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Abstract: Inspired by a formula of Stern that relates scalar curvature to harmonic func-
tions, we evaluate the mass of an asymptotically flat 3-manifold along faces and edges of
a large coordinate cube. In terms of the mean curvature and dihedral angle, the resulting
mass formula relates to Gromov’s scalar curvature comparison theory for cubic Rieman-
nian polyhedra. In terms of the geodesic curvature and turning angle of slicing curves,
the formula realizes the mass as integration of the angle defect detected by the boundary
term in the Gauss—Bonnet theorem.

1. Motivation and Mass Formulae

In [12], Stern gave an intriguing formula relating the scalar curvature of a manifold to
the level set of its harmonic functions. In its simplest form, Stern’s formula [12, equation
(14)] shows

1 2.2 20p
A|Vu|_m 1V2ul? + | Vu|*(R — 2K ) (1

near points where Vu # 0, here u is a harmonic function on a Riemannian 3-manifold
(M 3, g), R and K, denote the scalar curvature of g and the Gauss curvature of X,
the level set of u, respectively. Applications of the formula to closed manifolds and to
compact manifolds with boundary were given by Stern [12], and Bray and Stern [4].

If the manifold (M3, g) is asymptotically flat, by applying Stern’s formula, Bray
et al. [3] gave a new elegant proof of the 3-dimensional positive mass theorem, which
was originally proved by Schoen and Yau [11], and Witten [13]. Moreover, the result
in [3] provides an explicit lower bound of the mass of (M, g) via a single harmonic
function.
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In the context of asymptotically flat manifolds, an observation of Bartnik [2] was
1o
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where m(g) is the mass of (M, g), { yi} are harmonic coordinates near infinity, and f S
denotes the limit of integration along a sequence of suitable surfaces tending to infinity.
As |Vy'| approaches 1 sufficiently fast, it can be checked (2) is equivalent to

3
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In view of (1) and (3), it is desirable to seek a formula that computes the ADM mass (see
[1]) solely in terms of geometric data of the level sets of y’ near infinity. In this paper,
we derive formulae of this nature. As the level sets of y’ are simply coordinate planes,
we are thus prompted to compute m(g) on the boundary of large coordinate cubes.

A Riemannian 3-manifold (M, g) is called asymptotically flat with a metric falloff
rate 7 if there exists a coordinate chart {xi }, outside a compact set, in which the metric
coefficients satisfies

gij = 8ij+ O(Ix|™"), dgij = O(Ix|7"""), 9dgi; = O(x|7" 7). “4)

The scalar curvature R of g is assumed to be integrable so that m(g) is defined.

Geometric mass formula. Let (M3, g) be an asymptotically flat 3-manifold with metric
falloff rate 7 > % Given any large constant L > 0, let 9Cube, denote the boundary
of a coordinate cube with side length 2L centered at the coordinate origin. Let H be
the mean curvature of the face of 9Cube, with respect to the outward unit normal v in
(M, g). Let £, be the set of all edges of 0Cube, . Along each edge in &z, let 6 be the

angle between v on the two adjacent faces. Then, as L — oo,

1 I
m(g) = —— Hdo + — (E — 9) ds + O(L'~2). (5)
7 JoCube, T JEL 2

Here do and ds are the area and the length measure with respect to g, respectively. More-

over, in terms of the curve C ,(k) which is the intersection of dCube, and the coordinate
plane (xk =1},

3 L
_ 1 (k) (k) 1-27
m(g) = o ;—1: [L (271 - gl - ./cf“K ds | dt + O(L'~%). (6)

Here «® is the geodesic curvature of C in {x* = } and B’ denotes the sum of the

turning angle of Ct(k) at its four vertices.
We give a few remarks regarding these formulae.

Remark 1. Though our discussion is motivated by (1) and (3), formulae (5) and (6) do
not assume {x'} to be harmonic.
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Remark 2. In terms of the dihedral angle o between the two adjacent faces at an edge,
(5) is equivalent to

_ ! 1 il 1-27
m(g)——8— Hda+8— ot—E ds+ O(L ). @)
7 JoCube, T JE

In [8], Gromov proposed and outlined the proof of a scalar curvature comparison theorem
for polyhedra — let (D3, g) be a cube-type Riemannian polyhedron with faces F i, let
a;; be the dihedral angle between two adjacent faces F; and F;, then the following can
not simultaneously hold:

e the scalar curvature R of (D, g) is nonnegative;
o the mean curvature H of all faces F; is nonnegative; and
o the dihedral angle function «;; < 7 for all i and j.

Li [9] established the corresponding rigidity case under the assumption «;; < 7. (Fur-
ther investigation of Gromov’s scalar curvature polyhedral comparison theory and edge
metrics was given by Li and Mantoulidis [10].) Now suppose (M3, g) is a complete,
asymptotically flat manifold with nonnegative scalar curvature. It follows from the pos-
itive mass theorem and formula (7) that

1 I
_ Hio+— [ (e=3)as=0 ®)
87 Jacube, 87 Je, 2

for large L. These large cubes in (M, g) provide examples for which Gromov’s above
pointwise assumptions on H and «;; may be promoted to an integral inequality.

Remark 3. Heuristically, if 9Cube, could be isometrically embedded in R3 as the bound-
ary of a standard cube, the right side of (5) would represent the corresponding Brown-
York mass of dCube, . In this context, formula (5) resembles the convergence of Brown-
York mass to m(g) (see [7]). This resemblance indeed suggests an advantage of (5) as
it does not invoke any use of isometric embeddings.

Remark 4. In (6), the quantity 27 — ,Bfk> -/ c® «®© ds measures the angle defect of

the large portion of the coordinate plane {xk = t} inside the cube. Formula (6) shows
the mass of (M3, g) is computable from integrating such angle defects associated to all
coordinate planes. (In the setting of asymptotically conical surfaces, the angle defect
can be defined as the 2-d “mass” of those surfaces, see [5] for instance.)

Remark 5. Formulae (6) is different from the mass formula of Bray—Kazaras—Khuri—
Stern [3, equation(6.27)]. We will examine this difference in Sect. 3.

If {x'} are taken to be harmonic coordinates, upon integration and applying the Gauss—
Bonnet theorem, formulae (1), (3) and (6) then imply a lower bound of m(g) in the same
manner as in [3]. For instance, suppose M has no boundary, consider

U= (ul, uz, u3) : (M3,g) — (R3, £0)

to be a harmonic map, which is a diffeomorphism near infinity such that g satisfies
condition (4). (By the construction of harmonic coordinates in [2,6], this map U always

exists.) Suppose the regular level set Z,(i) of all the u’ is connected so that x (Zt(i)) <1,
for instance this is always satisfied if M is R3, then it follows from (1), (3) and (6) that
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247w m(g)
3
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We emphasize that (9) is weaker than the theorem of Bray et al. [3], because the bound
of m(g) in [3] uses only a single harmonic function.

v

2. Calculation on the Cubic Boundary

We will verify (5) and (6) by elementary calculation. Let {x?} be a coordinate chart
of (M3, g), outside a compact set, in which (4) holds. Given a large constant L > 0,
let 9Cube, be the boundary of the coordinate cube with side length 2L centered at the
coordinate origin. More precisely, foreachi € {1, 2, 3} and {j, k} = {1, 2, 3}\{i}, define
the faces

FU) = {226 |5 = L, v/ < L, |x¥] < L),
FO =G x% 2% |2 = =L, |0/ < L. 1x*] < L},
Then
dCube, = U3_ 1(F UF! )
For any i # j, define the edges
()] @) () @) _ g )
E++L - F+LnF+L’ E+,—,L - F+,L ﬂF—,L’
and
@y _ @ ) @) _ @ )
EY)  =FY nFY) EY)  =FY nFY).

Let v denote the outward unit g-normal to dCube, . Then

Va! (@)
- F
— [Vx!| +L
V= ; X (10)
V! @)
~wa on F7.

Along the edge E W 1et0") be the angle between v on the two adjacent faces. Then

+,+,L° +,+,L
i) in ij
cos 6 = —, —
wont = 9] W]
= Vx|Vl |l gt (11)

= (1+O(L™ ")) (—gij + O(L™™))
= —gj+O0(L™),
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where we used the fact g/ = —g; i+ O(L™?%), if i # j. Similarly, define the angle

1913]_) L’ Q(ZJJZ L’ 98]1 1, along the edges EYQ,L’ E- (l]) EZ (U) ~p» Tespectively, and we
ave

cos8") | =g+ O(L™)
cos6,” | = gij+ O(L™) (12)

cos§) = — g+ O(LTH).

We are also interested in the intersection between dCube, and coordinate planes. Given
anyt € [—L, L], let Pt(k) denote the coordinate 2-plane {x* = r}. Let

c® = ycube, N PP

be the “square” like curve, consisting of four coordinate curves on the faces F' ?L i F k.

Along Ct(k) , let k® denote the g-geodesic curvature of C,(k) in P,(k)

outward g-unit normal v.
Along €V N F!), 5 =8, + O(L77). Let j € {1,2,3}\{k, i}, then

with respect to the

1
= — —(Vy 0,5, 0)
8jj

— (Vi ;8,7, 0i) + O(L™>"h)
_ T —2r—1
= —T,;+0(L™"
1

= 585ii = 8ijj * oL,

(13)

Similarly, along C¥' N F® |5 = —8, + O(L™7) and
(k) 1 —27t—1
k0 = — —(Vy 9,5, —0,) + O(L )

i xJ»
8iji

1 (14
- <§gjj,i - gij,j) +O(L771).

On 0Cube, , let H be the mean curvature of its faces in (M, g) with respect to v. Then,
on F :')L,

H=— Y g"Vy du,v)
JikA
. ) —2t—1
- ;(Vaﬂ. dei, 0yi) + O(L ) (s)
JFl
= > kB ro@.
ki

Similarly, (15) holds on F*); too.



778 P. Miao

Finally, we measure the turning angle of Ct(k) at each of its vertices. At the vertex

C, ® n Ef_”+) .- let ,34(_11) ;, denote the turning angle of C ,(k), i.e. the angle between d,.; and

0yis then
W) 16

COSIB+’+’L = —&ji- (16)

Similarly, if ﬁ(] D I ,B(jj i I ,39’_2 ; denote the turning angle of C ,(k) at vertices in Eij L) I

Egj) E (’3 L respectively, then

(Jji) (J) (i)

cos B, = —gji, cos B | = &ij- (17)

L = 8ij cos B

We define ﬂfb to be the sum of the four turning angles of C t(k) at its vertices. Then

1
ﬂ;k) — z Z (ﬂ(lj)L +ﬁ(jl) +ﬁ(”) +ﬂ(/l) ) (18)
{i,/1={1,2,3}\{k}

The factor % here is because of the symmetry :3;?]2 L= ,B)Ejli) ;, for any indices i # j
and any sign symbols p, A € {+, —}. (Similarly, 9;5”)3 L= Q)E]L)L )

We now turn to the mass m(g) of (M3, g). By [2, Proposition 4.1] (and the fact
Stokes’ theorem holds on cubic domains), m(g) can be computed by

m(g) = lim —— / e, Z(g,k, gjj0v" do. (19)

Sincev =9, + O(L™ ") on F L andv=—9,:+ O(L™ ") on Fi . » (19) simplifies to

16 m(g)
. (20)
= LILm /[ Z(gji,j —gjji)do —/i Z(gji,j —gjji)do | .
PN\ FLu i

on F{), by (13) and (15),

fm Z(gji,j —gjj.i)do
F

Ry
k 1-2
= [, T dr 2 [ FeCaorou
+L J#Ei +L k7’:z

/(:) Z( 8ji.j) — / Hdo + O(L'™%).

Fir ji
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On each face and edge, let doy, dsg denote the area and length measure with respect to
the background Euclidean metric go. Then

/;:U) Zg‘ii’j do = L(i) Zgji’./ doo + O(Llizr)

L j# wL j#i
= Z /(U_) 8ji ds0+/(i,-> (_gji)dS():| +0(L'")
Jj#i L E+,+,L E+,7,L
- Z /(,‘j) 8ji ds +/(ij) (—g]l)ds:| + O(LI—ZT) 22)
Jj#i L EivL E;” ),
- Z _/.w cos 6%, ds —/ 3 cosefj_)Lds} +O(L'7%),
Y W o ) =
J#i L +4,L N
- (— T _glh ) (z NG ) e
- 1)§|:/15<if)L(2 Ot dS+/EW_>L ) 0, p)ds|+O(L ),
] 1 +,+, N

where we have used (11) and (12). It follows from (21) and (22) that

/F@ > (8jij — 8ji)do

el i
T T g
(5- 6/, ds+ /E(ij) (5-07.) dsj| (23)
+—,L

—2/_ Hdo + O(L'™%).
F(l)
+,L

(@)
J#Ei +,+,L

.. (i)
Similarly, on Ff, i

/F(” D (gjij — gjj) (=D do

L i
LING) )
i (2 b=t ds+/;5(l_j)

-3/,

) 7 V-
—,+.L

(5-0)) dsi| (24)

L

—2| Hdo+0L"™).
£
—,L

By (20), (23) and (24), we have

167m(g)

— LA ()] ) (z_ @j) )

- Z[/EW (2 60, ds+/E(m S -0 ,) ds
J#E +.+,L +—,L

TG ) (Z ) )
+/E<ff> (2 60, ds+/E(l_j) S -0 ) ds
—,+,L —,—,L
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—2/ Hdo + O(L'™%),
BCubeL

which verifies (5). Note that each edge of 0Cube, is counted twice in (25).

P. Miao

(25)

Next, we write m(g) in terms of the geodesic curvature and turning angles of C,(k) .

By (11), (12) and (16), (17), we have

0(1]) ﬂ(l])L-'- O(L—ZT)’

w L =

for any indices i # j and any sign symbols u, A € {+, —}. Thus,

Z |:/E<fj> (E B eil]*)L> ds+ /Ean (% - Gil]—)L) ds
VES +,+,L s

o Goou)ase [ (50
E—{+,L E:',L,L

T8,) / (Z-
o, G e, G
L
:Z/ 2(2;:- f“) dt + O(L'~2).
A —L

By (15), we also have

Hdo = /
-/BCube Z Ff)LUF(')
=Z/ > k®dog+ 0(L')
—~ J£® Up®

L ki

—22/(1) k® doy+ 0L

(i)
k itk UFZL

(k) 1-27
= ZZ/ (/C(% o up<’>) dso) di+O(L'~7F)

L
=5 / (/ «® ds()) dt + O(L'7%)
CU‘)

k

=Z/ / «® as) dr+ o).
/- \Jc

Therefore, by (25), (27) and (28), we have
16rm(g)

L
k _
=2ZfL <27r — g —/C(k)/c(k)ds) dt + O(L'™27),
k - t

which verifies (6).

——.L

- B

)
+,—,L

)ar|

) dsg

B L) dSo} +O(L')

(26)

27)

(28)

(29)
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3. Relation to the Mass Formula in [3]

In formulae (5) and (6), the coordinates {x'} used in defining dCube . and C ,(k) do not
need to be harmonic. If {x’} are harmonic, (6) and (3) then imply

3 L
9
> j/ —|ka|dc7+/ Qn —ﬂf"))—/ k® ds | dt = 247m(g) +o(1).
= Jacube, 9V -L c®
(30)

This formula is weaker than that of Bray et al. [3], which indicates, without summing
over k, each summand above tends to 8rm(g), provided Axk =0.

We now examine the summand in (30). Let k, i, j be fixed indices so that they are
distinct from each other. Similar to how (22) is derived, by (16) and (17),

L
k
2[ (2n—ﬁf >) dr = —f_ gij,/d<70+/. 8ij.j 400
—L F! FL,L

+.L

—/, 8ij.i d00+// gij.i dog+ O(L'™7).
. i

+,L

By (13) and (14),

L
2/ —/ k® ds | dr
-L c®
L
=/ /<k) _ (Zgij,j_gjj,i)ds"'/(k) - (—2gij,j + &jj.i)ds
-L | JePnFL, cnFt

+/(k) . (2gji,i—gii,j)ds+/k o (—2gjii +gii,j)ds | dt
c¥nrF!, cVnF!

=/, (2gij,j —gjj,i)d00+/, (—2gij.j + &jj.i) dog
F! F’—.L

+,L

+fj (2g,~l~,,»—gﬁ,,-)doo+fj (=28ji.i +8ii,j) dog + O(L'™%").
F L

+L -,

Thus, the boundary term in the Gauss—Bonnet theorem satisfies

L
2/ |:(27r ) —/ i ® ds:| dt
—L c®

Z/' (8117 = 8i1.1) 400 _/. (8ij.j = 8ji.i) doo 31)
Fi,L F’_’L
+/ . (gji,i - gii,j)do'o — / ) (gji,i — gii,j)d(70+ O(Ll—ZT)'
Fl,L Fi,L

(If summing over k € {1, 2, 3}, this again gives (29).)
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We next compute |Vx¥| and Ax¥. Since |Vx*|? = gk,

9
25|ka| = — gV + O(L™F ),

Hence,
9 k
2 —|Vx*|do = — 8kk,k dog + 8kk k dog
3Cube, OV Fr, P,
—/A gkk,id00+/, 8kk,i doo (32)
Fip FL,

—/j Skk, j d00+/j kk,j dog + O(L'™27).
F, F

+,L —,L
The term g x appears in
Axk =" lgmm k = Zkmm | — lgkk k+ 0L (33)
2 ’ ' 2°% :
m#k
Thus,

0
2/ — VK| do —/
dCube, IV F

+L

= /Fk Z (gkm,m - gmm,k) + Z 8km,m doy

+L m#k m#k

- /Fk Z (gkm,m - gmm,k) + Z 8km.m do0 (34)

—.L m#k m#k

—/_ 8kk,i d00+/, 8ikk,i dog
Fi Fi

+L —L

—/,. gkk,,-doo+/, gk, doo + O(L'™%7).
F; FZ

+L

2Ax% do + f 2AxF do

k
FZ

Therefore, adding (31) and (34), and using (20), we have

9 L
2f Z vk do +2/ Q2 —,Bfk))—/ k® ds, | dt
dCube, OV -L c®

= 167 m(g)+/k 2Ax% dog — [k 2Ax* dog + O(L'727)
F+,L Ff,L (35)
+/ (8ki,i + &kj,j) dog —/ (8ki,i + &kj.j) doo
Fy, FE,

—/_ ik k d00+/, gik,kdao—/. gjk,kd00+/. gjk.k doy.
F! F! F! F’

+L —.L +,L —,L
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The last two lines in (35) cancel upon integration by parts. Thus,

9 L
/ —|ka|dc7+/ Qn —,Bf“)—/ «® ds | dt
dCube, OV -L c®

=871m(g)+/ Axkdao—/ Ax* doy + O(L'7),
Fk Fk

+,L —,L

(36)

which is the formula in [3, equation (6.27)] if Axk = 0.
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