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POINTWISE ERROR ESTIMATES FOR C0 INTERIOR PENALTY

APPROXIMATION OF BIHARMONIC PROBLEMS

D. LEYKEKHMAN

Abstract. The aim of this paper is to derive pointwise global and local best
approximation type error estimates for biharmonic problems using the C0 inte-
rior penalty method. The analysis uses the technique of dyadic decompositions
of the domain, which is assumed to be a convex polygon. The proofs require
local energy estimates and new pointwise Green’s function estimates for the
continuous problem which has independent interest.

1. Introduction

We consider the fourth order problem:

(1)
∆2u = f inΩ ,

u =
∂u

∂n
= 0 on ∂Ω,

whereΩ ⊂ R2 is a convex polygonal domain, f ∈ L2(Ω), and n denotes the out-
ward unit normal of ∂Ω. Finite element discretization of the above problem is not
straightforward and various approaches to approximate the above problem were
proposed over the years. However, they all have some drawbacks. For instance,
conformal C1 elements are rather complicated even in two dimensions [2, 7], the
classical non-conformal elements [13,20] must be altered in the presence of low or-
der terms (cf. [14]). Furthermore, the construction of higher order nonconforming
finite elements for fourth order problems is also not easy. The C0 interior penalty
method is a sound alternative. This method is attractive since the finite elements
consist of usual Lagrange elements of arbitrary order and straightforward to imple-
ment. A detailed description of the method with energy based error estimates on
convex and nonconvex domains can be found in [4].
Pointwise error estimates is well developed area for the second order problems.

However, there are few such results for fourth order problems. Many such pointwise
error estimates are obtained via Sobolev embedding. This is not satisfactory since
such results are usually not optimal and often the discrepancy between norms makes
them hard to use for applications, for example in optimal control problems. In
addition, it is hard to localize them. The only exceptions we are aware of are
the papers by Rolf Rannacher [16] and Ming Wang [23], where pointwise error
estimates were established for some nonconforming and mixed elements. Both
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42 D. LEYKEKHMAN

papers used a weighted technique, and their W 1,∞ error estimates are in the form
of quasi-optimal order error estimates with H3(Ω) norm on the right hand side,
which is consistent with regularity of the biharmonic problem on convex domains.
However, the error estimate for the second derivatives in [16], which is important
for computing bending moments, requiresW 3,∞ and H4 regularity for the solution,
that can not be guaranteed on convex polygons. In addition, it is not clear how to
localize those results.
In this paper we take a different approach and show the following best approxi-

mation type results.

Theorem 1.1. Let u satisfy (1) and uh be its C0 interior penalty finite element
approximation, and x0 be an arbitrary point of Ω. Then there exists a constant C
independent of h such that

|D2(u− uh)(x0)| ≤ C| lnh|32 min
χ∈Srh

!u− χ!W2,∞
h (Ω),

where D2 denotes a general second order differential operator and W 2,∞
h is a mesh

dependent norm defined in (17c).

There is some ambiguity in the meaning of D2uh(x0) in the case of x0 be on
the edge of two elements. In this situation the value of D2uh(x0) can be taken
by restricting uh to either element. We also want to point out that from the
Theorem 3.4.4 from [8], for example, it follows that on convex polygonal domains
the solution u to (1) is in H3+ε(Ω) for some ε > 0 and by the Sobolev embedding
in two dimensions u ∈ W 2,∞(Ω). As a result the theorem makes sense without
any additional smoothness assumptions on the solution or domain. In general, we
can not expect even a first order convergence since the solution is not in W 3,∞(Ω).
However, similarly to the second order elliptic equations [17, 18], we can establish
the following local result using which we can obtain first order convergence in the
interior of the convex domains without any additional assumptions on the regularity.

Theorem 1.2 (Local error estimate). Let and x0 be an arbitrary point of Ω and
define Bd = Bd(x0) ∩ Ω, where Bd(x0) denotes a ball of radius d centered at x0.
Then there exists a constant C independent of h and d such that

|D2(u− uh)(x0)| ≤ C| lnh|32
!
!u− χ!W2,∞

h (Bd)
+ d−1!u− χ!2,h,Ω

"
,

where ! · !W2,∞
h (Bd)

and ! · !2,h,Ω are mesh dependent norms defined in the next
section.

The analysis of the method uses a combination of well-established technique of
dyadic decomposition together with local energy estimates for second order elliptic
problem [22] and pointwise Green’s function estimates. In this paper we only con-
sider two-dimensional convex polygonal domains. However, even on such simple
domains we had to overcome several technical difficulties in order to obtain the
results. Our error analysis framework has a lot in common with pointwise error
analysis for discontinuous Galerkin methods for the second order elliptic problem
[5,9]. The details are of course rather different and the main difficulty lies in the reg-
ularity results. In contrast to the second order elliptic problems on convex domains,
where H2 norm of the solution is bounded by the L2 of the right hand side, for the
biharmonic problem we can control H3 norm of the solution by H−1 norm of the
right hand side, which causes many difficulties due to the global nature of the H−1
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POINTWISE ERROR ESTIMATES FOR BIHARMONIC PROBLEMS 43

norm. Although pointwise error analysis for the second order problem is available
in three dimensions too, the pointwise Green’s function estimates and the duality
argument are the main obstacles for extending our main results to non-convex case
or to three dimensions.
The rest of the paper is organized as follows. In the next chapter we introduce

notation and some basic results for continuous problem. In chapter 3, we define
the C0 interior penalty discretization, and establish key lemmas. The central result
is the Local Energy Estimates, Lemma 3.9. In chapter 4 we provide a proof of
the global pointwise error estimate, namely Theorem 1.1 and in the chapter 5, we
establish a localized version, Theorem 1.2.

2. Notation and preliminary results

In the paper we use the usual notation for Sobolev and Lebesgue spaces. We
denote by (·, ·) the inner product in L2(Ω), and by (·, ·)Ω0 the L2 inner product in
over a subdomainΩ 0 ⊂ Ω.
We let D denote a general first order differential operator, D2 - second order

differential operator, D3 - third and etc. The partial derivatives we will denote by
∂. We will also use the multi-index notation when it is important.
The weak solution u to (1) given by

(2) B(u,ϕ ) := (D2u, D2ϕ) =
2#

i,j=1

(∂2iju,∂ 2ijϕ) = (f,ϕ ), ∀ϕ ∈ H2
0 (Ω),

is naturally in H2
0 (Ω) with the following estimate

(3) ∥u∥H2(Ω) ≤ C∥f∥H−2(Ω).

On convex domains we also have that u ∈ H2
0 (Ω) ∩ H3(Ω) with the following

estimate (cf. [10] sec. 5.9)

(4) ∥u∥H3(Ω) ≤ C∥f∥H−1(Ω).

2.1. Green’s function estimates. In the proof of our main results we will make
a heavy use of pointwise estimates for the Green’s function and its derivatives. The
following form of the estimate seems to be new for convex polygons, but follows
rather easily from available results.

Lemma 2.1. Let Ω be a bounded convex polygonal domain in R2 and G(x, y) be
the corresponding Green’s function for the problem (1). Then for all multi-indices
α = (α1, α2) and β = (β1, β2) with the range 1 ≤ |α|, |β| ≤ 2 and 3 ≤ |α|+ |β| ≤ 4
the following estimates hold,

(5) |Dα
x Dβ

y G(x, y)| ≤ C|x− y|2−|α|−|β|.

Proof. The estimate (5) essentially follows from the estimates from [12] (see also
[11, p. 286]). Let ω1, ω2, . . . , ωM be the interior angles of the convex polygon Ω. Let
ω be an arbitrary angle, and let ρ(x) denotes a distance from x to the vertex of ω.
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44 D. LEYKEKHMAN

Theorem 2.1 in [12] states that the for Green’s function the following estimates hold

|Dα
x Dβ

y G(x, y)| ≤ C|x− y|2−|α|−|β|, for ρ(x)/2 ≤ ρ(y) ≤ 2ρ(x), 3 ≤ |α|+ |β|,
(6a)

|Dα
x Dβ

y G(x, y)| ≤ Cρ(x)γ−|α|ρ(y)−γ+2−|β|, for 2ρ(x) ≤ ρ(y), 0 ≤ |α|+ |β|,
(6b)

|Dα
x Dβ

y G(x, y)| ≤ Cρ(x)−γ+2−|α|ρ(y)γ−|β|, for 2ρ(y) ≤ ρ(x), 0 ≤ |α|+ |β|,
(6c)

where γ is any real number that satisfies inequality |γ − 1| < Cω. Since ω < π,
according to Lemma 1.2 in [12] (see also [3]), Cω > 1 and as a result we may take
γ = 2 + ε for some ε > 0.
With this choice of γ from (6b) it follows that

|Dα
x Dβ

y G(x, y)| ≤ Cρ(x)2+ε−|α|ρ(y)−2−ε+2−|β| ≤ Cρ(y)2−|α|−|β|,

where we used that this is the case when 2ρ(x) ≤ ρ(y) and 2 + ε− |α| > 0. Using
the triangle inequality

|x− y| ≤ ρ(y) + ρ(x) ≤ 3
2
ρ(y)

and that by the assumptions on 2− |α| − |β| < 0 we have that in this case

(7) |Dα
x Dβ

y G(x, y)| ≤ Cρ(y)2−|α|−|β| ≤ C|x− y|2−|α|−|β|.

The case 2ρ(y) ≤ ρ(x) is very similar. From (6c) with γ = 2 + ε we have

|Dα
x Dβ

y G(x, y)| ≤ Cρ(x)−2−ε+2−|α|ρ(y)2+ε−|β| ≤ Cρ(x)2−|α|−|β|.

Again using the triangle inequality

|x− y| ≤ ρ(x) + ρ(y) ≤ 3
2
ρ(x)

together with the assumption 2− |α| − |β| < 0 we obtain

(8) |Dα
x Dβ

y G(x, y)| ≤ Cρ(x)2−|α|−|β| ≤ C|x− y|2−|α|−|β|.

Combining (7), (8), and (6a), we obtain the lemma. !

3. Discretization

To define finite element approximation of the solution to (1), for h ∈ (0, h0];
h0 > 0, we let Th denote a quasi-uniform triangulation of Ω with mesh size h,
i.e., Th = {T} is a partition of Ω into triangles T of diameter hT such that for
h = maxτ hT ,

diam(T ) ≤ h ≤ C|T |12, for all T ∈ Th.

Let Sr
h ⊂ H1

0 (Ω) denote the Lagrange finite element space consisting of polynomials
of degree r ≥ 2; that is,

Sr
h =

$
vh ∈ H1

0 (Ω); vh

%%
T
∈ Pr(T ) ∀T ∈ Th

&
.

By Ih : C0(Ω)→ Sr
h we denote the usual nodal interpolant which safisfies

(9) ∥v − Ihv∥W j,p(T ) ≤ Chs−j∥v∥W s,p(T ), ∀v ∈W s,p(T ),

for 1 ≤ p ≤ ∞, j ≤ s ≤ r + 1, and s > 2
p .
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3.1. Trace and inverse inequalities. We will frequently use the following trace
and inverse inequalities. For T ∈ Th and v ∈ H2

0 (Ω), vh ∈ Sr
h there exist positive

constants Ctr and Cinv independent of τ and v, vh such that

∥v∥2L2(∂T ) ≤ C2
tr∥v∥L2(T )∥∇v∥L2(T ) ≤ C2

tr

'
h−1∥v∥2L2(T ) + h∥∇v∥2L2(T )

(
,(10a)

∥∇vh∥L2(T ) ≤ Cinvh−1∥vh∥L2(T ),(10b)

∥vh∥L2(∂T ) ≤ Ctr(1 + Cinv)h
−1/2∥vh∥L2(T ).(10c)

3.2. The C0 interior penalty method. To define the method, we need some
additional notation. Let Eh be the set of edges in Th. For e ∈ Eh and v ∈ H2(Ω, Th),
where

H2(Ω, Th) = {v ∈ L2(Ω) : v |T∈ H2(T ) ∀T ∈ Th},

we define the jump " ∂v
∂n# of the normal derivative of v across an edge e and the

average of the second normal derivate
))

∂2v
∂n2

**
of v on an edge e as follows. If

e ⊂ Ω, we take ne to be one of the two unit vectors normal to e. Then e is the
common side of two triangles T+ ∈ Th and T− ∈ Th, where ne is pointing from T−
to T+. Thus, on such e we define

" ∂v

∂n
# =

∂vT+

∂n
|e −

∂vT−
∂n

|e and

++
∂2v

∂n2

,,
=

∂2vT+

∂n2
|e +

∂2vT−
∂n2

|e .

We note that the above definitions do not depend on the choice of ne. If e ⊂ ∂Ω,
we take ne to be the unit normal pointing outside Ωand

" ∂v

∂n
# = − ∂v

∂ne
and

++
∂2v

∂n2

,,
= − ∂2v

∂n2e
.

Next, we define the bilinear form Bh(·, ·) by

Bh(v, w) =
#

T∈Th

-

T
D2v : D2w dx

+
#

e∈Eh

-

e

!++∂2v

∂n2

,,
"∂w

∂n
#+ " ∂v

∂n
#
++

∂2w

∂n2

,,
+

η

|e| "
∂v

∂n
#"∂w

∂n
#
"
ds,

where

D2v : D2w =
2#

i,j=1

∂2ijv ∂2ijw.

The discrete problem is to find uh ∈ Sr
h s.t.

(11) Bh(uh, vh) = (f, vh), ∀vh ∈ Sr
h.

Similarly to [4] we define the following mesh-dependent norm

!v!22,h =
#

T∈Th

∥D2v∥2L2(T ) +
#

e∈Eh

.
|e|
////

++
∂2v

∂n2

,,////
2

L2(e)

+ |e|−1
////"

∂v

∂n
#
////
2

L2(e)

0
.

Easy to see that the bilinear form Bh(·, ·) is bounded
(12) Bh(v, w) ≤ C!v!2,h!w!2,h,

and for η sufficiently large, the bilinear form Bh(·, ·) is coersive (cf. [4]) on Sr
h,

(13) Bh(vh, vh) ≥ C!vh!22,h, ∀vh ∈ Sr
h.
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46 D. LEYKEKHMAN

As a result by the Lax-Milgram lemma, uh is well-defined. From [4, eq. (4.9)] we
also have that the exact solution u satisfies

Bh(u,χ ) = (f,χ ), ∀χ ∈ Sr
h,

and as a result u and uh satisfy the usual Galerkin orthogonality

(14) Bh(u− uh, χ) = 0 ∀χ ∈ Sr
h.

In [4, Theorem 3], on convex domains the following error estimate was established

(15) !u− uh!2,h ≤ Ch∥f∥H−1(Ω).

Note that for vh ∈ Sr
h using the inequality (10c), we have

#

e∈Eh

|e|
////

++
∂2vh

∂n2

,,////
2

L2(e)

≤ C
#

T∈Th

∥D2vh∥2L2(T ),

and thus on Sr
h the ! · !2,h norm is equivalent to the following norm without the

terms involving averages, namely

∥v∥22,h :=
#

T∈Th

∥D2v∥2L2(T ) +
#

e∈Eh

|e|−1
////"

∂v

∂n
#
////
2

L2(e)

.

We will also require the following norms on subsets D ⊂ Ω. First we define

(16) Th ∩D = {T ∈ Th : T ∩D ̸= ∅} and Eh ∩D = {e ∈ Eh : e ∩D ̸= ∅}.

Then,

(17a) !v!W2,1
h (D) =

#

T∈Th∩D

|v|W2,1(T ) +
#

e∈Eh∩D

-

e

1
|e|
%%%%

++
∂2v

∂n2

,,%%%%+
%%%%"
∂v

∂n
#
%%%%

2
ds,

(17b)

!v!22,h,D =
#

T∈Th∩D

|v|2H2(T ) +
#

e∈Eh∩D

.
|e|
////

++
∂2v

∂n2

,,////
2

L2(e)

+ |e|−1
////"

∂v

∂n
#
////
2

L2(e)

0
,

and

!v!W2,∞
h (D)

(17c)

= max
T∈Th∩D

|v|W2,∞(T ) + max
e∈Eh∩D

////

++
∂2v

∂n2

,,////
L∞(e)

+ max
e∈Eh∩D

|e|−1
////"

∂v

∂n
#
////

L∞(e)

.

Using the above norms we also have

(18) Bh(v, w) ≤ C!v!W2,1
h (Ω)!w!W2,∞

h (Ω).

3.3. Superapporximation. Superapproximation is an essential tool in pointwise
finite element error estimates [15]. To describe them we denote by Br(x0) a ball of
radius r > 0 centered at x0 and introduce a smooth cut-off function ω ∈ C∞(Ω)
with the properties:

ω(x) ≡ 1, x ∈ Bd/2(x0)(19a)

ω(x) ≡ 0, x ∈ Bc
3d/4(x0)(19b)

|ω|W j
∞
≤ Cd−j , j = 0, 1, 2.(19c)
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In [6] an improved superapproximation result was obtained

∥ω2χ− Ih(ω
2χ)∥H1(T ) ≤ C

hT

d

'
∥∇(ωχ)∥L2(T ) + d−1∥χ∥L2(T )

(
, χ ∈ Sr

h.

We will follow the ideas from that paper. Let P1(ω) and P0(ω) be linear and
constant order approximations to ω on element T , respectively, such that

∥ω − P0(ω)∥L∞(T ) ≤ ChT ∥ω∥W1
∞(T )

≤ ChT d−1(20)

∥ω − P1(ω)∥W s
∞(T )

≤ Ch2−s
T ∥ω∥W2

∞(T )
≤ Ch2−s

T d−2, s = 0, 1.(21)

We take P0(ω) = 3ω = |T |−1
4

T ω and P1(ω) a linear interpolant of ω.

Lemma 3.1 (Superapproximation). Let ω be as above and χ ∈ Sr
h with r ≥ 2.

Then there exists a constant C independent of ω, d and h such that for s = 1, 2, 3

|ω4χ− Ih(ω
4χ)|Hs(T ) ≤ C

h3−s
T

d

'
|ω2χ|H2(T ) + d−1|ωχ|H1(T ) + d−2∥χ∥L2(T )

(
.

Proof. We give a detailed proof for piecewise quadratic elements r = 2 only. The
proof for general r ≥ 2 is very similar. By the standard approximation theory we
have

(22) |ω4χ− Ih(ω
4χ)|Hs(T ) ≤ Ch3−s

T |ω4χ|H3(T ), for s = 1, 2, 3.

Then

(23) D3(ω4χ) = D3(ω4)χ+3D2(ω4)Dχ+3D(ω4)D2χ+ω4D3χ := I1+I2+I3+I4.

Since we are dealing with quadratic elements, I4 = 0. Using (19c), I1 can easily be
estimated as

(24) I1 = ∥D3(ω4)χ∥L2(T ) ≤ Cd−3∥χ∥L2(T ).

Using

D(ω4) = 4ω3Dω and D2(ω4) = 4D(ω3Dω) = 4(3ω2|Dω|2 + ω3D2ω),(25)

we have
(26)
I2 = ∥3D(ω4)D2χ∥L2(T ) ≤ ∥12ω2|Dω|2Dχ∥L2(T ) + ∥ω3D2ωDχ∥L2(T ) = I21 + I22.

Using (19c) and adding and subtracting 3ω, where 3ω = |T |−1
4

T ω, we have

(27)

I21 ≤ Cd−2∥ωDχ∥L2(T )

≤ Cd−2∥(ω − 3ω)Dχ∥L2(T ) + Cd−2∥3ωDχ∥L2(T )

= I211 + I212.

Using the approximation and the inverse estimate

I211 ≤ Cd−2hT d−1∥Dχ∥L2(T ) ≤ Cd−3∥χ∥L2(T ).
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48 D. LEYKEKHMAN

By using that 3ω is constant on T and using the triangle inequality, properties of ω
and the inverse estimates, we have

I212 = Cd−2∥D(3ωχ)∥L2(T )

≤ Cd−2
'
∥D((3ω − ω)χ)∥L2(T ) + ∥D(ωχ)∥L2(T )

(

≤ Cd−2
'
∥(Dω)χ∥L2(T ) + ∥(3ω − ω)Dχ∥L2(T ) + |ωχ|H1(T )

(

≤ Cd−3∥χ∥L2(T ) + Cd−2hT d−1∥Dχ∥L2(T ) + Cd−2|ωχ|H1(T )

≤ Cd−3∥χ∥L2(T ) + Cd−2|ωχ|H1(T ).

Similarly to the analysis above, by the properties of ω

I22 ≤ Cd−2∥ω3Dχ∥L2(T ) ≤ Cd−2∥ωDχ∥L2(T )

≤ Cd−2∥(3ω − ω)Dχ∥L2(T ) + Cd−2∥D(3ωχ)∥L2(T )

≤ Cd−3∥χ∥L2(T ) + Cd−2|ωχ|H1(T ).

The next term,

(28) I3 = ∥3D(ω4)D2χ∥L2(T ) = ∥12ω3DωD2χ∥L2(T ).

Thus adding and subtracting P1(ω2), we have

I3 ≤ Cd−1∥ω2D2χ∥L2(T )

≤ Cd−1
'
∥(ω2 − P1(ω

2))D2χ∥L2(T ) + ∥P1(ω2)D2χ∥L2(T )

(

= I31 + I32.

By the approximation and the inverse estimates

I31 ≤ Cd−1h2T |D2(ω2)|L∞(T )∥D2χ∥L2(T ) ≤ Cd−3∥χ∥L2(T ).

Since D2(P1(ω2)) = 0, by the triangle inequality,

I32 ≤ Cd−1
'
∥D2(P1(ω

2)χ)∥L2(T ) + ∥D(P1(ω2))Dχ∥L2(T )

(
= I321 + I322.

Using D2(P1(ω2)) = 0, the approximation and the inverse inequality,

I321 ≤Cd−1
'
∥D2((P1(ω

2)− ω2)χ)∥L2(T ) + ∥D2(ω2χ)∥L2(T )

(

≤Cd−1
'
∥D2(ω2)χ∥L2(T ) + ∥D(P1(ω2)− ω2)Dχ∥L2(T )

(

+ Cd−1
'
∥(P1(ω2)− ω2)D2χ∥L2(T ) + |ω2χ|H2(T )

(

≤Cd−1
'
d−2∥χ∥L2(T ) + hT d−2∥Dχ∥L2(T ) + h2T d−2∥D2χ∥L2(T ) + |ω2χ|H2(T )

(

≤Cd−3∥χ∥L2(T ) + Cd−1|ω2χ|H2(T ).

Adding and subtracting ω2, and using the estimate for I21 (27), we have

I322 ≤ Cd−1
'
∥D(P1(ω2)− ω2)Dχ∥L2(T ) + ∥D(ω2)Dχ∥L2(T )

(

≤ Cd−1
'
hT d−2∥Dχ∥L2(T ) + 2∥ωDωDχ∥L2(T )

(

≤ Cd−3∥χ∥L2(T ) + Cd−2∥ωDχ∥L2(T )

≤ Cd−3∥χ∥L2(T ) + Cd−2|ωχ|H1(T ).

Combining all the estimates we complete the proof. !
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Remark 3.2. The straightforward approach [15] gives the following superapproxi-
mation result

|ω4χ−Ih(ω
4χ)|Hs(T ) ≤ C

h3−s
T

d

'
|χ|H2(T ) + d−1|χ|H1(T ) + d−2∥χ∥L2(T )

(
, s=1, 2, 3.

Although, such a result would be sufficient for our goals in this paper, it would
make the analysis of local energy error estimates in Lemma 3.9 more cumbersome.

Corollary 3.3. Let ω be as above and χ ∈ Sr
h with r ≥ 2. Then there exists a

constant C independent of ω, d and h such that

!ω4χ− Ih(ω
4χ)!2,h ≤ C

hT

d

'
|ω2χ|H2(Ω) + d−1|ωχ|H1(Ω) + d−2∥χ∥L2(Bd)

(
(29a)

!ω4χ− Ih(ω
4χ)!2,h ≤ C

hT

d

'
∥ω2D2χ∥L2(Ω) + d−1∥ω∇χ∥L2(Ω) + d−2∥χ∥L2(Bd)

(
.

(29b)

Proof. The proof follows from Lemma 3.1, the trace and inverse inequalities and
the product rule. !

3.4. Preliminary weighted results. First we show the following supplementary
result.

Lemma 3.4. Let ω be as at the beginning of section 3.3 with the properties (19a)-
(19c). Then for any ε > 0 and any vh ∈ Sr

h

∥ω∇vh∥2L2(Ω) ≤εd2
.
#

T∈Th

∥ω2D2vh∥2L2(T ) +
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

0

+ Cεd
−2∥vh∥2L2(Bd)

.

Proof. Integrating by parts on an element T we have

∥ω∇vh∥2L2(T ) = (ω2∇vh,∇vh)T = −(∇ · (ω2∇vh), vh)T +

1
ω2

∂vh

∂n
, vh

2

∂T

= −(∇(ω2) · ∇vh, vh)T − (ω2∆vh, vh)T +

1
ω2

∂vh

∂n
, vh

2

∂T

.

Summing over elements we obtain

∥ω∇vh∥2L2(Ω) =
#

T∈Th

−(∇(ω2) · ∇vh, vh)T − (ω2∆vh, vh)T +

1
ω2

∂vh

∂n
, vh

2

∂T

:= J1 + J2 + J3.
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Using the Cauchy-Schwarz and Young’s inequalities, and using the definition of
Th ∩B3d/4 in (16), we have

J1 = −
#

T∈Th

2(ω∇ω · ∇vh, vh)T

≤
#

T∈Th∩B3d/4

Cd−1∥ω∇vh∥L2(T )∥vh∥L2(T )

≤ 1
4

#

T∈Th

∥ω∇vh∥2L2(T ) + Cd−2
#

T∈Th∩B3d/4

∥vh∥2L2(T )

≤ 1
4
∥ω∇vh∥2L2(Ω) + Cd−2∥vh∥2L2(Bd)

.

Similarly using the Cauchy-Schwarz and Young’s inequalities

J2 = −
#

T∈Th

(ω2∆vh, vh)T

≤
#

T∈Th∩B3d/4

∥ω2∆vh∥L2(T )∥vh∥L2(T )

≤ εd2

2

#

T∈Th

∥ω2D2vh∥2L2(T ) + Cεd
−2

#

T∈Th∩B3d/4

∥vh∥2L2(T )

≤ εd2

2

#

T∈Th

∥ω2D2vh∥2L2(T ) + Cεd
−2∥vh∥2L2(Bd)

.

Finally, summing over the elements and using the trace and inverse inequalities and
using the definition of Th ∩B3d/4 in (16), we obtain

J3 =
#

T∈Th

1
ω2

∂vh

∂n
, vh

2

∂T

=
#

e∈Eh

1
ω2"∂vh

∂n
#, vh

2

e

≤ εd2

2

#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

+ Cεd
−2

#

e∈Eh∩B3d/4

|e|∥vh∥2L2(e)

≤ εd2

2

#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

+ CεCinvCtrd
−2

#

T∈Th∩B3d/4

∥vh∥2L2(T )

≤ εd2

2

#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

+ Cεd
−2∥vh∥2L2(Bd)

.

Combining the above estimates we obtain the lemma. !
We also need the following results.

Lemma 3.5. Let ω be as above. There exists a constant C independent of d and
h such that for any vh ∈ Sr

h and any ε > 0

#

e∈Eh

|e|
////ω
++

∂vh

∂n

,,////
2

L2(e)

≤ Cεd2
.
#

T∈Th

∥ω2D2vh∥2L2(T ) +
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

0
+ Cεd

−2∥vh∥2L2(Bd)
.
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Proof. Adding and subtracting P0(ω) we have
////ω
++

∂vh

∂n

,,////
2

L2(e)

≤
////P0(ω)

++
∂vh

∂n

,,////
2

L2(e)

+

////(ω − P0(ω))

++
∂vh

∂n

,,////
2

L2(e)

.

By the trace and inverse inequalities

#

e∈Eh

|e|
////P0(ω)

++
∂vh

∂n

,,////
2

L2(e)

≤ C
#

T∈Th

∥P0(ω)∇vh∥2L2(T )

≤ C
#

T∈Th

∥ω∇vh∥2L2(T ) + ∥(P0(ω)− ω)∇vh∥2L2(T )

= C
!
∥ω∇vh∥2L2(Ω) + ∥(P0(ω)− ω)∇vh∥2L2(Ω)

"
.

By the approximation and the inverse inequality, we have

∥(P0(ω)− ω)∇vh∥L2(Ω) ≤ ∥P0(ω)− ω∥L∞(Bd)∥∇vh∥L2(Bd)

≤ Ch∥∇ω∥L∞(Bd)∥∇vh∥L2(Bd) ≤ Cd−1∥vh∥L2(Bd).

Combining the above estimate with Lemma 3.4, we obtain

#

e∈Eh

|e|
////P0(ω)

++
∂vh

∂n

,,////
2

L2(e)

≤

Cεd2
.
#

T∈Th

∥ω2D2vh∥2L2(T ) +
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

0

+ Cεd
−2∥vh∥2L2(Bd)

.

Similarly, by the approximation, properties of ω, trace and inverse inequalities,

#

e∈Eh

|e|
////(P0(ω)− ω)

++
∂vh

∂n

,,////
2

L2(e)

≤ Cd−2∥vh∥2L2(Bd)
.

Combining, we obtain the lemma. !
Lemma 3.6. Let ω be as above. There exists a constant C independent of d and
h such that for any vh ∈ Sr

h

#

e∈Eh

|e|
////ω

2

++
∂2vh

∂n2

,,////
2

L2(e)

≤ C
#

T∈Th

//ω2D2vh

//2
L2(T )

+ Cd−4∥vh∥2L2(Bd)
.

Proof. Adding and subtracting P1(ω2) we have
////ω

2

++
∂2vh

∂n2

,,////
2

L2(e)

≤
////P1(ω

2)

++
∂2vh

∂n2

,,////
2

L2(e)

+

////(ω
2 − P1(ω

2))

++
∂2vh

∂n2

,,////
2

L2(e)

.

By the trace and inverse inequalities

#

e∈Eh

|e|
////P1(ω

2)

++
∂2vh

∂n2

,,////
2

L2(e)

≤ C
#

T∈Th

//P1(ω2)D2vh

//2
L2(T )

≤ C
#

T∈Th

//ω2D2vh

//2
L2(T )

+
//(P1(ω2)− ω2)D2vh

//2
L2(T )

.
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By the approximation and the inverse inequality, we have

∥(P1(ω2)− ω2)D2vh∥L2(T ) ≤ ∥P1(ω2)− ω2∥L∞(T )∥D2vh∥L2(T )

≤ Ch2∥D2(ω2)∥L∞(T )∥D2vh∥L2(T ) ≤ Cd−2∥vh∥L2(T )

and as a result
#

e∈Eh

|e|
////P1(ω

2)

++
∂2vh

∂n2

,,////
2

L2(e)

≤ C
#

T∈Th

//ω2D2vh

//2
L2(T )

+ Cd−4∥vh∥2L2(Bd)
.

Similarly, by the approximation, properties of ω, trace and inverse inequalities,

#

e∈Eh

|e|
////(P1(ω

2)−ω2)

++
∂2vh

∂n2

,,////
2

L2(e)

≤C
#

T∈Th

//ω2D2vh

//2
L2(T )

+Cd−4∥vh∥2L2(Bd)
.

!
Next we show the following coersivity type result.

Lemma 3.7. Let ω be defined as above. Then, for any vh ∈ Sr
h

#

T∈Th

∥ω2D2vh∥2L2(T )+
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

≤CBh(vh, ω4vh)+Cd−4∥vh∥2L2(Bd)
.

Proof. From the definition of the bilinear form

Bh(vh, ω4vh) =
#

T∈Th

-

T
D2vh : D

2(ω4vh) dx+

+
#

e∈Eh

-

e

1++
∂2vh

∂n2

,,
"∂(ω

4vh)

∂n
#+ "∂vh

∂n
#
++

∂2(ω4vh)

∂n2

,,2
ds

+
#

e∈Eh

η

|e|

-

e
"∂vh

∂n
#"∂(ω

4vh)

∂n
#ds

:=J1 + J2 + J3 + J4.

First we will address

J1 =
#

T∈Th

-

T
D2vh : D

2(ω4vh) dx :=
#

T∈Th

2#

i,j=1

(∂2ijvh, ∂2ij(ω
4vh))T .

Since

∂2ij(ω
4vh) = ∂i(4ω

3∂jωvh + ω4∂jvh)

= 12ω2∂iω∂jωvh + 4ω
3∂2ijωvh + 4ω

3∂jω∂ivh + 4ω
3∂iω∂jvh + ω4∂2ijvh,

we have
J1 =

#

T∈Th

∥ω2D2vh∥2L2(T ) + J12 + J13,

where

J12 =
#

T∈Th

2#

i,j=1

(ω2∂2ijvh, (12∂iω∂jω + 4ω∂
2
ijω)vh)T

and

J13 =
#

T∈Th

2#

i,j=1

(ω2∂2ijvh, 4ω∂jω∂ivh + 4ω∂iω∂jvh)T .
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Since vh ∈ C0(Ω) and ω ∈ C∞(Ω) we have

"∂(ω
4vh)

∂n
# = ω4"∂vh

∂n
#

and ++
∂2(ω4vh)

∂n2

,,
= ω4

++
∂2vh

∂n2

,,
+ 2

∂(ω4)

∂n

++
∂vh

∂n

,,
+

∂2(ω4)

∂n2
vh.

Thus,

J2 =
#

e∈Eh

!
ω2
++

∂2vh

∂n2

,,
, ω2"∂vh

∂n
#
"

e
,

J4 =
#

e∈Eh

η

|e|

-

e
"∂vh

∂n
#"∂(ω

4vh)

∂n
#ds =

#

e∈Eh

η

|e|

////ω
2"∂vh

∂n
#
////
2

L2(e)

and

J3 =
#

e∈Eh

!
ω2
++

∂2vh

∂n2

,,
, ω2"∂vh

∂n
#
"

e

+ 2
!∂ω4

∂n

++
∂vh

∂n

,,
, "∂vh

∂n
#
"

e
+
!∂2ω4

∂n2
vh, "∂vh

∂n
#
"

e

=
#

e∈Eh

!
ω2
++

∂2vh

∂n2

,,
, ω2"∂vh

∂n
#
"

e
+ J31 + J32.

Combining the above estimates we obtain

#

T∈Th

∥ω2D2vh∥2L2(T )+
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

= B(vh, ω4vh)

− J12 − J13 − 2
#

e∈Eh

!
ω2
++

∂2vh

∂n2

,,
, ω2"∂vh

∂n
#
"

e
− J31 − J32

− (η − 1)
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

.

Using the Cauchy-Schwarz and Young’s inequalities

(ω2∂2ijvh, (12∂iω∂jω + 4ω∂
2
ijω)vh)T ≤ Cd−2∥ω2D2vh∥L2(T )∥vh∥L2(T∩B3d/4)

≤ 1
8
∥ω2D2vh∥2L2(T ) + Cd−4∥vh∥2L2(T∩B3d/4)

and summing up we have

−J12 ≤
1

8

#

T∈Th

∥ω2D2vh∥2L2(T ) + Cd−4∥vh∥2L2(Bd)
.

Again using the Cauchy-Schwarz and Young’s inequalities

4(ω2∂2ijvh, ω∂jω∂ivh + ω∂iω∂jvh)T ≤ Cd−1∥ω2D2vh∥L2(T )∥ω∇vh∥L2(T )

≤ 1
8
∥ω2D2vh∥2L2(T ) + Cd−2∥ω∇vh∥2L2(T ).
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Summing and using Lemma 3.4, we have

−J13 ≤
1

8

#

T∈Th

∥ω2D2vh∥2L2(T ) + Cd−2
#

T∈Th

∥ω∇vh∥2L2(T )

≤
1
1

8
+ εC

2 #

T∈Th

∥ω2D2vh∥2L2(T ) + εC
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

+ Cεd
−4∥vh∥2L2(Bd)

.

Using the Cauchy-Schwarz and Young’s inequalities and Lemma 3.6

2
#

e∈Eh

!
ω2
++

∂2vh

∂n2

,,
, ω2"∂vh

∂n
#
"

e
≤1
8

#

T∈Th

∥ω2D2vh∥2L2(T ) + Cd−4∥vh∥2L2(Bd)

+ C
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

.

Using properties of ω and Lemma 3.5,

−J31 ≤ Cd−1
#

e∈Eh

////ω
++

∂vh

∂n

,,////
e

////ω
2"∂vh

∂n
#
////

e

≤ Cε
#

T∈Th

∥ω2D2vh∥2L2(T ) + C
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

+ Cεd
−4∥vh∥2L2(Bd)

.

Similarly, using properties of ω and the trace inequality,

−J32 ≤ Cd−2
#

e∈Eh∩B3d/4

∥vh∥e

////ω
2"∂vh

∂n
#
////

e

≤ C
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

+ Cd−4∥vh∥2L2(Bd)
.

Choosing ε such that Cε ≤ 1
8 and providing η is sufficiently large we obtain the

lemma. !

In view of Lemma 3.6, we also have

Corollary 3.8. Under the assumption of Lemma 3.7, we have

#

T∈Th

∥ω2D2vh∥2L2(T ) +
#

e∈Eh

|e|−1
////ω

2"∂vh

∂n
#
////
2

L2(e)

+
#

e∈Eh

|e|
////ω

2

++
∂2vh

∂n2

,,////
2

L2(e)

≤ CB(vh, ω4vh) + Cd−4∥vh∥2L2(Bd)
.

3.5. Local energy estimates. Next we establish the following key result.

Lemma 3.9 (Local energy estimate). Let u and uh satisfy Bh(u− uh, χ) = 0 for
any χ ∈ Sr

h. Given D ⊂ Ω, d ≥ κh > 0 for sufficiently large κ, and D ⊂ Dd with
dist(Dd, ∂D\ ∂Ω) ≥ d, there exists a constant C independent of d and h such that

!u− uh!2,h,D≤C inf
χ∈Srh

!
!u− χ!2,h,Dd

+d−2∥u− χ∥L2(Dd)

"
+Cd−2∥u−uh∥L2(Dd).
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Proof. To show the lemma, it is sufficient to establish the following estimate

(30) !uh!2,h,B ≤ C!u!2,h,Bd
+ Cd−2∥uh∥L2(Bd)

for a ball B := Bd/2. The lemma then would follow by standard covering argument
and by replacing u with u− χ and uh − χ and the triangle inequality.
Let ω be the cut-off function as in (19). Then by Corollary 3.8,

!uh!22,h,B ≤
#

T∈Th

∥ω2D2uh∥2L2(T )

+
#

e∈Eh

|e|−1
////ω

2"∂uh

∂n
#
////
2

L2(e)

+
#

e∈Eh

|e|
////ω

2

++
∂2uh

∂n2

,,////
2

L2(e)

≤ CBh(uh, ω4uh) + Cd−4∥uh∥2L2(Bd)
.

We use the identity

Bh(uh, ω4uh) = Bh(uh, ω4uh−Ih(ω
4uh))+Bh(u,ω 4uh)−Bh(u,ω 4uh − Ih(ω

4uh))

:= J1 + J2 + J3.

Now we treat all three terms separately. Using the boundedness of the bilinear
from and Young’s inequality

J2 ≤ C!u!2,h,Bd
!ω4uh!2,h.

By the definition of the ! · !2,h norm,

!ω4uh!22,h =
#

T∈Th

∥D2(ω4uh)∥2L2(T )

+
#

e∈Eh

|e|−1
////"

∂(ω4uh)

∂n
#
////
2

L2(e)

+
#

e∈Eh

|e|
////

++
∂2(ω4uh)

∂n2

,,////
2

L2(e)

:= I21 + I22 + I23.

Using the product rule, the properties of ω and Lemma 3.4, we have

I21 ≤
#

T∈Th

!
∥ω4D2uh∥2L2(T ) + 4∥D(ω4)Duh∥2L2(T ) + ∥D2(ω4)uh∥2L2(T )

"

≤ C
#

T∈Th

∥ω2D2uh∥2L2(T ) + C
#

e∈Eh

|e|−1
////ω

2"∂uh

∂n
#
////
2

L2(e)

+ Cd−4∥uh∥2L2(Bd)
.

Since

"∂(ω
4uh)

∂n
# = ω4"∂uh

∂n
#,

we have

I22 =
#

e∈Eh

|e|−1
////ω

4"∂uh

∂n
#
////
2

L2(e)

≤
#

e∈Eh

|e|−1
////ω

2"∂uh

∂n
#
////
2

L2(e)

.

Using
++

∂2(ω4uh)

∂n2

,,
= ω4

++
∂2uh

∂n2

,,
+ 2

∂(ω4)

∂n

++
∂uh

∂n

,,
+

∂2(ω4)

∂n2
uh,
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Lemma 3.6 and Lemma 3.5, the properties of ω, and inverse inequality, we also
obtain

I23 ≤
#

e∈Eh

|e|
.////ω

2

++
∂2uh

∂n2

,,////
2

L2(e)

+ Cd−2
////ω
++

∂uh

∂n

,,////
2

L2(e)

+ Cd−4 ∥uh∥2L2(e)

0

≤ C
#

T∈Th

∥ω2D2uh∥2L2(T ) + C
#

e∈Eh

|e|−1
////ω

2"∂uh

∂n
#
////
2

L2(e)

+ Cd−4∥uh∥2L2(Bd)
.

Hence, by the Young’s inequality

J2 ≤
1

4

.
#

T∈Th

∥ω2D2uh∥2L2(T ) +
#

e∈Eh

|e|−1
////ω

2"∂uh

∂n
#
////
2

L2(e)

0

+ Cd−4∥uh∥2L2(Bd)
+ C!u!22,h,Bd

.

Using the superapproximation result Corollary 3.3 and Lemma 3.4 and similarly to
the above

J3 ≤C!u!2,h,Bd
!ω4uh − Ih(ω

4uh)!2,h

≤ C
h

d
!u!2,h,Bd

'
∥ω2D2uh∥L2(Ω) + d−1∥ω∇uh∥L2(Ω) + d−2∥uh∥L2(Bd)

(

≤ 1
4

.
#

T∈Th

∥ω2D2uh∥2L2(T ) +
#

e∈Eh

|e|−1
////ω

2"∂uh

∂n
#
////
2

L2(e)

0

+ C!u!22,h,Bd
+ Cd−4∥uh∥2L2(Bd)

.

To estimate J1 we use again the superapproximation result Corollary 3.3 and
Lemma 3.4 to obtain

J1 ≤C!uh!2,h,Bd
!ω4uh − Ih(ω

4uh)!2,h

≤ C
h

d
!uh!2,h,Bd

'
∥ω2D2uh∥L2(Ω) + d−1∥ω∇uh∥L2(Ω) + d−2∥uh∥L2(Bd)

(

≤ 1
4

.
#

T∈Th

∥ω2D2uh∥2L2(T ) +
#

e∈Eh

|e|−1
////ω

2"∂uh

∂n
#
////
2

L2(e)

0

+ C
h2

d2
!uh!22,h,Bd

+ Cd−4∥uh∥2L2(Bd)
.

Combining the estimates and kicking back the terms, we obtain

!uh!22,h,B ≤ C!u!22,h,Bd
+ C

h2

d2
!uh!22,h,Bd

+ Cd−4∥uh∥2L2(Bd)
.

Iterating the argument once again and using the inverse inequality we obtain

!uh!22,h,B ≤C!u!22,h,B2d
+ C

h4

d4
!uh!22,h,B2d

+ Cd−4∥uh∥2L2(B2d)

≤ C!u!22,h,B2d
+ Cd−4∥uh∥2L2(B2d)

,

which establishes (30) with insignificant difference of having subset B2d instead of
Bd on the right hand side. !
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4. Pointwise error estimates

Let x0 ∈ Ω be a fixed (but arbitrary) point. Let T0 ∈ Th be an element such that
x0 ∈ T 0. Associated to this point we introduce a smooth Delta function [21, Lemma
2.2], which we will denote by δ̃ = δ̃x0, cf. also [19]. This function is supported in
T0 and satisfies

(χ, δ̃)T0= χ(x0), ∀χ ∈ Pr(T0).

In addition from [21, Lemma 2.2] we also have

(31) ∥δ̃∥W s,p(Ω) ≤ Ch−s−2(1−1
p), 1 ≤ p ≤ ∞, s = 0, 1, 2.

In particular ∥δ̃∥L1(Ω) ≤ C, ∥δ̃∥L2(Ω) ≤ Ch−1, and ∥δ̃∥L∞(Ω) ≤ Ch−2.
Now we define a function g ∈ H2

0 (Ω), by the equation

(32) B(g,ϕ ) = (D2δ̃,ϕ ), ∀ϕ ∈ H2
0 (Ω),

which also satisfy

Bh(g,χ ) = (D2δ̃,χ ) = D2χ(x0), ∀χ ∈ Sr
h,

and correspondingly we define gh ∈ Sr
h by

(33) Bh(g − gh, χ) = 0, ∀χ ∈ Sr
h.

Thus, for any χ ∈ Sr
h using (33), (14), (18) and that δ̃ is supported on T0, we have

D2(uh − χ)(x0) = Bh(uh − χ, g)

= Bh(uh − χ, gh)

= Bh(u− χ, gh)

= Bh(u− χ, g)−Bh(u− χ, g − gh)

= (u− χ, D2δ̃)T0−Bh(u− χ, g − gh)

= (D2(u− χ), δ̃)T0−Bh(u− χ, g − gh)

≤ ∥D2(u− χ)∥L∞(T0)∥δ̃∥L1(T0)+C!u−χ!W2,∞
h (Ω)!g − gh!W2,1

h (Ω)

≤ C!u− χ!W2,∞
h (Ω)(1 + !g − gh!W2,1

h (Ω)).

The main result would follow once we establish the following result.

Lemma 4.1. There exists a constant C independent of h such that

!g − gh!W2,1
h (Ω) ≤ C| lnh|3/2.

4.1. Proof of Lemma 4.1. In the proof we will use a dyadic decomposition of Ω.
Let j0 ∈ Z be the largest integer such that dj0 := 2

−j0 ≥ diam(Ω). We have

(34) Ω =Ω ∗ ∪
J5

j=j0

Ωj ,

with
Ω∗ = {x ∈ Ω : |x− x0| ≤ d∗}, d∗ = C∗h

Ωj = {x ∈ Ω : dj+1 ≤ |x− x0| ≤ dj}, dj = 2
−j ,
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where C∗ is a sufficiently large constant and J is the integer such that C∗
2 h ≤ dJ ≤

C∗h. Note that J ≈ | lnh|. We will also useΩ ′
j = Ωj−1 ∪ Ωj ∪ Ωj+1. Thus by the

triangle inequality

!g − gh!W2,1
h (Ω) ≤ !g − gh!W2,1

h (Ω∗)
+

J#

j=j0

!g − gh!W2,1
h (Ωj)

.

By the Cauchy-Schwarz inequality, (15) and using the estimate (31), we obtain
(35)
!g − gh!W2,1

h (Ω∗)
≤ C∗h!g − gh!2,h ≤ Ch2∥D2δ̃∥H−1(Ω) ≤ Ch2∥∇δ̃∥L2(Ω) ≤ C.

Similarly by the Cauchy-Schwarz inequality

J#

j=j0

!g − gh!W2,1
h (Ωj)

≤ C
J#

j=j0

dj!g − gh!2,h,Ωj
.

Thus we have

(36) !g − gh!W2,1
h (Ω) ≤ C + C

J#

j=j0

dj!g − gh!2,h,Ωj
.

By the local energy estimate in Lemma 3.9

!g − gh!2,h,Ωj
≤ C

!
!g − χ!2,h,Ω′

j
+ d−2j ∥g − χ∥L2(Ω′

j)

"
+ Cd−2j ∥g − gh∥L2(Ω′

j)
.

Taking χ = Ihg, where Ih is the usual nodal interpolant with properties (9), we
obtain

!g − Ihg!22,h,Ω′
j
≤

#

T∈Th∩Ω′
j

∥D2(g − Ihg)∥2L2(T )

+
#

e∈Eh∩Ω′
j

-

e

.
|e|
%%%%

++
∂2(g − Ihg)

∂n2

,,%%%%
2

+ |e|−1
%%%%"
∂(g − Ihg)

∂n
#
%%%%
2
0

ds

= E1 + E2 + E3.

Using the Hölder inequality and (9), we have

E1 ≤
#

T∈Th∩Ω′
j

Ch2∥D2(g − Ihg)∥2L∞(T )

≤ Ch2∥D2g∥2L∞(Ω′
j)

#

T∈Th∩Ω′
j

1 ≤ Cd2j∥D2g∥2L∞(Ω′
j)

,

where in the last step we used that for the quasi-uniform triangulation, the number
of triangle inΩ ′

j is of order (dj/h)2. Similarly, using the Hölder inequality and
stability of the interpolant, we have

E2 ≤ C
#

e∈Eh∩Ωj

-

e
|e|2∥D2(g − Ihg)∥2L∞(e)

≤ Ch2∥D2g∥2L∞(Ω′
j)

#

e∈Eh∩Ω′
j

1 ≤ Cd2j∥D2g∥2L∞(Ω′
j)

.
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To estimate E3 we use the trace inequality together with the approximation prop-
erty and the stability of the interpolant (9). Thus, we obtain

E3 ≤ C
#

T∈Eh∩Ω′
j

!
h−2∥D(g − Ihg)∥2L2(T ) + ∥D2(g − Ihg)∥2L2(T )

"

≤ C
#

T∈Eh∩Ω′
j

!
∥D(g − Ihg)∥2L∞(T ) + h2∥D2(g − Ihg)∥2L∞(T )

"

≤ Ch2∥D2g∥2L∞(T )

#

T∈Eh∩Ω′
j

1 ≤ Cd2j∥D2g∥2L∞(Ω′
j)

.

Using the Green’s function representation and the integration by part, we obtain

D2g(x) =

-

T0

D2
xG(x, y)D2δ̃(y) dy =

-

T0

D2
xD2

yG(x, y)δ̃(y) dy.

Using the pointwise Green’s function estimate from Lemma 2.1 and that dist(Ω′j , T0)
≈ dj , for any x ∈ Ω′j we have

|D2g(x)| ≤
-

T0

|D2
xD2

yG(x, y)||δ̃(y)| dy ≤
-

T0

|δ̃(y)|
|x− y|2 dy ≤ Cd−2j

and as a result
J#

j=j0

dj!g − Ihg!2,h,Ω′
j
≤ C

J#

j=j0

d2j∥g∥W2,∞(Ω′
j)
≤ C

J#

j=j0

1 ≤ CJ ≤ C| lnh|.

Similarly, by the approximation, the Hölder inequality, and the estimates for
|D2g(x)| above, we also have

∥g − Ihg∥L2(Ω′
j)
≤ Ch2∥D2g∥L2(Ω′

j)
≤ Ch2dj∥D2g∥L∞(Ω′

j)
≤ Ch2d−1j ,

and as a result

C
J#

j=j0

d−1j ∥g − Ihg∥L2(Ω′
j)
≤ C

J#

j=j0

h2d−2j ≤ C.

Thus so far we have established

(37) !g − gh!W2,1
h (Ω) ≤ C| lnh|+

J#

j=j0

d−1j ∥g − gh∥L2(Ω′
j)

.

To complete the proof of Lemma 4.1, we need to establish

(38)
J#

j=j0

d−1j ∥g − gh∥L2(Ω′
j)
≤ C| lnh|3/2,

which we will accomplish in the next section via a duality argument.

4.2. Duality argument. To estimate
6J

j=j0
d−1j ∥g − gh∥L2(Ω′

j)
we use a duality

argument. However, in contrast to the second order elliptic problems, on convex
polygonal domains the regularity shift goes from H3 to H−1 and estimating the
L2 norm of the error is problematic. To avoid this difficulty, we first transform6J

j=j0
d−1j ∥g − gh∥L2(Ω′

j)
to a gradient in L2 norm.
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Lemma 4.2. There exists a constant C independent of h such that

J#

j=j0

d−1j ∥g − gh∥L2(Ω′
j)
≤ C| lnh|3/2∥∇(g − gh)∥L2(Ω).

Proof. Define a weight function

σ(x) =
7

|x− x0|2 + h2.

By the definition of σ it is easy to see that σ ≈ dj onΩ j . Thus, by the Cauchy-
Schwarz inequality and using that J ≤ C| lnh|, we have

J#

j=j0

d−1j ∥g − gh∥L2(Ω′
j)
≤ C

⎛

⎝
J#

j=j0

1

⎞

⎠
1/2⎛

⎝
J#

j=j0

d−2j ∥g − gh∥2L2(Ω′
j)

⎞

⎠
1/2

≤ C| lnh|1/2
⎛

⎝
J#

j=j0

∥σ−1(g − gh)∥2L2(Ω′
j)

⎞

⎠
1/2

≤ C| lnh|1/2∥σ−1(g − gh)∥L2(Ω).

Since g − gh is zero on ∂Ω, by the argument in Lemma 3.4 in [1], we have

∥σ−1(g − gh)∥L2(Ω) ≤ C| lnh|∥∇(g − gh)∥L2(Ω),

which gives us the lemma. !

Now we proceed with a duality argument.

Lemma 4.3. There exists a constant C such that

∥∇(g − gh)∥L2(Ω) ≤ C.

Proof. We proceed similarly to [16, section 4], and define a bounded linear func-
tional on H1

0 (Ω) by

(39) F (ϕ) = (∇(g − gh),∇ϕ)

and the corresponding solution w ∈ H2
0 (Ω) by

(40) B(w,ϕ ) = (D2w, D2ϕ) = F (ϕ), ∀ϕ ∈ H2
0 (Ω).

Since Ω is convex, w ∈ H2
0 (Ω)∩H3(Ω) and by the regularity estimate (4), we have

(41)

∥w∥H3(Ω) ≤ C∥F∥H−1(Ω) = C sup
ϕ∈H1

0(Ω)

(∇(g − gh),∇ϕ)

∥∇ϕ∥L2(Ω)
≤ C∥∇(g − gh)∥L2(Ω).

From Lemma 5 in [4], w also satisfies

Bh(w,χ ) = F (χ), ∀χ ∈ Sr
h.
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From the definition of w above, a priori error estimate (15), using (41) and (4), and
in addition using the estimate (31) for ∥∇δ̃∥L2(Ω), we have

∥∇(g − gh)∥2L2(Ω) = F (g − gh) = Bh(w, g − gh) = Bh(w − Ihw, g − gh)

≤ !w − Ihw!2,h!g − gh!2,h
≤ Ch∥w∥H3(Ω)Ch∥g∥H3(Ω)

≤ Ch2∥∇(g−gh)∥L2(Ω)∥D2δ̃∥H−1(Ω)

≤ Ch2∥∇(g − gh)∥L2(Ω)∥∇δ̃∥L2(Ω)

≤ C∥∇(g − gh)∥L2(Ω).

Canceling, we obtain the result. !

Combining Lemma 4.2 and Lemma 4.3, which establishes (38) and as a result
Lemma 4.1.

5. Local error estimates

To show local error estimates we use again the weight function

(42) σ(x) =
7

|x− x0|2 + h2 > 0.

One can easily check that σ satisfies the following properties,

∥σ−1∥L2(Ω) ≤ C| lnh|12,(43a)

|∇σ| ≤ C,(43b)

|∇2σ| ≤ C|σ−1|(43c)

max
T

σ ≤ Cmin
T

σ, ∀T ∈ Th.(43d)

Using this σ, we define the following weighted norms

!v!22,h,σ =
#

T∈Th

∥σD2v∥2T +
#

e∈Eh

-

e

.
σ2|e|

%%%%

++
∂2v

∂n2

,,%%%%
2

+ σ2|e|−1
%%%%"
∂v

∂n
#
%%%%
2
0

ds

and

!v!22,h,σ−1=
#

T∈Th

∥σ−1D2v∥2T+
#

e∈Eh

-

e

.
σ−2|e|

%%%%

++
∂2v

∂n2

,,%%%%
2

+σ−2|e|−1
%%%%"
∂v

∂n
#
%%%%
2
0

ds.

Lemma 5.1. There exists a constant C independent of h such that

!g − gh!2,h,σ ≤ C| lnh|32.

Proof. Using dyadic decomposition (34) and the property that σ ≈ dj on eachΩ j

we have

!g − gh!2,h,σ ≤ C∗h!g − gh!2,h +
J#

j=j0

dj!g − gh!2,h,Ωj
.

The rest of the proof is identical to the proof of Lemma 4.1. !
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5.1. Proof of Theorem 1.2.

Proof. Similarly to the proof of Theorem 1.1, for any χ ∈ Sr
h and using that δ̃ is

supported on T0

D2(uh − χ)(x0) = Bh(uh − χ, g)

= Bh(uh − χ, gh)

= Bh(u− χ, gh)

= Bh(u− χ, g)−Bh(u− χ, g − gh)

= (u− χ, D2δ̃)T0−Bh(u− χ, g − gh)

= (D2(u− χ), δ̃)T0−Bh(u− χ, g − gh)Bd −Bh(u− χ, g − gh)Ω\Bd

= J1 + J2 + J3,

where by B(·, ·)D we denote the part of the bilinear form restricted to a set D ⊂ Ω.
Exactly as in Theorem 1.1

J1 ≤ ∥D2(u− χ)∥L∞(T0)∥δ̃∥L1(T0) ≤ C∥D2(u− χ)∥L∞(Bd).

Using the Hölder inequality and Lemma 4.1

J2 ≤ C!u− χ!W2,∞
h (Bd)

!g − gh!W2,1
h (Ω) ≤ C| lnh|32!u− χ!W2,∞

h (Bd)
.

Using the Cauchy-Schwarz inequality, Lemma 5.1, and using that σ−1 ≤ Cd−1 on
Ω\Bd, we have

J3 ≤ C!u− χ!2,h,Ω\Bd,σ−1!g − gh!2,h,Ω,σ ≤ C| lnh|32d−1!u− χ!2,h,Ω.

!
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