CSIRO PUBLISHING

Invertebrate Systematics, 2020, 34, 637-660
https://doi.org/10.1071/1S19069

Molecular phylogeny and biogeography of the temperate
Gondwanan family Triaenonychidae (Opiliones : Laniatores)
reveals pre-Gondwanan regionalisation, common vicariance,
and rare dispersal
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Abstract. Triaenonychidae Serensen in L. Koch, 1886 is a large family of Opiliones with ~480 described species
broadly distributed across temperate forests in the Southern Hemisphere. However, it remains poorly understood
taxonomically, as no comprehensive phylogenetic work has ever been undertaken. In this study we capitalise on
samples largely collected by us during the last two decades and use Sanger DNA-sequencing techniques to produce a
large phylogenetic tree with 300 triaenonychid terminals representing nearly 50% of triaenonychid genera and
including representatives from all the major geographic areas from which they are known. Phylogenetic analyses
using maximum likelihood and Bayesian inference methods recover the family as diphyletic, placing Lomanella
Pocock, 1903 as the sister group to the New Zealand endemic family Synthetonychiidae Forster, 1954. With the
exception of the Laurasian representatives of the family, all landmasses contain non-monophyletic assemblages of taxa.
To determine whether this non-monophyly was the result of Gondwanan vicariance, ancient cladogenesis due to habitat
regionalisation, or more recent over-water dispersal, we inferred divergence times. We found that most divergence
times between landmasses predate Gondwanan breakup, though there has been at least one instance of transoceanic
dispersal — to New Caledonia. In all, we identify multiple places in the phylogeny where taxonomic revision is needed,
and transfer Lomanella outside of Triaenonychidae in order to maintain monophyly of the family.
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Introduction

Triaenonychidae Serensen in L. Koch, 1886, is the fourth
most diverse family of Opiliones, with ~480 described
species and subspecies (Kury ef al. 2014). They can be
readily identified by their trident-shaped tarsal claws of
the third and fourth legs, and, as with most Laniatores,
their robust, armoured pedipalps, which are much larger
than the chelicerae. All triaenonychids have similar basic
habitat requirements, living in cool, dark, humid
environments such as leaf litter, rotting logs, and caves.
They are nocturnal predators, and, like most harvestmen,
are believed to be dispersal-limited. Despite sharing these
characteristics, the family contains remarkable
morphological and behavioural diversity, with body sizes

Journal compilation © CSIRO 2020

that range from ~2 to 10 mm in length, variable levels of
armature, striking colour pattern variation, both sexual
dimorphism and male polymorphism, and even a
documented instance of paternal care (Machado 2007)
(Fig. 1).

Together with the New Zealand—endemic family
Synthetonychiidae Forster, 1954 (14 species), Triaenonychidae
is traditionally placed in the superfamily Triaenonychoidea.
This group in turn is classified with the superfamily
Travunioidea Absolon & Kratochvil, 1932 (~78 species and
subspecies) in the infraorder Insidiatores Loman, 1901, one
of the two main lineages within Laniatores Thorell, 1876
(Kury et al. 2014; Derkarabetian et al. 2018). Despite
this traditional classification scheme, the monophyly of
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Fig. 1. Live habitus of members of Triaenonychidae. (4) Fumontana deprehendor MCZ 1Z-46881; (B) Pristobunus
heterus MCZ 1Z-133243; (C) Lomanella sp. MCZ 1Z-152652; (D) Karamea lobata MCZ 1Z-152313; (E) Glyptobunus
ornatus; (F) new genus MCZ 1Z-138076; (G) Hickmanoxyomma sp.; (H) Austromontia sp. MCZ 1Z-49523;
(1) Triconobunus horridus MCZ 1Z-151590; (J) Nuncia sp. MCZ 1Z-152266; (K) Larifuga sp. MCZ 1Z-132879;
(L) ‘Nuncia’ verrucosa MCZ 1Z-138139. Photographs 4, B, F, H, K, and L by Gonzalo Giribet; C by Shahan
Derkarabetian; D, /, and J by Caitlin Baker; £ and G by Marshal Hedin.

Insidiatores has been inconsistently recovered. While a recent
phylogenetic analysis using transcriptomic data did find a
monophyletic Insidiatores (Fernandez et al. 2017), other
phylogenies based on Sanger DNA-sequencing data (Giribet
et al. 2010; Sharma and Giribet 2011) and UCE sequencing
(Derkarabetian et al. 2018) instead found either
Synthetonychiidae or Travunioidea to be the sister group to
all other Laniatores, rendering Insidiatores paraphyletic. It
has been postulated that the limited taxonomic sampling of
Triaenonychidae in these previous studies (each included no
more than eight exemplars of the family) may have contributed
to the inability to resolve these phylogenetic relationships
(Sharma and Giribet 2011).

In addition to the uncertain placement of Triaenonychidae
within Insidiatores, the phylogenetic relationships within the
family are also subject to debate. Genera within the family are

traditionally classified in four subfamilies. Adaeinae Pocock,
1903 (40 species) is diagnosed by having a subtriangular or
wedge-shaped sternum and primarily contains genera from
South Africa, as well as a monotypic genus from Western
Australia (Dingupa Forster, 1952). Members of the subfamily
Sorensenellinae Forster, 1954 (16 species and subspecies) all
have tarsal claws on the third and fourth legs in which the
lateral prongs are longer than the median prong.
Sorensenellinae is composed of two genera from New
Zealand (Sorensenella Pocock, 1903 and Karamea Forster,
1954) and two monotypic genera from South Africa
(Lawrencella Strand, 1932 and Speleomontia Lawrence,
1931), but the putative synapomorphy of the family is also
found in the Tasmanian genus Tasmanonyx Hickman, 1958,
classified in Triaenonychinae. The subfamily Triaenobuninae
Pocock, 1903 (69 species and subspecies) is also diagnosed by
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the shape of the sternum, which is wide and crescent-shaped on
its posterior margin. It contains multiple genera from New
Zealand and Australia, as well as two monotypic genera from
Chile (Americobunus Mufioz-Cuevas, 1972 and Araucanobunus
Muioz-Cuevas, 1973) and the genus Ankaratrix Lawrence,
1959, from Madagascar. Finally, the bulk of diversity is
classified in the subfamily Triaenonychinae Serensen, 1886
(354 species and subspecies), all of which have a long, arrow-
shaped sternum. However, this subfamily has been treated as a
‘catch-all’ clade and, as such, it demands phylogenetic
investigation.

To date, only a few studies have addressed phylogenetic
relationships within Triaenonychidae, most of which used
morphological data only for a subset of species, and
focused on specific landmasses (Hunt 1996; Mendes and
Kury 2008). In an unpublished Ph.D. thesis, Mendes (2009)
addressed the broader Insidiatores phylogeny using
morphological data. Although none of the taxonomic
actions proposed there have validity, she placed the
Tasmanian—South Australian Lomanella Pocock, 1903 and
the Tasmanian monotypic genus Pyenganella Hickman,
1958 in a ‘new’ family, Lomanellidac (nomen nudum),
which then formed a clade with Synthetonychiidae, but this
result was only obtained under implied weights; in other
analyses they nested within Triaenonychidae. Hunt (1996)
also found Lomanella (but not Pyenganella) to be the sister
group to all other Australian triaenonychids, whether using
equal weights or successive weighting, but as this analysis
lacked representatives outside of Australia it is hard to
compare with other analyses. Phylogenetic relationships in
the family were also addressed using Sanger DNA sequencing
in another unpublished thesis (Vélez 2011) that focused on
the New Zealand taxa and provided a dated chronogram in
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order to test the Oligocene drowning hypothesis (Landis et al.
2008; Giribet and Boyer 2010).

Most triaenonychid diversity is found in the Southern
Hemisphere, across South America, southern Africa,
Madagascar, Australia, and New Zealand (Fig. 2). This
geographic pattern reflects a classic temperate Gondwanan
distribution, inviting biogeographic comparisons to other
groups such as Pettalidae Shear, 1980 (Opiliones) (Shear
1980; Boyer and Giribet 2007; Giribet et al. 2016; Baker
et al. 2020), Neopilionidae Lawrence, 1931 (Opiliones)
(Taylor 2011; Vélez et al. 2014), Peripatopsidae Bouvier,
1907 (Onychophora) (Murienne et al. 2014; Giribet et al.
2018), Orsolobidae Cooke, 1965 (Araneae) (Chousou-
Polydouri et al. 2019), and Bothriuridae Simon, 1880
(Scorpiones) (Sharma et al. 2018). However, along with its
temperate Gondwanan members, the family also contains
monotypic genera in eastern North America (Fumontana
deprehendor Shear, 1977 (Thomas and Hedin 2008)), and
Sardinia (Buemarinoa patrizii Roewer, 1956 (see Karaman
2019)), a species from the oceanic Crozet Islands in the
Southern Ocean (Promecostethus unifalculatus Enderlein,
1909), and two species from Grande Terre in New Caledonia
(Triconobunus horridus Roewer, 1914 and Diaenobunus
armatus Roewer, 1915). Grande Terre’s basement geology is
derived from Gondwanan terranes, but subsequently
experienced long periods of marine inundation, and is
therefore more accurately thought of as a functionally
Darwinian island (Grandcolas et al. 2008; though see
discussion in Giribet and Baker 2019).

Given this largely temperate Gondwanan distribution,
Triaenonychidae has been suggested as another example of
a Gondwanan vicariant group, comparable to the examples
listed above. Nevertheless, their presence in the Northern
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Fig. 2. The distribution of Triaenonychidae samples used in the present study, with points coloured by region. Outlined shapes in South America,
Madagascar, and eastern Australia reflect the known distribution of Triaenonychidae on those landmasses that extends beyond our study’s sampling.
Triangles correspond to the phylogenetically and biogeographically important, but unsampled, lineages of Buemarinoa patrizii (Sardinia) and
Promecostethus unifalculatus (Crozet Islands). For interpretation of the references to colour in this figure legend, the reader is referred to the online

version of this article.
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Hemisphere and the morphological affinities of those Northern
Hemisphere species to the genus Flavonuncia Lawrence, 1959
from Madagascar (Karaman 2019) suggest either ancient
relictualism or else more recent dispersal to these areas, as
dispersal explains their occurrence on multiple Darwinian
islands. It is also unknown whether the different continental
landmasses contain monophyletic assemblages of taxa, as one
might expect under a Gondwanan vicariant scenario. None of
these biogeographic hypotheses have been interrogated using
time-calibrated molecular phylogenetics. However, the limited
triaenonychid sampling in the dated phylogenies of Giribet
et al. (2010), Vélez (2011), Sharma and Giribet (2011), and
Fernandez et al. (2017) estimated the family’s origin at some
point between the Cretaceous and the Permian, suggesting an
ancient origin for the group.

To address these gaps in our knowledge of a major lineage
within Opiliones, we herein present a densely sampled
time-calibrated molecular phylogeny of Triaenonychidae.
This marks the first phylogeny focused on the family using
broad molecular data, and allows us to evaluate both the
taxonomy and major biogeographic patterns of the group.

Materials and methods
Taxon sampling

Specimens used in this study were collected mostly by the
authors by leaf-litter sifting or direct hand collection between
2003 and 2018. Animals were immediately preserved in 95%
ethanol and later stored at —20°C or —80°C. All specimens used
in this work are stored at the Museum of Comparative Zoology
(MCZ) or at Worcester State University (WSU), and locality
data are available online through MCZBase (https://mczbase.
mcz.harvard.edu, accessed March 2020) and Table 1. All
specimens acquired by the authors for this project were
collected under valid permits (New Zealand multiple
permits [38002-RES]; Australia [NSW #SL101324; QId
#WITK00845202; WA Permits #0OF000190, #CE000648,
#SF004565]; New Caledonia [#609011-75/2018]; Chile
[Autorizacion #026/2014]; South Africa [Easter Cape
permits #CRO 108/11CR and CRO 109/11CR; KZN #OP
4085/2011; Western Cape Permit #AAA007-00344-0035];
USA [Great Smoky Mts N.P. Permit #GRSM-2014-SCI-
02335]) or by donation from local collectors and museums.
Taxonomic identification was done using light microscopy
examination of somatic and genitalic characters, and
specimens were then selected for molecular work, focusing
our sampling on representing as many genera and species as
possible. We also used multiple specimens per genus and
species whenever possible so as to test the monophyly of
those groups. Our sampling spans ~50% of all currently
accepted genera (50 of 108 genera, plus 1 undescribed
genus) and includes representatives from all the major
geographic areas from which triaenonychids are known,
with the exception of Sardinia and the Crozet Islands. In
total, our dataset includes 329 terminals, 300 of which are
currently classified as triaenonychids. For our outgroup sampling,
we included three Dyspnoi Hansen & Serensen, 1904, three
Eupnoi Hansen & Serensen, 1904, eight Grassatores Kury
in Giribet, Edgecombe, Wheeler & Babbitt, 2002, thirteen
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Travunioidea, and two Synthetonychia Forster, 1954, an
endemic New Zealand genus classified as a separate family,
Synthetonychiidae (Table 2).

Molecular data generation

DNA extractions were done using Qiagen’s DNeasy Blood &
Tissue kit with an overnight incubation. We sequenced three
markers, including two conserved nuclear ribosomal genes
(18S and 28S TRNA) and the more variable mitochondrial gene
cytochrome ¢ oxidase subunit I (hereafter ‘COI’), totalling to
almost 4 kb of sequence data. /8S rRNA was amplified in
three fragments using primer pairs 1F-5R, 3F-18Sbi, and
18Sa2.0-9R (Giribet er al. 1996; Whiting et al. 1997). 28S
rRNA was sequenced in two fragments using primer pairs
28Sa—28Srd5b and 28Srd4.8a—28Srd7bi. Some specimens
were also amplified for the first fragment of 28S rRNA
using primer pair 28Srdla and rd4b, but due to difficulty
getting clean sequences for this fragment, these were
excluded from the final analysis (for details on the 28S
rRNA primers see Giribet and Shear 2010). COI was
amplified with the primer pair LCO1490-HCO2198 (Folmer
et al. 1994). PCR reactions were carried out with 1-2 puL of
DNA template, using either GoTaq DNA polymerase in a
25-uL reaction, Bioline Biolase in a 10-uL reaction, or with
GE beads in a 25-uL reaction. Gel electrophoresis was used to
visualise amplification reactions, and successful reactions
were cleaned using ExoSAP in a 1:5 dilution. Cycle
sequencing proceeded with 0.5 puL of BigDye, and final
cycle sequencing products were sequenced on an ABI
3730 in the Bauer Core at Harvard University. New
sequences are deposited in GenBank under accession
numbers MT224318-MT224908 and MT240314-MT240477
(Table 1).

Sequence data were quality-checked, trimmed, and
assembled in Geneious (ver. 10, see https://www.geneious.
com), with additional outgroup sequences downloaded from
GenBank. Each locus was then aligned in MAFFT using the
Geneious plug-in (ver. 1.4.0, Biomatters Ltd, see https://mafft.
cbrc.jp/alignment/software/; Katoh and Standley 2013), with
automatic model selection. The 28S rRNA alignment was
further edited to remove long gaps at the ends of the
alignment. Alignments were concatenated in SequenceMatrix
(ver. 1.8, see https://code.google.com/p/sequencematrix/;
Vaidya et al. 2011) and the concatenated dataset was then
subjected to phylogenetic analysis.

Phylogenetic inference

Model testing and phylogenetic analysis was initially
performed in W-IQ-TREE (ver. 1.6.9, see https:/igtree.
cibiv.univie.ac.at/; Nguyen et al. 2015), implementing the
ModelFinder function (Kalyaanamoorthy et al. 2017) and
partitioning by locus (Chernomor et al. 2016). Nodal
support was  assessed with  Shimodaira—Hasegawa
approximate likelihood ratio testing (SH-aLRT) and
ultrafast bootstrap analysis (UFBoot) (Hoang et al. 2018),
specifying 1000 replications for each measure. We also
inferred a tree with RAXML-HPC2 (ver. 8.2.10, see https://
cme.h-its.org/exelixis/web/software/raxml/; Stamatakis 2014)
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Table 2. GenBank accession numbers for outgroup taxa used in this study

Species Family Higher group 185 rRNA 285 rRNA cor
Acropsopilio chilensis Acropsopilionidae Dyspnoi KF963305 KF955592 GQ912899
Ceratolasma tricantha Ischyropsalididae Dyspnoi AF124943 GQ912764 GQ912865
Hesperonemastoma modestum Taracidae Dyspnoi AF124942 EF108577 KU875193
Caddo agilis Caddidae Eupnoi KF963310 KF955597 MEF816271
Eurybunus brunneus Sclerosomatidae Eupnoi JQ437010 JQ437102

Alloepedanus sp. Epedanidae Grassatores JF786480 JF786572

Euepedanus sp. Epedanidae Grassatores JF786479 JF786571

Pseudobiantes japonicus Epedanidae Grassatores LC176242 LC176240
Pseudoepedanus dolensis Epedanidae Grassatores GQ912731 GQ912807

Acutisoma longipes Gonyleptidae Grassatores GQ912736 GQ912815 JF786441
Pachyloides thorellii Gonyleptidae Grassatores PTU37007 U91508 KF726794
Remyus sp. Phalangodidae Grassatores JF786470 JF786608 JF786431
Zalmoxis cardwellensis Zalmoxidae Grassatores INB85755 IN885734 IN885769
Synthetonychia sp. Synthetonychiidae GQ912720 GQ912787 GQ912875
Synthetonychia sp. Synthetonychiidae KT302218 KT302254 KT302305
Briggsus flavescens Cladonychiidae Travunioidea HMO056643 HMO056726
Erebomaster flavescens Cladonychiidae Travunioidea GQ912716 GQ912781 HMO056722
Holoscotolemon jaqueti Cladonychiidae Travunioidea GQ912717 GQ912783 GQ912873
Peltonychia clavigera Cladonychiidae Travunioidea FI796479 GQ912785 F1796491
Speleonychia sengeri Cladonychiidae Travunioidea GQ205667 HMO056727
Theromaster brunnea Cladonychiidae Travunioidea GQ912718 GQI912784 HMO056723
Cryptomaster leviathan Cryptomastridae Travunioidea HMO056641 HMO056724
Speleomaster lexi Cryptomastridae Travunioidea HMO056642 HMO056725
Metanonychus setulus Paranonychidae Travunioidea HM056649 HMO056732
Paranonychus brunneus Paranonychidae Travunioidea HMO056645 HMO056728
Sclerobunus nondimorphicus Paranonychidae Travunioidea HMO056659 GQ870663
Zuma acuta Paranonychidae Travunioidea AF124951 AF124978 EU162817
Trojanella serbica Travuniidae Travunioidea GQ912719 GQ912786 GQ912874

using the CIPRES Science Gateway (ver. 3.3, see https://www.
phylo.org), partitioning by locus and using the GTR+I
substitution model for all partitions. Nodal support in
RAXML was assessed using both standard non-parametric
bootstrapping (-b) and rapid bootstrapping (—x) mapped
onto the best tree. Finally, we analysed our dataset in
BEAST (ver. 2.4.6, see https://www.beast2.org; Bouckaert
et al. 2014), using the results of IQ-TREE’s ModelFinder to
define substitution models for each partition independently. In
order to determine the best clock model and tree prior for our
dataset, we used an iterative strategy using the stepping-stone
Path sampler application (ver. 1.3.4, see https://github.com/
BEAST2-Dev/model-selection; Xie et al. 2011) in BEAST
(ver.2.4.6). First, we ran three path sampling analyses, all under a
Yule tree prior with 100 steps of 1 million generations,
corresponding to a strict clock, an exponential relaxed clock,
and a lognormal relaxed clock. Marginal likelihood estimates
were compared using Bayes Factors to select the optimal clock
model. We then ran another path sampling analysis under the
optimal clock model, but using a birth—death tree prior. Again,
marginal likelihood estimates for the two analysed tree priors
were compared using Bayes Factors, and the optimal clock model
and tree prior combination was used for lineage age inference.
BEAST chronograms were calibrated using known
Opiliones fossils to constrain crown-group ages of specified
nodes, all under uniform distributions with a maximum age for
each calibration set to 514 million years (Ma), corresponding
to the age of the oldest fossil chelicerate, Wisangocaris

barbarahardyae Jago, Garcia-Bellido & Gehling, 2016,
from the Emu Bay Shale (Wolfe et al. 2016). The
following nodes were calibrated: (1) Dyspnoi was
constrained to a minimum age of 305 Ma, reflecting the age
of the fossil Ameticos scolos Garwood, Dunlop, Giribet &
Sutton, 2011, from the Montceau-les-Mines Lagerstitte, the
upper limit of which is biostratigraphically dated to c. 305 Ma
(Garwood ef al. 2011); (2) The age of Eupnoi was constrained
to a minimum of 305 Ma, reflecting the age of Macrogyion
cronus Garwood, Dunlop, Giribet & Sutton, 2011, also from
the Montceau-les-Mines Lagerstitte (Garwood et al. 2011); (3)
Epedanidae Serensen, 1886, was constrained to a minimum
age of 105 Ma, reflecting the age of Petrobunoides sharmai
Selden, Dunlop, Giribet, Zhang & Ren, 2016, from Burmese
amber from the lowermost Cenomanian (c¢. 100 Ma) (Selden
et al. 2016). While the placement of this fossil in Epedanidae
has not been verified in the context of a total-evidence
phylogeny, unlike the other fossils used in our calibrations
(Garwood et al. 2014; Sharma and Giribet 2014), its
assignment to Epedanidae is based on multiple
morphological characters such as its elongate, raptorial
pedipalps, the tarsal formula, and the shape of the
ocularium (Selden et al. 2016); (4) The root age of all
Opiliones was constrained to a minimum of 405 Ma,
corresponding to the age of the oldest known Opiliones
fossil, Eophalangium sheari Dunlop, Anderson, Kerp &
Hass, 2003 (Dunlop et al. 2003; Garwood et al. 2014).
Four different BEAST analyses were run for 200 million
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generations each and combined after burn-in. Stationarity was
confirmed in Tracer (ver.1.6, see https://tree.bio.ed.ac.uk/
software/tracer/), with all ESS values >200.

All individual gene alignments (in phylip format),
concatenated trees and trees inferred from individual loci
(in Newick format), and the BEAST xml file are available
as supplementary information in the Harvard Dataverse
(https://doi.org/10.7910/DVN/ULZIHT).

Results and discussion

Composition of Triaenonychidae and its position
within Insidiatores

Analysis of our partitioned dataset recovered a non-
monophyletic Triaenonychidae (Fig. 3—6). Across all analyses
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with maximal support, we instead found a sister-group
relationship between the Australian triaenonychid genus
Lomanella and the New Zealand—endemic Synthetonychia,
the only genus in the family Synthetonychiidae (red star in
Fig. 3-5). Lomanella and Synthetonychia share several
morphological affinities, specifically in terms of their penis
structure (both have reduced dorsolateral plates along the
truncus) and tarsal claws (many Lomanella species and
all Synthetonychia species have a complex branching
peltonychium rather than the typical triaenonychid trident
claw), as previously discussed by Hunt and Hickman
(1993), and in part supported by the work of Mendes
(2009) (although she also included Pyenganella in this
clade). However, Hunt (1996) did not place Pyenganella
with Lomanella, instead finding Lomanella as the sister

I United States
[ Madagascar
® I Tasmania
B South Africa
[ Chile
Il W. Australia
I New Zealand
I E. Australia
[ New Caledonia

0.3

Result of RAXML analysis, partitioned by locus. Branches are coloured by landmass as shown in the key and in Fig. 2. Circles at nodes are scaled

according to rapid bootstrap support values. Star denotes the clade of Lomanella + Synthetonychia. Hexagon denotes Triaenonychidae including
Fumontana + Flavonuncia. Square shows Southern Hemisphere Triaenonychidae. Numbered nodes correspond to well-supported clades across all
analyses (see Results and Discussion for details). For interpretation of the references to colour in this figure legend, the reader is referred to the online

version of this article.
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Il United States
] Madagascar
I Tasmania
[ South Africa
[ Chile

e Il W. Australia
Il New Zealand
[l E. Australia
] New Caledonia

0.2

Result of IQ-TREE analysis, partitioned by locus. Branches are coloured by landmass as indicated in the key, and in Fig. 2 and 3. Circles at nodes

are scaled according to ultrafast bootstrap support values. Star corresponds to Synthetonychia + Lomanella, hexagon corresponds to Triaenonychidae,
and square corresponds to Southern Hemisphere Triaenonychidae. Numbered nodes correspond to well-supported clades across all analyses, as in Fig. 3.
For interpretation of the references to colour in this figure legend, the reader is referred to the online version of this article.

group to all remaining Australian triaenonychids. The
placement of this clade of Lomanella + Synthetonychia,
however, was inconsistent across analyses (Fig. 6). In our
RAXML tree, it was recovered as the sister group to all other
triaenonychids, albeit without support (47% rapid bootstrap
support, RBS, and 30% standard bootstrap support, BS, in
RAXML). In our BEAST tree, it was recovered as the sister
group to Travunioidea, again without support (posterior
probability (PP) 0.91) but consistent with the results of
Fernandez et al. (2017) (though that study did not include
Lomanella). Finally, our IQ-TREE phylogeny placed the
group as the sister lineage to all other Laniatores (100%
SH-aLRT and 100% UFBoot), in line with the results of
Giribet et al. (2010) and Sharma and Giribet (2011), who

found Synthetonychia (Lomanella was not sampled) to be the
sister group to the remaining Laniatores. Given this low and
inconsistent support for the relationship of Lomanella +
Synthetonychia to other triaenonychid genera, and the fact
that other studies have found Synthetonychia not to be related
to other triaenonychids, even when using phylogenomics
(Fernandez et al. 2017), we believe this constitutes a unique
and distinct evolutionary lineage, as proposed earlier by
Mendes (2009). However, until Pyenganella is examined,
we refrain from erecting new taxa, yet recognise that
Lomanella should be moved out of Triaenonychidae.

We also failed to recover a monophyletic Insidiatores in
two of three analyses, and instead found a sister group
relationship between Grassatores and Travunioidea with
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Fig. 5. BEAST chronogram showing divergence time estimates for Triaenonychidae. Error bars at nodes show 95% highest probability densities of
estimated divergence times. Left column next to terminals is coloured by geographic area, as shown in the key and in Fig. 2—4. Right column is coloured by
subfamily (white, Triaenonychinae; black, Sorensenellinae; light grey, Triaenobuninae; dark grey, Adaeinae). Star corresponds to Synthetonychia +
Lomanella, hexagon corresponds to Triaenonychidae, and square corresponds to Southern Hemisphere Triaenonychidae. Nodes with black circles
correspond to well-supported clades (posterior probability >0.95). Numbered nodes correspond to well-supported clades across all analyses, as in Fig. 3
and 4. For these nodes, sensitivity plots showing support values for all analyses are included. Dotted vertical lines correspond to major tectonic events in
the breakup of Gondwana: 220 Ma (Pangaea splits into Gondwana and Laurasia); 170 Ma (East-West Gondwana split); 140 Ma (South Atlantic ocean
starts opening); 132 Ma (Madagascar—India separates from Australia—Antarctica—Zealandia); 80 Ma (Zealandia separates from Australia—Antarctica);
35 Ma (Antarctica disconnects from Australia and South America, New Caledonia re-emerges after marine transgression). Carb., Carboniferous; Neo.,
Neogene. For interpretation of the references to colour in this figure legend, the reader is referred to the online version of this article.
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Fig. 6. Summary of major relationships of Laniatores from three
phylogenetic analyses. Numbers at nodes show support values for
depicted relationships (IQ-TREE: SH-aLRT/UFBoot; RAXML: RBS/BS;
BEAST: PP).

variable levels of support in IQ-TREE (99% SH-aLRT, 62%
UFBoot) and RAXML (60% RBS, 29% BS). This relationship
contrasts with the results of previous analyses to include
Travunioidea, Grassatores, and Triaenonychidae. For
example, Derkarabetian et al. (2018) found a relationship of

Grassatores + Triaenonychidae to the exclusion of
Travunioidea in most analyses, and Sharma and Giribet
(2011) found monophyly of Insidiatores except for
Synthetonychia. Our BEAST analysis did recover a

monophyletic Insidiatores, but with extremely low support
(0.07 PP). This result was, however, recovered by Fernandez
et al. (2017) using transcriptomic data. Given the generally
low nodal supports of our analyses and the limited number of
loci used in our study, we prefer to leave this issue aside until
additional data become available.

Triaenonychidae (excepting Lomanella, which we now
consider to be the sister group of Synthetonychiidae) was
monophyletic in all analyses, though with low support (IQ-
TREE: 47% SH-aLRT, 57% UFBoot; RAXML: 60% RBS,
44% BS; BEAST: 0.93 PP). This poorly supported bipartition
corresponds to a split between two monotypic genera, the
eastern North American Fumontana deprehendor and
Flavonuncia pupilla Lawrence, 1959, from Madagascar, and
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all other triaenonychids (herein ‘Southern Hemisphere
Triaenonychidae’). The relationship of Fumontana +
Flavonuncia received high support in all analyses, and
together with the Sardinian monotypic genus Buemarinoa
Roewer, 1956, has been proposed as a tribe of
Triaenonychinae, Buemarinoini Karaman, 2019, on the
basis of their similar male genital morphology (Karaman
2019). While our data supported the clade Buemarinoini,
they did not support its status as a tribe within
Triaenonychinae. Likewise, the clade of the Southern
Hemisphere Triaenonychidae received strong support in all
analyses. We therefore accept the placement of Fumontana as
a bona fide member of Triaenonychidae despite its geographic
isolation. However, we acknowledge that given the low
support for this relationship, Fumontana + Flavonuncia
(=Buemarinoini) may represent a distinct evolutionary
lineage, and its placement within the family should be
further tested using more robust high-throughput sequencing
methods, since the divergence between these two main
lineages occurred between the Carboniferous and the
Triassic (Fig. 5).

Phylogenetic relationships within Southern Hemisphere
Triaenonychidae

Within the Southern Hemisphere Triaenonychidae, nodal
supports along the backbone of the phylogeny were
uniformly low, though some smaller clades were recovered
consistently with high support (Fig. 3-5). These included (1) a
clade of several South African genera classified in the
subfamily Triaenonychinae (4matola Lawrence, 1931,
Austromontia Starega, 1992, Biacumontia Starega, 1992,
Ceratomontia Roewer, 1915, Monomontia Starega, 1992,
and Rostromontia Stargga, 1992); (2) a clade of Chilean
and Western Australian taxa (Calliuncus Roewer, 1931 and
some Nuncia Loman, 1902 spp. with few spines — the South
American Nuncia bear little morphological resemblance nor
are closely phylogenetically related to the real Nuncia from
New Zealand, as discussed below); (3) The New Zealand
Nuncia; (4) a clade of some South American
Triaenonychinae (Diasia Serensen, 1902, Triaenonyx
Serensen, 1886, Valdivionyx Maury, 1988); (5) the South
African genera in the subfamily Adaeinae (Adaeulum
Roewer, 1915, Adaeum Karsch, 1880, Larifuga Loman,
1898, Larifugella Stargga, 1992, Paradeum Lawrence,
1931); (6) the genus Nunciella Roewer, 1931, from both
Western Australia and Tasmania; (7) the New Zealand
Sorensenellinae genera Sorensenella and Karamea; (8) a
clade of several spiny Triaenonychinae genera from New
Zealand (Algidia Hogg, 1920, Prasma Roewer, 1931, Triregia
Forster, 1948) and the two genera from New Caledonia
(Triconobunus and Diaenobunus); and (9) a clade comprising
two Tasmanian Triaenobuninae genera, Glyptobunus Roewer,
1915 and Rhynchobunus Hickman, 1958.

Regarding the subfamilies of Triaenonychidae, our
results confirmed the polyphyletic ‘catch-all’ status
of Triaenonychinae, as well as the polyphyly of
Triaenobuninae and Sorensenellinae. While we did recover
a monophyletic Adaeinae in our trees, we were unable to
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include the Western Australian genus Dingupa, the only
member of that subfamily found outside of South Africa.
Mendes (2009) previously identified the inconsistency of
these subfamilial classifications, instead proposing a
division of the family into two subfamilies, Adaeinae and
Triaenonychinae. However, the constituent taxa in her
emended subfamilies were either not sampled by us or else
not closely related to each other in our phylogenies, making
comparison and reconciliation difficult, and indeed the most
recent catalogue of Opiliones still uses the traditional
subfamilies (Kury et al. 2014). All told, we find the current
categorisation of the four subfamilies to be uninformative at
best and evolutionarily misleading at worst, and therefore
recommend that their use be discontinued. However, we
refrain from proposing any new classification scheme here
given the low nodal support and inconsistent topology along
the backbone of the tree.

New Zealand-New Caledonia

Wherever possible, we sequenced multiple individuals per
genus in order to test their validity (i.e. monophyly). Of
these, most genera from New Zealand were found to be
monophyletic with high support in all analyses (Hendea
Roewer, 1931, Hedwiga Roewer, 1931, Algidia,
Sorensenella, Karamea, and Prasma). The New Zealand
genus Pristobunus Roewer, 1931, was monophyletic in both
IQ-TREE (96% SH-aLRT, 99% UFBoot) and RAXML (61%
RBS, 49% BS) phylogenies, but potentially not in the BEAST
tree, where one juvenile that could only be confidently
identified to the subfamily ‘Triaenobuninae’ (MCZ-136244)
fell within the clade (0.72 PP). In contrast to the ambiguous
monophyly of Pristobunus, the New Zealand genus Triregia
was paraphyletic with respect to the two genera from New
Caledonia (Triconobunus and Diaenobunus) in all cases.
Furthermore, Triconobunus and Diaenobunus were never
found to be sister taxa, though support values for these
internal relationships are generally low. It is clear, however,
that this clade requires a thorough revision, including the
incorporation of the type species Triregia monstrosa
Forster, 1948, from Three Kings Islands.

Nuncia and Ceratomontia — transoceanic genera?

Currently, Nuncia and Ceratomontia are the only genera
in Triaenonychidae known from multiple landmasses.
Ceratomontia has previously been shown to be non-
monophyletic, with one clade in South America and a
possible grade in South Africa that also includes other genera
(Austromontia, Monomontia) (Mendes and Kury 2008). We
were not able to include South American Ceratomontia
specimens in our study, so this hypothesis remains untested
with molecular data, but our analyses showed that the South
African Ceratomontia were deeply nested within a South African
clade of triaenonychids.

Likewise, Nuncia was found in both New Zealand (which is
home to the type species, Nuncia sperata Loman, 1902, junior
synonym of Triaenonyx obesus Simon, 1899) and South
America, in Chile and Argentina. Nuncia is by far the most
diverse genus in the family, with 63 accepted species and
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subspecies (Kury et al. 2014), and it is characterised by a
smooth carapace and a relative lack of spines and tubercles
(see Fig. 1J). Despite being defined more by a lack of features
than by the presence of any character in particular, all Nuncia
from New Zealand constituted a clade with full support in all
our analyses, unlike in the unpublished thesis of Vélez (2011).
Lower-level relationships within the New Zealand Nuncia,
though, indicate that many morphological species and
subspecies are not valid, and this group requires substantial
taxonomic revision.

The included Nuncia from South America were not at all
closely related to the true New Zealand Nuncia, as suggested
by a recent study of their genitalia (Porto and Pérez-Gonzalez
2019), and indeed the South American species were found in
two distinct places in the phylogeny. One of these clades
corresponded to the species Nuncia verrucosa Maury, 1990
(and, based on morphology, presumably N. spinulosa Maury,
1990, though this species was not available for this study), the
‘grupo spinulosa’ of Maury (1990). As implied by their
specific epithets, both of these species are replete with
spines and tubercles (see Fig. 1L and fig. I, III in Maury
1990), and in his original descriptions Maury (1990) noted that
perhaps they should not be placed in Nuncia at all given their
morphological dissimilarity to both the New Zealand
Nuncia and the other South American Nuncia species. Our
phylogenetic results validate this scepticism, and while
redescribing these species under a new genus name is
outside the scope of this paper, we recommend such a
transfer. The other clade of Nuncia from South America
contained the species Nuncia americana Roewer, 1961 and
Nuncia chilensis (H. Soares, 1968), as well as the species
Calliuncus cf. labyrinthus, from Western Australia. While the
members of this clade do lack spines and large tubercles and
therefore superficially look similar to Nuncia from New
Zealand, this clearly also constitutes a distinct evolutionary
lineage. Again, without a thorough morphological examination
of both Calliuncus (including its type species, Calliuncus
ferrugineus Roewer, 1931) and the smooth-bodied South
American Nuncia species, we refrain from taking any
nomenclatorial action here, but our phylogenetic results
highlight the need for revision.

Chile

Apart from the Nuncia from South America in our tree, we also
recovered a clade of several other genera from Chile. The
genus Valdivionyx was monophyletic in all analyses with high
support. The closely related genus Diasia was monophyletic in
both the RAXML and BEAST trees, but paraphyletic with
respect to Valdivionyx in the IQ-TREE result. These two
genera were closely related to the genus 7riaenonyx in all
analyses, which was recovered as monophyletic in the 1Q-
TREE and RAXML phylogenies, but was paraphyletic with
respect to Valdivionyx and Diasia in the BEAST tree. The
monotypic genus Americobunus does appear to be a distinct
evolutionary lineage in the family, as it sat on a long branch
and resolved in different locations in each of the three trees.
Furthermore, we included an exemplar of an animal that
morphologically does not correspond to any described
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species (MCZ 1Z-138076: Fig. 1F). It, too, was recovered as a
distinct evolutionary lineage and, together with its unique
morphology, corroborates its status as a new genus that will
need to be described.

South Africa

Within South Africa, some genera were recovered as
monophyletic in all analyses (e.g. Adaeum, Adaeulum,
Amatola,  Austromontia,  Graemontia  Stargga, 1992,
Larifugella, and Monomontia), but just as many were not (e.g.
Biacumontia, Ceratomontia, Larifuga, Mensamontia Stargga,
1992, Planimontia Kauri, 1961, Roewerania Lawrence, 1934,
and Rostromontia). In addition, South African members
appeared in 7-10 independent clades, some of them
connected to Madagascar. Many genera as they are
currently defined are extremely hard to distinguish on the
basis of morphology, and diagnostic characters at the genus
level show overlapping variability between genera. Future
taxonomic work will certainly be needed to revise those
genera, including looking for morphological characters that
correspond to phylogenetic groups.

Madagascar

Our taxonomic sampling in Madagascar was restricted due to
the limited availability of molecular-grade specimens from
these landmasses in our collections. We therefore are unable to
say much about the validity of those taxa, especially since its
35 species include several genera with only one or two species
each (Ankaratrix, Antogila Roewer, 1931, Decarynella Fage,
1945, Flavonuncia, Hovanuncia Lawrence, 1959, Ivohibea
Lawrence, 1959, Millomontia Lawrence, 1959, Millotonyx
Lawrence, 1959, and Paulianyx Lawrence, 1959) plus the
more diverse Acumontia Loman, 1898, with 22 described
species (Kury et al. 2014). Even more unfortunately, the
animals from Madagascar used in this study were consumed
during DNA extraction and no vouchers remain for
morphological analysis. However, we did recover multiple
distinct lineages on the island, including the relictual
Flavonuncia, a clade of specimens corresponding to
Acumontia, and an unidentified species that groups with
Lizamontia Kury, 2004 from South Africa in all analyses.
Further sampling of Madagascar species with techniques that
allow using historical museum samples (e.g. Derkarabetian
et al. 2019) should help resolve this mystery.

Australia

We similarly had few exemplars from mainland Australia,
which reflects the relatively unexamined triaenonychid
diversity of the continent. Most of our specimens, and
indeed most of the described species in the country, came
from Tasmania, which we treated as a separate region. (While
we often discuss Tasmania as a distinct region, it cannot be
considered a separate landmass from Australia given
continental land bridge connections during the Quaternary:
Lambeck and Chappell 2001). Given the large part of Australia
without suitable recent habitat, we also treated Western
Australia as separate from the east, a distributional pattern
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that is not uncommon in short-range saproxylic animals
(Giribet and Edgecombe 2006; Rix et al. 2015).

Here, we recovered a monophyletic Glyptobunus and found
as its sister group the genus Rhynchobunus, also from
Tasmania. However, some of our morphospecies were not
monophyletic or had very old divergences, probably reflecting
the poor taxonomy of the group. We also recovered a
monophyletic Nunciella, which contained two reciprocally
monophyletic lineages that corresponded to a group in
Western Australia and a group in Tasmania. In contrast, we
did not recover the monophyly of the genus Triaenobunus
Serensen, 1886, which is known from eastern and south-
eastern mainland Australia as well as Tasmania. Similarly,
the charismatic Tasmanian genus Hickmanoxyomma Hunt,
1990, which is easily identified by its extremely tall and
pointed ocularium (Fig. 1G), was not recovered as a
monophyletic group. Instead, we found two other
Tasmanian species nested within the genus, Nucina dispar
Hickman, 1958 and Odontonuncia saltuensis Hickman, 1958,
neither of which have especially large spines on their ocularia
(though in the BEAST tree O. salutensis formed the sister
group to this clade rather than nesting within it). The close
relationship between Hickmanoxyomma and Odontonuncia
was previously hypothesised by Hunt (1990). Lastly, as
discussed above, the Western Australian genus Calliuncus
was monophyletic in all analyses, and nested within the
smooth-bodied clade of South American Nuncia.

Clearly, many different lineages within Triaenonychidae are
in need of revision. Future work must focus on areas with
significant taxonomic and phylogenetic discrepancies, such as
the South American Nuncia, the many para- and polyphyletic
South African genera, the clade containing 7riregia plus the New
Caledonian triaenonychids, and the genus Iriaenobunus in
Australia. Furthermore, given the low nodal support along the
backbone of our trees, future work should focus on resolving
higher-level phylogenetic relationships using high-throughput
sequencing techniques, including more genera, and, whenever
possible, the type species of such genera.

Biogeographic results

With the exception of North America, which contains only the
monotypic genus Fumontana, and Sardinia, with Buemarinoa,
no major landmass on which triaenonychids are found contains
a monophyletic assemblage of taxa. This result holds even
accounting for the low nodal support values along the
backbone of our tree. Indeed, even the two genera from
New Caledonia were not recovered as sister taxa; instead,
both nested within the New Zealand genus Triregia, as
discussed above. In order to determine whether the non-
monophyly of taxa in these Southern Hemisphere
landmasses was attributable to ancient cladogenesis before
Gondwanan breakup or more recent transoceanic dispersal,
and to look for possible instances of Gondwanan vicariance,
we performed a divergence dating analysis.

Comparison of marginal L estimates with Bayes Factors
identified an exponential relaxed clock and a Yule tree prior as
the optimal model for the dataset, with decisive support from
Bayes Factors (BF = 15.59 compared to the next-highest
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model’s marginal L estimate). The use of a Yule tree prior on
our dataset, which includes both inter- and intraspecific
divergences, is a theoretical violation of that speciation
model and as such could bias divergence time estimates.
However, simulation-based analysis of mixed inter- and
intraspecific datasets in a Bayesian dating framework has
shown that in sampling schemes such as ours, where most
nodes correspond to interspecies divergences, estimates of
node times were robust to tree prior choice, and that model
selection procedures such as ours were effective in rejecting
models likely to cause highly inaccurate node time estimates
(Ritchie et al. 2017).

Initial diversification of Triaenonychidae predates
Pangaean breakup

Our divergence dating results recovered an ancient origin for
Triaenonychidae, with a mean age in the Permian, at 268 Ma
(95% confidence interval, CI: 323-212 Ma) (Fig. 5). While the
lower limit of the 95% CI did not quite predate the initial
breakup of Pangaea c. 220 Ma (Ali and Aitchison 2008), for
the most part these dates suggest that the family was
diversifying before Pangaea began breaking up into the
northern landmass of Laurasia and the southern landmass
of Gondwana. The estimated age of the North
America—Madagascar divergence, corresponding to the split
between Fumontana and Flavonuncia, ranged from 234 to
101 Ma, with a mean age of 166 Ma, in the Jurassic. This age
range approximately coincides with the timing of separation
between Laurasia and Gondwana, and therefore implies that
Fumontana is a relictual lineage in North America, just as
Buemarinoa remains a relict in Western Europe. This parallels
a similar pattern seen in other groups of arachnids, such as the
oribatid mite family Malaconothridae Berlese, 1916, which
has a cosmopolitan distribution and an estimated age of
333 Ma (Colloff 2013), as well as the dispersal-limited
pseudoscorpion families Pseudotyrannochthoniidae Beier,
1932 and Pseudogarypidae Chamberlin, 1923, which have
representatives in both temperate Australia and the
Holarctic (though the ages of these families have not been
estimated using molecular dating methods, their divergence
from their sister group are Palaeozoic for the first and early
Mesozoic for the latter) (Harvey et al. 2017; Benavides et al.
2019). Similar signatures of Pangaean breakup have also been
detected in multiple groups of plants (Mao et al. 2012
Beaulieu ef al. 2013) and amphibians (Pyron 2014).

The mean age of the Southern Hemisphere
Triaenonychidae was estimated to be 198 Ma (95% CI:
246—156 Ma), in the Early Jurassic. Again, these dates
suggest that the family was already diversifying well before
Gondwana began breaking apart (initial rifting started in the
Middle Jurassic, ¢. 170 Ma) (Ali and Aitchison 2008), and
allows for the possibility that triaenonychids were able to
colonise extensive continental areas via overland dispersal
before continents separated. Palynological and isotopic
records from this period suggest that during the Triassic
and Jurassic, southern Gondwana experienced less climatic
differentiation and a greater floristic uniformity dominated by
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lycophytes, ferns, and tree ferns (McLoughlin 2001; Cantrill
and Poole 2012). Given the large-scale biotic turnovers that
followed the end-Permian extinction and the subsequent
expansion of continuous stretches of suitable vegetation,
overland expansion of Triaenonychidae during this period
seems highly plausible, and would therefore follow a
pattern seen in other saproxylic taxa such as pettalid
harvestmen (Baker et al. 2020) and peripatopsid velvet
worms (Murienne et al. 2014; Giribet et al. 2018).

Relationships of taxa from disjunct landmasses

The Cretaceous period saw major rifting events, including the
opening of the southern Atlantic Ocean, the separation of
Madagascar—India from Australia—Antarctica—Zealandia, and
the start of Zealandia’s isolation (McLoughlin 2001; Ali and
Aitchison 2008). Coinciding with this increased tectonism was
the rise of angiosperms, and with it large-scale floristic
turnovers and increased provincialism (McLoughlin 2001;
McLoughlin and Kear 2010). All of these factors likely
contributed to the inferred increase in cladogenesis of
triaenonychids starting in the Cretaceous and continuing
into the Paleogene (Fig. 5), as suitable forest habitat
became more fragmented and populations in turn became
more isolated. This may also have contributed to our
difficulty resolving relationships between many clades in
our phylogeny.

Because there was limited support for relationships
between genera from different landmasses, we refrained
from employing any explicit biogeographic models of range
evolution. Despite those limitations, we still found a few
places in the tree that were well supported and that
corresponded to divergences between taxa from different
landmasses. For example, Calliuncus (Western Australia)
and Nuncia chilensis (Chile) (Clade 2 in Fig. 3-5) had an
estimated divergence time of 25-85 Ma, with a mean date of
53 Ma. As Australia and Chile were connected via Antarctica
until ¢. 35-40 Ma, when Tasmania and Antarctica separated
(McLoughlin 2001; Wei 2004), this divergence time is
consistent with the process of Gondwanan vicariance,
though we cannot rule out transoceanic dispersal, as its
lower age estimate postdates continental separation by
c. 10 Ma. Interestingly, Nuncia chilensis was originally
described as Parattahia chilensis H. Soares, 1968, making
it the second species in the genus erected for the Tasmanian
species Parattahia usignata Roewer, 1915. The similarity
between Parattahia and Calliuncus was recognised by Hunt
(1996), who suspected Calliuncus to be a junior synonym of
Parattahia  (though  without  explicit morphological
justification). While Parattahia chilensis was later
transferred to Nuncia by Maury (1990), our results bolster
the hypothesis of Soares (1968), who recognised the affiliation
between the species from Chile and Tasmania. Sampling
P. usignata and Calliuncus ferrugineus Roewer 1931 (the
type species of Calliuncus) will be useful in further
clarifying the potential trans-Antarctic nature of this clade.

Nearly all divergences between taxa from different
landmasses in the family were estimated to have occurred
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before the end of the Mesozoic (66 Ma), though the lower
limits of several 95% Cls postdated this boundary. Similarly,
most Gondwanan rifting events took place during the
Mesozoic, from the initial split into East and West
Gondwana c¢. 170 Ma to the separation of Zealandia from
East Gondwana c. 80 Ma. The only major separation events
that occurred in the Cainozoic were the disconnection of
Australia and South America from Antarctica, which
occurred c¢. 3540 Ma and c. 30-35 Ma respectively
(McLoughlin 2001; Wei 2004). This underscores the idea
that the common mode of range expansion and
diversification in Triaenonychidae was overland dispersal
followed by subsequent isolation as continental blocks
separated.

A well-known biogeographic debate exists surrounding
the source of New Zealand’s terrestrial biota. Briefly, the
controversy suggests that following the separation of
Zealandia (i.e. the small continent that contains New Zealand
and New Caledonia (Mortimer et al. 2017)) from
Australia—Antarctica ¢. 80 Ma, New Zealand experienced a
prolonged marine transgression (often called the ‘Oligocene
drowning’) (see Giribet and Boyer 2010). This period lasted
from c. 36 to c. 23 Ma, and at its peak (23 Ma) land area was
reduced to ~18% of its current area (Cooper and Cooper 1995;
Wallis and Jorge 2018). However, some authors have gone so
far as to say the archipelago was completely inundated, which
extirpated any relicts of Gondwanan origin; the implication
then is that all of New Zealand’s modern biota is the result of
more recent dispersals that postdate 23 Ma (Trewick et al.
2007). We find at least three clades of taxa from New Zealand
whose 95% CIs completely predate the peak of the Oligocene
drowning period: (1) the New Zealand Nuncia (mean age:
110 Ma; 95% CI: 83—140 Ma), (2) Hendea (mean age: 52 Ma;
95% CI. 29-81 Ma), and (3) a clade composed of
Sorensenella, Karamea, Algidia, Prasma, Triregia, and the
New Caledonian Diaenobunus and Triconobunus (mean age:
93 Ma; 95% CI: 71-116 Ma). Triaenonychids therefore serve
as yet another source of examples refuting the hypothesis of
New Zealand’s total submersion during the Oligocene, as
suspected by earlier workers (Giribet and Boyer 2010).

While most divergences in the family concorded with
Gondwanan vicariance or potentially pre-Gondwanan
cladogenesis, there is at least one likely case of dispersal in
the family: to New Caledonia. As stated previously, New
Caledonia (specifically the main island of Grande Terre) is
part of the small continent Zealandia, which separated from
the eastern margin of Gondwana c¢. 80 Ma (McLoughlin 2001).
Despite being part of the same crustal block, New Zealand
and New Caledonia have never shared a terrestrial connection
with each other. Unlike in New Zealand, where the geologic
evidence for total submersion is inconclusive at best, there is
strong geologic evidence that New Caledonia was submerged
thousands of metres underwater during the Palacocene, and
subsequently thrust under oceanic crust during the Eocene,
finally re-emerging c. 37 Ma (Grandcolas et al. 2008; Cluzel
et al. 2012; Sutherland et al. 2020). New Caledonia is therefore
functionally a Darwinian island and, accordingly, most
endemic taxa that have been studied using time-calibrated
molecular phylogenetics are found to have arrived to the
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island no earlier than 37 Ma (Nattier et al. 2017; though
see Giribet and Baker 2019). In the case of
Triaenonychidae, we found both New Caledonian genera
(Diaenobunus and Triconobunus) to be clearly nested
within the New Zealand genus Triregia, which was in turn
a part of a larger clade of New Zealand-endemic taxa (Clade 8
in Fig. 3-5). While we only had specimens of Triconobunus
from a single locality and therefore cannot make any
inferences about its origination and diversification time on
the island, we did have sequence data for Diaenobunus from
two different localities, separated by a linear distance of 16 km
and constituting two putative species (although the genus
remains monotypic). The estimated diversification time of
Diaenobunus was 25 Ma (95% CI: 13-38 Ma), consistent
with the idea that the genus dispersed from New Zealand and
started diversifying on the island after its re-emergence
c. 37 Ma. While nodal supports within this clade were
relatively low across all analyses, they were consistent, so
if these results do reflect the true topology it implies that
triaenonychids dispersed from New Zealand to New Caledonia
twice. It is also worth noting that the upper limit of the
95% CI for this diversification at 38 Ma allows us to reject
the hypothesis that these animals are a Gondwanan relict, as
this postdates Zealandia’s split from Gondwana in the Late
Cretaceous, c¢. 80 Ma.

Conclusions

We generated the first molecular phylogeny focused on
Triaenonychidae, the fourth most speciose family of
Opiliones, and inferred divergence times using fossil-
derived calibrations. We found that the family, as
traditionally defined, is not monophyletic, and transferred
Lomanella out of Triaenonychidae, as it is the sister group
to Synthetonychiidae, and this clade is not always related to the
other triaenonychids. We also support Fumontana and
Flavonuncia as a clade (Buemarinoa would be related to
these, but was not sampled), which is the sister group to all
other temperate Gondwanan triaenonychids. Despite low
nodal support for relationships between many taxa, our
results do highlight many places in which taxonomy does
not reflect phylogeny, and which should therefore be revised.
Complementary work by our group is already underway to
resolve higher-level relationships using UCE (ultraconserved
elements) sequencing (Faircloth ef al. 2012). A well resolved
phylogeny of this nature will be critical for further addressing
evolutionary questions in the family, such as those about
morphological stasis and disparity, sexual and male
dimorphism, parental care strategies, niche conservatism,
and diversification dynamics through time.

Through our divergence dating analysis, we also found that
Triaenonychidae is an ancient family that predates Pangaean
and Gondwanan rifting, therein explaining their widespread
but disjunct distribution across the Southern Hemisphere and
North America and Western Europe. Indeed, nearly all
divergences of taxa from different landmasses predate or
coincide with Gondwanan tectonic events. However, we
find at least one irrefutable case of dispersal, to the island
of Grande Terre in New Caledonia. We suggest this is another
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example of ‘common vicariance and rare dispersal’ in
Opiliones (Hedin and McCormack 2017). There have likely
been multiple dispersal events in the family, as evidenced by
their presence in the oceanic Crozet Islands and on far offshore
islands in New Zealand, such as the Chatham and Auckland
Islands (Forster 1954). Future work will also be necessary to
incorporate specimens from these islands into a phylogenetic
framework so as to understand their biogeographic history and
the capacity for dispersal within the family.
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