LARGE TIME BEHAVIOR FOR A HAMILTON-JACOBI EQUATION
IN A CRITICAL COAGULATION-FRAGMENTATION MODEL
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Abstract. We study the large time behavior of the sublinear viscosity solution to a singular
Hamilton-Jacobi equation that appears in a critical Coagulation-Fragmentation model with multiplicative
coagulation and constant fragmentation kernels. Our results include complete characterizations of
stationary solutions and optimal conditions to guarantee large time convergence. In particular, we
obtain convergence results under certain natural conditions on the initial data, and a nonconvergence
result when such conditions fail.
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1. Introduction The Coagulation-Fragmentation equation (C-F) is an integrod-
ifferential equation that describes the evolution of distribution of objects via simple
mechanisms of coalescence and breakage. In its strong form, the continuous Coagulation-
Fragmentation equation reads as follows

9ip(s,t) = Qe(p)(s,t) + Qp(p)(s,t)  in (0,00) x (0,00),

o(5,0) = pols) on [0, 00). -

Here, p(s,t) > 0 is the density of clusters of particles of size s > 0 at time ¢ > 0. The
coagulation term @, and the fragmentation term Qs are given by

oo

Qu)(s:t) = [ alws =)oty (s — wut)dy = p(s.0) [ alsdolos 01y,
and
Q(p)(sut) = ~go() [ s = nndy+ [ blsmty+ sty

The coagulation kernel a and the fragmentation kernel b are non-negative and symmetric
functions on (0, 00)?.

Although the equation has a history of over a hundred years and despite the
works of many mathematicians, there are still a lot of mathematical mysteries about
it. In particular, the most basic question about wellposedness has not been addressed
satisfactorily and is an active research area. For more historical contexts and surveys of
the field, we refer the reader to the following works [1, 8, 15, 16].

In this work, we restrict our attention to the multiplicative coagulation and constant
fragmentation kernels, that is,

a(s,5) =s5 and b(s,§)=1 foralls,§>0. (A)
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2 Large time behavior for a H-J eq. in a critical C-F eq.

This is a so-called critical case (among other more complicated ones), where the existence
of mass-conserving solutions depends on the initial data. Despite multiple efforts using
different approaches, the wellposedness theory for this particular case has not been fully
established. In particular, letting m be the first moment of the initial data pg, using the
moment bound method in [15], Laurengot, under certain assumptions on initial moments,

established existence and uniqueness of mass-conserving solutions for m € (O, @).

By studying the viscosity solution to a singular Hamilton-Jacobi equation that results
from applying the Bernstein transform to equation (1.1), the second and third authors
established existence and uniqueness of mass-conserving measure valued solutions for
m € (0, %) This approach was initiated in [24], inspired by the works of Menon and
Pego, who pioneered the study of the Smoluchowski equation (C-F with pure coagulation)
via Bernstein transform [18, 19, 20, 22, 21].

Non-existence of mass-conserving solutions for m > 1 were established first in [2] by
the moment bound method and confirmed again with minimal assumptions in [24] by
studying the corresponding Hamilton-Jacobi equation. Furthermore, while uniqueness of
mass-conserving solutions for m € [1,1] was established in [24], the existence question
remains an outstanding open problem.

Here, we will not discuss the wellposedness theory but, rather, focus on studying
the dynamics of solutions. Specifically, we are interested in the long-time behavior
of the solutions when m = 1. For m € (0,1), it was shown in [24] that all solutions
will turn to dust (particles of size zero) as t — o0, i.e., limy_ o p(s,t) = mdg. The
difficulty for the case m = 1 lies in the fact that there are infinitely many stationary
solutions. This was observed by Laurencot via private communications and recorded
n [24]. Therefore, full characterizations of stationary solutions are needed. It is also
unclear from the Hamilton-Jacobi equation point of view that the viscosity solution
converges to a stationary solution as ¢ — oco. To address these questions, we need
to study more deeply the viscosity solution to the aforementioned Hamilton-Jacobi
equation.

1.1. Bernstein transform and Hamilton-Jacobi equation For a nonnegative
measure £ on [0, 00) such that [ min{1, s} pu(ds) < oo, its Bernstein transform is defined
by the following integral

Bl = [ T - e u(ds).

Writing the equation (1.1) under assumption (A) in its weak form, we have that for
every test function ¢ € BC([0,00)) N Lip([0, 00)) such that ¢(0) =0

/ 6(s)p(s,1)d / / (54 8) — 6(s) — 6(8))sp(s, )3p(5, ) dsds

5 [ (] ) 06 - oo - 8 ds)otst) s,

Letting ¢”(s) = 1 — e~** be a test function in the above for each # > 0, and denote

Fla,t) = Blpl(@,t) and  Fyx) < Bloo)(a).

(1.2)

Here, pg > 0 is the given initial data. If conservation of mass (first moment) holds, that
is,

mit) = [ " spls,tyds = / " spo(s)ds = m
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for all ¢ > 0 for some given m > 0, then we have the following equation (see Appendix A
for a derivation)

OF + (0, F —m)(0,F—m—-1)+ £ -1=0 in (0,00)?,
0< F(a,t) < mz on [0, 00)?, (1.3)
F(z,0) = Fy(x) on [0, c0).

We focus on the case that m = 1 in this paper. Thus, the main equation of interests
is

WF+ 30, F—1)(0,F-2)+ L -1=0 in (0,00)2,
0< F(a:,t) < on [0,00)?, (1.4)
F(x,0) = FO(J:) on [0, c0).

Appropriate conditions on initial data Fj will be specified in the next subsection. Large
time behavior of (1.4) has not been studied in the literature, and this was left as an open
problem in [24]. We are always concerned here with viscosity solutions of first-order
Hamilton-Jacobi equations, and the adjective “viscosity” is omitted henceforth.

1.2. Main results In this subsection, we give an outline of our findings. For each
fixed z > 0, F(z,t) is bounded for all t > 0 as 0 < F(z,t) < z. Therefore, for stationary

solutions, it is reasonable to impose that 0;F = 0, and hence, (1.4) becomes
(0. F—1)(0,F -2)+ £ -1=0 in (0,00), (L5)
0< F(z) <= on [0, 00). '

Our first goal is to characterize all continuous sublinear viscosity solutions to (1.5).

THEOREM 1.1. Let F' € C([0,00)) be a sublinear viscosity solution to (1.5). Then, either
F =0 or there exists ¢ > 0 such that

1.
F(z) = EF(C.’L‘) for all x > 0.
Here, F :[0,00) — [0,00) is such that F(0) =0, and

(\/m+f>1/3 (m f)l/i’)}

8, F (x) = .

\f
for xg = %.

REMARK 1.1. Note that we do not require any differentiability of F a priori in the above
theorem.

Next, we study the large time behavior of the viscosity solution to (1.4). Large time
behavior for Hamilton-Jacobi equations is a rich and very active subject. We refer the
readers to [11, 5, 9, 7] in the periodic setting, and [6, 4, 13, 14, 12] in noncompact settings
for some representative results. It is worth emphasizing that (1.4) is in a noncompact
setting, and is not of the type that was studied earlier in the literature because of the
singular term %

For initial data Fp, we assume first that

(1.6)

< Fo(x) < z, Fy is sublinear,
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The above condition (1.6) holds true when Fp is the Bernstein transform of py = p(-,0),
whose first moment is 1. Indeed,

0< Fy(z) = / (1—e"")p(s,0)ds < / xsp(s,0)ds =z,
0 0

and, by the dominated convergence theorem,

F % gmus
lim o() = lim 7610(3,0) ds =0.

T—>00 x T—r00 0 X

Besides,
0 < 0, Fy(x) = / se " p(s,0)ds < 1,
0

and 0, Fp(0) = 1. An important point is that we do not need to require conditions on
the higher derivatives of F here in order to study large time behavior of (1.4) although
if Fy(x) = Blpo](x), then Fy is smooth.

There are three regimes of the initial data Fy to be considered: subcritical, critical,
and supercritical. We say that the initial data Fj of equation (1.4) is

1. subcritical if

— = =0; (1.7)

lim ——= =9; (1.8)
3. supercritical if

- Fo(x)
This characterization comes from the observation that the stationary solution F behaves
like O(x2/3) as x — co. Here are our large time behavior results corresponding to the
three different regimes.

THEOREM 1.2. Assume (1.6) and (1.7). Let F' be the unique viscosity solution to (1.4).
Then, as t — oo,

F(z,t) —»0 locally uniformly for x € [0, 00).

THEOREM 1.3. Assume (1.6) and (1.8) for some given § > 0. Let F be the unique

viscosity solution to (1.4), and ¢ = %. Then, as t — oo,

1.
F(z,t) » —F(cz) locally uniformly for x € [0, 00),
c

where F is given in Theorem 1.1.
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THEOREM 1.4. Assume (1.6) and (1.9). Let F' be the unique viscosity solution to (1.4).
Then, as t — oo,

F(x,t) > x locally uniformly for x € [0, 00).

We now show that the requirements on the initial condition to get large time behavior
results in Theorems 1.2-1.4 are essential. In other words, if (1.7)—(1.9) do not hold, that
is,

F F
0 < lim inf o(z) < lim sup o(z) < 00, (1.10)

z—00  2/3 00 x2/3

then large time behavior might fail.

THEOREM 1.5. Let F be the unique viscosity solution to (1.4). There exists Fy €
Lip(]0,00)) that satisfies (1.6) in the a.e. sense and (1.10) such that for some z¢ > 0,
lim;_ oo F'(zo,t) does not exist.

See [6, 14] for some related results.
Organization of the paper. The proof of Theorem 1.1 is given in Section 2, which
also contains other characterization results of viscosity solutions to (1.5). The proofs of

Theorems 1.2-1.4 are given in Section 3. In Section 4, we give the proof of Theorem 1.5,
where the initial condition Fj is constructed explicitly.

2. Characterization of all stationary sublinear solutions
This section is devoted to prove Theorem 1.1. In order to do so, we need some
preparation.

PROPOSITION 2.1. Let F be a solution to (1.5) such that F satisfies

F € C?%((0,00)) N C([0,0)),
0< 0, F(x)<1 for all x € (0,00).

Then, there exists ¢ > 0 such that

1
F(x) = EF(cx) for all x > 0.
Here, F : [0,00) — [0,00) is such that F(0) =0, and

0, () 2 L [(WWS(W)US]

N2
for xg = %.

This proposition gives more or less a similar conclusion as that in Theorem 1.1 but
it requires a more restrictive condition (2.1) on F.

Proof. Letting G =1 — 9, F and from (1.5), we get
1 1 [*
fG(G—&—l)—f/ G(y)dy=0.
2 T Jo

Therefore, for > 0,

;xG(G—i—l)—/OxG(y)dy:O.
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Differentiating in =,
1 1

which, after rearranging terms, gives

1 9,G  30,G

: G 1-G°
Integrating this equality, we get
G(x)
W =cCcrr, (22)

for £ > 0 and some fixed constant ¢ > 0.

Now, let G be a solution to the above equation when ¢ = 1. For a given z > 0,
consider the equation

vy
(1-y)3
O<y<l1.

:aj7

Denote by ¢(y) = z(1 —y)* —y for y € [0,1]. As ¢/(y) = =3z(1 —y)* =1 <0, ¢(y)
is strictly decreasing on [0,1]. Since ¢(0) = z and ¢(1) = —1, there exists a unique
y =y, € (0,1) such that ¢(y,) = 0. Letting 2 = 1 — y, we have that

1 1

B +-2-==0.
x x

The Cardano formula says that the real root z, € (0,1) of this equation is given by

% = %[(W)”g - (S

- This implies, by definition of G,

where zg = 5.

0,F(x) =%, and G(z)=1-0,F(x).

This, in fact, shows that F solves the equation (1.5).
We now deal with general ¢ > 0. To prove the scaling property, for C' > 0 denote
Fo(z) = LF(Cx), we have
Ge(z) 1 - 0,Fc(z) =1—0,F(Cx) = G(Cx).
Using equation (2.2) for C' = 1/c¢, we get

Go(z)
(1-Ge(x))?

By uniqueness of the solution to the above equation that satisfies 0 < Go < 1, we
deduce that Go = G. Therefore, Fo = F. Thus, for each solution F of equation (1.5)
satisfying (2.1), there exists a ¢ > 0 so that F(x) = 1 F(cx). O

T c
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REMARK 2.1. As noted in [10], — 5 is the minimum value of the function u — =L

—_1
at u = 5-

Besides, we have a bit further understanding of F as following. Denote by

ar) = (w>1/37 8a) = (@)UB~

Flr) — afr) - pB(r) 1 a(z)’ — B(e)®
0. F(z) Vi vz a(e)?+B(2)? + a(2)(x)
) 1

" a(@)? + B@? + a(@)B@)  a(@) + goye + 3

This gives us some further qualitative properties of 8zF(x), Indeed, it is clear that

n _ _ _ 1 1 . . .
0. F(0) =1 as a(0) = B(0) = 5+ Note, also that as z — prmm merm oL strictly decreasing
for z > % and
lim /30, F(z) =1, (2.3)
Tr—r00

x> 0, F(x) is strictly decreasing and 8, F(x) decays like x—1/3

that F is sublinear as

as x — 0o. This implies

lim Flx) = lim 9,F(z) =0.

Tz—o0 X r—00

Next is another characterization of solutions to (1.5).
PROPOSITION 2.2. Let F be a solution to (1.5) such that F satisfies

{F is concave on [0,0), (2.4)

0< 0. F(x) <1 for a.e. x € (0,00).

Then, either F =0 or there exists ¢ > 0 such that

1
F(z) = EF(C.%‘) for all x > 0.

Proof. If there exists z € (0,00) such that 9,F(z) = 0, then by the concavity of F,
we imply that 9, F(x) = 0 for all z > z. Use this relation in (1.5) to get further that
F(z) =0 for all # > z. Thus, F = 0.

We now only need to consider the case that 0 < 9,F(x) < 1 for a.e. x € (0,00). As
F is concave, © — 0, F(z) is decreasing whenever 9, F(x) is defined. Let us first show
that F € C1((0,00)). If this is not the case, then there exists z € (0, 00) such that

lim 0,F(z) =a>b= lim 0,F(z)
Tz~ z—zt
for some 0 < b < a < 1. By using (1.5) at differentiable points = of F' and let z — 2z,
x — 2T, respectively, we yield
1 F(z)

1
i(afl)(an):i(bfl)(be):lf7,
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which is absurd. Thus, F' € C'((0,00)), and of course, 0 < F(x) < z for z > 0.
We next show that F' € C?((0,00)). Equation (1.5) can be rewritten as

(&FV—3&F+2§:O,

which is a quadratic equation in terms of 9, F under the condition that 9, F € (0,1).
Thus,

3 ,/9— gL

2
As F € C1((0,)), we deduce that the right hand side of the above is C! as well,
which means that 9, F € C'((0,00)). In fact, by induction, we are able to yield that

F € C*((0,00)). We then see that F' satisfies (2.1), and use Proposition 2.1 to conclude.
|

0. F(x) =

We are ready for the proof of our main result in this section.
Proof. (Proof of Theorem 1.1) Firstly, we have that

1 F
5(8IF—1)(8IF—2):1—;<1 in (0, 00),
which yields that F is Lipschitz on [0,00), and 0 < 9, F (z) < 3 for a.e. x € [0,00). At

each differentiable point x of F(x), 0,F (x) satisfies a quadratic equation
F
(@FV—3&F+2g:0,

which means that

3+4/9 - 8E)
O F(z) = —Y

2
We claim first that
3— /9 gLz
0, F(z) = —F+— " for a.e. x € [0, 00). (2.5)

2

Assume otherwise that (2.5) does not hold true, then there exists z € (0, 00) such that
F is differentiable at z and

344,/9 8L
0. F(2) = —r— 2 >2
2
On the other hand, by the comparison principle, 0 < F(z) < z for all x € [0, 2], and F is
Lipschitz, we are able to find y € (0, z) such that F' is differentiable at y and 9, F(y) < 1.
Set
3
¢(r) = F(z) — 2% for = € [y, 2].

Of course, ¢ obtains its minimum at some point Z € [y, z]. It is not hard to see that
T #yand T # z as

N\H

2.6() <~ and 0,0(2) >
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So, Z € (y, z), which means that F'(z) — 3z has a local minimum at z. By the viscosity
supersolution test to (1.5), we yield that

() ()0 2

2\2 2 T

which is absurd.

Thus, (2.5) holds. It is important noting that the right hand side of (2.5) is
continuous in z. By the fundamental theorem of calculus, we are able to write

F(x)z/jé(i’)— 9—8F;y)> dy,

and hence, F € C*((0,00)) and (2.5) holds true for all z € (0,00). In fact, we have
F € C*((0,00)). By using the fact that 0 < F(z) < z, we imply further that

0< 0, F(z) <1,

and 0, F(x) = 0 if and only if F(x) = 0. In particular, F' is nondecreasing. It only
remains to prove that 9, F(z) < 1 for all « > 0.

If F =0, then there is nothing to consider. We hence only need to focus on the case
F # 0. Since F is also sublinear, we are able to find z > 0 such that

O0< F(x)<=x for all z > 2.
Use this in (2.5) to yield that
0< 0. F(x)<1 for all x > z. (2.6)

Thanks to (2.6), we are able to repeat the first part of the proof of Proposition 2.1 to
have that, for G =1 — 0, F,

G(x)
(1-G(x))?

=cz for all z > z.

Here, ¢ > 0 is some fixed constant. Without loss of generality, we assume ¢ = 1. By

repeating the later part of the proof of Proposition 2.1, G(z) = G(z) for z > z, and
hence,
_ 1

0, F(x) = 0, F(x) = Y P T ey g for all x > 2.

We finally claim that
0. F(x) = 0, F(x) for z > 0, (2.7)

that is, we can let z = 0 in (2.6). Indeed, if this is not the case, then there is z > 0 such
that (2.6) holds for z = z, and 9, F(2) € {0,1}. On the other hand,

0, F(2) = lim 0,F(z) = lim 0,F(x) = 0,F(%) € (0,1),

z—zt z—zt

which is absurd. Thus, (2.7) holds, and F = F. The proof is complete. O
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3. Large time behavior of (1.4)
Let F be the viscosity solution to (1.4). Under assumption (1.6), we have that F is
sublinear in z, globally Lipschitz, and

0< 0. F(z,t) <1 forae. (x,t) €[0,00)% (3.1)

We refer the reader to [24, Lemma 3.1] for a proof of this observation. This assumption
(1.6) is, however, not enough to obtain large time behavior of the viscosity solution F'(x,t)
o (1.4). It turns out that the behavior of Fy(z) for £ — oo does play an important role
in determining the behavior of F'(x,t) as t — co. If we look into the behavior of the
stationary solution F, then we see that by (2.3),
F(z) . 0, F(x) 3

lim = lim = -,
z—00 2/3 T—00 %x*l/i)’ 2

This gives us some intuition that 22/ represents a critical growth of initial condition,
and the large time behavior of F' depends crucially on the relative growth of F{y compared
to this critical growth.

3.1. Initial condition with subcritical growth In this subsection, we study
the viscosity solution with subcritical initial data.

We first recall the representation of the viscosity solution to (1.4) from optimal
control theory. For (z,t) € [0,00)2, denote by

V(x,t inf /Wml‘fs(fi)< ' 3>2d

9 = a o - + o +

(@:?) veAC(([IOI,lt],[O,oo)){ 0 26 7(s) 2 5
~(0

=T

dX
(A

b s TGO(EAT) E—tAT) ) (32)

Here, AC([0,1],[0,00)) is the space of absolutely continuous curves mapping from [0, t]
to [0, 00). Besides, t A 7, = min{t, 7.}, and

T :=1inf{s >0 : v(s) =0} < o0,

0 ifx =0,
Gla,1) := { Fo(z)  ift=0.

Bellman'’s principle of optimality claims that an optimal policy has the property that
whatever the initial state is, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision. Following to this principle, we
have the following Dynamical Programming Principle.

PROPOSITION 3.1 (Dynamical Programming Principle). For (x,t) € [0,00)? and h > 0,
we have

V(z,t+h)

hAT, 2
T 1 _ s 3 _ h
inf {/ ZemJo (—ﬁ(s)—i—) ds + Lpenye do SV (4(h), 1)
v(0)=xz 0 2 2

Lz BV, - 7))

hAT, ; 2
x 1 _ ‘57 3 _ hi
= inf { / so o i (—w<s>+2) ds+ Linarye ™o V(). 0)}.
0

v(0)==
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Here, 1ipery = 1 and 1pp>ry = 0 if b < 7y and Lpery = 0 and 1>,y = 1 if
h > 7,. The proof of Proposition 3.1 is rather standard by using the usual arguments in
the optimal control theory (see [17, 3, 23] for instance). By Proposition 3.1 and classical
techniques in the theory of viscosity solutions, we have the following result.

PROPOSITION 3.2. Assume (1.6). Let F be the unique viscosity solution to (1.4). Then,
F =V on[0,00)%

We skip the proofs of Propositions 3.1 and 3.2, and we refer the readers to [17, 3,
23] for details. By using Proposition 3.2, we prove Theorem 1.2.

Proof. (Proof of Theorem 1.2 ) Fix z > 0. Let y(s) := z + 25 for s > 0. Then,
T, = 00. By formula (3.2), we see that

" 3t
0< F(z,t)<e "°*"% F <x+2>.

Noting that

/t‘“—% L
ozt 3 o\ )

t —-2/3
e 7o ””FSTA _ (2 +1
2x ’
which implies

3t —2/3 3t\  Fo(z+ 2
0 < F(x,t) < <2 - 1) F, <9: + 2) = % 2?3, (3.3)
o (z+%)

we have

We now use (1.7) to conclude right away that
F(z,t) =0 locally uniformly for z € [0, 00).

|

REMARK 3.1. [t is worth noting that in the proof of Theorem 1.2, we do not need to
require fully condition (1.6). More precisely, condition (1.6) can be replaced by a much
weaker one

Fy € Lip([0,0)), 0< Fy(z) < . (3.4)

3.2. Initial condition with supercritical growth In this subsection, we study
the solution when the initial data is supercritical.

Proof. (Proof of Theorem 1.4) Fix y € (0,00). We note that, by backward

characteristics (or by the optimal control formulation), an optimal path X : [0,¢] — [0, c0)
with X (t) = y satisfies the Hamiltonian system

X =0,H=P(s)— 3,

> Z(s P(:
P=—9,H—(0,H)P = X((S)L - X<(>) 7 (3.5)

. P(s)? Z (s
7 =P-0H-H="5- - 2.




12 Large time behavior for a H-J eq. in a critical C-F eq.

Here, X(0) = x for some x > 0. Moreover, F is differentiable at (X (s),s), P(s) =
0. F(X(s),s), and Z(s) = F(X(s),s) for 0 < s < t. There can be more than one
optimal paths (backward characteristics), in which case F' might not be differentiable at
(y,t) = (X(t),t). In any case, thanks to (3.1), we have that 0 < P(s) <1 for 0 < s < t.
Thus,

3 . 1
—3 < X(s) < —3 for all s € (0,1),

which means that

As t — 00, X(0) — oo. Therefore, the information of Fy at +o0o0 determine the behavior
of F(y,t) as t — co.

Thanks to (1.9), for any fixed ¢ > 0, there exists r. > 0 such that,

Fo(z) > 1F’() for all z > r..

o

Denote by Fo.(z) = min{Fy(z), 2F(cz)} for > 0. Let F, be the solution to (1.4) with
initial condition Fy.. Since 1 F(cx) is a stationary solution to (1.4), and Fo.(z) = 1 F(cx)
on [r.,00), we have that

1 -
F(y,t) =2 Fe(y,t) = EF(cy) for all t > 2|r. — y|.

Thus, it is clear that

—_

litm inf F(y,t) > —F(cy) locally uniformly for y € [0, c0). (3.6)
—r 00

o

The above (3.6) holds true for every ¢ > 0. Note further that

Fley) = F(0) _ =

lim F(cy) = lim =0, F(0)y =y,

c—0t ¢ c—0+ c

which gives that

liminf F(y,t) >y locally uniformly for y € [0, c0).

t—o0
The conclusion follows. O

3.3. Initial condition with critical growth In this subsection, we study the
solution with critical initial data. We ﬁrst argue that (1.8) can be interpreted in a more

intuitive way as following. Let ¢ = g 53 Then,
1 1 Flex) 3 3 20
xli}rrgo cm2/3F(Cx) xh—{gocl?( )23~ 5elfE 3 X 3= d. (3.7)

Thus,

F
lim (cz)

=1
z—oo cFy(x)

)



Mitake, Tran and Van 13

which implies that (1.8) is equivalent to the following condition

%F(cm) — h(z) < Fy(x) <

Q|

F(cx) +h(x) forallz >0, (3.8)
for c = 25. Here, h : [0,00) — [0, 00) is a function satisfying that

lim @

T—00 x2/3

=0.

The idea of this proof is quite close to that of Theorem 1.4, so we will not include
all the details here.

Proof. (Proof of Theorem 1.3) We first note that (3.8) holds.

Fix y € (0,00). We note that, by backward characteristics (or by the optimal
control formulation), an optimal path X : [0,t] — [0,00) with X (t) = y satisfies the
Hamiltonian system (3.5). Here, X(0) = « for some = > 0, P(s) = 0, F(X(s),s), and
Z(s) = F(X(s),s) for 0 < s < t. There can be more than one optimal paths (backward
characteristics), in which case F' might not be differentiable at (y,t) = (X(¢),t). By the
same argument as in the proof of Theorem 1.4,

t
X(O):w>y+§.

As t — 00, X(0) — oo. Thus, the information of Fy at +o0o determine the behavior of
F(y,t) as t — oo.
Fix d > ¢. Thanks to (3.7) for d = ¢ and (3.8), there exists x4 > 0 such that for
T =T,
Fo(x) > = F(dx).

Since 2 F(dz) is a stationary solution to (1.3) and only information at +o00 of Fyy matters
in the behavior of F(y,t), it is clear that

1 -
o S 1
liminf F(y,t) > - F(dy).
The above (3.6) holds true for every d > ¢, which gives further that
liminf F(y,t) > lim 1F(d ) = 1F(c ) (3.9)
t—o0 vt = d—ct d yI= & Y- .

To get the upper bound, we perform the analysis in a similar way for d € (0, ¢) by noting
that, for z > 1,

1-
Fo(x) < gF(dlL’),
and hence,
. N = 1~
limsup F(y,t) < lim —F(dy) = —F(cy). (3.10)
t—o0 d—c— d c

Combine (3.9) and (3.10) to conclude. O
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4. A non-convergence result

In this section, we give the proof of Theorem 1.5. The meaning of this theorem is
that if we do not have (1.8) (or equivalently, (3.8)), then large time behavior might not
hold. In other words, our claim is that the requirements in Theorem 1.3 are optimal if
one wants to expect large time convergence. We start with the following elementary fact.

LEMMA 4.1. Let ¢1,c2 € (0,00) be such that ¢; < co. We have

1 1
Fi(z) = aF(clm) > aF(CQI) = Fy(x) forallz>0.

Proof. We have that for every x > 0,
F{(z) = F'(c1w) > F'(cow) = Fi(z) > 0.
As F1(0) = F5(0) = 0, we conclude that
Fi(z) > Fa(z) forallz >0,

as desired. O
We are now ready to explicitly construct an initial data Fj to prove Theorem 1.5.

PROPOSITION 4.1. Fiz xg > 0 and let Fy and Fy be as in Lemma 4.1. There exist
unbounded increasing sequences of positive real numbers {a;}52,, and {t;}32,, where
ag = 0, such that for

Fi(z) if © € [a4i, agi41],
Folx) = Fi(agit1) if © € [agit1, Qaita)]

Fy(z) if x € [agit2, asiys],

Fy(agitrs) + Fy(asiys)(® — asips)  if © € [agigp1, asigo],

we have Fy € Lip([0, 00)) satisfies (1.6) in the a.e. sense, and
lim F($0,t2¢+1) = Fl(l‘o) > FQ(JC()) = Zlig)lo F(xo,t%) .

1—00

Let Fj be as above. It is worth noting that, by the computation at the beginning of
Section 3.3,

3 . Fo(x) Fy(x) 3
——— = liminf — < lim sup = = <.
205/3 oo 72/3 s 22/3 201/3

Proof. The key observation here is that the characteristics X (defined in the proof
of Theorem 1.3) has bounded slopes, i.e.,

3 . 1
——-<X<—. 4.1
5 5 (4.1)
For simplicity, we first fix zg = % although the argument works for any xy > 0. The

construction of a;’s and t;’s is as follows.
Step 1. By (4.1), we have that the domain of dependence of (xg,t) € (0,00)? is

1
A(xo,to) = {x DXy + ito <z < a0+ Zto} . (42)
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t
A
0 dl dg a3 (i4 =x
Fi1G. 4.1. Initial data Fy
t
A
tol-
=1
0 — -
ol 2 a1 =3 as X

FiG. 4.2. Domains of dependence (blue) and range of influence (red)

That is, F(zg,to) is determined by information of Fy on A(xg,tp). On the other hand,
given x > xg, the range of influence when X (z,t) = xg is

I(x) = {t : ;(x—xo) <t < 2(3:—370)} . (4.3)

This means that Fy(z) might be able to influence F(xzg,t) for t € I(x).

Recall 79 = 1, and let t; = 1, a1 = 3. By noting that A(zg,t1) = [1,2] C [0,3]

by (4.2), we get that
F(xo,t1) = Fi(xo) -

Step 2. Since Fy(a1) > Fs(a1) and F is strictly increasing, there exists a unique
ag > ap such that Fy(az) = Fi(a1). By (4.3), the range of influence of [a1, ag] is

2 1 1
— ——)<t<?2 — =)
3(a1 2) (a2 2)
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Then, the domain of dependence of {zp} x [2(az — 1/2),2(az — 1/2) + 1] is

1 1 3
xOJr(agfi)<x<x0+3(a275)+§.

Then, let to = 2(az —1/2) +1/2 and as = 3(az — 1/2) + 2. By construction, we have
that the domain of dependence of (z,t2) is contained in (a9, as) and therefore,

F(l’o,tz) = FQ(&C()) .

Let as > ag so that Fy(as) + F(as)(as — az) = Fi(as) (a4 exists because Fy is
sublinear). Then, we pick t3 and a5 the same way with picking ¢» and as, i.e.,

1 1 1
t3:2(a4—§)+§ and a5:3(a4—§)+2.

Reasoning as above, we conclude that
F(LL'(),tg) = Fl(xo) .

Step 3. Repeat Step 2 indefinitely. By construction, Fy € Lip(]0, 00)) satisfies (1.6)
in the a.e. sense, and

F(l‘o, t2i+1) = F1($0) and F(l‘o,tgi) = FQ(Z‘Q)

for every ¢ € N. This implies what we want to prove. O

REMARK 4.1. We deliberately avoided the regions where shocks might occur in the
above construction. However, viscosity solutions make sense for all time and still admit
characteristics where there is no shocks.

Proof. (Proof of Theorem 1.5) The nonconvergence result follows immediately
from Proposition 4.1. O
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#19K03580, #19H00639, #17KK0093, #20H01816. HT is supported in part by NSF
grant DMS-1664424 and NSF CAREER grant DMS-1843320.

Appendix A. Derivation of Hamilton-Jacobi equation (1.3). We give the
derivation of equation (1.3) here for completeness of the paper, which is taken from [24].
In order to derive equation (1.3), we utilize the weak form of the C-F equation (1.2)
with the test function ¢*(s) = 1 — e~ **. By noting the important identity that

¢*(s+8) — ¢"(s) — ¢"(8) = —¢"(s)9"(3),

/ / (1—e T2 1 4 o7 _ 1 4 e sp(s,1)p(8, ) dids
/ (1—e ™ —14e 797 1 4 e75%) d3 p(s,t) ds
1 (o) o0 _ . . . N
= —f/ (1 —e7")(1 — e ")sp(s,t)8p(8,t) dids
0

0

- - /Ooo(—s —se” % + %(1 —e*"))p(s,t)ds
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- —%(ml(t) — 0, F(z,t)* + mlz(t) + &”Fém’t) - g
- —%(ml(t) — 0p F(,1))(ma(t) — 0uF (w,) + 1) — § +ma(t).

Equation (1.3) follows if we assume conservation of mass, i.e.,

mi(t)=m forallt>0.
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