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33Università di Trieste, Trieste, Italy
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The Muon g − 2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the
muon anomalous precession frequency ωm

a to an uncertainty of 434 parts per billion (ppb), statistical, and
56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in
2018. When combined with a precision measurement of the magnetic field of the experiment’s muon
storage ring, the precession frequency measurement determines a muon magnetic anomaly of aμðFNALÞ ¼
116 592 040ð54Þ × 10−11 (0.46 ppm). This article describes the multiple techniques employed in the
reconstruction, analysis, and fitting of the data to measure the precession frequency. It also presents the
averaging of the results from the 11 separate determinations of ωm

a , and the systematic uncertainties on
the result.

DOI: 10.1103/PhysRevD.103.072002

I. INTRODUCTION

Reference [1] reports a new measurement of the muon
magnetic anomaly aμ ¼ ðgμ − 2Þ=2 made by our Muon
g − 2 Collaboration based on its Run-1 data at Fermi
National Accelerator Laboratory (FNAL). That initial
physics run occurred over a period of 15 weeks in spring
2018. We find

aμðFNALÞ ¼ 116 592 040ð54Þ × 10−11;

where the total uncertainty includes the dominant stat-
istical uncertainty combined with combinations from the
precession rate systematic, magnetic systematic, and
beam-dynamics systematic uncertainties. This combined
uncertainty corresponds to a 0.46 parts per million (ppm)
measurement.
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Three companion papers to that Letter describe in detail
the key inputs to this result. Reference [2] presents the
detailed analysis of the precision measurement of the
magnetic field within our storage ring. Reference [3]
details the small corrections to our anomalous moment
measurement from effects associated with the dynamics
of the stored muon beam. This paper presents the data
reconstruction, analysis, and systematic uncertainty evalu-
ation for the determination of the average muon spin
precession frequency within the precision magnetic field
of our storage ring. The Letter brings the results from these
three papers together, combining the corrected muon
precession frequency with the precision field measurement
to obtain the aμ result given above.

A. Status of g− 2 of the muon

The measurement of the muon magnetic anomaly
performed by the E821 experiment at the Brookhaven
National Laboratory (BNL) [4] of aμ ¼ 116 592 092ð63Þ1
has shown an excess with respect to the Standard Model
(SM) prediction by over 3.5 standard deviations. Since the
publication of the final E821 result, the evaluation of
the SM prediction has undergone significant scrutiny. The
quantum electrodynamics (QED) contributions to g − 2,
calculated to order ðα=πÞ5 [5,6], agree well with precise
measurement of g − 2 for the electron [7]. Recent discrep-
ancies in the measurement of the fine structure constant
[8,9] do not significantly affect the muon g − 2 prediction.
Electroweak corrections include the complete two-loop
evaluation, hadronic effects, and the leading log 3-loop
contributions [10–12]. The dominant theoretical uncertain-
ties arise in the QCD hadronic vacuum polarization and
hadronic light-by-light corrections, which the Muon g − 2
Theory Initiative [13] has recently reviewed thoroughly.
The review, covering dispersive, lattice and modeling
methods, arrived at a consensus [14] for the hadronic
contributions and their uncertainties, and predicts aSMμ ¼
116591810ð43Þ×10−11 [5,6,15–32]. Comparison with the
E821 result yields a difference of ð279� 76Þ × 10−11,
which remains over the 3.5 standard deviation level. In
order to confirm, or refute, that discrepancy, Experiment
E989 [33] was constructed at Fermi National Laboratory.

B. Principles of the experiment

The Fermilab E989 (Muon g − 2) Experiment follows a
sequence of polarized muon beam storage experiments
pioneered at CERN and BNL. In particular, it uses an
experimental approach based on the muon anomalous
precession within a storage ring with a highly uniform
and precisely known magnetic field. This approach was
pioneered in the CERN experiment [34] and refined with

muon, rather than with pion, injection by the E821 experi-
ment at BNL [4].
The technique is based on the convergence of three

fundamental effects: the relative precession rates of the
muon spin and momentum within a uniform magnetic field,
parity violation in muon decay, and the Lorentz boost of the
muon decay products between the muon rest frame and
the lab frame. When a muon orbits horizontally within the
uniform vertical magnetic field of a perfect storage ring,
its momentum vector precesses at the cyclotron frequency
 ωc ¼ −q  B=mγ. For a relativistic muon polarized in the
horizontal plane, the Larmor precession, combined
with Thomas precession, yields a total spin precession
frequency of

 ωs ¼ −gμ
q  B
2m

− ð1 − γÞ q
 B

mγ
:

The relative precession frequency of the spin with respect
to the momentum, denoted hereafter as the anomalous
precession frequency ωa, is therefore

 ωa ¼  ωs −  ωc ¼ −
�
gμ − 2

2

�
q  B
m

¼ −aμ
q  B
m

: ð1Þ

A measurement of the anomalous precession frequency,
coupled with precise knowledge of the storage ring
magnetic field, therefore provides a direct probe of the
anomalous magnetic moment.
Parity violation within the weak decay of the muon

provides the means for such a direct measurement of the
anomalous precession frequency: the highest energy posi-
trons from muon decay are emitted, within its rest frame,
in a direction strongly correlated with the muon spin
direction. When coupled with the Lorentz boost, this
spin-energy correlation results in a modulation of the
positron energy spectrum in the laboratory frame: the
stiffest spectrum occurs when the spin and muon momen-
tum directions are aligned, and the softest occurs when they
are antialigned. This modulation occurs at the rate of the
anomalous precession frequency.
As a result of the energy modulation, the number of

positrons above a given energy threshold Eth from muon
decay within this ideal stored beam varies with time as

NðtÞ ¼ N0e−t=γτμð1þ AðEthÞ cosðωatþ ϕ0ÞÞ: ð2Þ

The parameter N0 represents the initial beam intensity, γτμ
the lifetime of the boosted muon, and ϕ0 the average initial
angle of the muon spins relative to the beam direction. The
asymmetry parameter AðEthÞ, which governs the amplitude
of the rate oscillation about the average exponential for
muon decay, depends on the threshold energy: the energy-
spin correlation weakens as the positron energy decreases.
In fact, since the total decay rate must fall as a pure1Updated to reflect recent CODATA values of external inputs.
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exponential, the asymmetry, evaluated for the lowest
energy positrons, changes sign. The choice of energy
threshold then requires balancing the increased muon
statistics with the dilution of the average asymmetry, and
the optimal choice varies with the method used to extract
the anomalous precession frequency (see Sec. VI). Details
of the statistical power of the ωa determination are
described in [4] where it is shown that, for the optimal
method, the variance of the measured precession frequency
ωa scales as

σ2 ∝
1

NhA2iEth

: ð3Þ

While a vertical magnetic field provides the horizontal
confinement necessary to store a muon beam, storage of the
beam for any significant period requires additional vertical
focusing. A pulsed electrostatic quadrupole (ESQ) system,
comprising four discrete sections symmetrically spaced
about the muon storage ring and covering 43% of its
circumference, provides this focusing. Allowing for the
presence of such an electric field  E, as well as for muon
beam motion that is not strictly perpendicular to the
magnetic field, the anomalous precession frequency of
Eq. (1) becomes2 [3]

 ωa ¼ −
q
m

�
aμ  B − aμ

�
γ

γ þ 1

�
ð  β ·  BÞ  β

−
�
aμ −

1

γ2 − 1

�  β ×  E
c

�
: ð4Þ

The  β ·  B term accounts for a possible component of the
muon velocity parallel to the magnetic field. The last term,
which corresponds to the additional magnetic field com-
ponent that the muon experiences in its rest frame from  E,
vanishes for a muon with momentum p0 ¼ 3.094 GeV=c,
or γ ∼ 29.3. This experiment has been designed to accept
and store a beam of muons with a narrow momentum
spread (0.15%) about p0. The corrections to aμ arising from
both vertical beam motion and the residual electric field
correction are discussed in detail in Ref. [3]. Due to these
and to other effects detailed in [1], the measured precession
frequency needs to be corrected in order to obtain the
quantity ωa required to evaluate aμ. This paper describes
the procedure followed to obtain the observed precession
frequency ωm

a . After the corrections to bring this observed
frequency to the ideal ωa above, combination with the
precision field measurements detailed in Ref. [2] allow
determination of aμ.

Muons stored at this momentum possess a boosted
lifetime of γτμ ≈ 64.4 μs. This lifetime limits the practical
storage time of the beam: almost all of the muons have
decayed away after 700 μs. We therefore need many muon
beam “fills,” cycles of muon beam injection and storage,
which occur at a rate of 16 fills every 1.4 s for E989. In each
fill, a muon bunch of time width 120 ns, to be compared
with a cyclotron period Tc ¼ 149.2 ns, is injected within
the 7.112 m radius ring, with its 1.45 T field.
The muons within the storage ring undergo betatron

oscillations—stable oscillations about the equilibrium
orbit—with characteristics that depend on the strength of
the ESQ electric field. The system is weak focusing and
properly characterized by the field index n for a continuous
ESQ given by

n ¼ R0

vB0

∂Ey

∂y ; ð5Þ

where R0 is the equilibrium orbit radius, v is the muon
velocity, B0 is the magnetic field, and Ey is the effective
vertical quadrupole field component. The horizontal (x)
and vertical (y) tunes—the number of betatron oscillations
per cyclotron revolution—are related to the field index by
νx ≈

ffiffiffiffiffiffiffiffiffiffiffi
1 − n

p
and νy ≈

ffiffiffi
n

p
, respectively. These tunes intro-

duce two key oscillation frequencies into the experiment,

fx ≈ fc
ffiffiffiffiffiffiffiffiffiffiffi
1 − n

p
; ð6Þ

fy ≈ fc
ffiffiffi
n

p
; ð7Þ

with fc ¼ ωc=2π. The radial and vertical betatron motion
of the muons within the beam is strongly coherent when the
beam is first injected into the storage ring. The lattice
chromaticity, due to the ∼0.15% momentum spread of the
stored muon beam, and the ESQ nonlinearities, related to
higher order multipoles, cause this motion to decohere.
The finite acceptance of the detector system couples with

the beam motion resulting from coherent betatron oscil-
lations (CBO) to introduce additional time modulation into
the rate of detected positrons and into the shape of the
positron energy spectrum. As Sec. VI and Ref. [2] discuss
in detail, these CBO effects introduce a time variation into
the effective asymmetry AðEthÞ and phase ϕ0 terms in
Eq. (1). Radial motion of the beam (within the horizontal
plane) introduces particularly strong oscillations at multi-
ples of the frequency fCBO ¼ fC − fx. Accurate modeling
of the time dependence of our data requires incorporation
of both the horizontal and vertical effects. The betatron
oscillations do not, though, couple strongly to the anoma-
lous precession frequency ωm

a as long as they are stable
while the muons are stored.
Table VIII, in the Appendix, summarizes the nominal

frequencies that characterize the g − 2 storage ring for the
two values of the field index employed during Run-1.

2We are ignoring the possibility of the existence of a muon
electric dipole moment which would contribute with additional
terms.
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The remainder of this article proceeds as follows. After a
summary of the instrumentation relevant for the precession
frequency analysis in Sec. II, Sec. III presents the analysis
strategies behind the determination of the precession
frequencies, followed by the data reconstruction strategies
employed to enable those strategies in Sec. IV. Section V
outlines the two major corrections applied to the data: the
gain corrections input to the reconstruction and the pileup
correction needed before fitting. Section VI then presents
the data model, the fit, the fit results, and the stability of the
fit results. After a discussion of the systematic uncertainties
affecting the precession measurement in Sec. VII, the
article concludes with a discussion of the averaging
procedure to combine the results from the different analysis
efforts in Sec. VIII, followed by the summary of results
in Sec. IX.

II. INSTRUMENTATION OVERVIEW

The primary system for measurement of the positron
energy and time distribution consists of a suite of 24 small
electromagnetic calorimeters distributed around the interior
of the storage ring and positioned behind a scallop in the
vacuum chamber to minimize the material traversed by the
daughter positrons, as shown in Fig. 1. The positrons from
muon decay have momenta too small to be stored in the
ring and drift inwards in the magnetic field towards the
calorimeters. At any given time, a single calorimeter will
detect positrons emitted from muons over only a small
range of spin precession phases. The highest energy
positrons can travel a significant fraction of an orbit before
encountering a calorimeter. Softer positrons travel smaller
distances, so have been produced later in a muon pre-
cession cycle.3 As a result, the phase of the muon when it
decayed varies over the energy range of accepted daughter
positrons. The phase difference over this range does not
significantly dilute the precession signal.
Each calorimeter station, described in detail elsewhere

[35–37], consists of a 9 column by 6 row array of PbF2
crystals instrumented with silicon photomultiplier (SiPM)
photodetectors. Digitization of the output from each of the
24 × 54 channels occurs continuously over an entire fill at a
rate of approximately 800 megasamples per second. This
scheme eliminates dead time and potential rate dependence.
A beam-arrival signal from the Fermilab accelerator com-
plex triggers the digitization process for a fill. The master
digitization clock for the experiment is completely inde-
pendent of the accelerator clocks that determine the beam-
arrival timing. Blinding of the precise digitization rate at the
hardware level avoids the potential for unconscious bias in
the data analysis. During data analysis, an additional level
of blinding occurs in software, as described in Sec. VI C.

The blinded clock for digitization derives from a master
40 MHz precision clock, in turn driven by a GPS-stablized
10 MHz rubidium clock source. To achieve the hardware-
level blinding, two Fermilab staff (independent of the
collaboration) detune the 40 MHz clock to a frequency
in the range 39 997 to 39 999 kHz. Correction for the
blinding offset occurred as the last stage of the analysis,
after completion of all systematic bias evaluations and
cross-checks, and following the decision to unblind and
publish. We mix a second blinded clock with the master
clock to monitor the clock system stability without
revealing the blinding offset. The monitoring of the
resulting blind frequency difference utilizes a second
GPS-stabilized reference clock that is completely indepen-
dent of the master clock and its GPS stabilitization.
The set of complete waveforms obtained from a fill then

pass to the front-end processors of the data acquisition
(DAQ) system [38] for data reduction, which proceeds as
follows. Each calorimeter has a dedicated front-end proc-
essor and GPU that perform the data reduction necessary to
keep the stored data volume manageable. The DAQ system
prepares two data streams for offline analysis. The first
“event-based” data stream corresponds to identification of
particle activity within the detector. Whenever a waveform
sample for any crystal in a calorimeter exceeds a ∼50 MeV
threshold, the DAQ system extracts a time window of
approximately 40 μs, depending on the pulse width,
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FIG. 1. Schematic of the Muon g − 2 storage ring and in-
strumentation showing the elements directly involved in the
muon precession analysis. Key elements include the suite of 24
electromagnetic calorimeters (green or medium gray), the straw
tracker system (dark blue or near back), the ESQs (red or dark
gray), a fast kicker system (light blue or light gray), and the beam
entrance (T0) detectors (yellow or very light gray).

3A full spin procession cycle corresponds to roughly 30
cyclotron periods.
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surrounding that sample from all crystals in that calorimeter
for offline analysis. The second data stream provides a
continuous sampling of the waveforms for each fill that
allows an “integrated energy” approach (Sec. VI) to the
precession frequency determination. To achieve a man-
ageable data output rate, the DAQ system combines the
raw crystal waveform samples into contiguous 75 ns
windows over a range of −6 μs to þ231 μs relative to
the muon beam arrival time for the Run-1 data presented
here. The system also allows summing of a configurable
number of consecutive fills, but that was not utilized for
this dataset.
For the measurement of ωm

a , time stability relative to the
start of the fill drives the design of the detector as well as
the data reconstruction algorithms. Suppose, for example,
the gain of the SiPM photodetectors drift in a fashion
correlated with time since muon injection (referred to as
“time into the fill”). Without correction, the true positron
energy distribution above a fixed threshold in an analysis
would shift. Because of the energy-precession phase
correlation discussed above, such a shift would effectively
introduce a time dependence into the phase ϕ0 in the
precession term in the decay rate [Eq. (2)]. With ϕ0 → ϕðtÞ,
the extracted precession phase ωa would be directly
biased.4 A laser-based system [39] provides monitoring
and assessment of such gain variations in each of the 1296
crystals. The system sweeps a set of laser pulses over the
time into the fill on a subset of data and directly measures
the beam-correlated gain variations. This system also
provides a common prebeam pulse, for each fill, that
allows time synchronization of all of the digitizer channels
and it is used to monitor time stability across the fill.
Reconstruction effects that are sensitive to particle flux,

and thus can vary early to late, can also introduce an
effective ϕðtÞ and a possible bias to ωm

a . These effects, such
as random overlap of different positron showers in a
calorimeter (pileup), will be noted in later sections of
the paper.
Several other subsystems indicated in Fig. 1 play a role

in the analysis of the spin precession data. The T0 counter,
located at the beam entrance to the storage ring, provides a
measurement of the beam arrival time, which is used as the
reference start time for the spin precession measurements.
The signal from this counter is digitized within the same
system as the calorimeters and also receives the common
laser time synchronization pulse. A fast kicker system [33]
places the injected beam onto a trajectory that allows stable
storage. The amplitude of the momentum kick affects the
amplitude of the CBO that must be modeled in the data.
Finally, two stations of straw trackers [33] allow the
measurement of effects arising from the dynamics of the
stored beam that affect analysis of the data.

A. Run-1 data subsets

Over the course of the Run-1 dataset, the pulsed high
voltage systems (fast kicker and electrostatic ESQs) oper-
ated at several different set points as we commissioned
them and tuned for optimal running conditions. These
systems play significant roles in determining the beam
dynamics, such as the amplitude and frequency of the
CBO, which in turn can modulate the positron rate. We
therefore determine ωm

a during each operating condition
individually. Table I summarizes the key characteristics of
these four data subsets.
During this physics run, two of the 32 high voltage

resistors for the ESQs became damaged. While the ESQs
still operated, the resulting change in resistance altered the
RC time constant for some ESQ plates and increased the
time required to reach operating voltages. As a result, some
of the voltages varied at the beginning of the time window
used for the determination ofωm

a . This variation introduced a
time dependence into the CBO-related frequencies, which
could be measured directly and incorporated into the ωm

a
analyses (see Sec. VI). The variation also introduced a time
dependence to the beam width. Because the average muon
precession phase varies across the transverse beam storage
volume (due to positron acceptance effects), this change of
width introduced a time-dependent drift to the average
precession phase ϕðtÞ. Such a phase drift shifts the observed
precession frequency and must be corrected. Reference [3]
discusses the determination of the beam storage related
corrections to ωm

a for these four subsets in detail.

III. ANALYSIS TECHNIQUES

By pursuing multiple independent analyses of the muon
spin precession data, we obtain powerful cross-checks on
the value of the precession frequency ωm

a determined from
the data. For the Run-1 results described here, six analysis
efforts have been developed, each utilizing a unique mix
of reconstruction, analysis, and independent data-driven
corrections to determine ωm

a . These approaches have
varying sensitivities to potential systematic effects, as well
as varying statistical sensitivities. This section summarizes
the four general analysis approaches that have been used to
determine ωm

a from the Run-1 data, as well as the common

TABLE I. Summary of the Run-1 data subsets. The positron
statistics correspond to those with energy greater than 1.7 GeV
after a time of 30 μs into a fill, according to the selection criteria
described in Sec. III A.

Run-1
Subset Tune (n)

Kicker
(kV)

Fills
ð104Þ

Positrons
ð109Þ

1a 0.108 130 151 0.92
1b 0.120 137 196 1.28
1c 0.120 130 333 1.98
1d 0.107 125 733 4.00

4While the CBO motion noted above introduces an oscillatory
behavior into the phase, this effect averages to zero.
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selection criteria. The six efforts draw from these four
techniques to arrive at a total of eleven determinations of
ωm
a for each data subset. The following sections provide the

details of data reconstruction, data correction, and fitting.
Reference [40] provides a detailed mathematical analysis

of the statistical sensitivity for each of the approaches
described here.

A. Data selection

The data selection criteria applied in all analyses include
fill-level discriminants that ensure that all critical subsys-
tems, such as the electrostatic quadrupoles, the fast kickers
and all the calorimeter channels were operating in a
standard, stable condition. The criteria identify and elimi-
nate, for example, time intervals surrounding sparking in
the ESQ system. Additional criteria ensured stable, uniform
conditions for delivery of the beam to the storage ring, as
well as stable magnetic field conditions.
All analysis methods select reconstructed positron

candidates (Sec. IVA) or integrated energy samples
(Sec. IV B) that are at least 30 μs into the fill after beam
injection. Prior to 30 μs, programmatic variation of the
ESQ plate voltages moves the beam edges into collimators
to reduce the population of muons at the boundaries of
phase space accepted by the storage ring [3]. This pro-
cedure helps to minimize beam loss during the period over
which we observe the muon spin precession. By 30 μs,
the ESQ plates stabilize at their nominal value. This start
time choice also reduces other effects, like event pileup
(Sec. V B), related to high detector rates at injection time
that could potentially bias ωm

a , yet strikes a reasonable
balance with statistical losses.
For the Run-1d subset, we shift the analysis starting time

to 50 μs into the muon fill because of effects related to the
damaged ESQ high voltage resistors. Reference [3] dis-
cusses these effects and their corrections in detail.
In all analyses, the precise start time of the fit corre-

sponds to a node in the anomalous precession cycle, which
minimizes the sensitivity to time-dependent effects like a
gain change correlated with time into the fill. The end time
of the fit is at T ≃ 650 μs, corresponding to approximately
10 muon lifetimes at p0 ¼ 3.094 GeV=c.

B. Event-based methods

Within the event-based approach, an analysis selects
candidate decay positron events reconstructed with ener-
gies above an optimal threshold, and bins them in time
relative to beam injection. The different methods corre-
spond to different positron weighting schemes. These
methods reflect the physical process described in
Sec. I B, in which the positron rate asymmetry grows with
increasing energy threshold because of the increasing
correlation between decay positron direction and muon
spin. With unit weighting per positron (wðEÞ ¼ 1), this
method maps directly onto the rate prediction of Eq. (2),

though with additional effects from positron acceptance
and beam dynamics. Alternatively, weighting each positron
by the effective decay asymmetry at its energy [w ¼ AðEÞ]
provides the optimal statistical sensitivity [40]. Four of the
analysis efforts for Run-1 use both the threshold method,
with unit weighting, and the asymmetry-weighted method.
Each team extracts the asymmetry function AðEÞ directly
from the data by binning the data in positron energy E and
fitting the time distribution in each bin (see Sec. VI for a
discussion of the fitting method).
The inverse of the ωm

a variance scales as NĀ2 for the
threshold method, where N represents the total positron
statistics above threshold and Ā the average asymmetry,
and as NA2

rms for the asymmetry-weighted method, where
Arms is the root mean square asymmetry above threshold.
Figure 2 illustrates the behavior of these two statistical figures
of merit (FOM) from a simple Monte Carlo simulation that
includes basic detector acceptance effects but assumes perfect
knowledge of the absolute energy scale. For the threshold
method, the lower energy positrons dilute the asymmetry to
an extent that overwhelms the statistical gains, causing the
overall sensitivity to drop off. For the asymmetry-weighted
method, the asymmetry weighting itself minimizes the
dilution, and, in principle, it allows using positrons of all
energies, including those of negative asymmetry.
In practice, acceptance, detector effects, and uncertain-

ties in the absolute energy scale all affect the optimal choice
of energy threshold. For the threshold method, a sweep
over a range of threshold energies determines the optimal
threshold from the data itself. At each trial threshold
energy, a fit to the time-binned data with the ideal

w(y)=1
w(y)=A(y)
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y
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FIG. 2. The statistical figures of merit NĀ2 calculated using a
simpleMonteCarlo simulation for the thresholdmethod [wðyÞ ¼ 1]
andNA2

rms for the asymmetry-weightedmethod [wðyÞ ¼ AðyÞ] as a
function of threshold energy. The simulation included basic detector
acceptance. The normalized energy y ¼ Eeþ=Emax, where Emax ≈
3.1 GeV is the maximum allowed positron energy in the laboratory
frame from muon decay. The isolated black point indicates the
corresponding figure of merit for the integrated energy method in
case of no energy threshold (Sec. III C).
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functional form of Eq. (2) provides the ωm
a precision

estimate. Figure 3 shows a representative sweep. The
optimal threshold occurs near 1.7 GeV for the threshold
method. For the asymmetry-weighted method, a 1.0 GeV
threshold choice balances detector noise mitigation with the
marginal statistical gain from a lower threshold.

C. Integrated energy method

The integrated energy method extracts the anomalous
precession frequency from the calorimeter data with a very
different strategy. Rather than using disjoint time windows
with discrete positron events, this method examines a
continuous total energy sum in the calorimeters from a
combination of many muon fills. An energy versus time
histogram is then formed from this data. This method uses
different raw data and analysis procedures, thus inheriting
different systematic sensitivities and providing comple-
mentary statistics. In particular, contributions from pulse
pileup events and the initially bunched muon beam, both
key issues in controlling systematic effects, require very
different handling. As such, the integrated energy method,
although statistically less powerful, remains valuable in
demonstrating the robustness of the extraction of the
anomalous frequency.

D. Ratio method

The ratio method, described in detail in Ref. [41],
provides a way of processing the data to remove the
exponential decay and reduce any slowly or smoothly
varying effects in the data, such as muon losses. This
method can be combined with any of the event-based or
integrated energy approaches. For the Run-1 results pre-
sented here, we have applied this technique to a threshold
method analysis. Elimination of these slowly varying
effects shifts the relative importance of different systematic
sensitivities compared to the event-based analyses.

To eliminate the slow variations, this method randomly
divides the positron candidates into four subsets.When time
binning the data, the times for one subset receive a shift
forward by Ta=2, where Ta is the anomalous precession
period,5 those in a second subset receive a shift backwards
by Ta=2, while those in the other two remain unchanged. In
terms of the number of eventsnðtÞ collected in the bin at time
t, the rebinning process yields the four binned functions

uþðtÞ ¼
1

4
nðtþ Ta=2Þ; ð8Þ

u−ðtÞ ¼
1

4
nðt − Ta=2Þ; ð9Þ

v1ðtÞ ¼
1

4
nðtÞ; ð10Þ

v2ðtÞ ¼
1

4
nðtÞ: ð11Þ

Forming the sum and difference ratio

rðtÞ ¼ ½uþðtÞ − v1ðtÞ� þ ½u−ðtÞ − v2ðtÞ�
½uþðtÞ þ v1ðtÞ� þ ½u−ðtÞ þ v2ðtÞ�

ð12Þ

suppresses the exponential decay term and other slowly
varying effects. Reexpressing the yields nðtÞ in terms of
the rate function in Eq. (2) and expanding in ðTA=γτμÞ the
functional form of the ratio becomes

rðtÞ ¼ A cos ðωm
a tþ ϕÞ − 1

16

�
Ta

γτμ

�
2

þOððTa=ð4γτμÞÞ4Þ;

ð13Þ
which illustrates the suppression of the lifetime. Figure 4
presents the ratio function obtained from the Run-1d data
subset.
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FIG. 3. Relative uncertainty on ωm
a versus energy threshold for

the four Run-1 datasets determined from a simple five-parameter
fit [cf. Eq. (2)] to data with varying threshold. The different
curvature is due to the different statistics among the datasets.

FIG. 4. The ratio rðtÞ (see text) obtained from the Run-1d data
subset. The ratio preserves the amplitude and the frequency of the
g − 2 oscillation, while eliminating the exponential behavior and
reducing other slow and smooth terms.

5Ta is known at the ppm level from previous experiments, a
precision which is more than sufficient for the ratio method.
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Reweighting the four rebinned subsets according to

uþðtÞ∶u−ðtÞ∶v1ðtÞ∶v2ðtÞ ¼ eTa=2γτμ∶e−Ta=2γτμ∶1∶1 ð14Þ

eliminates the last two terms in Eq. (13) and a simple
sinusoidal description of the ratio time series becomes
exact in the absence of beam-related effects. Those effects,
such as betatron oscillations and muon loss, do not cancel
exactly in the ratio; therefore, this analysis approach
utilizes the full functional form of rðtÞ described in Sec. VI.
All bins in the u and v functions for Run-1 contain

sufficient statistics to allow standard Gaussian error esti-
mation and propagation. With the lifetime correction
factors incorporated into the definition of the u functions,
the expression for the statistical uncertainty on the rðtÞ
binned ratios becomes

σ2rðtÞ ¼
1 − r2ðtÞ

uþðtÞ þ u−ðtÞ þ v1ðtÞ þ v2ðtÞ
: ð15Þ

This method provides a statistical uncertainty that is
comparable to the event-based methods.

E. Finite beam length

At injection time, the 120 ns long beam does not spread
evenly along the storage ring. As a result, the initial
positron intensity at individual calorimeter stations oscil-
lates at the cyclotron frequency (Tc ¼ 149.2 ns). The
beam, however, debunches because higher momentum
muons orbit at larger radii, and therefore with longer
periods, than lower momentum muons. After 5 μs, the
leading edge of the beam first laps the trailing edge. By the
analysis start time of 30 μs (approximately 200 orbits),
the muon beam populates the ring almost uniformly.
Figure 5 shows the positron intensity variation in one
calorimeter from the residual beam bunching.
Combining the positron data in widths of the average Tc

largely filters out this effect, leaving only a small residual
sinusoidal trend in ωm

a as a function of calorimeter position.
Because of the varying phase of this signal around the
ring, summing data from all calorimeters almost com-
pletely eliminates the residual effects. As Fig. 5 also shows,
randomizing the measured positron arrival times uniformly
over the interval �Tc=2 while binning eliminates this
effect, even at the calorimeter level. All event-based ωm

a
analysis approaches for Run-1 employ this randomization
procedure.

IV. DATA RECONSTRUCTION

The two raw data paths from the DAQ system, the event
and integrated energy-based approaches discussed in
Sec. II, require distinct reconstruction algorithms. For
the event-based analyses, the data reconstruction stage
transforms the raw waveform data in each saved time

window into positron candidates with quantities such as
positron hit energies and times. We have independently
developed two methods for this positron reconstruction:
local-fitting and global-fitting. Both fitting approaches
utilize pulse templates, empirical descriptions of each
individual SiPM’s response to positron showers and laser
pulses, to extract times and energies from digitizer wave-
forms. We construct the template for each channel using the
data, and each template includes the well-defined oscil-
latory behavior for that channel after the main pulse, which
results from imperfections in the pole zero subtraction in
the SiPM readout electronics. The physics objects resulting
from the two methods will necessarily differ somewhat
because of diverging decisions made during the respective
algorithm and software development processes. These
differences between reconstruction procedures aid in char-
acterizing and understanding each approach. Applying
multiple reconstructions to the same raw data helps verify
correctness of the reconstruction and provides an important
check on systematic effects.
For the integrated energy analysis, the reconstruction

involves careful combination of the contiguous wave-
forms over all crystals and all muon fills to obtain a final
integrated waveform that preserves a good signal-to-
noise ratio.

A. Local-fitting approach

The local approach fits pulses with an amplitude over a
configurable threshold in each crystal independently.
References [36,42] describe the template pulse fitting
algorithm utilized in this step in detail. Should two or
more pulses occur within the length of the pulse template
(250 ns), the algorithm refits them simultaneously, using
the results of the initial fits as starting parameters, to
remove effects due to the tail of the first pulse overlapping

FIG. 5. The positron intensity variation in one calorimeter as a
function of time. Unrandomized data (black) clearly show a
variation at the 149.2 ns cyclotron periodicity on top of the slower
(4.365 μs) ωm

a variation from the residual beam bunching. Time-
randomization of the data (red or gray) suppresses this variation,
and binning in the cyclotron period suppresses further to a
negligible level. Data are from a subset of Run-1.
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with the second one. This fitting algorithm correctly
handles scenarios in which multiple pulses spread over
two or more distinct time windows from the DAQ system,
as shown in Fig. 6. The individual pulses receive relative
energy and timing alignment corrections determined from
studies of the minimum-ionizing-particle (MIP) signal from
muons passing through the calorimeters [43]. Timing of all
calorimeter channels gets aligned to the muon beam arrival
time through a synchronization (sync) pulse generated
by the laser system. All calorimeter channels and the T0
detector receive this common sync pulse. The difference
from the sync pulse time for the calorimeter channels’
sample times compared to the beam arrival time in the T0
detector provides the aligned time into fill for all channels.
Section VA discusses the application of gain corrections on
various timescales. The location of the optimal ωm

a thresh-
old in each calorimeter (see Fig. 3) then sets the absolute
energy scale.
The final step of reconstruction involves the clustering of

pulses from individual channels into a candidate positron
with an estimate of the total energy of the incident positron.
The clustering combines all pulses in a calorimeter station
within a tunable artificial dead time window into one
candidate. We have used windows of both 3 ns and 5 ns
for the Run-1 analyses. During clustering, the impact
position of the positron is also inferred using a center-of-
gravity method with logarithmic weights [44,45]. For more
details about the local reconstruction approach, please refer
to Sec. 4 of Ref. [46].While not used for the Run-1 analysis,
spatial clustering can be added to the time-based one.

B. Global-fitting approach

In the global-fitting approach, the algorithm simulta-
neously fits clusters of pulse waveforms from multiple

crystals in a given time window from the DAQ. This
approach inherently imposes spatial separation between
positrons that hit a calorimeter close in time, reducing the
size of the pileup correction discussed in Sec. V B 2. In
particular, each positron with an energy over a threshold of
60 analog-to-digital counts (ADC), corresponding to
approximately 50 MeV, above noise is identified with a
3 × 3 cluster of crystals. After applying a time correction to
each crystal similar to that described in Sec. IVA, the
clusters identified in the time window are fit by minimizing
a χ2 described in Sec. VI D. Because the SiPM pulse shape
for a crystal does not depend on the pulse magnitude [36],
we can model each trace by a crystal-dependent template
that scales with energy and translates with time. The pulse
magnitude for each crystal pulse floats independently in the
fit. The algorithm constrains the templates for each crystal
to peak at a shared time. Clusters that share one or more
crystals must be separated by at least 1.25 ns; otherwise,
they will be merged into one larger cluster. When a pulse
template extends across multiple time windows, the algo-
rithm refits all identified clusters within these windows
simultaneously. Relative energy corrections determined
using the MIP energy peak from muons adjust the pulse
amplitude for each crystal in the cluster. An ωm

a energy
threshold scan determines the absolute energy, similarly to
the local-fitting approach (Fig. 3). A refined version of the
center-of-gravity method with logarithmic energy weights
provides an estimate of the position of each cluster. For
more details about this reconstruction approach, refer to
chapter 4 in Ref. [45].

C. Integrated energy waveform

As discussed in Sec. II, 1296 contiguous, time-rebinned,
crystal-by-crystal waveforms comprise the integrated
energy dataset. These waveforms span a time period of
−6 μs < t < þ231 μs relative to the beam arrival time with
75 ns wide bins. The reduced time range and increased time
binning were chosen to limit the rate and volume of the
integrated energy data. Ideally, a simple sum of the wave-
forms over the 54 crystals from a calorimeter would yield
the integrated energy waveform for that calorimeter. As
Fig. 7 illustrates, while positron pulses appear clearly in
single-fill waveforms, the Oð100 nsÞ pedestal recovery
structure overwhelms the positron precession signal in
the waveform over all fills in a dataset. We have therefore
developed a threshold integration method to separate the
integrated time distribution from the pedestal variation.
Figure 8 depicts the threshold integration method. For

each fill-level crystal waveform from a calorimeter, a
rolling pedestal algorithm provides a pedestal estimate at
each time bin. After gain correction (see Sec. VA), any
pedestal-subtracted energy that exceeds a predefined
threshold setting is added to the threshold integrated energy
waveform EðtÞ for that calorimeter.
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FIG. 6. Example of a template fit selected from Run-1 data. The
black points are digitizer sample values and the smooth curves are
fit results. Each “sample number” corresponds to 1.25 ns. This
figure shows a chain fit containing waveforms from two separate
time windows and three pulses. The baseline perturbations from
the first pulse persist into the second time window, in which two
pulses separated by 5 ns were identified.
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In the Run-1 analysis, the mean value of the below-
threshold ADC samples in equal-sized time windows to the
left and right of each time bin provides the pedestal
estimate. To avoid biases from pulse undershoot and
ringing in the estimate, the algorithm introduces a gap
between the pedestal windows and the time bin. The

threshold setting, pedestal window size, and gap size are
all adjustable parameters common to all crystals. The
nominal settings in processing Run-1 data correspond to
a threshold setting of ∼300 MeV, left and right pedestal
windows of 300 ns, and left and right gap sizes of 75 ns.
While the event-based methods use time randomization

to ameliorate the residual effects of the finite beam length
(see Sec. III E), correction of the integrated energy wave-
form requires a different approach. Combining the above
waveforms pairwise into Tb ¼ 150 ns wide bins, which is
close to the cylcotron period Tc ¼ 149.2 ns, would sup-
press these effects. However, an aliased modulation at a
frequency falias ¼ 1=Tc − 1=Tb would persist. We instead
employ a smoothing algorithm to combine the 75 ns
binned waveform fE75

i g into the 150 ns binned waveform
fE150

i g via

E150
i ¼ 1

4
E75
2i−1 þ

1

2
E75
2i þ

1

4
E75
2iþ1; ð16Þ

where i refers to the bin number of the 150 ns wide binned
data. This approach eliminates both the fundamental and
the aliased modulations. While the procedure introduces
bin-by-bin correlations, these can be accommodated
straightforwardly in subsequent fitting procedures.
The associated uncertainties for the above-threshold,

integrated energy histogram bins were computed using
Poisson statistics. Given a bin energy E ¼ P

j Ej, obtained
by summing recorded positron energies Ej, the associated
bin uncertainty is σ ¼ ðPj E

2
jÞ1=2. Small corrections arise

from effects of positron pileup and the division of a
positron’s energy between two adjacent time bins. Such
effects are order 10−2 on the normalized χ2.

V. DATA CORRECTIONS

A number of time-dependent effects require application
of corrections to the reconstructed data to avoid bias in ωm

a .
These effects include gain variations on a number of
timescales, pileup effects in the calorimeters, and the loss
of beam muons through mechanisms other than decay.

A. Detector gain fluctuation and time synchronization

The energy scale of each calorimeter channel can vary
with external factors such as temperature and hit rate. These
effects occur over different timescales: hours or days for
temperature-related effects, and microseconds or tens of
microseconds for effects related to muon rate. A laser
calibration system [39] provides the ability to correct for
these effects. The system operates in different modes to
provide correction functions at different timescales: long-
term correction for daily effects, in-fill gain correction for
the tens of microseconds scale, short-term gain correction
for hits which are tens of nanoseconds apart.
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FIG. 7. Representative single-fill rebinned waveforms for a
high rate crystal in Calorimeter 12 (top), the corresponding
waveform sum over all crystals and all fills in Run-1c for
Calorimeter 12 (middle), and the above threshold integrated
energy waveform (bottom). The vertical axis of time-decimated
ADC counts is the mean value of the 60 raw ADC samples of
each time-decimated bin. The beam injection and pedestal
recovery signals appear clearly for both the single-fill and
summed time distributions. While individual positron pulses
appear clearly in the single-fill distributions, the pedestal struc-
ture overwhelms their contribution in the summed distribution.

FIG. 8. Diagram illustrating the pedestal calculation algorithm
and the application of the threshold for the threshold integrated
energy waveforms. The mean of the below-threshold samples in
the left/right pedestal window provides the pedestal estimate.
Lgap=Rgap are adjustable gaps between the time bin and the left/
right pedestal windows.
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The above-mentioned effects affect the physics output in
different ways. In particular, any variation of the calorim-
eter response between the beginning and the end of a fill, if
uncorrected, results in a early-to-late energy threshold
variation and thus in a potential shift of ωm

a as mentioned
in Sec. II.
The E989 systematic uncertainty goal related to detector

gain variation is 20 ppb, which requires control of sys-
tematic gain changes over the 700 μs long muon fills better
than 0.5 per mille (see Fig. 16.5 in [33]). The long-term
corrections, which do not couple as directly to the deter-
mination of ωm

a , do not require as strict a control.
Reference [39] provides details of the laser system.

Briefly, a programmable laser control board triggers a
pattern of laser pulses which illuminate, during standard
data taking, the calorimeter crystals through quartz fibers
coupled to the crystal face. The amount of emitted light
approximately corresponds to an energy release of 1 GeV.
Figure 9 shows a schematic of this pattern, which includes
a reference signal issued before injection that provides
precise time synchronization, and a set of pulses during a
fraction of the muon fills that accurately measure the
detector response as a function of rate. An additional set
of pulses between fills (not shown) provide the long-term
calibration. The fills with laser pulses are not to be used for
the analysis, as the laser itself modifies the detector
response. Therefore only a fraction of approximately
10% of the muon fills include the laser pulses.
Figure 10 shows a representative gain curve for a single

crystal, as measured by the laser calibration system, during
the first 200 μs after muon injection. The initial gain sag,
clearly visible at the time of injection, results from SiPM
charge depletion that occurs when the initial flash of
particles, accompanying the storable muon beam at injec-
tion, strikes the calorimeters.
A model for the gain function based on an exponential

decay returning asymptotically to unity, with average
amplitude of approximately 6% and time constant of order
6 μs, adequately describes the calorimeter response to laser
data. Thus 30 μs after injection, the start time of the ωm

a fit,

the gain correction is at the per mille level and it rapidly
decreases to zero. While small, this correction is not
negligible and its effect on ωm

a is discussed in Sec. VII A.
When two positrons hit the same crystal within a few

tens of nanoseconds, the finite recovery time of the SiPM
and amplifier can reduce the gain experienced by the
second particle. We map this short-term gain correction
as a function of energy and time by redirecting the laser
light so that two lasers can pulse a set of crystals with
programmable delay and intensity. Figure 11 shows the
gain drop for a typical channel. The amplitude varies
linearly with the energy of the first particle with an average
slope of 5%/GeV, while the exponential recovery time has
an average value of 15 ns.
While the short time correction can be readily applied to

the event-based analysis, in which single positron clusters

FIG. 9. Timing of the sync pulse and representative in-fill
pulses provided by the laser system.
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are selected, the integrated energy method requires a
different approach. A second in-fill gain correction is
determined which combines the gain drop effects due both
to the initial muon flash and to the hit of consecutive
positrons, providing an average combined correction.

B. Multipositron pileup

The positron reconstruction approaches described in
Sec. IV cannot resolve multiple positrons that strike a
calorimeter sufficiently close in time or space. Event-based
analyses must account for such pileup by statistically
subtracting a constructed pileup spectrum. Without this
correction, the unresolved pileup could bias the fitted ωm

a in
Sec. VI by as much as Oð100 ppbÞ. The integrated energy
approach, by design, has no inherent pileup bias, in the
limit of zero energy threshold, because it looks only at total
energy and does not need to associate energy contributions
to individual positrons. This subsection presents three
different approaches developed to correct for the pileup
contamination present in the spectrum of reconstructed
positrons.

1. Shadow window approach

The shadow window approach described here builds on
and refines the original algorithm developed for the BNL
E821 experiment [4]. Reference [41] provides further
details on the algorithm and attendant modifications of
the statistical uncertainties of the positron data.
The algorithm assumes that the probability of observing

a pileup positron (doublet) equals that for observing two
individual positrons (singlets) that are separated in time by
an amount much smaller than the cyclotron period. The
shadow window method searches in a fixed time window
after a given positron (the trigger) for a second trailing
positron (the shadow). A time offset TG, also called shadow
gap time, from the trigger and a shadow window width TD
define the search window.
When the shadow window contains a positron, the

trigger (T) and shadow (S) positrons are combined into
a shadow doublet with energy and time

Edoublet ¼ C · ðET þ ESÞ; ð17Þ

tdoublet ¼
tT · ET þ ðtS − TGÞ · ES

ET þ ES
þ TG

2
: ð18Þ

The constant C in the energy sum corrects for a response
difference of the calorimetry for true pileup compared to
the resolved positrons. The Run-1 analyses employing the
shadow window approach use the nominal value C ¼ 1.
The energy-weighted time of the two singlets provides the
time for the doublet, with a shift of TG=2 that accounts for
the muon flux variation across that gap time.
Application of this procedure to all time-ordered posi-

tron candidates within each fill provides a data driven

statistical estimate of the pileup contamination. Pileup
distorts the data time distribution by adding the doublets
while removing the individual positron contributions.
Therefore the difference

PðE; tÞ ¼ DðE; tÞ − STðE; tÞ − SSðE; tÞ; ð19Þ

where DðE; tÞ is the distribution of doublets, and STðE; tÞ
and SSðE; tÞ are the distribution of trigger and shadow
singlets respectively, provides the correction to be sub-
tracted from the reconstructed time series. The single
positrons used to build up the doublet enter in STðE; tÞ
and SSðE; tÞ shifting their time to t ¼ tD.
For the Run-1 analyses that employ the shadow window

method, the shadow window width TD is tuned depending
on the specific analysis artificial dead time parameters, with
a value typically close to 5 ns. The shadow gap time TG,
typically near 10 ns, has been tested for values ranging
from 10 ns up to the beam cyclotron period of ∼150 ns.

2. Empirical approach

The shadow window approach is based on models for
how the reconstruction in Sec. IVA would treat two
positron hits close in time or space. To avoid such modeling
challenges, we have developed a more empirical approach
where the multiple pulses are superimposed at the wave-
form level [45]. The use of the reconstruction directly on
the combined waveforms eliminates the need for modeling
behavior of the global reconstruction (Sec. IV B).
This algorithm first identifies pairs of reconstructed

clusters that spatially overlap and fall within 149.2�
5.0 ns of each other, corresponding to a cyclotron period.
For each pair, the raw time windows are corrected for gain
effects, such as the short-term effect (Sec. VA), and
superimposed. The reconstruction algorithm is then run
on this combined time window (Sec. IV B) and in case a
single cluster is identified, it populates the energy-time
distribution ρ1þ2ðE; tÞ, while the original clusters populate
ρ1ðE; tÞ and ρ2ðE; tÞ. The difference

δρpileupðE; tÞ ¼
ρ1þ2ðE; tÞ − ρ1ðE; tÞ − ρ2ðE; tÞ

2
ð20Þ

provides the pileup spectrum correction, with the factor of
1=2 correcting for combinatorics. Subtracting δρpileupðE; tÞ
from the reconstructed spectrum statistically corrects it
for pileup.
Because pileup contaminates the sample of single

clusters themselves, the pileup spectrum in Eq. (20)
requires a correction for higher-order pileup. In particular,
each of the two singlets is contaminated by the two-
positron pileup rate, so the next order correction can be
determined by extending the above procedure to include
triplets of reconstructed clusters. The above superposition
and reconstruction procedure of different combinations of
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three raw waveforms produces four energy-time distribu-
tions, one for the triple combination and one for each of the
three pairings. The combination

δρcorrectionðE; tÞ
¼ −½ρ1þ2þ3ðE; tÞ − ρ1ðE; tÞ − ρ2ðE; tÞ − ρ3ðE; tÞ�=2
þ ½ρ1þ2ðE; tÞ − ρ1ðE; tÞ − ρ2ðE; tÞ�=2
þ ½ρ2þ3ðE; tÞ − ρ2ðE; tÞ − ρ3ðE; tÞ�=2
þ ½ρ1þ3ðE; tÞ − ρ1ðE; tÞ − ρ3ðE; tÞ� ð21Þ

gives the correction to be added to Eq. (20) (for details see
[45]). The indices on the energy-time distributions indicate
the time order of original cluster candidates when the
corresponding waveforms are superimposed. For Run-1, no
corrections beyond this order are necessary to sufficiently
correct the reconstructed spectra for pileup.
As in the case of the shadow window approach, the

determination of ωm
a from the pileup-subtracted time series

uses an exact calculation of the bin uncertainties [45].
Overall, this empirical approach provides an excellent

description of the pileup events present in the reconstructed
data. This method is also robust against modifications to
the reconstruction algorithm. In addition, it avoids the need
for simulation to characterize, for example, the possible
dependencies of C in Eq. (17). Reference [45] provides
further detail about the procedures and characterization for
this approach.

3. Probability density function approach

Unlike the previous approaches, where the pileup spec-
trum is created by “combining” two clusters or waveforms,
the probability density function approach constructs the
pileup spectrum by considering the energy-time distribu-
tion of an entire dataset.
Let ρðE; tÞ represent the ideal calorimeter hit distribution

that would be measured by a detector with perfect reso-
lution in time and space and δρpu;dðE; tÞ the double pileup
perturbation. The sum ρpu;dðE; tÞ ¼ ρðE; tÞ þ δρpu;dðE; tÞ
describes the effect of two-particle pileup ρpuðE; tÞ. A
leading-order estimate of δρpu;dðE; tÞ yields [46]

δρpu;dðE;tÞ¼ rðtÞ ·Δt
�
ρdþðE;tÞ−2ρðE;tÞ

Z
ρðE2; tÞdE2

�
;

ð22Þ

with the double pulse sum term defined as

ρdþðE; tÞ≡
Z

ρðE − E2; tÞ · ρðE2; tÞdE2: ð23Þ

The parameters Δt and rðtÞ represent the detector
reconstruction dead time and the overall hit rate as a
function of time, respectively. The first term in Eq. (22)

corresponds to the false counts measured when two
positron showers are mistaken for one, and the second
term corresponds to the two true positron showers that are
lost. The former will in principle be affected by non-
linearities in the treatment of unresolved pulse pairs by the
reconstruction. These nonlinearities are not included in the
pileup correction approach described here.
Equation (22) describes the contamination of the mea-

sured energy spectrum from double pileup in terms of
the uncontaminated spectrum ρðE; tÞ. By iterative applica-
tion of the expression starting with the measured hit
spectrum, which is itself contaminated by pileup, Eq. (22)
can also generate the pileup correction. Because the
relative double pileup contamination appears at the order
rðtÞ · Δt, even with a conservative detector reconstruction
dead time and no spatial cluster separation employed in
the reconstruction, rðtÞ · Δt distorts the term in brackets
by at most 1% to 2%. Thus, use of the pileup contaminated
hit spectrum, instead of the ideal one, to generate the
expected double pileup contamination distorts the correc-
tion by order r2ðtÞΔt2, or 10−4. Repeating this procedure
using the spectrum ρcðE2; tÞ obtained from the first
correction estimate yields a final spectrum also correct
to order r2ðtÞΔt2. These key observations motivate this
pileup correction method. One can also determine the
expected contamination from triple pileup, which appears
at order rðtÞ2Δt2.
The treatment of double pileup shown above assumes

that all pulse pairs within the detector reconstruction dead
time of one another will yield a false count at the summed
energy and the loss of a count at each of the two constituent
pulse energies. This assumption is not valid when three
pulses all fall within the reconstruction dead time. In this
case, one expects a loss of three true counts and a gain of
one false count. A simple application of the double pileup
treatment, however, would count three pulse pairs and thus
erroneously remove six true counts and add three false
counts. A triple pileup correction must then account both
for the reconstruction’s treatment of groups of three
unresolved pulses and for the error in the double pileup
correction that occurs at the order of triple pileup.
Reference [46] shows that the correction

δρpu;tðE; tÞ ¼ rðtÞ2Δt2
�Z

ρðE − EdÞ · ρdþðEd; tÞdEd

− 3ρdþðE; tÞ ·
Z

ρðE3; tÞdE3

þ 3ρðE; tÞ ·
�Z

ρðE2; tÞdE2

�
2
�

ð24Þ

removes the triple pileup perturbation. The bias in
the triple pileup correction from use of the pileup-
contaminated spectrum, rather than the true one, is of
order rðtÞ3 · Δt3, or 10−6.
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Reference [46] provides the details of the implementa-
tion of this method. As done for the other two methods,
each final bin uncertainty of the corrected spectrum
includes the contribution from this procedure.
Figure 12 summarizes, for the three methods, the initial

pileup contribution (left) and the residual contamination
above the positron end point (right) after pileup subtraction.

4. Pileup and the threshold integrated energy analysis

Conceptually, a threshold-free integrated energy analysis
is free from distortion by pileup of positrons in space and
time. The integrated energy correctly receives the energy
contribution from all positrons—whether proximate or not.
However, a threshold-based integrated energy analysis

can suffer pileup distortions. Therefore, an algorithm was
developed for calculating the pedestal and applying the
threshold that mitigated such distortions.
To understand the algorithm it is important to note that

pileup pulses may occur either on the trigger sample or in
the pedestal window. A pileup pulse on the trigger sample
will increase the corresponding, pedestal-subtracted, ADC
value. A pileup pulse in the pedestal window will decrease
the corresponding, pedestal-subtracted, ADC value.
By requiring both the trigger sample to be above the

energy threshold and the pedestal samples to be below
the energy threshold, the effects of pileup are mitigated.
To understand this mitigation it is important to note the
four categories of pulse pileup: an above-threshold
pulse on the trigger sample, an above-threshold pulse
in the pedestal window, a below-threshold pulse on the
trigger sample, and a below-threshold pulse in the
pedestal window.

(1) An above-threshold pileup on the trigger sample is
properly handled as the correct energy of the two
above-threshold pulses on the trigger sample is
recorded.

(2) An above-threshold pileup in the pedestal window is
properly handled as the correct energy of the single
above-threshold pulse on the trigger sample is
recorded due to rejection of the above-threshold
pileup pulse in the pedestal window.

(3) A below-threshold pileup on the trigger sample
causes an overestimate of the correct energy of the
single above-threshold pulse on the trigger sample.

(4) A below-threshold pileup on the pedestal window
causes an underestimate of the correct energy of the
single above-threshold pulse on the trigger sample.
However, overall, the energy overestimation from
below threshold, trigger sample pileup, and energy
underestimation from below-threshold, pedestal
window pileup, statistically cancel.

Extensive studies with Monte Carlo simulations show
that the residual contribution from higher-order pileup has
negligible effect on ωm

a .

VI. DETERMINATION OF ωm
a

An unbiased determination of ωm
a requires a physically

motivated functional form that describes the positron time
series detected by the calorimeters. This section discusses
the dynamical effects included in our fitting model, and the
fits to determine the anomalous precession frequency.
Figure 13 shows the function and residuals for the first

70 μs of a five-parameter fit [Eq. (2)] to the time series
from the unit-weighted event analysis of the Run-1a data.
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FIG. 12. Measured energy spectrum, summed over all calorimeters, along with the total pileup correction. Left: number of positrons
per energy interval. The three solid curves correspond to the uncorrected spectra from the different clustering procedures, the global-
fitting approach (purple or dark gray), local-fitting with tight clustering cuts (black), and local-fitting with loose clustering cuts (blue or
light gray). The dashed lines correspond to the associated pileup correction evaluated with three different methods: empirical approach
(purple or dark gray), probability density function approach (black), shadow method approach (blue). The correction curves show the
absolute value of the pileup contribution, which has a negative sign (events to be subtracted from energy spectrum) above E ∼ 2.4 GeV
and a positive sign (events to be added to the energy spectrum) below E ∼ 2.4 GeV. Right: corrected spectra obtained from the (signed)
difference between solid and dashed lines for the three methods. Few residual events remain in the unphysical region above the endpoint
of the spectrum which, due to detector resolution, extends up to E ∼ 3.4 GeV.
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As discussed earlier, the fit starts from t ≃ 30 μs after muon
injection. The figure also shows the fast Fourier transform
(FFT) of the residual distribution, which illustrates that the
five-parameter model does not adequately capture all
dynamics present in the data. In particular, the FFT shows
several peaks that arise mainly due to beam dynamics.
Coherent betatron oscillation of the beam produces the

predominant oscillation frequency at fCBO ≃ 0.372 MHz
present in the residuals (see Sec. I). Two side frequencies
are also evident at fCBO � fa, where fa ¼ ωm

a =2π is the
anomalous precession frequency. The vertical beam oscil-
lations occur at higher frequencies of fVW ≃ 2.297 MHz,
while the peak at low frequencies indicates the presence of
effects, such as muon loss, that evolve slowly over the
course of a muon fill. The data used in this fit have had the
corrections for pileup and gain perturbations applied.
Without those corrections, the peak at low frequency would
be considerably higher.

A. Muon loss

Not all muons remain stored throughout their lifetime in
the storage ring; a fraction of them exit the storage ring after
striking collimators or other obstacles. The resulting energy
loss, which shifts the energy of a muon below the storage
ring momentum acceptance range (�0.15% of 3.1 GeV=c),
dominates the beam loss mechanisms. A loss of muons
leads to a time dependence of the normalization factor N in
the decay time spectrum of Eq. (2) and requires correction.
A fraction of these lost muons will pass through one or

more calorimeters, depositing in each an energy typical of a
MIP of about 170 MeV. The lost muons passing through
multiple calorimeters have a time of flight between suc-
cessive calorimeters of 6.15 ns. These two characteristics
allow identification of lost muons and a measurement of the
loss rate up to an overall acceptance factor [45,46]. As a
balance between statistics and accidental contamination,

we require that the lost muon candidates cross at least three
calorimeters. The remaining, minimal amount of accidental
contamination in the triple coincidence sample can be
corrected for on average by searching for coincidences in
nearby time-of-flight windows. Figure 14 (left) shows the
corrected time spectrum of lost muons for each dataset
taken during Run-1.
For the two calorimeters that each sit behind a tracking

station, muons can be easily identified by comparing the
momentum (p) and the energy (E) measured by the two
detectors, as shown in Fig. 15. Thus, as an alternative
method to the one described above, lost muon candidates
can be selected with the following approach. First, we
apply a cut on the E=p ratio of the detected particles. We
then build a likelihood function based on the measurements
made by the two calorimeters. This function includes
information regarding the deposited energy, position dis-
tribution, and time of flight with respect to temporally
adjacent calorimeters. This likelihood function allows
selection of muons in all 24 calorimeters, providing a
muon loss spectrum that is totally compatible with the one
identified by the method described above.
The presence of the muon loss spectrum LðtÞ modifies

the simple exponential decay by introducing a multiplica-
tive correction function:

ΛðtÞ ¼ 1 − Kloss

Z
t

0

et
0=γτLðt0Þdt0: ð25Þ

Reference [46] presents a derivation of this correction
function. The normalization parameter Kloss, related to the
calorimeter geometrical acceptance and to the selection
efficiency, is determined by the ωm

a fit. Figure 14 shows the
typical distortion of the simple exponential introduced by
these lost muons: the effect is concentrated in the first tens
of microseconds and the total loss rate, integrated over the
fill, varies between 3 and 4 per mille for datasets 1b and 1c,
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FIG. 13. The results of a five-parameter fit based on Eq. (2) to the time series from the unit-weighted event analysis of the Run-1a data.
Left: the fit at early times (top) and the fit residuals (bottom), showing beam effects that the simple five-parameter function does not
describe. Right: Fourier transform of the fit residuals showing the peaks at the expected beam oscillation frequencies. These distributions
emphasize the need to incorporate the effects related to the beam dynamics into the fit model, as discussed in the text.
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in which the ESQs operated at a high tune value n ¼ 0.120
(see Table I), and 7 and 8 per mille for datasets 1a and 1d,
for which n ¼ 0.108.
Reference [3] discusses the small correction to ωm

a that
can result if the lost muon sample has a different phase
content than the muon decay sample used in the fits.

B. Beam dynamics and detector
acceptance-based fit model

Four fundamental frequencies, first introduced in Sec. I,
can fully describe the dynamics of the muon ensemble:
the anomalous precession frequency, fa ¼ ωm

a =ð2πÞ; the
cyclotron frequency, fc; the horizontal betatron frequency,

fx; and the vertical betatron frequency, fy. Together with
their harmonics and admixtures, these frequencies account
for each frequency observed in Fig. 13. Reference [45]
provides a physical description of these frequency combi-
nations. The fitting model

FðtÞ ¼ N0 · NxðtÞ · NyðtÞ · ΛðtÞ · e−t=γτμ ·
½1þ A0 · AxðtÞ · cos ðωm

a tþ ϕ0 · ϕxðtÞÞ� ð26Þ

modifies the basic rate model of Eq. (2) to incorporate the
effects of detector acceptance and beam dynamics. The
parameter N0 is the overall normalization, ΛðtÞ is the muon
loss correction given in Sec. VI A, A0 is the decay
asymmetry, and ϕ0 is the initial average spin precession
phase. The terms Nx, Ny, Ax, and ϕx describe the interplay
between calorimeter acceptance and beam dynamics that
affect the overall rate, the average asymmetry, and the
average phase. These functions are defined as

NxðtÞ ¼ 1þ e−1t=τCBOAN;x;1;1 cosð1ωCBOtþ ϕN;x;1;1Þ
þ e−2t=τCBOAN;x;2;2 cosð2ωCBOtþ ϕN;x;2;2Þ; ð27Þ

NyðtÞ ¼ 1þ e−1t=τyAN;y;1;1 cosð1ωytþ ϕN;y;1;1Þ
þ e−2t=τyAN;y;2;2 cosð1ωVWtþ ϕN;y;2;2Þ; ð28Þ

AxðtÞ ¼ 1þ e−1t=τCBOAA;x;1;1 cosð1ωCBOtþ ϕA;x;1;1Þ; ð29Þ

ϕxðtÞ ¼ 1þ e−1t=τCBOAϕ;x;1;1 cosð1ωCBOtþ ϕϕ;x;1;1Þ: ð30Þ

For the case of NxðtÞ in Eq. (27), the parameters of the form
AN;x;i;j and ϕN;x;i;j correspond to the effect of the ith
moment of the radial (x) beam distribution at the jth
multiple of the fundamental frequency [forNxðtÞ, ωCBO] on
the rate normalization N [45]. Analogous parameters in
Eqs. (28)–(30) model the modulation of the average
asymmetry A and phase ϕ, as well as the effect of moments
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of the vertical (y) beam distribution. Some analysis groups
employ small variations of the higher order terms of the
beam dynamics modeling in their fitting function com-
pared to the model presented here, providing a valuable
cross-check. Other model variations include an additive
rather than multiplicative correction to the phase term.
Those terms couple very weakly to ωm

a with the statistics
of the Run-1 datasets, and these model variations have
negligible effect.
The damaged high voltage resistors for the electrostatic

ESQs in Run-1 (see Sec. II A) add one further modeling
requirement by necessitating a time-dependent CBO fre-
quency. The straw tracker system measures this depend-
ence directly in each subset of Run-1, and the substitution

ωCBO · t → ωCBO · tþ A1e−t=τ1 þ A2e−t=τ2 ð31Þ

from integration of the instantaneous frequency model
replaces the static frequency term in Eqs. (27)–(30). The
parameter ωCBO floats freely in the fits, while the time
variations remain fixed. The trackers provide the exponen-
tial parameters of the time dependence, with short and long
lifetimes of order 8 μs and 80 μs, respectively. The
integrated form captures both the frequency shift and the
accumulated phase shift.
In a weak-focusing storage ring, the vertical

oscillation (ωy) and horizontal CBO frequencies satisfy
the relationship

ωyðtÞ ¼ κy · ωCBOðtÞ
�

2ωc

κy · ωCBOðtÞ
− 1

�
1=2

: ð32Þ

For continuous ESQ plates generating a perfectly linear
field around the ring κy ¼ 1, but the partial coverage
and field nonlinearities distort the relationship between ωy

and ωCBO. A shift in κy at the 1% level reflects these
distortions. The correction parameter κy floats in the fit,
and the best-fit values agree with beam motion measure-
ments with the straw tracking system. The vertical
oscillation frequency aliases down to the vertical width
frequency via

ωVWðtÞ ¼ ωc − 2ωyðtÞ: ð33Þ

A similar function models the time series obtained with
the integrated energy analysis, though two additional
effects require further modeling. These effects, described
below, require a multiplicative correction to the normali-
zation in a manner analogous to the muon loss correc-
tion ΛðtÞ.

1. Electronics ringing term

As discussed in Sec. IV C, for the integrated energy
approach the average of the time bins in the pedestal
window provides an estimate for the pedestal in the signal

bin. Consequently, any change in the slope of the pedestal
over the window introduces a bias.
The dominant source of pedestal bias arises from

electronics ringing, with a period comparable to the
pedestal window, following the t ¼ 0 injection flash.
The average difference between (a) the time samples with
no pulse above threshold and (b) the pedestal estimates for
that sample provides an estimate of the ringing as a function
of time into the fill. This ringing term and an associated
normalization parameter are then incorporated in the fit
function in the same manner as the muon loss term. The
anomalous precession frequency ωm

a changes by only
Oð10 ppbÞ when including or excluding this term.

2. Vertical drift term

As discussed in Ref. [3], the vertical distribution of
stored muons for Run-1 changes slightly over the fill
because of a time dependence of the ESQ voltages on
two of the 32 plates. Consequently, the positron acceptance
at the top and bottom of the calorimeters will change, and
introduce further time dependence of the fit normalization.
With the low positron energy threshold for the integrated
energy analysis, and thus a correspondingly broader ver-
tical distribution at the calorimeter, this method becomes
sensitive to the drift. The time distributions of the energy
deposited in the three upper rows of crystals in the
calorimeter show a gradual decrease in deposited energy
as a function of time into the fill, while those in the lower
rows of crystals show an increase. The magnitude of the
effect varies systematically with row—maximal at the
outermost rows and smallest in the central rows.
Tracking-based studies indicate that the drift and width

changes occur with the similar time dependences. By
carrying the measured dependence from the crystal row
studies through to the normalization, we obtain a data-
driven correction to the normalization, analogous to the lost
muon correction.
In addition, we investigate the possible effects of vertical

drift on the asymmetry parameter. The measured asymme-
try correlates with vertical position through acceptance
effects, and therefore a change in vertical profile can also
change the asymmetry as a function of the fill time.
Excluding versus including the vertical drift correction in

the fit shifts the extracted value of the anomalous pre-
cession frequency ωm

a by Oð100 ppbÞ. The normalization
term dominates this shift, with the effect from the correc-
tion to the asymmetry parameter entering at least an order
of magnitude smaller.

C. Software blinding of ωm
a

Each analysis group introduces an independent blinding
of ωm

a at the software level within their fits, which prevents
unconscious biasing towards the central value of any
particular group. This blinding proceeds through the
introduction of an offset ΔR, defined as
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ωm
a ðRÞ ¼ ωref ½1 − ðR − ΔRÞ × 10−6�; ð34Þ

where the reference frequency ωref ¼ 2π × 0.2291 MHz.
This parametrization expresses ωm

a in terms of the shift R in
parts per million from the reference frequency, and it
introduces the blinded shift between the value used in
the fit model and the displayed results. Each analysis group
chooses a blinding text phrase, which a standardized
package converts to a value of ΔR, keeping the shift itself
unknown to the group. An MD5 hash algorithm converts
the blinding phrase to four 32-bit seeds for a Mersenne
Twister random number generator. Using this seeded
generator, the package draws the blinding factor ΔR from
a flat�24 ppm distribution with 1 ppm Gaussian tails. This
procedure always produces the same blinded shift ΔR for a
given blinding phrase.
Unblinding at the software level proceeded in two stages.

The first relative unblinding occurred after each analysis
group completed their analysis, including all cross-checks
and systematic uncertainty evaluation. At that point, all
groups adopted a common blinding offset to allow a direct
comparison of results. The final common software blinding
and the hardware-level blinding were only removed after
the final decision to proceed with publication.

D. Parameter determination

All analyses determine the best-fit parameters through
minimization of the Neyman χ2

χ2 ¼ ðN − FÞTV−1ðN − FÞ; ð35Þ

with the MINUIT numerical minimization package [47]
either directly or through the ROOT software package
[48]. The vectors N ¼ fNig and F ¼ fFig correspond to
the measured data time series and corresponding model
prediction, respectively, while V represents the data covari-
ance matrix. When correlations may be neglected, analyses
employ the simpler form

χ2 ¼
X
i

½Ni − Fðti;  pÞ�2
σ2i

: ð36Þ

The vector  p ¼ ðN0; τμ;ωm
a ;…Þ represents the free param-

eters described in Sec. VI B together with the function
FðtiÞ. The number of parameters floating in the fit varies
with analysis method, the details of the beam dynamics
model, and the size of the dataset (which determines
sensitivity to the higher-order, lower-amplitude effects from
beam dynamics). The number of free parameters ranges
from 16 (ratio method) through 27 (integrated energy
analysis), with 22 being the typical number for the
event-based analyses.
A minimum of 30–100 positrons (depending on analysis

group) contribute to the weighted sums in even the least
populated bins (149.2 ns wide) for the event-based analy-
ses, so a Gaussian approximation to the Poisson distribu-
tion works well in estimating uncertainties. Standard error
propagation for the asymmetry weighting, and for the
corrections for pileup and muon loss also apply. The
event-based and ratio analyses have about 4000 degrees
of freedom in the fits, while the integrated energy analyses
have about 1210. We require that all fits contributing to this
work have a reduced χ2 consistent with unity within the
expected standard deviation of 0.02 (0.04) for the event-
based (integrated energy) analyses—a necessary but not
sufficient condition for an unbiased determination of ωm

a .
In addition, all fits had to exhibit a structure-free residual
distribution in both time and frequency domains.
Table II presents the results of a fit to the Run-1d data, the

subset with the largest statistics, for an analysis using the
model exactly as presented above. Figure 16 shows both
the result of the above fit overlaid on the precession data and
the FFT of the residual distribution. With the full beam
dynamics model incorporated into the fit, this residual
distribution no longer exhibits any characteristic structure.
Table III shows the correlation coefficients for the

fundamental five parameters of Eq. (2) and the most

TABLE II. The (blinded) fit results for the asymmetry-weighted event analysis for the Run-1d dataset. The fit used
the model and parameters described in Eqs. (25)–(30) and Eq. (34).

Parameter Fit result Parameter Fit result

blinded R (ppm) −16.01� 0.68 τy (μs) 168� 98

N0 ð7249.8� 3.5Þ × 103 AN;y;2;2 0.00039� 0.00022
γτμ (μs) 64.4478� 0.0023 ϕN;y;2;2 2.10� 0.65
A0 0.355193� 0.000021 AN;x;2;2 0.000198� 0.000059
ϕ0 2.07519� 0.00013 ϕN;x;2;2 −3.35� 0.30
ωCBO (s−1) 2.33593� 0.00030 AA;x;1;1 0.00059� 0.00014
τCBO (μs) 190� 11 ϕA;x;1;1 −0.38� 0.24
AN;x;1;1 0.003237� 0.000097 Aϕ;x;1;1 0.000108� 0.000072
ϕN;x;1;1 −6.081� 0.029 ϕϕ;x;1;1 −3.19� 0.66
Kloss 0.00903� 0.00036 AN;y;1;1 −0.000082� 0.000046
κy 1.01398� 0.00063 ϕN;y;1;1 −5.98� 0.58
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significant beam dynamics component, while Appendix A
provides the full correlation matrix. The strongest corre-
lation of ωm

a (R) in the fits occurs with the average initial
precession phase, ϕ0, analogous to the slope-intercept
correlation in a linear fit. It has only small correlations
with all other parameters. While the correlations of ωm

a with
the CBO-related parameters are small, the strength of the
leading terms in the CBO model (reflected by the signifi-
cance of the signal in the fit) requires that we include these
parameters in the fit. If we drop all CBO-related effects in
the model, ωm

a shifts significantly (of order 100 ppb).
Suppose we include the Nx;1;1 and Ax;1;1-related terms in
Eqs. (27) and (29), which correspond to the main peak at
the frequency fCBO in the residuals to the five-parameter fit
(Fig. 13). The remaining terms in the CBO modeling affect
ωm
a by at most 20 ppb.
The correlation matrix also shows a strong correlation

among the overall normalization and the two parameters
controlling a slow variation over the time of the fill—the
lifetime parameter and the muon loss normalization.
Increasing the muon lifetime, or the fraction of lost muons,
the overall normalization increases.

Because of aliasing of the radial oscillations at positions
180° apart in the ring, the effects of CBO in one
calorimeter tend to compensate for the effects in the
calorimeter directly across the ring. To leading order, and
neglecting decoherence, the sum of data from all calo-
rimeters provides a complete cancellation that is inde-
pendent of variation in the radial betatron frequency.
Small differences in the calorimeter acceptances result
in a residual effect. Nevertheless, summing the data over
all calorimeters significantly suppresses the effects of the
CBO in the fits. Excluding the CBO terms in the fit
function in fits to individual calorimeters results in shifts
in ωm

a an order of magnitude larger than those observed for
fits to data summed over all calorimeters.
Table IV presents the values for R from each of the 11 fits

to each of the four datasets. Also provided are the simple
statistical weighted averages over the four datasets for a
higher precision comparison. Note that the simple averages
presented here do not incorporate the small shifts in the
magnetic field value and changes in the beam dynamics
corrections that vary set by set. The averages are only
provided to allow assessment of the level of agreement
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FIG. 16. Left: overlay of the fit described in the text on the Run-1d precession data. Right: FFT of the time distribution of residuals to
that fit (black), which shows no remaining characteristic frequencies in the spectrum. For contrast, the residuals of the 5-parameter fit
with no beam modeling are also shown (light gray), which helps to highlight the excellent performance of the fit including the modeling.

TABLE III. The correlation matrix among the main parameters (full matrix in Appendix) from the fit whose results are presented in
Table II. The parameters are defined in Eqs. (25)–(30) and Eq. (34). For purposes of display, the elements below the diagonal for this
symmetric matrix have been not been included.

R N0 γτμ A0 ϕ0 ωCBO τCBO AN;x;1;1 ϕN;x;1;1 Kloss

R 1.00 −0.01 −0.00 0.00 −0.87 0.01 0.02 −0.03 −0.02 −0.01
N0 1.00 0.86 −0.03 0.01 −0.00 −0.03 0.05 0.00 1.00
γτμ 1.00 −0.02 0.00 −0.00 −0.02 0.03 0.00 0.89
A0 1.00 −0.01 0.01 −0.01 0.01 −0.02 −0.04
ϕ0 1.00 −0.02 −0.03 0.04 0.02 0.01
ωCBO 1.00 −0.03 0.03 −0.92 −0.00
τCBO 1.00 −0.92 0.03 −0.03
AN;x;1;1 1.00 −0.03 0.04
ϕN;x;1;1 1.00 0.00
Kloss 1.00
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among the results from the different analysis methods.
Reference [1] incorporates all necessary changes for a
dataset by dataset comparison of the anomalous magnetic
moment. The values presented here also have the hardware
blinding and a common software blinding still applied.

E. Corrections to and comparisons of ωm
a

Table V shows the expected level of correlations among
the different analysis and reconstruction types. Statistically
allowed differences arise, for example, from differences in
the local and global reconstruction, in parameter choices
within the local reconstruction, in the weighting of positron
events in different analysis methods, in different positron
energy thresholds and fit start time choices, in binning
differences, and in different choices in the lost muon
selection algorithms, among other effects. We determined
these correlations from ∼103 Monte Carlo simulation trials
that incorporate the major reconstruction and analysis
differences that drive the range of allowed fluctuations.
Given these correlation coefficients, the expression

Δσ12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22 − 2ρσ1σ2

q
ð37Þ

provides the allowed 1σ statistical deviation Δσ12 between
fit values for ωm

a from two different analyses. The param-
eters σ1 and σ2 correspond to the statistical uncertainties of
the two measurements, while ρ corresponds to the corre-
lation between the two analyses.
The different analyses are strongly correlated and it is

known ([49,50]) that, for two positively correlated results,
the variance of the combination has a maximum for

ρcrit ¼ minðσ1=σ2Þ=maxðσ1=σ2Þ; ð38Þ

while it drops to zero when the correlation moves from ρcrit
to 1. Because of this, particular care is required in
combining the different analyses, as described in Sec. VIII.
The pulls of different R measurements (see Table IV)

on the same dataset distribute approximately as a unit
Gaussian. The integrated energy measurements show a
moderate systematic shift with respect to the event-based
measurements. Differences ofOð200 ppbÞ arising from the
impact of the damaged quadrupole resistors as well as
statistical differences arising from a different analysis stop
time largely explain the differences in these two categories
of measurements.

TABLE IV. The unblinded ωm
a fit results, in terms of the parameter R, from all analyses efforts for the four sets, as well as the naive

weighted average of the results for a more stringent comparison among the different analyses. The “Recon.” column indicates whether
the local or global reconstruction methods (see Sec. IV) provided the positron candidates. Under the “Method” column, T corresponds to
an event-based analysis with unit weighting (equivalent to a simple energy threshold), A corresponds to an asymmetry-weighted event-
based analysis, R corresponds to the ratio method applied to the unit-weighted event-based sample, and Q corresponds to the integrated
energy (akin to a charge integration) analysis.

R (ppm) for each dataset Naive R

Recon. Method Pileup Run-1a Run-1b Run-1c Run-1d Average (ppm)

global A empirical −82.98� 1.21 −81.70� 1.03 −82.30� 0.82 −82.34� 0.68 −82.30� 0.43
local A shadow −83.23� 1.20 −81.77� 1.02 −82.35� 0.82 −82.48� 0.67 −82.41� 0.43
local A shadow −83.17� 1.21 −81.84� 1.03 −82.50� 0.83 −82.45� 0.68 −82.44� 0.44
local A pdf −83.39� 1.22 −81.72� 1.04 −82.32� 0.83 −82.42� 0.68 −82.39� 0.44
local T shadow −83.55� 1.36 −81.80� 1.16 −82.67� 0.93 −82.45� 0.76 −82.54� 0.49
global T empirical −82.96� 1.34 −81.96� 1.14 −82.77� 0.91 −82.47� 0.75 −82.52� 0.48
local T shadow −83.64� 1.33 −81.83� 1.12 −82.64� 0.91 −82.63� 0.74 −82.62� 0.48
local T shadow −83.49� 1.34 −81.75� 1.13 −82.64� 0.91 −82.42� 0.75 −82.50� 0.48
local T pdf −83.37� 1.33 −81.76� 1.13 −82.65� 0.91 −82.47� 0.74 −82.51� 0.48
local R shadow −83.72� 1.36 −81.96� 1.16 −82.67� 0.93 −82.52� 0.76 −82.62� 0.49
n=a Q n=a −83.96� 2.07 −79.70� 1.76 −81.03� 1.45 −82.74� 1.29 −81.82� 0.78

TABLE V. The statistical correlations found from Monte Carlo trials for the different types of ωm
a analyses and

positron reconstruction methods. The reconstruction and analysis shorthand notations are defined in Table IV.

Recon./Method Global=T Global=A Local=T Local=A Local=R Q

global=T 1.00 0.91 0.95 0.91 0.95 0.51
global=A 1.00 0.90 0.99 0.90 0.58
local=T 1.00 0.91 1.00 0.51
local=A 1.00 0.90 0.57
local=R 1.00 0.50
Q 1.00
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F. Internal consistency

To add further confidence in our data model and
resulting fit, and to probe for residual systematic effects,
a number of consistency checks have been performed.
The fit results should remain stable with respect to the fit
start time. Later start times reduce potential bias from
residual effects that are pronounced at early times, such as
cyclotron motion, effects from the dynamics of the stored
beam, positron pileup, and gain changes related to the
injection process. Improper modeling of slow effects,
such as those due to gain stability or muon loss, would
appear as an oscillation of the extracted value of ωm

a at the
period of the anomalous precession itself. Stability of the
fitted ωm

a as a function of start time indicates that these
effects are controlled to within the allowed statistical
variation given the small change in statistics relative to
the nominal start time. Figure 17 shows the two param-
eters R [see Eq. (34)] and N0 from a fitting start time
scan for one analysis. Both these combined scans and
the individual subset scans show excellent ωm

a stability.
Most of the data remains common to each point in the
start time scan, significantly correlating the parameter
values for each point in the start time scan. The scans
therefore reveal trends, as opposed to exhibiting the
statistical scatter of statistically independent samples.
The maximum excursion in N0 at a start time of ∼90 μs
means that N0 from that fit agrees with N0 from the
nominal start time at ∼1.5 standard deviations given the
change in statistics.
We have also fit for ωm

a using the data in each of the 24
individual calorimeter stations (Fig. 18). As noted earlier,
the data from an individual station have a significantly
more pronounced CBO motion than the combined data.
Thus, we can use the individual fits as sensitive probes to
evaluate our beam dynamics model. Residual effects from

the cyclotron motion can also induce a bias of ωm
a as a

function of position around the storage ring. The value of
ωm
a remains stable as a function of calorimeter station,

indicating proper accounting for these effects.
Extracting ωm

a as a function of positron energy probes
systematic effects that depend on positron energy, such as
positron pileup and instability in the energy scale. The
energy scans show no systematic dependence of ωm

a on
energy. The energy scans do show an unphysical variation
of the muon loss normalization parameter Kloss. A number
of sources can contribute to such an effect, such as a
residual gain miscalibration on the order of a few parts per
104, an overall drift in positron or lost muon acceptance as a
function of time into the fill, or residual issues with the

FIG. 17. The R (left) and N0 (right) parameters from a scan of the full fit to the Run-1a data subset over the fit start time. The black
curves above and below the data points indicate the full statistical error on R or N0 from the fits. The one standard deviation bands (blue)
show the allowed statistical variation of any given point relative to the nominal fit (starting point), and take into account the highly
correlated statistics between those two points. No scans show any systematic trends away from the statistically consistent region, nor any
oscillation at the ωm

a period—typical indicators of data mismodeling. The trend near the one standard deviation band simply indicates
that data from the earliest fit times drive that statistically compatible shift.
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FIG. 18. The R parameters from fits to the Run-1c dataset by
individual calorimeter, relative to their average.
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pileup correction. The pileup correction, for example,
becomes more pronounced at larger positron energies.
The different sources can shift ωm

a in different directions,
so we do not apply an overall correction to the central value
of ωm

a . The systematic uncertainty receives a contribution
from this residual early-to-late effect, as discussed in the
next section.
Other cross-checks include fits for ωm

a versus run
number, time of day, the bunch number within the super-
cycle of 16 fills, calorimeter column and row number, none
of which show any systematic trend.

VII. SYSTEMATIC UNCERTAINTIES

The known potential systematic effects and their possible
biasing of the extracted ωm

a value were evaluated for each
analysis. For all datasets and analyses, the statistical
uncertainties exceeded the systematic uncertainties by
one to two orders of magnitude. The dominant systematic
uncertainties arise from uncertainties in the calorimeter
gain corrections (Sec. VA), in multipositron pileup
(Sec. V B), in the beam dynamics model (Sec. VI B),
and from the unknown source of the unphysical energy
dependence of the lost muon normalization parameter. This
section will discuss the methods used to estimate these
uncertainties. While we have investigated many other
sources of potential bias, the estimated systematic uncer-
tainty on ωm

a fell below 10 ppb and has negligible effect on
the result. The following section describes the method used
to combine the different analyses and thus to arrive at this
summary table.

A. Detector gain corrections

Short-term and in-fill gain corrections (Sec. VA) remove
the energy scale variation in each calorimeter channel as a
function of time into the muon fill. The statistical uncer-
tainties of the gain functions’ best-fit amplitudes and
characteristic time constants, which are both typically
between 10% and 20%, introduce a systematic uncertainty
on the extracted ωm

a value. The long-term gain correction,
on the other hand, does not pose a systematic bias to the
extracted ωm

a value because it is constant across each
muon fill.
A sweep of the amplitude of the exponential gain

correction function through a common multiplicative
scaling applied to all calorimeter channels provides an
assessment of the collective sensitivity of ωm

a to the in-fill
correction and to the short-term correction. Figure 19
illustrates the sensitivity obtained for different methods
from two analysis groups. The average uncertainty of the
amplitudes for all crystal corrections provides the range
that determines the uncertainty estimate for ωm

a given the
measured sensitivity. The determination of the uncertainty
from the time constants in the exponential form employed
an analogous procedure.

We find systematic uncertainties on ωm
a from the in-fill

and short-term gain correction of order of 10 and 1 ppb,
respectively, across all data subsets.

B. Multipositron pileup

The sources of systematic uncertainty on ωm
a related to

multipositron pileup depend on the reconstruction (Sec. IV)
and correction (Sec. V B) approaches used. For instance,
the global-fitting approach to reconstruction significantly
reduces the amount of pileup, leading to a smaller correc-
tion and in turn a smaller systematic uncertainty on ωm

a . We
estimate an uncertainty due to pileup under 5 ppb across
the datasets for the analysis that used this reconstruction
approach. This subsection therefore focuses on the remain-
ing analyses that used the local-fitting approach to
reconstruction, along with either the shadow-window or
probability-density-function approaches to the pileup
correction.
In these analyses, the dominant systematic uncertainties

on ωm
a arise from uncertainties in the pileup correction’s

amplitude and phase. A scaling procedure, like the one
used to assess the gain correction amplitudes, provides the
sensitivity of the extracted value of ωm

a to the amplitude.
To determine the uncertainty in the amplitude itself, the

analysis groups use one of two methods. The first method
tabulates the χ2 from the full fit as a function of the scaled
pileup amplitude. A quadratic interpolation to the χ2

distribution near its minimum then provides the amplitude
uncertainty via Δχ2 ¼ �1. The second method uses agree-
ment between the estimated pileup distribution and the data
in the energy spectrum in the nonphysical region above
3.5 GeV (Fig. 12) to estimate the uncertainty.
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FIG. 19. Sensitivity of ωm
a to the amplitude of the in-fill gain

correction for one of the asymmetry-weighted analyses (black)
and the ratio method analysis (red). The precession frequency
changes by 18.8 ppb and 9.4 ppb, respectively, for a variation of
the amplitude scaling factor that corresponds to one standard
deviation in its average uncertainty. As described in Sec. III D, the
ratio method is less sensitive to these “slow effects.”
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To estimate the systematic uncertainty from the phase,
some analyses shift the correction in time to evaluate the
sensitivity of ωm

a to the phase. We combine this sensitivity
with the ambiguity in the pileup time estimate in each
method to obtain the systematic uncertainty. Other analyses
that use the shadow-window approach vary the time (and
energy) models in Eqs. (17) and (18). The resulting change
in the extracted ωm

a value yields the uncertainty estimate.
For analyses using the local-fitting approach to

reconstruction, the total systematic uncertainty on ωm
a from

the pileup correction ranges from about 30 to 40 ppb across
the datasets.

C. Beam dynamics

The fit function accounts for the imprint of beam
dynamics on the calorimeter data through the terms in
Eqs. (26)–(31), and the uncertainty in that modeling leads
to a systematic uncertainty on the extracted ωm

a value.
The dominant modeling uncertainties come from the
time-dependent CBO frequency [ωCBOðtÞ] and the CBO
decoherence envelope (e−t=τCBO). Information provided by
the tracking system determines the time dependence of the
CBO frequency caused by the damaged ESQ resistor.
The difference in the parametrization obtained separately
from the two tracker stations provides the estimate of the
uncertainty on ωCBO. We find an uncertainty of order
10 ppb across all datasets and analyses.
The tracker data also constrain the uncertainty from

the modeling of time dependence of the CBO envelope. The
data show consistency with an exponential behavior for the
decoherence of the betatron oscillations at the current level
of precision. However, beam dynamics simulations of the
g − 2 and other storage rings indicate that the betatron
oscillations within the stored beam can recohere. Fits using
the two alternate CBO envelope models

e−t=τCBO þ B; ð39Þ

e−t=τCBO ½1þ C · cos ðωCtþ ϕCÞ�; ð40Þ

whereB,C,ωC, and ϕC are additional fit parameters that we
either float freely in the fit or fix to the values determined
from the tracker data, bound the sensitivity of ωm

a to the
envelope. Note that the model in Eq. (40) is itself motivated
by beam-dynamics simulations.
Additionally, each envelope model assumes a common

τCBO for the CBO modulation of the normalization,
asymmetry, and phase terms in Eq. (26). However, simu-
lations suggest that these time constants could vary by as
much as 50%. The largest shift in ωm

a observed under
variation of each of these time constants by up to 50%
provided an additional contribution to the systematic
uncertainty. Depending upon the analysis technique and
data subset, this uncertainty ranged from 10 to 50 ppb.

The interplay between the three classes of beam dynam-
ics parameters discussed in this section likely correlates
them. We therefore conservatively combine these three
contributions linearly to arrive at the total systematic
uncertainty on ωm

a from the beam dynamics modeling.
For the average of the asymmetry-weighted event-based
analyses presented below, this uncertainty ranges from
30 to 50 ppb across the data subsets.

D. Residual early-to-late effect

The introduction of an ad hoc time-dependent correction
to the energy scale can eliminate the unphysical positron
energy dependence of the muon loss rate (see Sec. VI F).
The scale of the required correction typically amounts to a
few ×10−4, depending upon the reconstruction method and
dataset. A small time-dependent acceptance variation can
similarly ameliorate this effect, but with a shift of ωm

a in the
opposite direction. The source of the effect remains under
investigation. For this analysis, we do not apply an overall
correction, but we assign a systematic uncertainty on ωm

a of
≃20 ppb based on the shift of its central value upon
application of one of the corrections.

E. Additional systematic effects

We have evaluated many other potential sources of bias
on ωm

a , and find their effects to be under 10 ppb on the final
Run-1 aμ average, and therefore negligible for the result
from this Run-1 dataset. Two of these effects of note that
have been considered include muon loss (see Sec. VI A)
and time randomization (see Sec. III E).
The contribution of the muon loss correction has been

evaluated by modifying the shape of the lost muons
function LðtÞ in Eq. (25) according to different selection
criteria.
Tests of the stability of the time randomization procedure

include variation of the binning size in time, incorporating
the spread of cyclotron periods (from the spread of stored
muon energies) into the time randomization process, and by
comparing the time randomization for a cluster-by-cluster
versus a fill-by-fill basis. Variation of ωm

a in these tests
remained well below 10 ppb. To minimize the statistical
fluctuations introduced by the minimization procedure,
each analysis effort reanalyzed and refit the data using
many random number seeds. The quoted uncertainty
reflects the residual uncertainty from the finite number
of seeds employed.
Both these contributions have an effect of less than

10 ppb on the aμ average.
Other items investigated but below threshold for

significant discussion include studies of χ2 vs likelihood
fitting, the extracted cluster time of the reconstructed
positron candidates, the short time gain correction
parameters, biases in the reconstructed time and energy
in the empirical pileup estimation method, the lost muon
selection criteria, and the master clock stabilility. In all,
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the full list of investigated uncertainty categories included
37 separate categories. Some of these were likely highly
correlated and were combined linearly to obtain the final
categories above, or, like those listed here, were found to
be negligible.

VIII. ANALYSIS COMBINATION

Ideally, combination of the ωm
a results for each of the

four data subsets from each of the 11 analyses would
proceed through a best linear unbiased estimator (BLUE)
averaging procedure. For example, one could minimize

χ2 ¼ Δω
TC−1Δω; ð41Þ

where Δω ¼ ωa;i − ω̄a is the difference between the ith
measurement and the average ω̄a, and the covariance
matrix C includes the correlations, statistical and system-
atic, between the 11 determinations of ωm

a . When combined
with the magnetic field measurements for each subset, this
approach would expand to 11 × 4 determinations to be
averaged.
For the Run-1 sample presented here, the statistical

uncertainties dominate the covariance matrix for a
given data subset, and the significant statistical correlations
among the eleven results for a given dataset pose practical
impediments to a well-behaved procedure [49,50]. In
particular, the correlation between different analyses often
reaches the “critical value” defined in Eq. (38).
Therefore, to correctly compute an average, accurate

estimates of the statistical correlations are required.
These have been estimated with toy Monte Carlo simu-
lations and are shown in Table V. Additional systematic
uncertainties, due to imperfections of the simulation, have
not been estimated and are assumed to be subdominant.
The simulation confirms that measurements on the same
dataset are all consistent with being “critically correlated.”
As documented in the literature [50,51], correlations

beyond the critical values cause the weights of the less
statistically precise measurements to become negative and
reduce the uncertainty of the BLUE combination average.
We have found that in our conditions the finite precisions of
the estimated uncertainties and correlations of the 11 × 4
measurements of ωm

a make the BLUE procedure highly
unstable.
When averaging two measurements that are exactly

critically correlated, the BLUE combination has weight ¼
1 for the most precise result and weight ¼ 0 for the least
precise one (see [51]). In the limiting case when two
measurements have exactly the same uncertainty and are
critically correlated, the two weights are 1=2 each. In our
case, it is convenient and reasonable to set all statistical
correlations to the critical values, and to set the measure-
ment uncertainties to be exactly the same when using the
same method. Under these assumptions, the most precise
method, which is the asymmetry-weighted method, gets all

the weight, while the other ones get no weight in the
combination. This is justified as long as uncorrelated
systematic uncertainties are much smaller than the quad-
ratic difference of the total uncertainties between the
different methods. In these conditions, there is a negligible
benefit in including the other methods’ measurements in
the average with the goal of reducing the systematic part of
the total uncertainty.
The analyses that use different reconstruction algorithms

(local vs global) are less correlated than the ones using the
same reconstruction program (see Table V). Thus we
perform a “staged” average of the asymmetry-weighted
results for ωm

a by first combining with equal weights all
analyses that use the local reconstruction and all analyses
that use the global reconstruction and then combining with
equal weights the two ωm

a averages of the first stage. The
ωm
a results of this simplified procedure have been compared

with several other different more complex procedures, all
designed to address the issue of the instability of the
combination average in case of highly correlated results.
Within the context of the BLUE approach, the covariance
matrix calculation either caps the correlation coefficients
at ρij < ρcritij or uses Tikhonov regularization [52], which
effectively rescales all correlation coefficients down. These
calculations assume fully correlated systematic uncertain-
ties across the analyses within each category: gain, muon
loss estimation, etc.
For all of these approaches, the average of the individual

subsets varied by up to 10 ppb in all cases, except one
outlier, which varied by 30 ppb. In summary, our results
show very good stability over all reasonable average
approaches that we have investigated.
Here we present results from the staged averaging

approach using only the asymmetry-weighted analyses. This
method both makes optimal use of the statistical information
and shows the smallest sensitivity to the phase-related
correction from the damaged electrostatic quadruples.
The statistical uncertainties across the different datasets

are uncorrelated, while the systematic uncertainties are
strongly correlated, as shown in Table VI.
Table VII presents the resulting average value of ωm

a for
each of the four data subsets. When combining these
values, along with their associated magnetic field mea-
surements, to obtain the final Run-1 determination of aμ,
these results contribute a total statistical uncertainty of

TABLE VI. Correlation matrix among different datasets for
systematic uncertainties.

Correlation 1a 1b 1c 1d

1a 1.0000 0.9935 0.9884 0.9812
1b 1.0000 0.9820 0.9935
1c 1.0000 0.9669
1d 1.0000
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434 ppb, while their systematic contribution amounts
to 56 ppb.

IX. DISCUSSION AND CONCLUSION

In this article, we have described the full procedure for
the extraction of the muon precession frequency ωm

a for the
four datasets collected in 2018. As described in Sec. II A,
the ESQ and kicker settings were modified over the course
of Run-1, in order to optimize the quality of the stored
beam. To optimize the determination of aμ, in Ref. [1] we
combine the four ωm

a values presented here with corrections
and field measurements determined individually for the
four datasets. The final value corresponds to the average of
those four combined values.
Six analysis groups produced measurements of ωm

a by
using two independent reconstruction algorithms, four
different histogramming methods, and many variants of
the procedures used to evaluate the correction factors and to
fit the final spectrum. Each analysis was carried out with a
different blinding offset. The relative unblinding was
performed during a collaboration meeting, after all analyses
were completed and shown to have an overall agreement.
All analyses show that the error on ωm

a , for Run-1, is
dominated by the statistical contribution. The systematic
uncertainties described in Sec. VII have reached or
approached the goal that has been set in the technical
design report [33] for the full statistics.
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APPENDIX A: IMPORTATNT FREQUENCIES
AND FULL CORRELATION MATRIX

Table VIII summarizes the relevant frequencies which
characterize the g − 2 storage ring. The beam related
frequencies are evaluated according to the formulas and
coincide with the measured values at the 1% level, the
difference being due to decoherence effects discussed in
Sec. VII C.
Table IX provides the full set of correlation coefficients

for the fit to the Run-1d dataset described in Sec. VI.

TABLE VII. The combination result for each dataset when using a staged approach.

Run-1 dataset 1a 1b 1c 1d

ωm
a =2π (s−1) 229 080.957 229 081.274 229 081.134 229 081.123

Δ (ωm
a =2π) (s−1) 0.277 0.235 0.189 0.155

Statistical uncertainty (ppb) 1207 1022 823 675
Gain changes (ppb) 12 9 9 5
Pileup (ppb) 39 42 35 31
CBO (ppb) 42 49 32 35
Time randomization (ppb) 15 12 9 7
Early-to-late effect (ppb) 21 21 22 10
Total systematic uncertainty (ppb) 64 70 54 49
Total uncertainty (ppb) 1209 1025 825 676
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TABLE IX. The correlation matrix from the fit whose results are presented in Table II. The parameters are defined in Eqs. (25)–(30)
and Eq. (34). For clarity, only the above-diagonal elements of the symmetric matrix have been displayed.

R N0 γτμ A0 ϕ0 ωCBO τCBO AN;x;1;1 ϕN;x;1;1 Kloss κy

R 1.00 −0.01 −0.00 0.00 −0.87 0.01 0.02 −0.03 −0.02 −0.01 0.00
N0 1.00 0.86 −0.03 0.01 −0.00 −0.03 0.05 0.00 1.00 −0.01
γτμ 1.00 −0.02 0.00 −0.00 −0.02 0.03 0.00 0.89 −0.01
A0 1.00 −0.01 0.01 −0.01 0.01 −0.02 −0.04 −0.00
ϕ0 1.00 −0.02 −0.03 0.04 0.02 0.01 −0.00
ωCBO 1.00 −0.03 0.03 −0.92 −0.00 −0.21
τCBO 1.00 −0.92 0.03 −0.03 0.01
AN;x;1;1 1.00 −0.03 0.04 −0.01
ϕN;x;1;1 1.00 0.00 0.20

Kloss 1.00 −0.01
κy 1.00

τy AN;y;2;2 ϕN;y;2;2 AN;x;2;2 ϕN;x;2;2 AA;x;1;1 ϕA;x;1;1 Aϕ;x;1;1 ϕϕ;x;1;1 AN;y;1;1 ϕN;y;1;1

R −0.00 0.00 0.01 0.01 −0.00 0.02 −0.01 −0.00 −0.01 −0.00 −0.01
N0 0.00 −0.00 −0.01 −0.01 0.01 0.05 −0.02 −0.05 −0.05 0.00 0.01
γτμ 0.00 −0.00 −0.01 −0.01 0.00 0.03 −0.01 −0.03 −0.03 0.00 0.01

A0 0.00 −0.00 −0.00 0.00 0.00 0.00 0.03 0.02 −0.01 −0.00 0.00
ϕ0 0.00 −0.00 −0.01 −0.01 0.01 −0.03 0.01 0.00 0.01 0.00 0.01
ωCBO 0.00 −0.00 −0.01 −0.03 −0.16 −0.00 −0.11 −0.01 −0.06 0.00 0.01
τCBO −0.00 0.00 0.00 −0.14 −0.01 −0.08 0.03 −0.01 −0.00 −0.00 −0.00
AN;x;1;1 0.00 −0.00 −0.01 0.12 0.00 0.09 −0.02 0.01 0.00 0.00 0.01

ϕN;x;1;1 −0.00 0.00 0.01 0.03 0.14 −0.01 0.12 0.01 0.05 −0.00 −0.01
Kloss 0.00 −0.00 −0.01 −0.01 0.01 0.04 −0.02 −0.05 −0.04 0.00 0.01
κy −0.47 0.45 0.95 0.00 0.02 −0.00 0.03 0.01 0.00 −0.10 −0.51
τy 1.00 −0.95 −0.47 0.00 0.00 0.00 −0.00 −0.00 0.00 0.47 0.14

AN;y;2;2 1.00 0.45 −0.00 −0.00 −0.00 0.00 0.00 −0.00 −0.45 −0.13
ϕN;y;2;2 1.00 −0.00 −0.01 −0.00 0.00 0.01 −0.01 −0.09 −0.50
AN;x;2;2 1.00 −0.00 −0.00 −0.01 0.03 −0.03 −0.00 0.00

ϕN;x;2;2 1.00 0.02 0.01 0.02 0.03 0.00 0.01

AA;x;1;1 1.00 −0.02 −0.01 −0.01 0.00 0.00

ϕA;x;1;1 1.00 0.00 0.03 −0.00 −0.00
Aϕ;x;1;1 1.00 0.00 −0.00 −0.01
ϕϕ;x;1;1 1.00 0.00 0.01

AN;y;1;1 1.00 −0.00
ϕN;y;1;1 1.00

TABLE VIII. Frequencies and periods which characterize the g − 2 storage ring.

n ¼ 0.108 n ¼ 0.120

Physical frequency Variable Expression Frequency (MHz) Period (μs) Frequency (MHz) Period (μs)

Anomalous precession fa
e

2πm aμB 0.229 4.37 0.229 4.37
Cyclotron fc v

2πR0
6.71 0.149 6.71 0.149

Horizontal betatron fx
ffiffiffiffiffiffiffiffiffiffiffi
1 − n

p
fc 6.34 0.158 6.29 0.159

Vertical betatron fy
ffiffiffi
n

p
fc 2.20 0.453 2.32 0.430

Horizontal CBO fCBO fc − fx 0.37 2.68 0.42 2.41
Vertical waist fVW fc − 2fy 2.31 0.433 2.07 0.484
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