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Abstract.—Gonyleptoidea, largely restricted to the Neotropics, constitutes the most diverse superfamily of Opiliones and
includes the largest and flashiest representatives of this arachnid order. However, the relationships among its main lineages
(families and subfamilies) and the timing of their origin are not sufficiently understood to explain how this tropical clade
has been able to colonize the temperate zone. Here, we used transcriptomics and divergence time dating to investigate
the phylogeny of Gonyleptoidea. Our results support the monophyly of Gonyleptoidea and all of its families with more
than one species represented. Resolution within Gonyleptidae s.s. is achieved for many clades, but some subfamilies are
not monophyletic (Gonyleptinae, Mitobatinae, and Pachylinae), requiring taxonomic revision. Our data show evidence for
one colonization of today’s temperate zone early in the history of Gonyleptidae, during the Paleogene, at a time when
the Neotropical area extended poleward into regions now considered temperate. This provides a possible mechanism for
the colonization of the extratropics by a tropical group following the Paleocene–Eocene Thermal Maximum, explaining
how latitudinal diversity gradients can be established. Taxonomic acts: Ampycidae Kury 2003 is newly ranked as family;
Neosadocus Mello-Leitão is transferred to Progonyleptoidellinae (new subfamilial assignment). [Arachnids; biogeography;
phylogenomics; transcriptomics.]

Some of the most spectacular harvestmen are those of the
Neotropical superfamily Gonyleptoidea, which display
an amazing variation in size, shape, and color (Fig. 1).
Gonyleptoidea comprises 2039 described species (Kury
2000–2020) and includes two of the most diverse families
of Opiliones, Cosmetidae (>710 spp.), and Gonyleptidae
(>820 spp.). Most gonyleptoids are restricted to humid
mountain ranges or tropical lowlands of the Neotropical
region with less than 1% of its diversity present at
higher latitudes, in southern North America (7 spp. of
Cosmetidae and 10 spp. of Stygnopsidae) and southern
Patagonia (ca. 90 spp. of Gonyleptidae). However, the
systematics of Gonyleptoidea at the family and sub-
family levels has changed drastically through the years,
hence requiring considerable revision before attempting
to understand the colonization of the temperate zones
by a group composed largely of tropical species.

During most of the 20th century, the classification
of harvestmen relied on a system in which a limited
number of characters were used to diagnose families
and subfamilies. Higher-level Opiliones systematics has
flourished since the early days of morphological cladistic
analyses (Martens 1986; Kury 1993; Shultz 1998; Giribet
et al. 1999; Giribet et al. 2002), resulting in numerous
DNA sequence-based data sets published (e.g., Giribet
et al. 1999, 2002, 2010; Shultz and Regier 2001; Pinto-da-
Rocha et al. 2014; Cruz-López et al. 2016; Wong et al.
2017), including recent phylogenomic treatments (Hedin
et al. 2012; Sharma and Giribet 2014; Fernández et al.
2017; Aharon et al. 2019). However, the relationships
among the gonyleptoid families have received little
attention using this new generation of data, despite

having a long history of systematic work using mostly
morphology (e.g., Kury 1994; Pinto-da-Rocha 2002;
Kury and Villarreal 2015). In parallel, molecular studies
have investigated questions around Gonyleptoidea using
Sanger-based approaches (Giribet et al. 2010; Sharma
and Giribet 2011; Garwood et al. 2014; Cruz-López et al.
2016; Wong et al. 2017) or transcriptomes (Fernández
et al. 2017). Only a few morphological and Sanger-based
molecular analyses have examined relationships within
Gonyleptoidea and related families (Kury 2014; Pinto-
da-Rocha et al. 2014; Bragagnolo et al. 2015; Kury and
Villarreal 2015) leading to an unstable system and to a
proliferation of hypotheses of relationships.

The latitudinal diversity gradient (LDG), a decrease
in the richness of species from the equator to the
poles (Fischer 1960), has often been explained with two
models, whether the tropics act as a cradle (generating
more lineages than higher latitudes) or as a museum
(preserving more lineages than higher latitudes, i.e.,
they have less extinction), thus balancing speciation and
extinction. Yet, a third model, the “out of the tropics”
(OTT) model seems to better explain LDGs at least in
marine bivalves (Jablonski et al. 2006) and mammals
(Rolland et al. 2014). The OTT model posits that lineages
not only preferentially originate (cradle) in the tropics
but also persist there (museum) and expand poleward.
Few studies have tested aspects of the LDGs using
evolutionary processes, as nearly complete phylogenies
are needed, as in the case of a study focusing on
mammals (Rolland et al. 2014). It is thus our aim to
leverage the power of transcriptomics to explore how
the tropical Gonyleptoidea has a few lineages currently
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inhabiting the temperate zone and explain how LDGs
may have been established in this large arthropod clade.

MATERIALS AND METHODS

Taxon Selection
Our phylogenomic study comprises 55 taxa, 49

of them representing all families of Gonyleptoidea
with the exception of the recently described family
Otilioleptidae—based on a single troglomorphic species
from Argentina (Acosta 2019)—and most subfamil-
ies of Gonyleptidae, with four exceptions: Cobani-
inae, Bourguyiinae, Gonyassamiinae, and the mono-
typic Pachylospeleinae. The outgroups include six
taxa in other Laniatores families within the sub-
clade Grassatores. Information about sampling loc-
alities can be found in the online MCZ database
collection (http://mczbase.mcz.harvard.edu) and in
the Supplementary Table S1 available on Dryad at
https://doi.org/10.5061/dryad.d2547d81.

Wet Lab Protocols
All tissues were collected fresh, preserved in RNAlater

(Ambion) and stored at −80◦C. RNA laboratory pro-
cedures, library construction, and sequencing, closely
followed the methods described in our previous research
(Fernández et al. 2017; Benavides et al. 2019). We
isolated total RNA using TRIzol reagent (Invitrogen)
and purified mRNA with Dynabeads (Invitrogen). We
assessed the quantity and quality of mRNA with the 2100
Bioanalyzer (Agilent technologies). For cDNA library
construction, we used the PrepX RNA-Seq Library
kit and the Apollo 324 System (Wafergen), assessing
the success of library construction following 8–15X
Polymerase Chain Reaction (PCR) amplification by
measuring DNA concentration with qPCR (Kapa Library
Quant Kit) and library fragment size distribution with
the 4200 TapeStation. We pooled up libraries together at
equimolar concentrations, confirmed pool concentration
with TapeStation and qPCR and sequenced final pools
on the Illumina HiSeq 2500 platform with paired ends of
150 bp at the Bauer Core Facility at Harvard University.
New sequence reads are deposited in the National Center

for Biotechnology Information Sequence Read Archive
(NCBI SRA, BioProject PRJNA556673, SAMN12670385-
SAMN12670426, SAMN14113753); library indexes and
assembly statistics can be found in Table 1.

Sanitation, Assembly, and Identification of Coding Regions
The sequencing facility demultiplexed and converted

raw data from BCL to FASTQ. We performed correction
of random sequencing errors in our Illumina RNA-seq
FASTQ files with Rcorrector (Song and Florea 2015)
and quality trimming to remove adapters and low-
quality reads (shorter than 50bp) with TrimGalore! v0.5.0
(Krueger 2018). We filtered out rRNA and mtDNA with
Bowtie2 v2.2.9, using custom databases built from all
relevant rRNA and mtDNA sequences available from
GenBank, and assembled reads de novo with Trinity
(Grabherr et al. 2011; Haas et al. 2013). We executed
a second Bowtie2 run on the assemblies and reduced
sequence redundancy with CD-HIT v4.6.4 (Li and
Godzik 2006; Fu et al. 2012) by eliminating transcripts
with sequence identity >95%; we used Transdecoder
v3.0 (Haas et al. 2013) to translate transcripts into amino
acids and a custom python script (choose_longest_iso.py)
to select the longest isoform of each gene. Completeness
of our assemblies was assessed with BUSCO (Simão et al.
2015). The assessment tool finds matches to sets of genes
that are expected to be present as single-copy orthologs
in a given taxon when compared with the Metazoan
Database.

Orthology assignment and matrix construction
Orthology assignment for our samples was carried

out with the Orthologous Matrix Algorithm (OMA;
Altenhoff et al. 2011; Altenhoff et al. 2019); alignment
of each individual orthogroup was performed with
MAFFT v7.309 with the -auto option (Katoh and Standley
2013), and positions with more than 80% missing data
were removed with the script trimEnds.sh (Cunha and
Giribet 2019).

For our phylogenetic analyses, we assembled three
matrices using gene occupancy and extreme evolu-
tionary rates thresholds. For Matrices 1 and 2 (gene
occupancy matrices), we targeted a minimum gene
occupancy of 50% and 85% of the orthogroups using

FIGURE 1. a) Occupancy matrices used to infer gonyleptoid evolutionary relationships. Matrix 1 (green + orange) with 2597 genes
is the largest (50% occupancy), while Matrix 2 (orange) is the smallest, with the best sampled 328 orthogroups (85% occupancy); b)
Gonyleptoid relationships inferred from the analyses of Matrix 2, with a nonpartitioned analysis and model search under maximum
likelihood (model LG +C60; lnL=−941,482.997). c) Alternative hypothesis for gonyleptoid relationships. d)–m) Live habitus of representatives
of Gonyleptoidea: d) Auranus hoeferscovitorum MCZ-136531 (Stygnidae); e) Pseudopachylus longipes (Cryptogeobiidae); f) Glysterus sp. MCZ-
140069 (Ampycidae); g) Phareicranaus manauara (Cranaidae); h) Eubalta planiceps MCZ-49760 (Gonyleptidae, Pachylinae); i) Acutisoma longipes
MCZ-139261 (Gonyleptidae, Goniosomatinae); j) Promitobates ornatus MZSP-71022 (Gonyleptidae, Mitobatinae); k) Longiperna concolor MCZ-
139260 (Gonyleptidae, Mitobatinae); l) Gonyleptes fragilis MZSP-71023 (Gonyleptidae, Gonyleptinae); m) Progonyleptoidellus striatus MZSP-71021
(Gonyleptidae, Progonyleptoidellinae). Support values depicted in each node refer to IQ-TREE with gene-partitioned and model search including
LG4 mixture model and accounting for heterotachy (IQ-PAR), IQ-TREE nonpartitioned analysis with CAT-model equivalent (IQ-CAT), ExaBayes
(ExaB), PhyloBayes (PhyloB) and a coalescent-based approach with Astral (IQ-Astral), for Matrix 2 (85% occupancy, 328 genes). The clade of the
Chilean Pachylinae is indicated with a purple star; purple stars on terminals indicate temperate species. See Materials and methods for details
(online version in color).
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6 SYSTEMATIC BIOLOGY

the python script selectslice.py (Cunha and Giribet 2019).
Matrix 1 (50% occupancy matrix) is represented by 2597
genes and Matrix 2 (85% occupancy matrix) contains
328 genes. To diminish the effects of saturation we
used TrimAl v1.2 (Capella-Gutiérrez et al. 2009) in
order to remove from Matrix 1 the 30% fastest evolving
genes, resulting in a matrix with 1819 genes (Matrix
3). Phyutility (Smith and Dunn 2008) was used to
concatenate the matrices.

Phylogenetic Analyses
For phylogeny estimation, we compared maximum

likelihood (ML), Bayesian inference (BI), and coalescent-
based (CB) estimation methods to account for possible
differences between gene-tree/species-tree inferences.
For analyses under ML, we used IQ-TREE-MPI v1.5.5
(Nguyen et al. 2015). We carried out a gene-partitioned
analysis (PART) with model search including the LG4
mixture model and accounting for heterotachy for all
matrices. In addition, we conducted a nonpartitioned
analysis (CAT) with model search including the 10–
60 profile mixture models (an ML variant of the
Bayesian CAT model) for Matrix 2. Model search was
carried out in Model Finder, incorporated in IQ-TREE
(Kalyaanamoorthy et al. 2017).

For Matrix 2, we also carried out BI analyses in
ExaBayes v. 1.21 (Aberer et al. 2014) with openmpi v. 1.64,
and PhyloBayes MPI v1.7a (Lartillot et al. 2013). For
ExaBayes, we ran four independent Markov Chain
Monte Carlo (MCMC) for 500,000 generations, sampling
every 500 generations and discarding 10% of the trees
as burn-in for each MCMC run prior to convergence
(i.e., when maximum discrepancies across chains < 0.1).
For PhyloBayes we first recoded Matrix 2 into the six
Dayhoff categories (Dayhoff et al. 1978) in order to speed
up computation times and ameliorate possible artifacts
related to long-branch attraction and taxon-specific
compositional heterogeneity (Foster 2004; Cunha and
Giribet 2019). We ran four independent chains with the
CAT-GTR model (eliminating constant sites to speed
up computation) for 308,836–335,923 cycles discarding
as “burn-in” the first 30,000 generations. Convergence
was assessed using the bpcomp and tracecomp programs
in PhyloBayes. We considered that convergence was
reached when tracecomp statistics dropped below 0.1 for
all relative difference scores (rel_diff), effective samples
sizes were > 300 (effsize), and bpcomp maximum dis-
crepancy in clade support was < 0.1 (maxdiff). Detailed
statistics for the PhyloBayes runs can be found in the
Supplementary material S2 available on Dryad. We did
not conduct analyses under BI for Matrices 1 and 3 due to
their large size (2597 and 1819 orthogroups, respectively).
For analyses under the coalescent-based (CB) approach,
individual trees were generated for Matrices 1 and 2 with
IQ-TREE1.6.beta4; following this we used ASTRAL-II
v4.10.12. (Mirarab and Warnow 2015) to infer the species
tree from all individual unrooted gene trees under the
multispecies coalescent model.

Nodal support for analyses in IQ-TREE was calculated
via 1000 ultrafast bootstrap replicates (-bb 1000; Hoang
et al. 2018). For the ASTRAL analyses, we calculated local
posterior probabilities which are computed based on
gene tree quartet frequencies (Sayyari and Mirarab 2016).

Divergence Time Inference
The root of the tree was constrained using the 95%

highest posterior density (HPD) of the chronogram for
the 78-gene data set of Fernández et al. (2017), ranging
between 253 and 117 Ma. The divergence between
Gonyleptoidea/Assamioidea/Biantoidea/Zalmoxoidea
and its sister group, Sandokanidae, was constrained
by the only described Burmese amber laniatorean
fossil, Petrobunoides sharmai. (Selden et al. 2016), a
member of the SE Asian clade Epedanoidea, with a
phylogenetic position as sister group of Gonyleptoidea/
Assamioidea/Biantoidea/Zalmoxoidea (Fernández
et al. 2017) or as the sister group of Assamiidae (Kury
et al. 2019). We therefore used the date of the fossil (99
Ma) as the lower limit for our dating analyses and chose
as upper limit the oldest age of the 95% HPD obtained by
Fernández et al. (2017) for the age of the clade containing
Assamioidea/Biantoidea/Zalmoxoidea/Gonyleptoidea,
at 196 Ma. Two samoids, Pellobunus insularis and
Hummelinckiolus silhavyi from Dominican amber
(Cokendolpher 1986; Cokendolpher and Poinar 1998)
were used to constrain Pellobunus with its sister group.
The age of the Dominican amber is controversial
(Iturralde-Vinent and MacPhee 1996) but it has
been constrained to 16 Ma (Iturralde-Vinent 2001;
Penney 2010), which we use as a lower limit, the
upper limit being again the maximum age estimated
by the 95% HPD in Fernández et al. (2017) for the
divergence between Samoidae and its sister clade
(Biantidae/Escadabiidae/Fissiphalliidae/Zalmoxidae),
at 102 Ma.

We performed a node-calibrated Bayesian relaxed-
clock dating in the program MCMCtree (Yang and
Rannala 2006), part of the PAML 4.9 package (Yang 2007).
First, we estimated in CODEML a rough substitution
rate as well as a gradient (g) and Hessian (H) of the
branch lengths without the clock (usedata=3). Then, we
used the approximate likelihood method (usedata=2) to
estimate divergence times (dos Reis and Yang 2011; dos
Reis et al. 2017). We implemented the independent rate
model, a birth–death prior on the divergence time, and
the LG protein model with gamma rates among sites (Le
and Gascuel 2008). C10 to C60 profile mixture models
implicitly include a Gamma rate heterogeneity among
sites (IQ-TREE manual).

We tested the effect of five different prior distributions
for the node calibrations (uniform, skew-normal, skew-
t, truncated-Cauchy, and gamma), to investigate the
sensitivity of the results to the type of distribution.
For each test, we used the same prior distribution on
the three calibrated nodes and soft lower and upper
bounds for the three calibration points. We decided
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TABLE 2. Parameters implemented for the prior distributions for the node calibrations for each of the five analyses.

Node 1 Node 2 Node 3

Skew-N SN(1.22,0.58,50) SN(1.04,0.41,50) SN(0.21,0.36,50)
Uniform >1.17<2.53 (specified in control file) B(0.99,1.96) B(0.16,1.02)
Cauchy L(1.17,0.5,0.065,1e-300) L(0.99,0.5,0.036,1e-300) L(0.16,0.5,0.028,1e-300)
Skew-T ST(1.17,0.053,50,1) ST(0.99,0.038,50,1) ST(0.16,0.034,50,1)
Gamma G(3416.3,2690) G(2932.1,2690) G(699.4,2690)

FIGURE 2. a) Chronogram of gonyleptoid evolution inferred from the analysis of Matrix 2 (210 orthogroups, 85% occupancy) in MCMCTREE
with 95% highest posterior density (HPD) bars under a Uniform prior. Nodes calibrated with fossils are indicated with a red triangle. Purple
stars as in Figure 1. b) Species level diversity for Gonyleptoidea and Gonyleptidae extracted from the World Catalogue of Opiliones (Kury et al.
2020). c) Latitudinal gradient starting from North to South in 10◦ interval for all the records of Gonyleptoidea available in GBIF. See Methods
for details. Figure also shows Paleomap reconstructions (Scotese 2016) from the Early Cretaceous to the Early Oligocene. For reference, major
global events are highlighted on the geological timeline (PETM, Paleocene–Eocene Thermal Maximum [pink bar]; EECO, Early Eocene Climatic
Optimum [blue bar]) (Online version in color).

on this approach because we could not decide a
priori which type of prior distribution was objectively
better given our knowledge of the Opiliones fossil
record.

We used the R package MCMCtreeR (Puttick 2019) to
generate the time priors for MCMCtree analyses. Table 2
shows the parameters implemented for the different
analyses; plots with the estimated age distributions
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for the different parameters for the three calibrated
nodes can be found in Supplementary material S3
available on Dryad. For each of our five analyses, two
MCMC were run for 10 million generations, sampling
every 50 generations after a burn-in phase of 1 million
generations, using the topology given by the analysis of
the 328 og matrix with IQ-TREE – CAT as a reference
tree. As measures of diagnosing convergence of the
MCMC chains we plotted the posterior means of run 1
versus run 2 for each analysis to confirm that both runs
had converged on the same distribution (Supplementary
material S4 available on Dryad) and used Tracer v1.7.1
(Rambaut et al. 2018) to ensured that all runs had
effective sample sizes (ESS’s) >200 (although some ESS
values were >140). We ran an MCMC with no data for
each analysis and generated prior and posterior density
plots of node ages (Supplementary material S5 available
on Dryad) to verify that the posterior densities were
contained within the prior densities for the calibrated
nodes (dos Reis and Yang 2019).

Analysis of Latitudinal Diversity
In order to test the existence of a latitudinal diversity

gradient in the superfamily, one would need a properly
curated database for the distribution of all the species
in Gonyleptoidea, as typically done for other organ-
isms, but this is difficult to extract from existing data.
As a conservative approach, and because a database
with species distributions does not exist (as is the
case of spiders; Piel 2018), we downloaded all exist-
ing gonyleptoid GBIF records as of April 6th, 2020
(https://doi.org/10.15468/dl.63ylx9). The 19,532 refer-
ences were binned in 10◦ latitudinal groups (Fig. 2c).
This data set has caveats, especially as the occurrences
could not be filtered to 1 per species, as many species
were identified to genus or family, and because it over-
represents North American samples, which for example,
has many occurrences for the two species of US cosmet-
ids (see Supplementary material S6 available on Dryad
for a map of Gonyleptoidea distribution based on the
records found in GBIF). It also has biases in the sampling
efforts in some specific region, like the Brazilian Atlantic
rainforest. Because the biases (over-representation of
temperate samples and underrepresentation of tropical
biodiverse regions) would not favor the existence of the
LDG, the database could provide a conservative test to
the LDG.

RESULTS AND DISCUSSION

Matrix Composition
We used occupancy thresholds and evolutionary rates

as criteria to select or exclude orthogroups in our
matrices. For matrices 1 and 2, we used an occupancy
threshold as a way to reduce orthogroups with too few
representatives. For example, in the case of the 50%
occupancy matrix (Matrix 1), an OMA orthogroup (og,

sets of orthologous genes) is selected if it is present in at
least 50% of the taxa (this is, 28 taxa). Matrix 1 with 50%
occupancy consisted of 2597 og and 806,809 aa (Fig. 1a).
Matrix 2 with 85% occupancy consisted of 328 og and
78,541 aa (Fig. 1a). For Matrix 3, we eliminated from
Matrix 1 the 30% fastest evolving genes; it consisted of
1819 og and 586,667 aa.

Phylogenetics and Time of Divergence
Figure 1b shows the phylogeny inferred by the analysis

of Matrix 2 with a nonpartitioned analysis under ML
with and LG + C60 model as selected by ModelFinder.
Remaining trees are available in the Supplementary
material available on Dryad. All our matrices and
analyses (ML, BI, and CB) support the monophyly of
Gonyleptoidea, with the families Agoristenidae and
Stygnopsidae branching early in the tree and a second
lineage including the remaining gonyleptoid famil-
ies (Fig. 1b). The remaining gonyleptoids diverged
from their sister group during the Cretaceous (Fig. 2;
Supplementary Fig. S7 available on Dryad; only the
95% HPD of the Uniform prior extends into the Late
Jurassic), and include the members of (a) Stygnidae,
(b) the clade Gerdesiidae + Cryptogeobiidae, sister
group to (c) the lineage Laminata (Kury and Villarreal
2015), comprising Cosmetidae, Metasarcidae, Nomo-
clastidae, Manaosbiidae, Cranaidae, Ampycinae, and
Gonyleptidae. Laminata has maximum support under
all analyses and has been almost universally found in
earlier molecular phylogenetic analyses (Giribet et al.
2010; Sharma and Giribet 2011; Pinto-da-Rocha et al. 2014;
Bragagnolo et al. 2015; Wong et al. 2017). The relationship
of Gerdesiidae + Cryptogeobiidae + Laminata has
been also found in multilocus Sanger-based (Bragagnolo
et al. 2015) and morphological studies (Kury and
Villarreal 2015); according to the latter, Laminata was
erected due to the position of Nomoclastidae as sister
group to Microsetata, originally defined to include
Cosmetidae, Metasarcidae, Manaosbiidae, Cranaidae,
and Gonyleptidae based on the presence of microsetae
on the surface of the ventral plate of the penis
(Kury 2014). Our analyses are not compatible with the
Microsetata hypothesis. Structure within Laminata—
a lineage characterized by the presence of a lamina
ventralis (or ventral setigerous plate) on the penis (Kury
and Villarreal 2015) and that diversified most likely
between the Late Cretaceous and the Eocene (Fig. 2;
Supplementary Fig. S7 available on Dryad)—is likewise
well supported and includes the clade Cosmetidae
+ Metasarcidae (also found with maximum support
under all analytical conditions), sister group to Nom-
oclastidae plus a lineage called Greater Gonyleptidae or
GG (Kury 2014) that comprises Gonyleptidae s.s. plus
three taxa (Ampycinae, Cranaidae, and Manaosbiidae)
forming a clade of Central American and Northern
South American gonyleptoids. Our results thus differ
from earlier work nesting Cranaidae and/or Ampycinae
within Gonyleptidae s.s. (Pinto-da-Rocha et al. 2014;
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Kury and Villarreal 2015) and justifies the use of
Ampycidae at the familial level (Ampycidae new rank).
Ampycinae was proposed as a new subfamily by Kury
(2003) as it is well defined morphologically (Kury 2003;
Kury and Alonso-Zarazaga 2011), but its phylogenetic
position requires this new rank. We thus refer to these
four clades as families: Gonyleptidae, Cranaidae, Man-
aosbiidae, and Ampycidae, equivalent to the unranked
Greater Gonyleptidae of Kury.

Phylogenetics and Biogeography of Gonyleptidae
The phylogeny of gonyleptid species, excluding

Ampycidae, shows taxonomic and biogeographic struc-
ture, and includes a relatively recent radiation of
Neotropical species that initiated rapid diversification
during the Paleocene/Eocene. The earliest splits within
Gonyleptidae are between the northern Brazilian Het-
eropachylinae and the remaining species, and then by a
clade of Chilean Pachylinae versus the rest, this Chilean
clade of interest due to its adaptation to the temperate
zone.

Structure within Gonyleptidae supports large clades
proposed earlier based on ecological, behavioral, and
chemical characters, such as the K92 clade of Caetano
and Machado (2013), comprised of Caelopyginae,
Gonyleptinae, Hernandariinae, Progonyleptoidellinae,
and Sodreaninae, although, as in the case of Pinto-
da-Rocha et al. (2014), neither Gonyleptinae nor Pro-
gonyleptoidellinae are monophyletic. Progonyleptoidel-
linae is paraphyletic with respect to the Gonyleptinae
Neosadocus, with the same structure presented in Pinto-
da-Rocha et al. (2014). This position of Neosadocus is
intriguing since its external morphology resembles more
that of other “Gonyleptinae” rather than Progonyl-
leptoidellinae, but given ours and previous analyses
(Pinto-da-Rocha et al. 2014), we propose the transfer
Neosadocus to Progonyleptoidellinae (new subfamilial
assignment). Also, as in the latter study, certain Gonylept-
inae (including Acanthogonyleptes and some Gonyleptes)
appear related to Caelopyginae and Hernandariinae,
while others (including another Gonyleptes and Gonylep-
tellus) are the sister group to all the remaining members
of the K92 clade. This brings no surprise, as Gonyleptinae
is poorly diagnosed morphologically, lacking any clear
synapomorphy. Our representatives of the CM12 clade
(Caetano and Machado 2013) (Mitobatine + Gonioso-
matinae) are sister group to a clade that includes a
species of Hernandariinae (Hernandaria una) and two
species of Pachylinae, failing to support Hernandariinae
as a clade, as H. una does not group with Pseudotrogulus.

Pachylinae comprises almost 400 species in more than
120 genera, but no morphological synapomorphies have
been proposed for this subfamily. We included here
only five genera, which do not necessarily reflect the
morphological disparity of the group. Even with such
poor taxon coverage, Pachylinae is not monophyletic,
as it was the case in previous phylogenetic analyses
(morphological or molecular) (Hara et al. 2012; Pinto-
da-Rocha et al. 2014). The inclusion of more groups from

different South American regions is urgently needed to
better understand the relationships among members of
this large group.

Out of the Tropics, or How to Become a Temperate Species
Our analyses show a clade including the temperate

Pachylinae, restricted to Chile and the Argentinean
border, to which we refer to as Pachylinae s.s. This clade
was recovered in previous studies comprising seven
genera (including species of the type-genus Pachylus
and our Sadocus and Metagyndes) (Pinto-da-Rocha et al.
2014; Bragagnolo et al. 2015) and evidences colonization
of the now temperate zone early in the history of
the group. Indeed, the temperate Pachylinae diverged
from their sister group in the Paleogene (between
the Paleocene and the Eocene), and the represented
species started diversifying between Eocene and the
Oligocene (Fig. 2; Supplementary Fig. S7 available on
Dryad), at a time when the Neotropical area exten-
ded southward into regions now considered temperate
(Romero 1986; Bernardes-de-Oliveira et al. 2014). Indeed,
the Paleocene–Eocene Thermal Maximum (PETM), ∼56
Mya, was a period of carbon release characterized by
an increase in temperature (by 5–8◦C) and shifts in
faunal and floral composition worldwide (Sluijs et al.
2007; McInerney and Wing 2011), which promoted
diversification in some clades of terrestrial arthropods
(Lackner et al. 2019). The PETM precedes the temperate
Pachyline and slightly overlaps with the 95% HPD
for three of our calibration priors for the origin of
the temperate Pachylinae, thus, although not providing
an explanation, could suggest a possible mechanism
for the OTT hypothesis, or how tropical groups may
become temperate (Jablonski et al. 2006) overcoming
physiological limitations to climate. Indeed, the Central
Chilean region was tropical to subtropical during the
Paleogene (Barreda et al. 2007). As forests extended
from today’s southern Brazil into Argentina and Chile, a
tropical clade of Pachylinae got established in this region
and later became isolated by the uplift of the Andes in the
late Miocene–Pliocene (Barreda et al. 2007), the region
becoming temperate as the planet cooled down. This
scenario for the colonization of the extratropics is both
consistent with the tree topology of Gonyleptidae and
also explains how the latitudinal diversity gradient can
be established by origination in the tropics and dispersal
to the extratropics over evolutionary timescales (Krug
et al. 2009) A complete phylogeny of Gonyleptoidea may
be however necessary to further test this hypothesis, as it
has been done in other groups of organisms (Condamine
et al. 2012; Rolland et al. 2014).

CONCLUSIONS

In this study, we used phylotranscriptomics and diver-
gence time dating to infer the evolutionary history of the
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most diverse superfamily of Opiliones, the Neotropical
Gonyleptoidea. This phylogenetic and temporal frame-
work allowed us to better understand the expansion of a
tropical clade of Gonyleptoidea into the extratropics and
provided evidence for a single net colonization of the
temperate region over a large timescale in the southern
hemisphere, perhaps suggesting that persistence in the
extratropics may be difficult for organisms that evolved
in the tropics.
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