D2 27y = 112 DD s
Thus adding and subtracting P; (w?), we have
Iy < Cd™Hw?D?x| 2 (r)
< Cd™ ([(w® = Pu(w?) DXl 2(ry + 1P (@) D x| 2 1))
= I31 + I30.
By the approximation and the inverse estimates
I3y < Cd i |D*(w?)| Loo (1) | DXl 21y < Cd™2||x|l L2 (1)
Since D?(P;(w?)) = 0, by the triangle inequality,
I3 < Cd (| D*(Pu(w?)X) | 2(ry + ID(PL(w?)Dxll2(1y) = Iso + Iszo.
Using D?(P;(w?)) = 0, the approximation and the inverse inequality,
Iyp1 <CA™ (D2 ((Pr(w?) = w?)x)|z2(r) + 1D (@) L2(r))
<Cd™" (|ID*(w?)xlz2(ry + I D(Pi(w?) = w?)DxlL2(1))
+0d™ ([[(Py(w?) = w*) DXl 2 (ry + [0 x| 12 (1))
<Cd™ (d72||x]l2(r) + hrd? | Dxl2(r) + h7d 2| DXl L2y + |0 x| 2 (1))
<Cd™®||xllL2(ry + Cd M w’X| (7).
Adding and subtracting w?, and using the estimate for Io; (27), we have
I3z < Cd™" (| D(Py(w?) = w®) DXl L2y + [ D(w?) DXl L2(r))
< Cd™" (hrd™?|Dx| z2(ry + 2|lwDwDx||r2(T))
< Cd7?|\xll 2y + Cd™?||wDx| L2 (1)
< Cd?|x| 21y + Cd?|wx|m (1)-

Combining all the estimates we complete the proof. O
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POINTWISE ERROR ESTIMATES FOR BIHARMONIC PROBLEMS 49

Remark 3.2. The straightforward approach [15] gives the following superapproxi-
mation result

3—s
WX —In(@*X) sy < C 2 (Ixlmzery + d7 X ey + d7 3 IxN e2ery) > s=1,2,3.

Although, such a result would be sufficient for our goals in this paper, it would
make the analysis of local energy error estimates in Lemma 3.9 more cumbersome.

Corollary 3.3. Let w be as above and x € S; with r > 2. Then there exists a
constant C' independent of w, d and h such that

(29a)

hr _ _
oo = In(@ ) o, < €= (lw*x a2 + A7 x| @) + 477 lIxl 22(50)
(29b)

hr _ _
lw*x — Ih(W4X)|||2,h < 07 (lw* DXl 220y + d~ HlwVxl L2) + d 2 [IX I L2(B,)) -

Proof. The proof follows from Lemma 3.1, the trace and inverse inequalities and
the product rule. O

3.4. Preliminary weighted results. First we show the following supplementary
result.

Lemma 3.4. Let w be as at the beginning of section 3.3 with the properties (19a)-
(19c). Then for any € > 0 and any vy, € S},

2

L2(6)>

dun
on

lwVon|72(q) <ed? <Z l* D202y + Y lel ™ ||w’l
TET eely

+ Ced™?||on|72(,)-

Proof. Integrating by parts on an element T" we have

ov
HwVvhHQB(T) = WV, Vup)r = —(V - (W*Vop), o) + <w2—h,vh>

on a7
2 2 2 Ovp,
= —(V(w?) - Vop,vp)r — (W Avp,op)r + | w 8—,vh )
n T

Summing over elements we obtain

ov
o VunlFay = Y —(V(@?) - Von, on)r — (w*Avy, vp) 7 + (wza—h,vh>
n oT
TeT
=J1+ o+ Js.
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50 D. LEYKEKHMAN

Using the Cauchy-Schwarz and Young’s inequalities, and using the definition of
Th N Bsgy4 in (16), we have

J = — Z 2(wVw - Vo, vp)r
TeT,

Z Cd™HwVupl 2y lonll 22 ()
TEThﬂBgd/4

1 _
<7 > llwVonlieer +Cd D llalliaen

TeTs Te€ThNBsg/4

IN

1 _
< Z1wVenlZza) + Cd7 vnllZ2 s,
Similarly using the Cauchy-Schwarz and Young’s inequalities

Jy = — Z (w2Avh,vh)T

TeTh
< Z |w® Avpl 2y lon ]l 22 ()
TETNBsaya
ed? o o B )
< 3 Wt Dtonlbary + Ced® Y e
TeTh TeThNBzg/a

5d2
<= Y lw*D?vnllizcry + Ced|lonlF2p,)-
TETh

Finally, summing over the elements and using the trace and inverse inequalities and
using the definition of 75 N Bsgy4 in (16), we obtain

b5 (), - 5 (),

TET eely
ed? _ Ovp, 2 _
<5 > el wz[[%]] +Cd™? D elllvallize
ecéy, LQ(e) eeghﬂBgd/4
ed? _ (%h 2 _
< 7 Z ’6‘ ! H ) + CeCino Cyrd 2 Z |’vhH%2(T)
ec&hp L2?(e) T€ThNBsg/4
ed? _ (%h 2 _
S5 > el [[ + Ced?||vn |72,
e€ L2(e)
Combining the above estimates we obtain the lemma. O

We also need the following results.

Lemma 3.5. Let w be as above. There exists a constant C' independent of d and
h such that for any v, € S}, and any € > 0

= il {5hl,

ecé

S C€d2 (Z ||W2D2Uh||%2(T) + Z ’6‘_1

TeTh e€ly

L2(e)

[[a’Uh

) + Csd_2||1)h”%2(3d).
L2(e)
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POINTWISE ERROR ESTIMATES FOR BIHARMONIC PROBLEMS 51

Proof. Adding and subtracting Py(w) we have

) S LR C ) )
W — < ||Po(w) 3 — + |[(w — Po(w)) § — .
{{ on )2 on )l 2o on )12
By the trace and inverse inequalities
ovy, 2
> el || Po(w) {{87}} <C Y Po(w)VonlZa
e€Ey, L2(e) TET
<O Y lwVonllzeery + [(Po(w) = w)Von| 72

T€Th
= C (IloVenllza) + 1(Po(w) = ) Vonlfa ) -
By the approximation and the inverse inequality, we have
[(Po(w) — w)Vunllz20) < [|[Po(w) — Wl ) IVURIL2(By)
< Ch|Vwllpoe (8 [IVUnll 28,y < Cd™onllL2 (5,

Combining the above estimate with Lemma 3.4, we obtain

ov 2
>kl { e B <
ec&y LQ(e)
8’Uh 2
2 212, 1|2 ~1]|, 2
Ced (Z |w” Do |72 1y + Z le] ™ ||w [[%]] ] )
TET e€En L2 (e)

+ ng_QH’UhH%Q(Bd).

Similarly, by the approximation, properties of w, trace and inverse inequalities,

ov 2 _
> el |[(Po(w) —w) 8 S < Cd72||onl32m,):
on (Ba)
ecép L2(e)
Combining, we obtain the lemma. O

Lemma 3.6. Let w be as above. There exists a constant C independent of d and
h such that for any v, € S},

e {5 )

Proof. Adding and subtracting P;(w?) we have

PG <l G RL e -men {5

By the trace and inverse inequalities

5 o 42

eely,
<0 Y 1P,
TET

<C Y [lwD%0n} gy + | (PL(w?) = ) D20n [}
TeT

2

<C Z HW2D2”hH;(T) + Cd74‘|vh||%2(3d)‘
L2(e) TET,

2

L2(e) ‘

2

L2(e)
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By the approximation and the inverse inequality, we have
I(Pr(w?) = ) Dvp 127y < [[P1(w?) = @[l oo (1) | D*on| 22 )
< CR2||D*(w?) || Lo () [ D*vnl 2(r) < Cd™2|onl L2 ()

and as a result

5 o {52

e€lp
Similarly, by the approximation, properties of w, trace and inverse inequalities,

> el ‘(Pl(WZ)_wz) {{%}} |

eely
Next we show the following coersivity type result.

2

<C Z szDzvhH;(T) +Cd™Y|vn 22,
L2(e) TET,

<C Y W D?n oy + O~ onl 35,
L2e)  Tem

g

Lemma 3.7. Let w be defined as above. Then, for any vy, € S},

a’Uh
Z HWQDQUhHH(T)“‘Z le| ™" ]]

TeTH e€&y,

Proof. From the definition of the bilinear form

By, (vp, whvp) Z /D2vh D?(whvy,) dz+
TET

e
e| /Havh (w vh)]]d

::J1 + J2 + J3 + Jy.

First we will address

J1 = /Dzvh D2(w Up) Z Z Uh,82 (w vh))

TeTh TeTh 1,5=1

§CBh(”hyW4Uh)+0d_4||vh”%2(Bd)'
L2(e)

Since
8%» (whvp) = 0;(4w0jwvy, + w?dup)
= 12w28iw8jwvh + 4w38i2jwvh + 4w30jw8ivh + 4w? Oiwdjvp +w 82 i Uhs

we have
Ji = Z |w? D?vp |72 (r) + J12 + Jia,
TeTh
where
Ji2 = Z Z 202 Up, (120,w0jw + 4w82 w)op)T
TETh i,j=1
and

2
J13 = Z Z (wQOEjvh, 4w8jw8wh + 4w8@-w8jvh)T.

T€Th i,j=1
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Since v, € C%(Q) and w € C*°(2) we have

(.U4U (Y
RACRDS S

PR = T S LT LY RN
z e {{%%}} o).
Y s gz

v2(G ([ Ge B 15 + (G 152),
_ Z( {{a Yn }} [[8”"]]) + Js1 + Jsa.

Combining the above estimates we obtain

81}
> W D?on) eyt > lel "u = B(vp, w'vy)
TET, e€Ep L2(e)
o0%v ov
—Jip—hg =2 Y (v {{ h}} 2[G2]) — o o
ec&y ¢
6
=1 > Jel ”h .
ec&y L2(6)

Using the Cauchy-Schwarz and Young’s inequalities
(w 282 Op, (120;w0jw + 40032 w)vp)r < Cd_2||w2D2vhHL2(T)th||L2(TﬂBgd/4)
1 _
< §||W2D2’UhH%2(T) +Cd™vn L2 (784 0)

and summing up we have

—Ji2 < < Z HWQDzvhHm(T) +Cd” ”UhHLZ(Bd)
TeTh

Again using the Cauchy-Schwarz and Young’s inequalities
4(w28i2jvh,w6jw8ivh + wojwdjup)r < Cd_lHwQDQUhHLz(T)HwVvhHLz(T)

1 _
< §HW2D2%H%2(T) + Cd™?|wVon 72 r)-
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Summing and using Lemma 3.4, we have

i < Z lw?D?op|32¢r) + Cd™2 > [lwVonl1 32
TETh TETh

1
< +ac> > W’ D?opll7ziry +6C D e

TETh ec&y
+ Ced™onZ2(,)-

2
a'l)h

2]

L2(e)

Using the Cauchy-Schwarz and Young’s inequalities and Lemma 3.6

0*v ov
2 Z ( {{ h}} [[ h ) Z Hw2D2vhHL2(T)+Cd 4HUh||L2(Bd)

ec&y TGT
+C Y el ]]
ecEn Lz(e)
Using properties of w and Lemma 3.5,
_ a’Uh 6’Uh
N 1 —h
wzort Bl a ] ),
eely
212, (12 _1 || 279vn ? —4 2
<Ce Y lw?D2opll3aiy +C Y el |w [5,] + Ced™|vnll32 (-
L2 (e)

TETh ec&p

Similarly, using properties of w and the trace inequality,

— a’l)h
~Jp <Cd? Y ol ﬂ
eEghﬁBgd/4 €
8Uh _
<CY el ]] +Cd™on 25,
ecy (e)
Choosing ¢ such that Ce < % and providing 7 is sufficiently large we obtain the
lemma. g

In view of Lemma 3.6, we also have
Corollary 3.8. Under the assumption of Lemma 3.7, we have

D WP DPonllFecry + Y fel ™ + D lel flw

TET) s L2e)  eeen
< CB(vn, whon) + Cd™vn )32 (5,)-

2

8Uh
o ]]

{5

3.5. Local energy estimates. Next we establish the following key result.

L2(e)

Lemma 3.9 (Local energy estimate). Let u and uy satisfy Bp(u — up,x) = 0 for
any x € S;,. Giwen D C Q, d > kh > 0 for sufficiently large k, and D C Dg with
dist(Dg4, 0D\ 092) > d, there exists a constant C independent of d and h such that

=l <C 08, (e =l =2 = X220 ) +Od =2 120,
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Proof. To show the lemma, it is sufficient to establish the following estimate
(30) llunllla,p 5 < Cllulllsp g, + Cd™*llunllz2(s,)

for a ball B := By/3. The lemma then would follow by standard covering argument
and by replacing v with v — x and u, — x and the triangle inequality.
Let w be the cut-off function as in (19). Then by Corollary 3.8,

2
lunllzpe < D lo?DunlZa)

TeETh
8uh 2 82uh 2
+ el et o+ o
ec&p on L2(e eely on L2(e)

< CBh(uh,w4Uh) + Cd_4||uhHL2(Bd)'
We use the identity

Bh(uh,w4uh) = Bh(uh,w4uh—lh(w4uh))+Bh(u,w Yun) — By (u,w up — I (whup))
=J + Jo + Js.

Now we treat all three terms separately. Using the boundedness of the bilinear
from and Young’s inequality

T2 < Cllullly s, e unllly, -

By the definition of the || - [[|5 ;, norm,
2
o unllyy = D 1D (W un)|Zar)
TET
10w uh) 2 0?(w uh) 2
oD YRl (ECED S M £ CuR
ecEr L2(e)  eecg, L2(e)

= Io1 + Iog + Ios.

Using the product rule, the properties of w and Lemma 3.4, we have

L < (I D%unl3ary + 41D Dun 32 + 1D un 32 )

TET
_ dup,-||? _
<C DY wWDuplliary +C > fel™ w2[[8—n]] +Cd™|un|32 5,
TETs e€Ey, L2(e)
Since
8(w4uh) a'U«h
we have
8uh 8Uh
Iy = Z [ Z e~ '
e€Ey, L2(e)  eegy L2(e)
Using

e e R
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Lemma 3.6 and Lemma 3.5, the properties of w, and inverse inequality, we also

obtain
02up | |17 B dup \\ |17 _
by<§:M< | I PR I P
2 n 2
ecE L2(e) L2(e)
_ Ay || _
<O D2 unllFeery +C D el WQ[[%]] +Cd™Y|un 2,
TETs e€&y, L?(e)

Hence, by the Young’s inequality

(z D2 unlagey + 3 Jef!

TeTh ecéy

6uh

2
L2(6)>

Using the superapproximation result Corollary 3.3 and Lemma 3.4 and similarly to
the above

_ 2
+Cd 4‘|Uh||%2(3d) + Clllulll, . 5, -

I3 <Clllullly p, , Ml un — In(w un)ll,

h _ _
< Cllullly p,p, (lw*D?unll L2y + dHlwVunl| L2) + d =2 |[unllL2(5,))

2
(z D2 un ey + 3 el )
L2(e)

TeTh eely
To estimate J; we use again the superapproximation result Corollary 3.3 and
Lemma 3.4 to obtain

8uh

[,]

+ C|||u|||2,h,Bd + Cd_4HUh||%2(Bd)-

J1 <Cllunlly g, ot un = In(whun)llly

h _ _
<C- (lw?D?upl| 20y + d~ lwVunl L20) + d7*lunll 2(5,))

2
(z D% oy + 3 el ( ))
L2(e

TETh e€ly
Combining the estimates and kicking back the terms, we obtain

8uh

h? _
+ O lunll g5, + O un 3,

< Cllullzp 5, +C +Cd ™ |un| 725,

[ i

Iterating the argument once again and using the inverse inequality we obtain

2 _
|||Uh|||2 h,B <C|||U|HQ h,Bsa T ¢ ’uh|||2,h,B2d +Cd 4H“h||%2(32d)

iy
< Cllull 3y, + O funl3 s,

which establishes (30) with insignificant difference of having subset Bsg instead of
By on the right hand side. O
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4. POINTWISE ERROR ESTIMATES

Let 2o € Q be a fixed (but arbitrary) point. Let Ty € T, be an element such that
xo € Ty. Associated to this point we introduce a smooth Delta function [21, Lemma

2.2], which we will denote by 6= Sxo, cf. also [19]. This function is supported in
To and satisfies

(x;0)1, = x(20), Vx € P"(Tp).

In addition from [21, Lemma 2.2] we also have
(31) 18llweniy < CRT*72073) 1<p<oo, s=0,1,2.

In particular ||S||L1(Q) <C, ||5||L2(Q) < Ch7!, and ||S||LOO(Q) <Ch™2
Now we define a function g € HZ(Q), by the equation

(32) B(g,p) = (D*6,¢), V€ H3 (),
which also satisfy
Bh(g)X): (D2S7X) :D2X($O)a VXESiTm
and correspondingly we define g5, € S} by
(33) Bu(g—gn.x) =0, Vx €S
Thus, for any x € S} using (33), (14), (18) and that § is supported on Ty, we have
D?(un — x)(w0) = Bh(un — X, 9)
= Bp(un — X, gn)
= Bp(u — X, gn)
= Bp(u—x,9) — Br(u—Xx,9 — gn)
= (u—x, D*8)1, — Bi(u—X,9 — 9n)
= (D*(u—x),0)1, — Bu(u—x,9 — gn)
< ID*(u = X)L (1) 101l 22 (70) + Clllu=xlll w2 () g = g lllyy21
< Cflu— mej“(g)(l +llg — Qh\“w,f*l(g))-
The main result would follow once we establish the following result.
Lemma 4.1. There exists a constant C' independent of h such that
llg = gl gy < Clm A2,

4.1. Proof of Lemma 4.1. In the proof we will use a dyadic decomposition of 2.
Let jo € Z be the largest integer such that d;, :== 277 > diam(Q2). We have

J
(34) a=0.u ],
J=jo
with
Qo={zeQ: |z - <d.}, d.=Cih
Q]‘:{SCEQI dj+1§|$*$0‘ de}, dj:2_j,
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where C, is a sufficiently large constant and J is the integer such that C’; h<d;<
C.h. Note that J ~ [Inh|. We will also useQ ; = ;1 UQ; UQ; 1. Thus by the
triangle inequality

J
lllg — ghmwif’l(g) < g - gh\ngvl(Q*) + Z llg — 9h|||w,fvl(gj)-
J=Jo
By the Cauchy-Schwarz inequality, (15) and using the estimate (31), we obtain
(35)
g = gnllwz10.) < Cehlllg = gnllla, < Ch*||D*6|| -1 () < Ch?|| V0| L2y < C.

Similarly by the Cauchy-Schwarz inequality

J J
Yl = gnllwzia,) < C D dillg = gnlla o,

J=jo J=Jo
Thus we have
J
(36) g = gnlliwz1) < C+C Y dillg = gnllypq,-
J=jo

By the local energy estimate in Lemma 3.9

Taking x = Ig, where I, is the usual nodal interpolant with properties (9), we
obtain

2, < C (119 = Xlla . + 529 = Xl ) + €5 2llg = gullza(o)-

2 2 2
o < > D9 = Ing)ll72m)

TeThﬁQ;
2 2
(9 —Ing _1(:0(9 — Ing
e 3 LG gt ) e
ecEy OQ'
= FE, + Ey + E5.

Using the Holder inequality and (9), we have

E; < Y CRD*(g— Ing)lli~(n)
TEThﬁQ;.
2|2 112 2112 112
< Ch7(ID7gl[ oo (s >, 1<cdi|p 9z (1)
TGT;LQQ;
where in the last step we used that for the quasi-uniform triangulation, the number
of triangle inQ2 % is of order (d;/ h)2. Similarly, using the Holder inequality and
stability of the interpolant, we have

BxC Y [1PIDo - Tl
e€EpNQ;
2 2 2 2 2 2
< CR|ID%lf}w(ary D 1< Cd|D%gl 7 ar)-
eeghﬂQ; .
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To estimate F3 we use the trace inequality together with the approximation prop-
erty and the stability of the interpolant (9). Thus, we obtain

Bs<C 3 (W2IDlg ~ 1o)Bacry + 1020~ 1ng) 3o

TGSh,ﬂQ;
<0 Y (IDG = 19y + W10~ 1) i)
TGShﬂQ;.

Teghﬁﬂg
Using the Green’s function representation and the integration by part, we obtain
D’g(x) = | DiG(x,y)D%(y) dy = | DID;G(x,y)b(y) dy.
TO TO

Using the pointwise Green’s function estimate from Lemma 2.1 and that dist (€2}, Tp)
~ dj, for any = € Q; we have

- 5 B
D) < [ 1D2D2C(.)15(y)] dy < / P4, < 04
T Ty ’l’ - ?J|

and as a result

J J J
> dillg = Ingllopo; <C Y dillglweeey < C Y 1< CJ < C|lnh|.
J=jo J=jo J=jo
Similarly, by the approximation, the Holder inequality, and the estimates for
|D2g(x)| above, we also have

lg = Ingllz2 () < Ch*||[D?gll 2y < Ch*d;||D?gll L= (o) < CRd},

and as a result

J J
O3 diM g = Igllixey <€ w2 < C.
g=do J=jo

Thus so far we have established

J
(37) lg = gnlllyz1 gy < ClInh| + > di Mg = gnllzz ).
J=jo

To complete the proof of Lemma 4.1, we need to establish

J
(38) > di Mg = gnllzzr) < Clnh*/?,
J=jo
which we will accomplish in the next section via a duality argument.

J

Jj=Jjo
argument. However, in contrast to the second order elliptic problems, on convex
polygonal domains the regularity shift goes from H? to H~! and estimating the
L? norm of the error is problematic. To avoid this difficulty, we first transform

Z}‘]:jo dj_1||g — gh||L2(Q;_) to a gradient in L? norm.

4.2. Duality argument. To estimate ) dj_ng — thL2(Q;) we use a duality
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Lemma 4.2. There exists a constant C' independent of h such that

J
> ditlg - gnllr2y) < C| Inh[*2||V (g = gn)llz2()-

J=Jo

Proof. Define a weight function

o(z) =]z — xo|? + h2.

By the definition of o it is easy to see that o ~ d; on{2 ;. Thus, by the Cauchy-
Schwarz inequality and using that J < C|ln h|, we have

1/2 1/2
J J J
Y ditlg—gnllzey <C [ D1 > 4579 = 9nllZz(ay)
J=jo J=Jo g=do
1/2

J
<ClmhM [ > ot g - gh)H%Z(Q;)
J=Jo

< C|Inh|"?|0™ (g — gn)ll2(0)-
Since g — gy, is zero on 052, by the argument in Lemma 3.4 in [1], we have
lo™" (g — gn)ll2() < Clh[[[V(g — gn)llL2(e)

which gives us the lemma. U

Now we proceed with a duality argument.
Lemma 4.3. There exists a constant C such that

IV(g = gn)llz2) < C.

Proof. We proceed similarly to [16, section 4], and define a bounded linear func-
tional on H}(Q) by

(39) F(p) = (V(g = gn), Vo)
and the corresponding solution w € HZ(2) by
(40) B(w,p) = (D*w,D*¢) = F(y), Yy € Hj(9).

Since 2 is convex, w € HZ(Q2) N H3(Q) and by the regularity estimate (4), we have
(41)

V(g —9gn),V
|lwl| g3y < ClF|g-1q) =C sup (V( ), V)

< ClIV(g = gn)llL2(e)-
PEHL(Q) HV‘PHH(Q) @

From Lemma 5 in [4], w also satisfies

Bh(w7X):F(X)7 VXGS;;
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From the definition of w above, a priori error estimate (15), using (41) and (4), and
in addition using the estimate (31) for ||[Vd]|12(q), we have
V(g = gn)llZ2(q) = F(9 — gn) = Bu(w,g — gn) = Bu(w — Inw, g — gn)

< Hllw = Inwllly pllg = gnllla,p

< Chl|wll g @) Chlg|l s (o)

< CR* IV (g=gn) 2@ ID?0] -1 o
< CR*|V (9 — gn) 2@ V6llL2 (o)
< C|V(g = gn)llL2(e)-

Canceling, we obtain the result. O

Combining Lemma 4.2 and Lemma 4.3, which establishes (38) and as a result
Lemma 4.1.

5. LOCAL ERROR ESTIMATES

To show local error estimates we use again the weight function

(42) o(z) =]z —xo2 + h2 > 0.

One can easily check that o satisfies the following properties,

(13) lo~ 2@ < Clinhl?,

(43b) |Vo| < C,

(43c) V20| < Clo™ !

(43d) maxo < ijin o, VT €.

Using this o, we define the following weighted norms

2 2 112 2 d*v ? 2, -1 | OV ?
o030 = 3= loD%olf+ - [ (o2lel |§ 505 ] +%lel ™ |I500] ) s
. on on
TET ecEy
and
2 —1712. 112 -2 v ? oy -1 | OV ?
Iollp o = D llo ' D?l+> o lel N g2 (| T lelT [0 ) ds.
TGTh eESh €

Lemma 5.1. There exists a constant C' independent of h such that
3
lg = gnllyp.o < Clnh|=.

Proof. Using dyadic decomposition (34) and the property that o ~ d; on each{? ;

we have
J
llg = gnlllzpo < Culllg = gnlllan + Y dillg = gnllapq,-
J=Jo
The rest of the proof is identical to the proof of Lemma 4.1. O
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5.1. Proof of Theorem 1.2.

Proof. Similarly to the proof of Theorem 1.1, for any x € S} and using that § is
supported on Ty

D?(up, = x)(20) = Bn(un — X, 9)
= Bn(un — X, 9n)
= Bn(u— X, 9n)
= Bp(u—x,9) — Ba(u—x,9 — gn)

= (u—x,D*0)z, — Bu(u—x,9 — gn)

= (D*(u—x),0)1, —Bn(u— X, 9 — gn) B, — Bu(u— X, 9 — gn)a\ B,
=J1+J2+ J3,

where by B(-,-)p we denote the part of the bilinear form restricted to a set D C €.
Exactly as in Theorem 1.1

Ty < 1D (= )| oo 2y 10|21 (1) < CID? (= )| (8)-
Using the Holder inequality and Lemma 4.1
3
Jo < Ol =l 1,19 = gl iy < €1 h1 e = xlyyze

Using the Cauchy-Schwarz inequality, Lemma 5.1, and using that o~! < Cd ™!
Q\ By, we have

3 .
I3 < Clllu = xllapn0\Boo-1 19 = gl 0o < ClinhlZd ™ lu = x5, 0-
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