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Insect proprioception utilizes hundreds of campaniform
sensilla embedded in the exoskeleton that sense strain. These
sensilla are essential for many behaviors, especially flight
control. Despite their role in diverse behaviors, campaniform
sensilla share many neural properties. White noise analysis of
campaniform sensilla on both lepidopteran wings and dipteran
halteres shows selectivity to two stimulus features related by a
derivative (derivative pair feature detection, DPFD), which are
sufficient to explain spiking activity. DPFD is an inherent
property of non-specialized Hodgkin-Huxley dynamics.
Nonetheless, DPFD in campaniform sensilla enables simple
control laws at multiple timescales. Campaniform sensilla
specialization may derive more from stimulus prefiltering by
receptor mechanics and anatomical arrangement, although
neural specialization may also contribute for more complex,
naturalistic stimuli. Evolution may tinker with the placement of
these ubiquitous sensors and adapt them to different functions
without the encumbrance of particular neural specialization, a
strategy potentially useful for engineered walkers and fliers.
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Introduction

Agile locomotion requires a sense of the body’s position
and motion in space. Many vertebrates, especially mam-
mals, combine a dedicated vestibular organ with special-
ized sensors in muscles and tendons that inform the
nervous system about relative stretch, as well as cutane-
ous sensors that monitor deformation of the skin. Terres-
trial and aerial arthropods lack a vestibular structure
analogous to our inner ear, but still exhibit diverse loco-
motor repertoires. In these organisms, proprioception is
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accomplished primarily by three types of sensory cells
[1,2]. First, internal stretch receptors, or chordotonal
organs, connect segments or deformable regions of the
exoskeleton to muscles, or form specialized clusters of
neurons like in the antennal Johnston’s organ of many
insects [3]. Second, sensory hairs cover the surface of
nearly all arthropods. While many are chemosensory,
mechanosensitive hairs are arranged in specialized
organs, like the prosternal hair plates that monitor the
position of the head [4], or are found individually at
various locations on the body [1]. Finally, campaniform
sensilla (CS) are proprioceptors essential to many insect
behaviors. CS are directly embedded in the exoskeleton
itself and provide the animal with a sense of the deforma-
tions of its body [5].

T'he prevalence of CS suggests that their neural encoding
may be specialized to serve many different proprioceptive
roles. However, much of this specialization might arise
through mechanical filtering of the stimulus and their
placement on structures [3,5,6°%,7]. Here we will discuss
how their neural encoding is actually quite generic,
suggesting that specialization may arise primarily through
anatomical placement and mechanics, rather than neces-
sarily requiring specialized neural computation and mem-
brane dynamics. To explore this idea, we first survey
some of the diversity of CS. We then examine in detail
the examples where the stimulus selectivity of CS has
been measured with methods drawn from computational
neuroscience, specifically white noise analysis. Next, we
relate how this selectivity is a natural consequence of
Hodgkin and Huxley dynamics. We then connect the
encoding properties of CS to the simple control laws for
insect locomotion under more naturalistic stimuli. The
use of many, fairly generic sensors that are specialized
through placement and mechanics may decouple the
evolution of new structures and behaviors from precise
neural specialization. This is especially true in flight-
related sensors, but may extend to leg CS as well. The
proliferation and deployment of CS in specialized loca-
tions suggests a robust sensing strategy, in stark contrast
to the few, highly specialized sensors we typically use
when engineering motile robots [8].

The diverse morphology and mechanical properties of
CS shape their stimulus response

Campaniform sensilla are dome-shaped sensory struc-
tures that detect local bending of the exoskeleton. These
domes are embedded within a spongy tissue that is
directly coupled to a single sensory neuron that lies
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Diversity of campaniform sensilla.

(a) Campaniform sensilla act as strain sensors in the insect cuticle, transducing exoskeletal torsion and strain into spiking events. (b) Scanning
electron micrograph (SEM) a campaniform on the antenna of the American cockroach, Periplanata americana, reproduced from Toh [28]. (c) SEM
of the campaniform sensilla at the trochanter of the leg on the stick insect Carausius morosus, reproduced from Zill et al. [29]. (d) SEM of a field
of campaniform at the base of the haltere (field dF2) on a robber fly. These sensors may detect out-of-plane bending due to gyroscopic forces or
visually mediated steering commands. (e) SEM of a field of campaniforms found at the base of the forewing in the hawkmoth Manduca sexta. (f)
The spikes elicited in campaniforms are stimulus-dependent. Static or ramp-and-hold stimuli result in spike trains that exhibit either rapid or slow

adaptation. By contrast, periodic motion leads to phase-locking.

beneath [9] (Figure 1a). Fundamentally, CS are strain
sensors: deformation of the cuticle cap applies mechanical
strain to the dendrites of the sensory neuron where mechan-
osensitive ion channels from the TRP superfamily [10]
transduce strain into depolarizing currents. CS are found
wherever the cuticle experiences significant bending or
torsion, including the legs, wings, and antennae (Figure 1b-
—e). Many are directionally sensitive, but this sensitivity
seems to arise often from those with elliptical shapes, which
creates anisotropy in their susceptibility to strain. For
example, the American cockroach, Periplanata americana,
possesses two groups of CS on the tibia of each leg that
mediate different reflexes. These sensors detect both force

and the rate of force arising from both external loads and
internal stresses generated by muscles [11]. In one group,
the proximal sensilla, the long axes of the CS are oriented
perpendicular to the long axis of the tibia, whereas the distal
sensilla are oriented parallel to the tibial long axis [12]. As a
result, during walking or running, dorsal bending of the leg
excites the proximal sensilla, while ventral bending excites
the distal sensilla. Stimulating either the proximal or distal
sensilla controls tibial flexion or extension, respectively
[13]. While arrangement and morphology condition what
stimuli the CS receive, the viscoelastic material properties
of the receptor itself can act as a filter on its mechanotrans-
duction [14°]
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Similar directional selectivity of leg CS is also well-
documented in the legs of stick insects and locusts
[15,16] and while neural specialization cannot be ruled
out, there is evidence that morphology likely shapes
much of this specializaiton. Although the orientations
of each of their four trochanteral CS groups differ, the
CS within each group are parallel and electrophysiological
evidence from trochanteral CS group 1 confirms their
directional selectivity [15,17]. Notably, the directional
selectivity of CS group 1 appears to be context-depen-
dent: this group of campaniforms responds differently to
passive horizontal deflections and active vertical displace-
ments of the leg [17]. Moreover, CS groups 3 and 4, which
are both located on the dorsal aspect of the trochanter but
differ in their orientation by approximately 90 , encode
leg loading in complementary directions (Figure 1c). The
concentration of CS at the trochanter therefore provides
stick insects with detailed information regarding their
posture and walking. Even when the CS are round,
directional selectivity can arise from the positioning of
the dome within the cuticular collar surrounding the
spongy tissue in which the dome is embedded [11].

Together, these elegant examples demonstrate how a
limb or sensory structure’s local mechanics can serve as
a filter for mechanosensory transduction, without the
need for specialization at the level of the individual
neuron. It is unsurprising, then, that the insect body plan
takes advantage of CS by either deploying them in
precise patterns and orientations or increasing their num-
ber at locations that experience high stresses and strains.

Perhaps the clearest example of how both the precise
patterning and CS density enable the encoding of crucial
proprioceptive information is the haltere, the modified
hindwing of flies. Like the hindwings of other insects, the
halteres beat up and down during flight, and they provide
essential mechanosensory feedback to the wing steering
system on a stroke-by-stroke basis [18°]. Experiments
conducted over 300 years ago demonstrated that flies
cannot freely fly without these tiny organs [19]. Although
commonly thought of as biological “gyroscopes” sensing
body rotations [20,21], recent work in Drosophila has
shown that the halteres also act as adjustable
“metronomes,” regulating the timing of the wing steering
system with sub-millisecond precision [22°°]. Thus, the
haltere is a multifunctional sensory organ that allows flies
to maintain aerial stability without sacrificing their unpar-
alleled maneuverability.

The haltere’s multifunctional capacity may rely on the
directional selectivity of the CS embedded on it. The CS
on the halteres are divided into five stereotyped groups
along the haltere’s dorsal and ventral aspects [23,24]. The
CS found along the stalk, named fields dF3 and vF2, are
grouped in a way that suggests that they detect in-plane
beating for the metronomic function [20]. The CS

embedded within field dF2 are oriented in a direction
that suggests they are most sensitive to the shear strains
that result from Coriolis forces during body rotations or
visually mediated steering commands (Figure 1d)
[20,22°°].

Whether an insect is walking or flying, the resulting cutic-
ular bending during locomotion will strongly influence the
stimulus dynamics CS experience, and thus their elicited
spike trains (Figure 1f) [7]. Indeed, static or ramp-and-hold
deflections, which may approximate what insects experi-
ence during standing or walking, result in CS displaying
either rapidly or slowly adapting responses [11,12,25].
Alternatively, periodic indentation of the dome, such as
during the rapid flapping of the wings, causes the neuron to
fire one or more action potentials that are phase-locked to
the stimulus cycle [26°,27]. In the next section we will show
that while some neural specialization may be present in a
few cases, there is a common encoding strategy, especially
amongst the wing and haltere CS of insects.

Derivative pair feature detection (DPFD) is a
common encoding strategy in wing and
haltere campaniform sensilla and
Hodgkin-Huxley dynamics

Although spiking responses to simple static and periodic
deflections are informative of a neuron’s latency or fre-
quency sensitivity, they do not provide a full description of
the stimulus features to which the neuron responds. White
noise analysis techniques stimulate neurons with a band
limited gaussian noise (BLLGN) stimulus that approximates
a random presentation of all possible stimuli within a wide
frequency range or “band” [30]. Spike triggered covariance
analysis then takes the set of stimuli that precede each
spike and reduces them to the small number of significant
features (the dominant eigenvectors of the covariance
matrix), that best elicit spiking [31°°].

Mechanical BLGN stimulation of the haltere followed by
spike-triggered covariance analysis shows that any haltere
CS neuron, regardless of its location, can be described
using only two features that approximate the derivative
of each other (Figure 2a) [32°°]. We refer to this mecha-
nism of encoding as “derivative pair feature detection”
(DPFD — see Box 1, Figure 2b). DPFD is not synony-
mous with phaso-tonic, which refers to the persistence of
the spiking response to a change in stimulus amplitude.
Some DPFD neurons encode the magnitude and velocity
of the stimulus, but this is not necessarily the case, and we
cannot simply interpret the two features as indicators of
specific stimulus properties [33]. Rather, the derivative
pair of features show the best linear set of features in a
changing stimulus that elicit a spike.

Haltere CS are serially homologous to those on the
forewing [24]. We may therefore hypothesize that the
neurons associated with wing CS are not neurally distinct

Current Opinion in Physiology 2021, 19:194-203

www.sciencedirect.com



Functional diversity in insect proprioceptors Dickerson, Fox and Sponberg

197

Figure 2
—— feature (eigenvector) 1 —— feature (eigenvector) 2 |
(a) Haltere sensillum (b) Hodgkin-Huxley neuron (c) Wing, base sensillum  (d) Wing, distal sensillum
0.3

=) —
2 - 2
8 8 50
g 5 <
2 o 2
© -0.3 S

-40 -20 0 -40 -20 0 -40 -20 0 -40 -20 0

time before spike (ms)

(e) () (9) (h)
=) e 5
2 | . N 2 (
g 0 | ey ,\/'\/ = \ g I/
§ | N 3 E % 0 QN/ \ e~ e v
o I ° -
% | ° % l

-40 -20 0 -40 -20 0 -40 -20 0

time before spike (ms) f1(p) time before spike (ms) time before spike (ms)
—— population feature 1 population feature 2
Current Opinion in Physiology

DPFD is common in campaniform sensilla and is a property of Hodgkin-Huxley dynamics.

Derivative pair feature detection (DPFD) is a property of campaniforms belonging to crane fly (Tipula spp.) halteres (a), a simulated Hodgkin and
Huxley model neuron (b), and those from the wing base (c) and wing tip (d) of Manduca sexta, all driven with BLGN excitatory input (mechanical
deformation in (a), (c), and (d); current in (b)). (e) Single-value decomposition of the two dominant features for a population of 36 individual haltere
sensilla results in a derivative pair of population features, showing that all the haltere units share a common basis. (f) Projection of any individual
sensillum’s features onto these population features, combined with a unique phase (position on the ring), describes the firing activity of a given
neuron. The populations of features from the moth wing base sensilla (g) and wing distal sensilla (h) also map onto a derivative pair of population
features. Haltere figures ((a), (e), & (f)) adapted from [32°°]. Wing DPFD encoding was reanalyzed from the data from [34°°] and panels ((g) & (h))
were replotted from that reference. Panel (b) adapted from [31°°] with permission from MIT Press.

from those embedded in the haltere, although they could
have evolved specialization [34°°]. Pratt et al. captured
extracellular recordings of spiking activity in the wing
nerve of the hawkmoth Manduca sexta during stimulation
of the wing tip with BLGN. We reanalyzed these data
using the covariance analysis and found a pair of similar
features in the wing CS [34°°]. In the moth wing, the
stimulus features that drive spiking in the CS at the wing
base are nearly identical to those that drive spiking in
haltere CS (Figure 2a, ¢). Moreover, in both wings and
halteres, each individual campaniform could be well
described by two features that were common to the whole
population of sensilla, demonstrating the common fea-
tures uniting the sensor array (Figure 2e-h) [32°°,34°°].

Does DPFD encoding in wings and halteres represent a
particular specialization in these mechanoreceptors? To
test this we can compare their BLGN responses to those

of a model neuron and examine what kind of membrane
properties may support their encoding characteristics.
Simulations of a general Hodgkin-Huxley neuron dem-
onstrate that the expected feature selectivity of an unspe-
cialized neuron is the same as described above: a pair of
features in which the second feature is the derivative of
the first (Figure 2b) [31°°,35]. These models show that the
emergent pair of features is precisely what would be
expected from the most generalized dynamics of a thresh-
old crossing spiking neuron with excitatory currents
directly proportional to stimulus magnitude.

Is the encoding of wing and haltere CS, and DPFD in
general, simply capturing general properties common to
all neurons? Covariance analysis of the spiking activity of
diverse neurons suggests not. Though DPFD is common
in sensory neurons, especially those that use precise spike
timing to convey information (e.g. crab chordotonal
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Box 1 Band limit Gaussian noise analysis methods and derivative pair feature detection (DPFD)

A random stimulus (BLGN) allows for a data-driven exploration of the features of stimulus encoded by a neuron. This assesses whether a neuron is
consistent with DPFD or more specialized features. The dynamics of neurons are nonlinear and a spike-triggered average (STA) response would
only capture a single dimension. However, the covariance analysis here will identify a number of linear features that approximate the system. The
nonlinear decision function in step 4 is static (does not vary with time) and transforms the multidimensional filter into a spike train. The derivative
pair of features should not be interpreted as a phaso-tonic response to held stimuli or a proportional, derivative, or integral signal which describes
the control law. However, DPFD can be consistent with these responses. Figures adapted from Ref. [31°°].
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organs [36]; and sound localization neurons in auditory
forebrain [37]), there are numerous neurons that do not
deploy this encoding. Neurons selective for a single
stimulus dimension are frequently found in the early
sensory system, such as electric fish ampullary organs
[38] or Drosophila olfactory receptors [39]. Neurons that
are several synapses deep in the sensory pathway are
occasionally selective for three or more stimulus features,
endowing them with further complexity (salamander
retinal ganglion cells [40]; primate visual cortex [41]).
Though little is known about the specific conductances
underlying feature detection beyond DPFD, experi-
ments in diverse organisms suggest that fast potassium
channels aid in speeding adaptation by increasing ampli-
fication and information processing and increasing

selectivity by adding features ([42-44]). Thus, DPFD
is not a necessary encoding strategy of all neurons, butis a
general, and perhaps even default, encoding mechanism
because it requires nothing beyond H-H dynamics. The
potential advantage then is that CS may be neurally
generic and hence easily modified for different purposes,
while still providing specialized encoding of naturalistic
stimuli via mechanical preconditioning,.

There are many ways to characterize CS encoding. Rela-
tively few campaniform sensilla studies use BLGN, but
we do know that the most common encoding properties of
CS is a phaso-tonic response. However, some neurons are
exclusively phasic or exclusively tonic, such as the group
1 CS on the trochanter of the stick insect [17]. While

Current Opinion in Physiology 2021, 19:194-203
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Linking DPFD encoding to control laws for behavior.

(a) The wings and halteres provide sensory feedback on a wingbeat-to-wingbeat basis, structuring firing time of the wing muscles. Visual
commands are sent to the haltere muscles, changing its motion, which recruits additional campaniform sensilla with different preferred firing
times. This feedback alters the timing or activation of the wing steering muscles. The haltere’s gyroscopic function may operate through a similar
pathway. Redrawn from [22°°]. (b) When halteres are deflected anteriorly or posteriorly, either from Coriolis forces or active movement, the firing
phase of some campaniform sensilla can also shift [7,32°°]. Adapted from [52°°]. (c) Haltere campaniform sensilla from the field dF2 are
electrotonically coupled with the first basalar (b1) wing steering muscle. Stimulation of the haltere at a certain phase offset relative to wing sensory
inputs produces a corresponding advance or delay of the phase of activation of the b1 motor neuron. Reprinted from [53]. (d) The phase offset of
the b1 spike is proportional to the rate of body rotation and therefore acts as the “P” signal in a Pl control around angular velocity. The “I” signal
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much of the specialization in leg CS is likely attributable
to mechanical features, we cannot rule out that neural
specialization of membrane properties contributes to
their selectivity, especially in neurons that lack obvious
mechanical asymmetry like the distal wing CS of flies
[45]. These CS are also exclusively phasic or exclusively
tonic, but both types produce precise, phase-selective
spiking under white noise analysis [26°]. Phase selectivity
arises from DPFD (see next section) and so both phasic
and tonic units are consistent with this encoding. In the
moth, both wing base and wing tip CS both are DPFD
(Figure 2¢, d). Tuning of neurons to phasic or tonic
responses could reflect a shift in the excitability of a
neuron. Lacking BLGN studies in leg CS, we cannot
be sure that DPFD extends to limb CS, and neural
specializations could exist in some cases. Instead DPFD
is a good null hypothesis for generic encoding in CS.

A white noise analysis does not fully describe the
response of any nonlinear sensory system, and naturalistic
stimuli can provide a different picture of a neuron’s
encoding, especially in modalities like audition where
the frequency content of natural stimuli is highly struc-
tured [46]. White noise analysis is likely to be very
appropriate for periodic natural motions like those of
wing stokes, haltere oscillations, and periodic limb load-
ing. However, the nonlinear encoding properties of jump-
ing spider slit sensilla (close analogs of CS, but differing in
morphology) result in different stimulus selectivity to
white noise and complex naturalistic vibrations [47,48].
Thus, the identification of DPFD encoding should not be
thought to describe every aspect of encoding, but rather
as an assay of whether the dynamics of the sensory neuron
are consistent with H-H model neurons or necessarily
require specialization in the membrane dynamics. A
BLGN analysis can demonstrate if neurons are consistent
with the null hypothesis of DPFD derived from H-H
model dynamics, but the functional implications for nat-
ural encoding and behavior are dependent on the type of
stimuli. We next consider two examples that connect the
responses of CS during naturalistic stimuli (oscillating
wings and deflecting antennae) to emergent locomotor
control laws.

From encoding to behavior: how generalized
campaniform sensilla properties enable
control strategies

Insects use CS to implement dynamics that are consistent
with relatively simple control policies (e.g. linear, time-
invariant). In Drosophila, flight stabilization to rotational

perturbations is well described by a controller that detects
signals proportional to, “P,” and integrated from, “I,” the
angular velocity. In simulations and experiments, this
“PI” control strategy is sufficient to stabilize fly flight
and captures the response dynamics of freely flying
Drosophila perturbed by a sudden torque caused by
applying a magnetic field to a small metal pin attached
to their backs [49,50,51°]. Even though “P” and “I”
control responses to naturalistic stimuli are related by a
derivative, they are not necessarily the same thing as the
two features of DPFD which capture the response to
BL.GN.

The haltere-b1 motor neuron reflex shows how the phase
selectivity of a DPFD neuron can encode the “P” signal
of a control law when the animal senses a change in
angular velocity. Body rotation produces spikes in haltere
CS (Figure 3b) [52°°], which phase shifts the once-per-
wingstroke firing of the bl via electrotonic coupling
(Figure 3¢) [18°%,53]. The phase shift of bl protracts the
wing and changes wingbeat amplitude in proportion to
the angular velocity perturbation [18°51°,54°]. Could
spikes from the haltere afferents also provide the “I”
signal, which is the absolute position? This signal is
necessary to account for the changes in body dynamics,
but does not necessarily have to operate on such a rapid
time course. It is possible that an integrated signal from
the halteres could convey this information, but vision
likely provides this signal. Indeed, recent physiological
evidence from Drosophila hints that chemical synapses in
wide-field visual interneurons provide a signal consistent
with temporal integration [55].

Antennae are another location where insects use arrays of
CS to implement simple control laws, but to much slower
varying stimuli. Cockroaches are adept at navigating in
low light and use their long antennae as tactile probes
[56,57]. Mechanical properties of the antenna allow it to
automatically conform into a “J” shape for tracking [58].
In addition to primarily chemoreceptive hairs, the
antenna is covered in CS, and the closely related marginal
sensilla at each segment of the flagellum [28]. The base of
the antenna also has proprioceptors for object orientation
and texture discrimination [56,59,60]. However, wall-fol-
lowing behavior is mediated by the flagellar receptors: the
cockroach can no longer track a wall if the flagellum is
severed and reattached [57].

As is the case in haltere-mediated reflexes, a pair of
necessary control signals are required for antennal wall-

(Figure 3 Legend Continued) could come from several hypothesized pathways (dashed lines). (e) Cockroaches follow walls by regulating the
distance of their body to the vertical surface (y(t)). When the reference position of the wall (r(t)) changes it produces a positional error signal (e(t)).
(f) This signal is detected by campaniform and marginal sensilla on the antennal flagellum. (g, h) Each sensilla produces a phasic response to a
ramp and hold stimulus that is much shorter than the overall behavior response (g), but the population sum is appropriately filtered because each
unit has a different latency (h). (i) This population sum is consistent with the “D” signal in a PD controller around position with respect to the wall.
The “P” likely comes from specific neurons in the population as well (see occasional tonic activity in (g), but might also be supplemented by

vision. Plots in (e), (9) & (h) adapted from Ref. [6°7].
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following [61]. The cockroach responds to both the
absolute position of the wall, termed proportional or
“P” control, and its rate of change, termed derivative
or “D” control [61,62]. A proportional derivative control-
ler, “PD,” around a positional error signal is very much
like a proportional integral, PI, controller around a ve/ocity
error signal.

In response to deflections of the wall either during
running or in a restrained preparation with a motorized
wall (Figure 3e), the population of flagellar sensilla
(Figure 3f) provides a well-resolved population code
for encoding the wall’s position [6°°,62]. Mongeau
et al. [6°°] recorded from single mechanosensory neurons
from the antennal nerve responding to an actuated wall
that deflected the antenna. The response of each unit in
the nerve to a transient deformation of 10 s of millise-
conds is a phasic response of similar duration (Figure 3g).
However, each unit responds with a different latency to
the stimulus. The sum of the sensory activity provides a
population low-pass filter, extending the transient
response to 100 s of milliseconds in length but maintain-
ing information about the rate of wall deflection, the “D”
signal (Figure 3h,i) [6°°,62]. The sensory signal propor-
tional to wall position (the “P” signal) could come from
small changes in the tonic firing of individual mechan-
oreceptors (Figure 3g), but might be provided by other
cues, like vision or body contact. As in fly flight, many
generic sensilla combined across a specific anatomical
arrangement (the length of the antenna) likely shapes
the sensory response necessary to control complex behav-
ior. While the antennal CS have not been characterized
with BLGN,;, they all show similar neural responses with
appropriate mechanical prefiltering (changes in latency)
to enable the necessary control (Figure 3g).

The versatility of proprioception through arrays of
generic sensors

Mechanical filtering of sensory stimuli with generic
encoding properties consistent with H-H dynamics
may allow flexibility for arrays of campaniform sensilla
to act in a variety of locomotor contexts. Yet a number of
questions remain. While DPFD is an effective null
hypothesis given that it arises from H-H dynamics, it
has not been explicitly tested in a wide range of CS,
especially on legs and antennae. Other arthropods that
use strain receptors for prey detection or other kinds of
behavior may be more specialized, as suggested for the
slit sensilla of jumping spiders. We also do not yet know if
mechanosensory hairs and chordotonal organs share simi-
lar encoding with CS. Finally, a major open question is
how encoding of naturalistic stimuli by CS with DPFD
and mechanical filtering is preserved through central
processing and integrated with motor output.

During evolution, serial duplication of large arrays of
generalized sensors may not require specialized tuning

of individual neurons, potentially reducing constraints on
the contexts in which they can be effective. Furthermore,
deploying multiple sensors with similar properties might
enable multifunctionality that is robust to damage and
insensitive to stochasticity in individual sensory channels.
Nonetheless, many biological systems seem to produce
behaviors that are well-described by simple control laws
[63]. Neuromorphic, or event-based, engineered sensors
have growing applicability in machine vision in robots,
but arrays of mechanosensory neuromorphic sensors may
be advantageous for sensing and control especially on soft
and deformable structures. Tuning their placement could
maximize information encoding [64]. Using many local-
ized proprioceptors with generic encoding properties
simplifies the need for neural specialization, enhances
robustness, and facilitates control.
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