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Membrane proteins enter the fold
Dagan C. Marx and Karen G. Fleming

Abstract

Membrane proteins have historically been recalcitrant to bio-
physical folding studies. However, recent adaptations of
methods from the soluble protein folding field have found
success in their applications to transmembrane proteins
composed of both a-helical and B-barrel conformations.
Avoiding aggregation is critical for the success of these ex-
periments. Altogether these studies are leading to discoveries
of folding trajectories, foundational stabilizing forces and
better-defined endpoints that enable more accurate interpre-
tation of thermodynamic data. Increased information on
membrane protein folding in the cell shows that the emerging
biophysical principles are largely recapitulated even in the
complex biological environment.
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Introduction

Included among the National Academy of Engineering
grand challenges for the 21st century are goals to
advance health informatics, to engineer better medi-
cines, to reverse engineer the brain, and to engineer the
tools of scientific discovery [1]. Achieving these goals
will rely on overcoming the contemporary biophysical
problem of describing how a polypeptide sequence en-
codes the structure and function of a protein. Because
membrane proteins play key roles in human health,
cognitive functions [2], and are thought to bind over half
of the therapeutics on the market today, advancing an
understanding of how and why membrane proteins
attain their native folds will be key to meeting the grand
challenges. There are two important perspectives to be
addressed: (1) a biophysical description of driving forces
underlying how a sequence encodes a structure and (2)
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a biological description of folding within a complex
cellular environment. Here, we review the major ad-
vances from the biophysical vantage and comment on
how these may be manifested in the cell (see Figure 1).

The value of water-to-bilayer end points
Water-solvated unfolded, Uy and bilayer-embedded
folded states, E represent the two most extreme end-
points of biophysical interest for membrane-protein
folding reactions. A deceptively simple parameter —
the free energy of folding (AG(I)JWF) — captures the
population bias at equilibrium, and the free energy
change between these end states reveals the maximum
energetic contributions of the various atomic in-
teractions responsible for stabilizing a particular folded
state over its aqueous-unfolded conformational
ensemble. Although the water-soluble unfolded state is
not typically observed in a cellular context, these end-
points are nevertheless useful in theoretical consider-
ations that seek to describe the underlying chemical
reactions. Taking cues from the water-soluble protein-
folding field, a number of groups used chemical dena-
turation titrations and extensive condition tweaking to
measure path-independent equilibrium values for
several transmembrane B-barrels [3—6]. These experi-
ments reveal an extremely favorable folding stability for
B-barrels, ranging from —18 to —32 kcal mol ™!, and the
systems have proved useful in addressing the energetic
contributions of side-chain partitioning and backbone
hydrogen bond formation [4,7—10].

Hydrophobicity energies from water-to-
bilayer folding

Statistically, membrane-embedded segments are highly
enriched in apolar side chains that favorably interact
with the nonpolar core of the bilayer [11]. One key
question concerns how much energy is gained by the
removal of a nonpolar moiety from water and its place-
ment within the bilayer. The answer is captured by the
driving force known as the hydrophobic effect. Histori-
cally, water-to-octanol partitioning of peptide segments
has been employed to mimic this energetic contribution
as manifested through the construct of a hydrophobicity
scale [12]. More recently, folding studies using two
different transmembrane P-barrels employing a host—
guest system strategy and a phospholipid bilayer
instead of octanol have enabled a novel hydrophobicity
scale [4,5]. These new measurements demonstrate that
the magnitudes of the membrane partitioning energies
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Membrane protein folding and stability flow chart. (a) The relevant thermodynamic equilibria describing membrane protein stability and the experimental
approaches used to measure each free energy are shown. AGLW_  describes the coupled folding and insertion of an unfolded, water-soluble membrane protein
into the bilayer and is calculated from chemical denaturation titrations of -barrels (PDB: 1QD5). This approach has been used to investigate side-chain transfer
free energies [3-5,8,13,53] and folding transition states [3]. AG”UM‘ £ describes the association/folding of helices in a membrane unfolded state and has been
measured using both steric trapping [20,23] and single-molecule force spectroscopy [29,30]. AGZJ,,Q describes the oligomerization of membrane proteins and is
currently measured using single-molecule fluorescence photobleaching (PDB: 3Q17)[25,26]. (b) The growing knowledge of the thermodynamic parameters that
define membrane protein folding and structure have led to the successful design of functional membrane proteins (PDBs: 6TMS (left) and 6MCT (right)) [27,35].
(c) In vitro-derived parameters of membrane protein stability (Panel A) have also been applied to membrane protein folding. Model systems for investigating
folding in vivoinclude CFTR (PDB: 5UAK), PMP22 [54], and rhodopsin (PDB: 1L9H). The residues for each protein that have been discussed here are shown with
a space-filling representation and are colored red. For rhodopsin, the entire TM7 helix has been investigated using deep mutational scanning [43]. For each
system, the general trend is that stability is correlated with the surface expression of each membrane protein.

are nearly twice as high as previously concluded from the =~ membrane itself is still not a uniform solvent. Rather,
octanol scale. the bilayer interface is a chemically complex environ-

ment with a steeply changing water concentration. How
Moving the membrane mimic from an organic solvent to  does this aqueous gradient change the driving force
an actual bilayer brought an understanding of hydro-  energy of the hydrophobic effect along the bilayer
phobicity closer to the cellular condition; however, the normal? The favorable stability of the transmembrane
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B-barrel scaffold enabled nonpolar partitioning energies
to be assessed at different locations in the bilayer and
thus, under widely varying water concentrations [13].
This work reveals a continuously changing nonpolar
solvation parameter function that connects the value for
the energy of insertion of nonpolar moieties at the
interface to that at the center of the bilayer. By relating
the energy of this important driving force to chemical
parameters of the membrane, and not, for example, the
position along a transmembrane o-helix, these results
have the potential to be adopted for proteins in any
bilayer.

Energetic features of native folds

Since the availability of the earliest membrane-protein
structures, it has been observed that most membrane
proteins are enriched in either the transmembrane o-
helical or the B-sheet (barrel) secondary structure that is
formed by regular patterns of backbone hydrogen bonds.
Backbone hydrogen bond (bbHB) formation is favored
in membrane-embedded regions because there is a
larger energetic penalty for the water-to-bilayer parti-
tioning of the nonhydrogen bonded backbone. Recent
advances in NMR experimental methodologies have
allowed for bbHB strengths to be measured both in
a-helical and B-barrel transmembrane proteins using a
hydrogen——deuterium exchange [14]. Cao et al. re-
ported that bbHB strengths for the transmembrane o-
helical amyloid precursor protein reach —6 keal mol ™!, a
value much more favorable than previous estimates
using organic solvents and small peptides, or even sol-
uble proteins [10,14]. Lessen et al. performed similar
experiments using the transmembrane B-barrel OmpW
and found strengths ranging from —3 to —4 kcal mol !
on average [9]. In contrast to the partitioning free
energy changes of nonpolar side chains discussed above,
both NMR investigations found bbHB strengths to be
relatively insensitive to the position of the membrane.
Together, these studies indicate that bbHB energies
appear to be affected by neither sequence nor secondary
structure. In sum, the unchanging bbHB energy in
membrane proteins across the bilayer implicates side-
chain partitioning interactions as the main driving
force for transmembrane protein insertion into the
bilayer.

Side-chain entropy can be another energy source in
protein folding. Compared to U,, in which the poly-
peptide chain can assume a large and heterogeneous
conformational ensemble, the folding of a trans-
membrane o-helix upon insertion limits the conforma-
tional space and perhaps the motions of side chains [15].
In contrast to this assumption, solution NMR relaxation
studies suggest that membrane proteins are extraordi-
narily dynamic with fast internal motions on methyl-
bearing side chains [16]. This finding was equally true
for the a-helical sensory rhodopsin II as well as the

OmpW [-barrel and was independent of the hydropho-
bic, membrane-mimicking cosolvent. The energetic
contribution of side-chain motion to folding will depend
on the extent to which it is preferentially enhanced
in F as compared to U,. Crucially, this remains to be
tested [16].

Membrane-embedded unfolded-to-folded
endpoints dominate a-helical membrane
protein measurements

To date, there are no water-to-bilayer stabilities
measured for o-helical transmembrane proteins. This is
presumably due to the enhanced aggregation pro-
pensities of transmembrane a-helical regions that are
composed of continuous stretches of nonpolar amino
acids. Stability measurements of o-helical membrane
proteins have accordingly been tractable only in exper-
imental setups in which unfolded states remain
embedded in a membrane or in a membrane mimic,
which we term Uy, regardless of its secondary structure.
In these reactions, the energy derived from the hydro-
phobic effect is attenuated because the water concen-
tration is not bulk, and a smaller energy difference
between Uy and F is expected. If the a-helical sec-
ondary structure is stable in isolated segments in the
unfolded ensemble, for example Uy, p, these experi-
ments should report on transmembrane helix—helix
interactions, for example Uy, g < E

The classic example of this reaction includes the
dimerization of the single-transmembrane domain of
glycophorin A, GpATM [17—19]. However, new
methods that interrogate helix—helix interactions in
more complex multispan proteins show that the lateral
interactions are not going to be simple to understand.
Local interactions show varied stabilities in the intra-
membrane rhomboid protease GlpG as assessed using a
‘steric trapping’ strategy [20—23]. In contrast, the CIC-
ecl CI7/H' antiporter has a high affinity in bilayers
using a promising new single-molecule microscopy
technique [24—26]. The method is model-independent
and can be carried out in any bilayer of choice using
single-molecule fluorescence bleaching steps to quantify
the membrane protein oligomer size following equili-
bration in what is essentially an “infinite” bilayer. In 2:1
POPE:POPG, the authors found that ClC-ecl forms a
high-affinity dimer with a mole fraction equilibrium
dissociation constant equal to 4.7 X 10~% subunits
lipidfl. For context, this is only ~1.3 kcal mol ™! less
favorable than the GpATM dimer in POPC [19], which
was a surprising outcome because the ClC-ecl dimer-
ization interface is much larger by comparison. Because
the CLC-ecl lacks a so-called GxxxG dimerization
motif, future mutational analysis on this protein will be
needed to rationalize the distinct physical mechanisms
these two proteins employ in subunit recognition. The
distinction between these two structural modes for
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dimerization also begs the question of whether the
packing of nonpolar side chains is sufficient to drive
protein—protein interactions in lipids, which is an area of
high interest in the membrane protein design field [27].

Aspects of the folding trajectory as
assessed by force spectroscopy

The folding reaction of ClC-ecl has also been measured
using single-molecule force spectroscopy, a second single-
molecule technique that is gaining popularity in its ability
to probe folding at infinite dilution [28,29]. In the CIC-
ecl experiments, a force ramp strategy interrogated the
unfolding of the monomeric ClC-ecl protein in a DMPC
bilayer wrapped in CHAPSO [29]. This protomer pos-
sesses an inverted topological arrangement of structurally
similar N- and C-domains connected by a linker. The
authors found that the CIC-ecl N- and C-domains
unfolded in separate events suggesting the idea that the
protein evolved from gene duplication of subunits that
fused together. The work further revealed that aggrega-
tion is not the only factor subverting folding: even under
these single-molecule conditions, misfolded states of the
two CIC-ecl domains refold slowly and inefficiently and
are prone to forming a non-native structure.

Showing its versatility to a wide variety of proteins [28],
single-molecule force spectroscopy was recently used to
elucidate intrinsic folding pathways for GlpG and the
human B-adrenergic receptor B2AR [30]. Of significance
is the observation that the B2AR folding occurred N- to
C-terminal, which is intriguing because it implies that
transmembrane d-helices may have evolved to laterally
interact as they are inserted into the bilayer using the
translocon.

Designer membrane proteins

Design efforts challenge our current understanding of
how a sequence encodes a structure. The driving
questions in this area may be summarized by two pithy
phrases, What I cannot create, I do not understand [31] and
Do I understand whar I can create? [32] These two are at
odds because design efforts take advantage not only of
advances in fundamental thermodynamic principles but
also of the ever-increasing structural knowledge base to
create novel proteins. Despite the balance of input ar-
guments, engineering efforts have led to some exciting
successes that foretell the power of this approach
(Figure 1b). The landmark achievement of the Rocker
coiled-coil Zn**/H* antiporter [33] was followed by
Rosetta-driven design of o-helical transmembrane
bundles of varying stoichiometries [34], a dodecameric-
helix pore that conducts ions with a selectivity of Kt
over Na™ [35], and the ¢ novo design of PB-barrel
transmembrane proteins [36]. Promise has also been
demonstrated for the rational control of cellular
signaling by the design of single-pass transmembrane
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domains that may alter receptor signaling through
competition for helix—helix interactions in integrins
[37]. Complementing these structural achievements is
the continued development of energy functions that
seek to more explicitly model interactions between the
surfaces of transmembrane proteins and the lipidic
membrane environment with additions that include
differentiable models of multiple membrane composi-
tions, nonpolar energy functions that increase the vari-
ety of side chains in design so that they more accurately
reflect the biological diversity, and a lipophilicity-based
force field for scoring [38,39].

Membrane protein folding in the cell
Recognizing that this entire literature cannot be sum-
marized in a short review, we conclude with some
comments on how the biophysical measurements
discussed above impact our understanding of folding in
the cell. The biophysical experiments are carried out
under controlled conditions with purified components
and carefully assessed endpoints. In contrast, it is widely
appreciated that there is additional complexity within
the living biological system. Foremost is the concept
that evolution selects for fitness over stability, and it
does so within the context of the cellular machinery. For
example, there can be coupling between the biological
processes of insertion and helix—helix association that
can be difficult to disentangle [40]; putative trans-
membrane ¢-helices may be sorted by the translocon
while simultaneously exploring conformational space in
an unanticipated manner [41]; cotranslational forces are
increasingly recognized in their ability to influence
folding [42]; and the biogenesis process itself may place
limitations on allowed mutations [43]. Thus, it is ex-
pected that mechanistic adaptations from the bio-
physically derived principles may arise because of
constraints or benefits imparted by the proteostasis
networks or cellular trafficking. Even in face of the
complex cellular environment, works on the cystic
fibrosis transmembrane conductance regulator (CFTR)
and peripheral myelin protein 22 (PMP22) proteins
involved in cystic fibrosis and Charcot-Marie-Tooth
diseases, respectively, demonstrate the protein folding
rules gleaned in the test tube are guiding principles
largely applicable to the cellular context (Figure 1c).

There is a large body of literature supporting the
conclusion that the most commonly occurring mutation
in cystic fibrosis, AF508, is at its heart a protein folding
defect [44]. The mutant protein has a propensity to
sample misfolded conformations and is degraded before
reaching the plasma membrane. Early in these studies, it
was appreciated that AF508 is temperature sensitive
and could undergo conditional rescue at the permissive
temperature [45] Consistent with this observation, the
severity of the disease correlates with the fraction of
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folded CFTR protein that is trafficked to the plasma
membrane [46]. This led to the discovery of folding
correctors, including an FDA-approved drug (VX-809
[47,48]), and more recently to the demonstration that
the peripheral quality control system can rescue the fold
by suppression of the CFTR AF508 mutant instability
in cells [49].

Charcot-Marie-Tooth disease is a second example in
which pathogenic severity is related to protein folding.
In this case, the connection was directly established by
showing that conformational stability and cellular
trafficking of 12 variants of the PMP22 protein are
linearly correlated [50]. Importantly, the work discov-
ered that motor nerve conduction velocities in affected
patients  vivo also tracked with thermodynamic sta-
bility of PMP22 assessed by classical protein-folding
experiments # vitro [50]. The recent finding that
overexpression of PMP22 leads to mistrafficking
implies that overwhelming the proteostasis network is
deleterious in the cell and is consistent with the
very slow folding kinetics observed for PMP22
i vitro [51,52].

Conclusions and future directions

The work reviewed here highlights the creative ap-
plications and concomitant expansion of technical ap-
proaches that can be used to elucidate fundamental
principles governing membrane protein folding.
Continued increases in computational power and the
advent of more widespread cryoEM structural solu-
tions of recalcitrant membrane protein complexes will
significantly add to the knowledge database from
which design efforts can be drawn. Library expression
of variants coupled with functional assays # viwo and
deep mutational scanning methods are already showing
promise in shaping the biologically allowed sequence
space [43]. As the distinct steps of membrane protein
folding are interrogated in the cellular context [41],
scientists will gain greater insight into how the bio-
physical rules are played out within the living cell.
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