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ABSTRACT. We study and characterize the optimal rates of convergence in periodic
homogenization of linear elliptic equations in non-divergence form. We obtain that
the optimal rate of convergence is either O(¢) or O(g2?) depending on the diffusion
matrix A, source term f, and boundary data g. Moreover, we show that the set of
diffusion matrices A that give optimal rate O(e) is open and dense in the set of C?
periodic, symmetric, and positive definite matrices, which means that generically, the
optimal rate is O(e).

1. INTRODUCTION

In this paper, we are interested in studying and characterizing the optimal rates of
convergence in periodic homogenization of linear elliptic equations in non-divergence
form. Let U C R™ be a given bounded domain with smooth boundary. The equation
of our main interest is

{_% (2)us,,, = flx) in U, (1.1)

ut =g on OU.

The matrix function A(y) = (ai;)1<ij<n € C2(R",R™) is always assumed to be sym-
metric, Z"-periodic, and positive definite for all y € R™. Denote by T" = R"/Z" the
flat n-dimensional torus, and S¥ the set of all real symmetric, positive definite matrices
of size n x n, then we can also write that A € C? (T",S%). Assume f € C*(U) and
g € C*(0U). In this paper, we always use the Einstein summation convention.

The homogenization problem (1.1) was discussed in the classical books of Bensous-
san, Lions, Papanicolaou [2], Jikov, Kozlov, Oleinik [9]. It is well-known that, as ¢ — 0,
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u® — u uniformly on U, where u solves the following effective equation

{—Eij umimj = f(.fb') n U,

1.2
u=gq on OU. (1.2)

Here, A = {@;;}1<i j<n is the effective matriz with constant entries, which is determined
as follows. For each fixed (k,l) € {1,...,n}?, consider the solution v* of the (k,[)-th

cell problem

—ai(y)vyt, (y) = au(y) = —aw,  yeT", (1.3)

where @, € R is the unique constant such that (1.3) has a solution v*. In fact, v¥
is unique up to an additive constant by the strong maximum principle. Then, for a
symmetric matrix M, the corresponding corrector is

v(y, M) = Mo (y). (1.4)
It is clear that v(y, M) solves
_aij(Mij + inyj (y7 M)) - _az]Mz in T™.

On the other hand, A can also be determined through the corresponding invariant
measure as follows. Let r € C'(T™) be the unique solution to

{—(aixw(y»w —0  inT"

(1.5)
r>0  and Jpn 7(y) dy = 1.

We say that r is the invariant measure of the matrix A € C*(T",S%). See Freidlin
[7], Avellaneda, Lin [1], Evans [6], Engquist, Souganidis [5]. Multiply (1.3) by r and
integrate to yield, for 1 < k,l < n,

ay = /n ar(y)r(y) dy.
And thus,
A= [ Awr@dy

Our main focus in this paper is to understand the optimal rate of convergence of u® to
u, that is, the optimal upper bound of ||u® — u||pe(y as € — 07. Heuristically, by the
two scale asymptotic expansions, around a given point zo € U with M = D?u(xg), one
has the following expansion of u® for x ~ x:

uf (z) ~ u(z) + % (;, M) = u(zx) + 2™ (g) Ugp 2y (T0).

Naively, this suggests that |u®(x) — u(z)| < Ce? for x = g, and we might be able to
obtain the rate of convergence O(g?) of ||u® — ul| () as € — 0. Of course, this O(g?)
rate, if obtained, is optimal.

However, in the literature, only an O(e) rate is known.



OPTIMAL RATES OF CONVERGENCE 3

Theorem 1.1 ([2, Theorem 5.1, page 230], [9, page 33]). Assume that f € C? (U) and
g € CY(OU). Then, there exists C > 0 depending only on the ellipticity of A, f, g such
that

||UE — u”L‘X’(U) S Ce. (16)

In fact, using the doubling variable method in the theory of viscosity solutions, the
regularity of f and ¢ can be relaxed to allow f € C* (U) and g € C3(9U). In any case,
the regularity of f and ¢ is not the main concern in this paper.

Theorem 1.1 is well known in the literature. See the classical books of Bensoussan,
Lions, Papanicolaou [2], Jikov, Kozlov, Oleinik [9], and the review paper of Engquist,
Souganidis [5]. For the fully nonlinear settings, see Caffarelli, Souganidis [3], Kim, Lee
[10]. For some numerical results in this direction, see Froese, Oberman [8], Capdeboscq,
Sprekeler, Siili [4]. This O(e) rate of convergence is not known to be optimal or not.
Indeed, we have not yet been able to find any discussion on the optimality of O(e) in
the literature.

Our paper provides satisfactory results to fill in this gap of knowledge in the lit-
erature. It is one of our goals to clear out a misconception that the optimal rate
of convergence is always O(e?), which is false in both periodic and random settings.
Surprisingly, we can show that “almost all” matrices A € C?*(T", S?) give an optimal
rate of O(g). To be more specific, such matrices form an open and dense set under
the C?(T", 8) topology. Furthermore, we provide examples where the optimal rate of
homogenization is O(?) when the diffusion matrix A, source term f, and boundary
data g satisfy special conditions.

Since the literature on homogenization is vast, we only give references on periodic
homogenization of non-divergence form elliptic equations in the paper. We describe
our main results in the following section.

1.1. Main results. Let us now proceed to discuss about optimal rates of convergence
of u® to u. For 1 < j,k, 1 < n fixed, denote by

B =) = [ aywell i) dy w7)

Note that cfl(A) depends only on A but in a highly nonlinear way.
Set

h(z) = c?lux].xkxl(x) for all z € U.

Let z be the solution to

{—dijzxixj = —h(ZE) in U, (18)

z=0 on OU.

Here is our first main result.
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Theorem 1.2. Assume that f € C* (U) and g € C°(0U). Then, there exists C > 0
depending only on the ellipticity of A, f, g such that

|u — u — 2ez|| oo ry < CE (1.9)
In particular, the following claims hold.
(1) If h = 0, then ||[u® — ull~@) < Ce?, and this rate of convergence O(e?) is

optimal.
(ii) Ifh # 0, then ||u® —u|| ey < Ce, and this rate of convergence O(e) is optimal.

Of course, this theorem is rather abstract as we do not know precisely what h and
z are in general. It is clear that h = 0 if and only if z = 0, although z depends not
only on h but also on the effective matrix A. In order to understand deeper (1.9), it
is necessary to understand more about qualitative behavior of A. In particular, it is
important to know whether situations (i) and (ii) can happen or not. It turns out that
this is the case.

Corollary 1.3. If there exist j, k,l € {1,...,n} such that c;?l # 0, then we can find
f, g such that situation (ii) of Theorem 1.2 holds true.

Based on the above results, we see that cg‘?l(A) for 1 < 7, k,l < n determine whether
the optimal rate of convergence is O(¢?) or O(g) when no special conditions are imposed
on f and g. This leads us to the following classification of matrices in C? (T", Sﬁ)

Definition 1. Let A € C? (T”,Sﬁ). If cfl(A) =0 forall1 < j,k,1 <mn, then we say
that A is a c-good matriz. Otherwise, A is a c-bad matriz.

Clearly, c-good matrices give optimal rate of convergence O(g?) as h = 0. And, for
c-bad matrices, there are choices of f and ¢ such that optimal rate of convergence is
only O(e) by Corollary 1.3.

A trivial example of a c-good matrix is the identity matrix A = I. But does a c¢-
bad matrix ever exist? A positive answer to this question would mean that O(e) is the
optimal rate in the general setting. Furthermore, do we expect the majority of matrices
in C? (']I‘”, Sﬁ) to be good or bad? To the best of our knowledge, these questions were
not yet studied in the literature, and we view them as the main challenges in our paper.

To answer these questions, we let the topology of C? (T",Sﬁ) be induced by the
following metric

n
d(A,B) = |A=Blc2 = > llai = bijllc2m). for A, B € C*(T",S}).
ij=1
As our second main result, we show that the set of c-bad matrices “dominates”,

confirming that an optimal rate of O(g) should be expected for the “majority” of
matrices A € C*(T", S?).

Theorem 1.4. Assume n > 2. The set of c-bad matrices is open and dense in
c? (T, S%).
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Remark 1. Theorem 1.2, Corollary 1.3, and Theorem 1.4 allow us to conclude that,
generically, the optimal rate of convergence of u® —u to 0 in LP(U) is also O(e) for any
given p > 1.

We next give several important cases where situation (i) of Theorem 1.2 occurs.

Theorem 1.5. If one of the following points happens

(a) u is quadratic in U, that is, D*u is a constant matriz in U;

(b) (aij(y)r(y))y, =0 forall1 <j <n, andy € T";

(c) A is a shifted even function, namely, there exists x € T" such that A(x —y) =
A(z +vy) for ally € T;

then situation (1) of Theorem 1.2 holds true.

Remark 2. Let us discuss condition (b) of Theorem 1.5 here. Firstly, it is clear that
if (as;(y)r(y))y, =0 for all 1 < j <n, and y € T?, then ¢} =0 for all 1 < j, k, 1 < n.

Secondly, it is worth noting that the terms (a;;(y)r(y)), for all 1 < j < n were
already discussed in Avellaneda, Lin [1]. In [1], it was denoted by

b;(y) = —(ai; ()7 (y))y:-

Under condition (b), we are able to write our non-divergence form operator —ag;(y)@y,y,
in divergence form by using the invariant measure r as

()W) by = — (Wag)ey,),  for all ¢ € C*(T").

Corollary 1.6. We have situation (b) in Theorem 1.5 if one of the following conditions
holds true
o A(y) = a(y)I, for some given a € C*(T™, (0, 00));
o A(y) = diag{ai(y1),a2(v2), - ., an(yn)} for some a; € C*(T,(0,00)) for all 1 <
1< n;
o A(y) = diag{ai(y),as(y), ..., an(y)} for some a; € C*(T",(0,00)) such that a;
1s independent of y; for all 1 <1 < n;
o A(y) = A(y1), that is, A depends only on y;.

In particular, in dimension n = 1, A(y) = a(y), and so all matrices in C? (T, S, ) are
c-good. The specific cases of A discussed in the above corollary match exactly with the
discussions and the numerical results in Froese, Oberman [8] (see examples on layered
materials therein). We only list some representative cases of A in Corollary 1.6, and
one can come up with other similar examples of these types.

1.2. Organization of the paper. In Section 2, we prove Theorems 1.1 and 1.2,
and also Corollary 1.3. Analysis on c-bad matrices and the proof of Theorem 1.4 are
provided in Section 3. In particular, we show that the set of c-bad matrices is nonempty
and construct some explicit examples. We give proofs of Theorem 1.5 and Corollary 1.6
in Section 4.
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Notations. The flat n-dimensional torus is denoted by T" = R"/Z". For y € T", we
write ¥ = (Y1,%2,--.,Yn). Let S} be the set of all real symmetric, positive definite
matrices of size n. Denote by I, the identity matrix of size n.

Acknowledgement. We would like to thank Fanghua Lin for some very useful dis-
cussions.

2. PROOFS OF THEOREMS 1.1 AND 1.2
Proof of Theorem 1.1. Set
¢°(z) = u(z) + %0 (£, D*u(z)) = u(z) + 2™ (L) tpya (2) for all x € U.
Then,

= TGy (f) [ (u$2%<x> + vlzjfyj (%) Uz, ($)> +e%oM (%) uzﬂﬁkﬂﬁl<x>
+ 2ev§f (£) Uo,zpa (x)}
= = Uy Ug,a, () + O(e?) — 2ea;; (f) v];l (f) Ug 20, (T)
= f(z) + O(*) + O(e).
Then, by the usual maximum principle,
[0 = ¢l L=w) < Ce,
which gives (1.6). O

Remark 3. From the proof above, the O(e) rate comes from a;; (£) 05 (2) uy 0,0, ().
Hence, in order to investigate the optimal rate, one needs to understand better the

contribution of the source term a;; (£) v (£) ug, 4,4, (x) to (1.1).

Proof of Theorem 1.2. We consider the following equation

—aij (£) Wi, = i (2) vyl () oo (@) i U, o
w* =0 on OU.
For 1 < d, k,l < n fixed, denote by p! € C(T") a solution to
—ai ()P (y) = aa(y)vop (y) + ¢ in T™

By (1.7), we can use the invariant measure r to compute c%' as

& = [ ety = [ (@)oot @y
Next, define
Vv (z) = g2pikt (f) Ug oy (T) forall z € U.
Then,
— Qi (%) oEciocj = Qg (f) Ulzjzl (f) 2z (4) + h(z) + O(e).
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Let 2¢ be the solution to

{—aij (%) 2w, = —h(2) in U, (2.2)
2 =0 on OU.
By the maximum principle and Theorem 1.1, we obtain the following estimates
[(w® = ¢%) = 2% Loy < C,
and (recall that z is the solution to (1.8))
2 = 2llume) < Ce.
Thus,
[(w® = %) = 2] L) < Ce. (2.3)
On the other hand, set ¢°(z) = ¢°(x) 4+ 2ew®(z). Then
T :
~aij (2) ¢h, = @)+ O T,
and ||uf — || oo (o) < Ce®. Therefore, by the maximum principle again,
[0 — ¢F[| L) < Ce®. (2.4)

Combine (2.3) and (2.4) to yield
|u — u — 2ez|| o ry < CE.

We thus obtain (1.9). If h = 0, then 2z = 0, and (1.9) gives claim (i) right away. In
particular, the optimal rate of convergence of ||u® — u||p(r) is O(e?). Else, if h # 0,
then z # 0, and claim (ii) holds with optimal rate O(e). O

Finally, we give a proof of Corollary 1.3.

Proof of Corollary 1.3. Assume that cj?l # 0 for some fixed 1 < j,k,l < n. Consider
the equation (1.2) with

f(x) = =2 @z + QG + ajzy),  g(x) = vz, for all z € U,
Then, it is straightforward that the solution to (1.2) is
u(x) = zjrpm for all z € U.

In particular, h = &' # 0 in U. O
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3. ANALYSIS ON ¢-BAD MATRICES

3.1. The existence of c-bad matrices. Let us first show that the set of c-bad ma-
trices is not empty for n > 2.

Proposition 3.1. Assume n > 2. The set of c-bad matrices is not empty.

We will provide two different proofs of Proposition 3.1 in dimension n = 2. The
first proof relies on an explicit construction of A € C? (T?,8%) such that c}'(A) # 0,
whereas the second proof is via contradiction. The corresponding proofs in higher
dimensions are similar.

First proof of Proposition 3.1. We only consider the two dimensional case n = 2.

Let A%(y) = diag{1, a(y)} for some a € C>(T?, (0, 00)) such that
(log )y, y, # 0. (3.1)

Denote by r° the corresponding invariant measure of A°, that is,

0 (ay))yy =0 in T?
>0 and - fLr0(y)dy = 1.

First, we claim that 7"21 # 0. Indeed, assume otherwise that 7”21 = 0, then

(a(y)ro)yﬂm =0,

which, together with the periodicity of a(y)r®(y), implies

a(y)r’(y) = o(y1)
for some 1-periodic function ¢ € C*°(T, (0, 0)). Using the fact that rgl =0, we get

0= (M) _ 'y)aly) — oy (y)

a(y) a(y)?
Therefore, (log¢(y1)) = (log a(y)),,, and hence,
(log a)y1y2 =0,

which contradicts (3.1).
Next, let v(y) = sr)) (y) for some s > 0 sufficiently small such that

(Vs (U) + ()0 ()] = 817,40, (W) + (W) (W) < 5 fory € T2
We let A(y) = diag{a1(y), a2(y)} be the matrix with
a1(y) = [1+ 0y, (9) + W)V (1)) a2(y) = aly)aa(y)  fory € T
By the choice of v, it is clear that % < ay; < 2. Using the formula of aq, as, one has
—a1(Y) Uy — @2(Y)Vypy, — a1(y) = —1 in T?.

Hence v solves the cell problem (1.3) for k = [ = 1. Therefore, v = v!'! and @;; = 1.
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Let r be the invariant measure corresponding to A = a;(y)A°. Note that

B Zlgzi = [1+ vy (1) + (W) vy (1) 7 (1) for y € T2
Therefore,
o = /'[rz ar(y)r(y)vy (y) dy = 8/11‘2 )Ty, () dy = —s /T2(r21)2 dy # 0.

O

The second approach is based on an asymptotic expansion at infinity. We aim at
understanding deeper about the invariant measure and derive various consequences.
Consider a family of matrices { A*} indexed by s > 0 of the form

A*(y) = diag{ars(y), sans(y)}  fory e T,
where a5, ags € C(T?), and there exists C' > 0 such that

1
5 S Q1s, A2s S C

Let r® be the invariant measure of A®. That is, r® solves

{—(als(y)rs(y))ylm - S(GZSTS(y))yzyz =0 in T,

(3.2)
r* >0 and Jp2 5 (y) dy = 1.

To simplify our notions a bit, let v'* be a solution to the cell problem

—ays(y)v,’,, — saxs(y)v,S, — as(y) = —@  in T

We now want to study the asymptotic of r* as s — oo.

Theorem 3.2. Assume that a5 — a1, ass — as uniformly in T? for some ay,as €
C(T2,[§,C)). Then, r* — 1 in L*(T?) as s — oo, where

B
as(y) (J, 2 dy)

Here, B > 0 is a scaling constant so that [, r(y)dy = 1.

fory € T2

Proof. We divide the proof into a few steps.

Step 1. We first obtain a priori estimates for r*. Multiply (3.2) by r* and integrate
by parts to get

0= / (a157%)a, 75, + S(a2sr%)e,ry, do
T2

:/ ars(r3,)? + sags(r3,)? da + / (@16)2, 7773, + 5(25)0, 77, d
T2 T?
1

_ 5 \2 5 \2 _ 5\2
50 11‘2(7“351) —1—3(7“12) dzx C’(1+s)/ (r®)* dx.

'ﬂ‘Q

>
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In particular,
/ (T;2)2 dr < C’/ (r*)? dz. (3.3)
T2 T2
Next, multiply (3.2) by assr® and integrate by parts and do the estimates in the similar
fashion as above to yield

/ (r2,)% + s((agsr®)s,)? dz < C [ (r*)* du. (3.4)
T2 T2
Combine (3.3) and (3.4) to deduce that
|Dré1? + s((agsr®)e, ) do < C’/ (r*)? dz, (3.5)
T2 T2
and in particular,
| Dr®||2 < C||r®|| 2. (3.6)

Note that 2* = co. By Sobolev’s inequalities and (3.6),
[7°0ls < CIr®ll 2 + [| Dl 12) < Cllr®| 2
On the other hand, by Holder’s inequality and the fact that fTZ r*dx = 1, we have

it = ([ era) ([ra) = ([ere) =

Combine the two inequalities above to get ||7°||,2 < C. This, together with (3.5),
implies
17l 22 + [1D7°[| 22 + 5[/ (@257 as || 2 < C. (3.7)

Step 2. By compactness, by passing to a subsequence if needed as s — oo, we have

rS—=r in L?(T?),
Dr® — Dr weakly in L?(T?),
(agr)z, = 0.

Thus, we have that
- 5(%) 5(931)
r(z) = 2 (7) and o) d

Here, € is a periodic function and £ > 0 in T. We aim at characterizing £ better. Let
¢ = ¢(x1) € C°(T) be a test function. Multiply (3.2) with ¢ and integrate by parts
to have

r=1.

/1r2 ars(z)r*(x)d" (x1) dredry = 0.

Let s — oo and use the formula of r to yield

[ ([ 25 ) sty =
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([ 2 m)sa) -0

([ 28 4n.) e(o) = 4+ 5

for some constants A, B € R. As the left hand side above is an 1-periodic function, we
get that A = 0, which implies

Therefore,

which means

B
r(z) = : for z € T?.
ax(@) ( J, 2 day)
Again, B > 0 is simply a scaling constant so that fT2 x)dr =1. O

Here is another way of showing that ¢}!(-) # 0 in C? (T?,8?). This proof is indirect.

Second proof of Proposition 3.1. We prove by contradiction. Assume that the propo-
sition fails, then c}'(A) = 0 for all A € C? (T?,82).
Let 6 € C>(T?[1,2]) and ¥ € C’OO(’]I‘Q) be two functions such that

/ T o) day Vo 42 7 0- (3.8)
T2 Jo

Let Co = 2 (||6]]z= + 1) || D%|| =, and set
P(@)

1s —
v (z) Cos
Consider a family of matrices A* = diag{ays, sass}, s > 1, with
_ 0 0 1s -1 _ 0 (x)wzlzl wCEQIQ -1
A2s = |: (l‘) + ( ($> $1:E1 + vazxg)] - (.’,C) + Cos +

and a1s := 0(x)ags. By the definition of Cy, we have % < ags < 2. Moreover, as, —

-1
ay = [H(x) —i—w””c—?;?] and a;;, — a; := 6(x)ay uniformly in T? as s — oco. By
Theorem 3.2, as s — 00, the invariant measure 7° of A® converges in L*(T?) to

B
r(z) = for x € T>.

fo de
Further, observe that v'® solves the (1,1)-th cell problem (cf. (1.3)) of A*:

—ars(z)vyS,, — sass(@)vy,, — ars(z) = a1 == —1 in T2

By our assumption, c}'(A*) = 0 for all s > 1. Hence, for all s > 1,

0 = Cosci(A%) = / a1s(z)re(x),, (x) dx

T2
Therefore,

0=lim [ as(x)r®(x),, (z)de = / ay(x)r(z),, (x)de = B

S§—00 T2 T2 T2 fO

z/}m dx,
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which contradicts (3.8). O

3.2. The set of c-bad matrices is open and dense in C? (T”,Sﬁ). We first show
that A — c#(A) is continuous in C? (T",S%).

Lemma 3.3. We have that A — ¢§'(A) is continuous in C* (T",S%).

Sketch of proof. Take a sequence {A™} C C?(T",8%) such that [[A™ — Afc2 — 0
as m — oo for some A € C?(T",8}). Write A™(y) = (a’(y))1<ij<n and their
corresponding effective matrices as A™ = (a%)1<; j<n-

Fix 1 < k,l < m. For each m € N, the corresponding cell problem is

—aii (Y vy, (Y) — ag(y) = —ay in T".

By subtracting to a constant, we suppose that v (0) = 0. By usual a priori estimates,
for fixed a € (0,1), there exists C' > 0 independent of m such that

0" c2aqrny < C (14 ||A™]|coa) < C.
Therefore, it is not hard to see that v™ — v in C?(T™), where v solves
=i (Y) 0y, (Y) — ami(y) = = in T
Next, let {r™} and r be the invariant measures corresponding to {A™} and A, respec-

tively. By repeating Step 1 of the proof of Theorem 3.2, it is clear that there exists a
constant C' > 0 independent of m so that

||7”m||L2(Tn) + ||D7“m||L2(Tn) < C.

By compactness, we also see that r™ — r in L?(T"). Thus,

lim cfl(Am) = lim agi (y)vy: (y)r™ (y) dy = / a;j(y)vy, (y)r(y) dy = c?l(A).

m—00 m—00 [rn n

d

We now provide a proof of Theorem 1.4. Note that Proposition 3.1 is not needed
here in the proof, but some key ideas in its proof are used essentially.

Proof of Theorem 1.4. As A — cg‘?l(A) is continuous in C? (T",Sﬁ), the set of c-bad
matrices is open in C? (T”, S:&) We therefore only need to show that this set is dense.

Fix a ¢-good matrix A° € C? (T",87) and § > 0. Our aim is to show the existence
of a c-bad matrix A € C* (T",S7) such that |4 — A%||c2 < 6. Let r° be the invariant
measure corresponding to A°.

Step 1. We first aim at finding A' € C? (T",S%) such that || A" — A%||c2 <  and
(ai; () 1))y, # 0

for some 1 < j < n. Here r' denotes the invariant measure of A'. Of course, if

(a2-(y)r°(y))y: Z 0 for some j € {1,2,...,n}, then we simply let A' = A°. Otherwise,

ij
(a’?j(y)ro(y)>yi =0 forall 1 <j <n.
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In this case, we take £ € C*°(T) with & # 0, and define A' = (a};)1<i j<n as

ij

af (y) + e for i = j =1,
aj;(y) = ad(y) — e for i = j =2,
ag; (y) otherwise.

Choosing ¢ with [|¢]|c2(r) sufficiently small, we have ||A! — A2 < 4. It is not hard

to see that r! = 1% as

_(agj(yﬁo(y))yiyj =9 [(£(y1 + ?/2))y2y2 - (§(y1 + yZ))ywl] =0.
Moreover,
(a5 () (y)y, = 08" (1 + y2) £ 0.

Step 1 is complete.

Step 2. Next, we will find a c-bad matrix A such that |A' — Al|c2= < £. Of course, if
ci'(AY) # 0, then A is c-bad and we simply put A = A'. If ¢]'(A') = 0, then, using
the same idea as in the proof of Proposition 3.1, we will construct A as follows. By the
construction of A', without loss of generality, we assume

(@i (Y)r' )y, Z 0.
Let ¢(y) = s(ah @) ®))y 1Y) = [L+ ak (1) by, (v)] " and set

Ay) =v(y)Al(y),

where s > 0 is chosen to be small enough so that ||A' — Allc2 < 2. Note that the
invariant measure 7(y) of A(y) = v(y)A'(y) is

' (y)
Y(y)

r(y) = = [L+a;(y) by, ()] ' (y)  fory € T".
It remains to show that A is c-bad. To this end, observe that
—aijbyy; — 7 = —Vajbyy, +1)=~1  in T
Recall that v!'! solves the (1, 1)-th cell problem (1.3) for A':
_a’ilj (y)vgi'lyj(y> - ail@) = _6%1 in T".

Let v(y) = v (y) + @1,¢(y). Thanks to the above identities,

—aij (Y) gy, (y) — ann(y) = —ay, in T
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That is, v solves the (1, 1)-th cell problem (1.3) for A. Thus,
) = [ anwrty)o o) dy
= [ b ey == | (a0 o) +atiot) do
=) — by [ (ah @ W) o) dy
— sty [ ((aho)r @) dy 2.

Therefore, A is c-bad and |4 — A°|¢2 < . The proof is complete. O

4. OPTIMAL RATE OF CONVERGENCE O(g?)

In this section, we discuss the situations where the optimal rate of convergence of
|u® — ul| o7y is O(g?). Let us give proofs of Theorem 1.5 and Corollary 1.6.

Proof of Theorem 1.5. We only need to show that h = 0 in all situations. In the first
situation, D?u is a constant matrix, then clearly D3u = 0 in U, and hence h = 0.

In the second situation, (a;;(y)r(y)),, =0 for all 1 < j <n, and y € T". Then

G = / Cag )y )r(y) dy = — / (as (W) (y))us ()" (y) dy = 0,

which implies h = 0.

Finally, in the last situation, we assume x = 0 without loss of generality. As A is

even, we see that v* and r are also even for 1 < k,I < n. Then v* is odd, that is,

Yi
v (y) = —vf(—y). Hence, y — a;;(y)v)! (y)r(y) is odd as well, which gives that

& = [ el dy o
U
Proof of Corollary 1.6. We aim at showing (a;;(y)r(y)),, = 0 for all 1 < j < n, and

y € T" in all cases.

In the first case, A(y) = a(y)I, for some a € C*(T", (0,00)). Then, the invariant
measure r is simply 7(y) = c/a(y) for y € T", where ¢ = [ [, 1/a(y) dy}_l. It is clear
then that (a;;(y)r(y)),, =0 for 1 <j <n.

In the second case, we have A(y) = diag{ai(y1),a2(y2),...,a,(y,)} for some a; €
C*(T, (0,00)), 1 <i < n. The invariant measure of A is

c
a1 (y1)az(y2) - - an(yn)

where ¢ > 0 is a normalization constant such that an r(y)dy = 1. We again get that
(ai;(y)r(y))y, = 0.

r(y) =
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Thirdly, we consider the situation where A(y) = diag{ai(y), as(y),...,a.(y)} for
some a; € C*(T", (0,00)) such that a; is independent of y; for all 1 < ¢ < n. This case
is even more straightforward as r = 1.

Lastly, in the fourth situation where A(y) = A(y;), it is not hard to see here that

(y) = c
" an(y)  an(y)
where ¢ > 0 is a normalization constant such that [, r(y)dy = 1. It is clear then that
(ai(y)r(y))y, =0 for 1 <j <n. O
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