STATE-CONSTRAINT STATIC HAMILTON-JACOBI EQUATIONS IN
NESTED DOMAINS

YEONEUNG KIM, HUNG V. TRAN, AND SON N. T. TU

ABSTRACT. We study state-constraint static Hamilton—Jacobi equations in a sequence of
domains {Qy}xeny in R™ such that Qi C Qx4 for all k € N. We obtain rates of conver-
gence of uy, the solution to the state-constraint problem in Qy, to u, the solution to the
corresponding problem in Q = (J, cy Qx. In many cases, the rates obtained are proven to
be optimal. Various new examples and discussions are provided at the end of the paper.

1. INTRODUCTION

Let {Qy hen be a sequence of domains in R™ such that Q, € Q¢ for all k € N. We say
that {QyJxen is a sequence of nested domains. Then, QO = [J, .y Qx is also a domain in R™.
Let H: Q x R™ — R be a given continuous Hamiltonian. In this paper, we are interested in
studying state-constraint solutions to the following static Hamilton-Jacobi equations:

u(x) + H(x,Duk(x)) =0 in Q, (HJy)

and
u(x) + H(x,Du(x)) =0  in Q. (HJ)

The precise definition of state-constraint viscosity solutions is given in Section 2. Under
some appropriate conditions, (HJy) has a unique state-constraint viscosity solution uy €
C(Qy) for each k € N, and (HJ) has a unique state-constraint viscosity solution u € C(Q).
Furthermore, by a priori estimates and the stability results of viscosity solutions, we have that
ux — u locally uniformly on Q. Our main focus here is to study how fast this convergence
is in two different types of nested domains.

1.1. Assumptions. In the paper, we consider the following two prototypes of nested do-
mains, which are

(P1) Oy =B(0,k) and Q = [y B(0, k) = R™,

(P2) Qx =B(0,1— 1), and Q =B(0,1).

We list the main assumptions that will be used throughout the paper.
(H1) There exists C; > 0 such that

H(x,p) > —C; for all (x,p) € Q x R™, (H1)
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(H2) There exists C; > 0 such that
sup [H(x,0)| < C,. (H2)

x€Q
(H3a) There exists a modulus wyy : [0,00) — [0,00), which is a nondecreasing function
satisfying wy(0") =0 and

[H(x,p) — H(y, p)I
IH(x,p) — H(x, q)|
for x,y € Q and p, q € R™.

(H3b) For every R > 0, there exists a modulus wg : [0,+00) — [0,+00), which is nonde-
creasing with wg(0") =0 and

NN

wi (x —yl(1 +Iph),
WH

(Ip — dl), (H3a)

H(x, p) — H(y, )l < wr(x —yl), (H3b)
|H(X)p) - H(X> q)| < wR(lp o ql))
for x,y € Q and p, q € R™ with |p|,|q| < R.
(H3c) For each R > 0 there exists a constant Cg such that
[H(x,p) = H(y, p)| < Crlx —yl, (113¢)
[H(x, p) = H(x, q)I < Crlp — dl,
for x,y € Q and p,q € R™ with |p|,|q] < R.
(H4) H satisfies the coercivity assumption
lim (ian(x,p)) = +o0. (H4)
Ipl=o0 \xeQ

(H5) p +— H(x,p) is convex for each x € Q.

Let us give some quick comments on the assumptions here. Assumption (H1) is necessary
to ask a meaningful question about the rate of convergence of uy to u. See the discussion
in Section 7 in case where (H1) fails to hold. Besides, it is clear that (H3b) is weaker than
both (H3a) and (H3c).

1.2. Main results. There have been many works in the literature on the well-posedness of
state-constraint Hamilton-Jacobi equations and fully nonlinear elliptic equations. The state-
constraint problem for first-order convex Hamilton-Jacobi equations using optimal control
frameworks was first studied in [27, 28]. The general nonconvex, coercive first-order equations
was then discussed in [10]. For further developments in using optimal control formulation
and obtaining optimal paths, we refer the readers to [17, 19, 12, 11, 6, 1, 14, 26, 25] for the
finite dimensional cases, and [8, 20] for the infinite dimensional cases. See [7] for discrete
numerical schemes, and [24] for large time behavior results. We also refer to the classical
books [5, 4] and the references therein.

The state-constraint problem for second-order equations was first studied in [21] for the
Laplacian, and in [3] for the general possibly degenerate diffusion matrices. Boundary behav-
ior of blow-up solutions was discussed in [21, 23, 3]. Convex solutions with state-constraint
boundary were constructed in [2, 13]. The convergence of solutions to the vanishing discount
problems was proved in [18].
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In terms of state-constraint problems in nested domains, up to our knowledge, there are
only qualitative results in the literature in [10, 3] where certain approximations were needed
for the analysis of solutions. We provide here some first quantitative results on the rate of
convergence of the solutions to (HJyx) as k goes to infinity in two different types ((P1) or
(P2)) of nested domains.

First of all, we show that the rate of convergence is O (%) for the prototype (P1) for
general nonconvex Hamiltonians.

Theorem 1.1. Under the assumptions (P1), (H1), (H2), (H3c), and (H4), we have

(i) u(x) < ux(x) for every x € B(0,k),
(ii) there exists a constant C > 0 depending only on H such that

C(1 + [x?
0 <ue(x) —u(x) < (TII)
fork € N and x € B(0,k).
In particular, for any fired R > 0 and |x| <R,
1+R?
0 <) —ulx) < SLERD

The condition that |x| < R is important since there are examples where the estimate above
fails at the boundary of Q. In Proposition 5.10, we have, for each k € N, Juy(x) —u(x)| =1
for some x € 0Q);.

Theorem 1.2. Assume (P1). Assume further that H(x,p) = a(x)K(p) for (x,p) € R™* xR™,
Here, K(0) = 0, K is locally Lipschitz and coercive in R™, and a € BUC(R"™) satisfies
x < al-) < B for some given o, 3 > 0. Then, w=0, and for every x € B(0,k), we have

0 <uk(x) < <Ce%|) e’%,
where C is a constant depending only on H. In particular, for any fired R > 0, we have

0 <we(x) < <Ce%) e ¢

for every x € B(0,R) and k > R. In addition to that, this exponential rate is optimal.

It is quite interesting to observe that we obtain the exponential rate of convergence for
this particular class of nonconvex Hamiltonians and the rate is indeed optimal. When a(x)
is a positive constant, the assumption K(0) = 0 in the theorem above can be removed.

Corollary 1.3. Assume (P1). Assume further that H(x,p) = H(p) for (x,p) € R™ x R™.

Here, H is locally Lipschitz and coercive in R™. Then, u = —H(0), and for every x € B(0,k),
we have

0 <ur(x) —u(x) < (Ce%> e_%,
where C is a constant depending only on H. In particular, for any fired R > 0, we have

0 < uwp(x) —u(x) < (Ce%> e

ol

for every x € B(0,R) and k > R. In addition to that, this rate is optimal.
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When H(x,p) = K(p) + V(x), the analysis becomes much more complicated due to the
interaction between K and V. We provide an example where the exponential rate of conver-
gence is obtained in Example 2.

For convex Hamiltonians, we are able to establish the exponential rate of convergence using
optimal control theory. Some examples for which the exponential rate is obtained are given
in Proposition 5.10 and Proposition 5.11.

Theorem 1.4. Under the assumptions (P1), (H1), (H2), (H3b), (H4), and (H5), we have

(i) u(x) < ux(x) for every x € B(0,k),
(ii) for each fized x € B(0,k) we have

we(x) < ulx) + (Ce%) e &, (1.1)

where C is a constant depending only on the growth of H.

In particular, for any fired R > 0, we have

0 < we(x) —ufx) <

VS
@)
o

=

N——
m‘

A=

for all x € B(0,R) and k > R.

As a byproduct, we prove the existence of a minimizer n with bounded velocity to the
minimizing problem (5.2) for each given x € R™, which is a key element in the proof of
Theorem 1.4. Moreover, the bound on the velocity of 1 only depends on the growth of H and
not on its smoothness. We believe that this bound (Theorem 5.7 and Lemma 5.9) is new in
the literature. See Remark 6 for further discussions.

For the second prototype (P2), we establish the rate O (%) for a quite general class of
Hamiltonians. The rate is also optimal, as pointed out in Remark 9.

Theorem 1.5. Under assumptions (P2), (H1), (H2), (H3c) and (H4), for any k > 2,

O <ux(x) —ulx) <
for every x € B (0,1 — %) where C is a constant depending only on H. Moreover, this rate
18 optimal.

Although we only deal with two prototype cases (P1) and (P2) in this paper, the obtained
results can be extended to more general domains in a similar fashion under some appropriate
conditions. See Remarks 8 and 10 for example.

1.3. Organization of the paper. The paper is organized in the following way. We first
provide some results on state-constraint Hamilton-Jacobi equations needed throughout the
paper in Section 2. Section 3 and 4 are devoted to proving Theorem 1.1 and Theorem 1.2,
respectively. In the following section, we deal with the rate of convergence for convex Hamil-
tonians (Theorem 1.5). In Section 6, the second prototype case is considered. We provide
some examples and further discussion in Section 7. The proofs for some results concerning
minimizers of the corresponding optimal control problem are provided in Appendix.

Acknowledgement. We would like to thank the two referees very much for carefully reading
our manuscript and giving very helpful comments to improve the presentation of the paper.
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2. PRELIMINARIES

For an open subset QO C R™, we denote the space of bounded uniformly continuous func-

tions defined in Q by BUC(Q;R).

Definition 1. We say
(i) v € BUC(Q;R) is a viscosity subsolution of (HJ) in Q if for every x € Q and ¢ €
C'(Q) such that v—@ has a local mazimum over Q at x then V(X)+H(X, D(p(x)) <0.
(ii) v € BUC(Q;R) is a viscosity supersolution of (HJ) on Q if for everyx € Q and ¢ €
C'(Q) such thatv—@ has a local minimum over Q at x then v(x)+H(x, D(p(x)) > 0.

If v is a viscosity subsolution to (HJ) in Q, and is a viscosity supersolution to (HJ) on Q,
that s,
v(x) 4+ H(x,Dv(x)) <0 in Q, (2.1)
v(x) + H(x,Dv(x)) >0 on Q '
in the viscosity sense, then we say that v is a state-constraint viscosity solution of (HJ).
Remark 1. As pointed out in [27], the state-constraint implicitly imposes a boundary con-
dition to solutions. Indeed, when 0Q) is smooth, we can define an outward normal vec-

tor ¥(x) at x € 0Q. Moreover, if the state-constraint solution v € C'(Q), then v solves
v(x) + H(x, Dv(x)) = 0 in Q and satisfies

H(x, Dv(x)) < H(x, Dv(x) + pV(x)) for any B > 0,x € 0Q).

If H is differentiable in p, the above condition can also be phrased as a constraint on the
normal derivative on the boundary as

DPH(X, Dv(x)) “V(x) =0 for any x € 0Q). (2.2)

Now we construct a state-constraint viscosity solution to (HJ) based on Perron’s method.
It is a variant of the classical result in [15] but we include the proof here for the sake of the
readers’ convenience. Note that the Lipschitz regularity of subsolutions is encoded directly
into the admissible class J.

Definition 2. For a real valued function w(x) define for x € Q, we define the super-
differential and sub-differential of w at x as

D w(x) = {p € R™ : lim sup wly) —wx)—p-y—x) < O} ,

Yy—x Iy —X’
D w(x) = {p € R" : liminf wly) —wix) —p -y =x) > O} .
y—x ]y — x|

Theorem 2.1. Assume (H1), (H2) and (H4). Then, there exists a state-constrained viscosity
solution u € C(Q)NWH>®(Q) to (2.1).

Proof of Theorem 2.1. Under (H1) and (H2), C; and —C, are a supersolution on Q and a
subsolution in Q of (HJ), respectively. By the coercivity assumption (H4), we can find a
constant C3 > 0 such that

H(x,p) < max{Cy, C,} for somex € Q — Ip| < Cs.
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Let us define
F={weCQ)NW"*(Q): —C; <w(x) < Cy, [[DW||(~g) < Cs,
and w is a viscosity subsolution to w(x) + H(x, Dw(x)) < 0 in Q}
and for each x € Q, we define
u(x) :=sup{w(x) :w e F}.

By the stability of viscosity subsolutions, we have that w is a viscosity subsolution to (HJ)
in Q. Thus, u e F as well.

We now check that u is a viscosity supersolution to (HJ) on Q. Assume that u is not a
supersolution on Q. Then, there exists xo € Q, @ € C'(Q) with ||D@||r=(B(xer) < C3 and
T > 0 such that u(xe) = @(xo) and (uw— @)(x) = [x — xo|? for all x € B(xo, ) N Q, and

©(x0) + H(xo, D@(x0)) < 0. (2.3)

From (H1) and (2.3), we obtain @(x¢) = u(xo) < C;. By continuity of ¢ and H, one can

choose 6, ¢ € (O, %) small enough so that ¢ < 8% and

@(x) + 8% < Cy, . @(x) + e < Cy,
e(x)+ 8% +H(x,Do(x)) <0 e(x)+e2+H(x,De(x)) <0

for all x € B(x,2¢) N Q. Clearly, x — @(x) + &? is a viscosity subsolution to (HJ) in
B(x0,2¢) N Q and u(x) > @(x) + €2 for x € B(x,2¢)\B(xo, ¢). Let us define w: Q — R by

wix) = max {u(x), @(x) + €} x € B(x0,€) N Q,
u(x) x € Q\B(xo, €).

Then, w(x) = max {u(x), e(x)+ 82} in B(xo,2¢) N Q belongs to F. Therefore, w(x) is a
viscosity subsolution to (HJ). However, w(xo) = @(xo0) + &2 = u(xo) + €2 > u(xo), which is
a contradiction to the definition of . O

The argument used in the proof of Perron’s method implies the following corollary as well
(see also [10]).

Corollary 2.2. Letu € C(Q) be a viscosity subsolution to (HJ) in Q. Assume further that
v < uon Q for all viscosity subsolutions v € C(Q) of (HJ) in Q. Then, u is a viscosity
supersolution to (HJ) on Q.

The uniqueness of (2.1) follows from the comparison principle. It was first studied by M.
Soner in [27] under the following assumption on 0Q:

(A) There exists a universal pair | (r,h) € (0,00) x (0,00) and a uniformly bounded con-
tinuous function n € BUC (O_; ]R“) such that

B(x +tn(x),rt) CQ  forallx € 0Q, t € (0,h. (A)
See also [10] for other conditions to establish the comparison principle.

Theorem 2.3. Assume (A). If vi € BUC(Q;R) is a viscosity subsolution of (HJ) in Q,
and v, € BUC(Q;R) is a viscosity supersolution of (HJ) on Q. If either

e (H3a) holds, or
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e (H3b) holds and v, is Lipschitz,
then vi(x) < v2(x) for all x € Q.
When the uniqueness of (2.1) is guaranteed, the unique viscosity solution to (2.1) is the

maximal viscosity subsolution of (HJ). This property will play a crucial role in dealing with
the second prototype (P2).

3. A RATE OF CONVERGENCE FOR GENERAL HAMILTONIANS IN UNBOUNDED DOMAIN

In this section, we consider the first prototype (P1). The assumptions (H1), (H2), (H3c)
and (H4) are enforced throughout the section. By Theorems 2.1 and 2.3, there exists uy €

Lip(B(0,k)) which is the unique solution to

(3.1)

w(x) + H(x,Dux(x)) <0 in B(0, k),
u(x) + H(x, Duk(x)) > 0 on B(0,k)

in the viscosity sense. Based on the construction of solutions via Perron’s method together
with the coercivity of H, we have the following a priori estimate:

lu (x)| + [Duy (x)| < Cyy

for all x € B(0, k) in the viscosity sense. Here, Cy is a positive constant depending only on
H (one can take Cyy = max{C;, C,, C3} from Theorem 2.1). By the Arzela—Ascoli theorem,
there is a subsequence {k;n} — 0o, and a function u € Lip(R™) such that

Uy, —u  locally uniformly in R™. (3.2)
Theorem 3.1. The function u defined in (3.2) is a viscosity solution to
u(x) + H(x,Du(x)) =0 in R™. (3.3)
Moreover, W — u locally uniformly in R™ as k grows to infinity.

Proof. 1t is clear from the stability of viscosity solutions that w is a solution to (3.3). The fact
that u, — u locally uniformly in R™ follows from the uniqueness of solutions to (3.3). O

Now we are ready to give a proof for Theorem 1.1 using the doubling variables method.

Proof of Theorem 1.1. We first note that uy solves uy (x)+H(x, Dux(x)) > 0 on B(0, k), and
u solves u(x) + H(x, Du(x)) < 0 in B(0, k) in viscosity sense. By the comparison principle,
we get U (x) > u(x) for all x € B(0, k).

For the upper bound of w, —u, we define the following auxiliary function
8Cqx
wallh

for (x,y) € B(0,k) x R™. It is clear that ®¥ is bounded above by 2Cy; independent of k € N.
If ly| > %, then we have

d)k(x,y) = u(x) —u(y) —2Cyk? Ix—yl2 —

8C
DF(0,0) — @ (x,y) = —w(x) + 1w (0) — w(0) + u(y) + 2Cuk?*x —yl* + k—zHlyl2 >0,
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which implies that for each k € N, ®*(x,y) achieves a global maximum over B(0,k) x R"

at (xx,yx) € B(0,k) x B (O, %) Of course, [yx| < % Now we use ®*(xi,y) = O*(y, yx)
to get

2CHK e — Yl < wie(xi) — wie(yi) < Cralxie — yicl.
Therefore, we deduce that

1
x| < |Uk| + @ <k (3.4)

for all k > 1 since |yx| < % Observing that x — ®¥*(x,yy) obtains a maximum at x; with
[xi| < k, we have
w(xi) + H (%, pic) <0, (3.5)

where py = 4Cyk?(xx —yi) by the definition of viscosity subsolutions. We also observe that
y > O¥(xy,y) obtains a maximum at yy, which implies that

8C
uly) — (—chkZ e — yul? — “w)

K2
has a minimum at yx. By the definition of viscosity supersolutions, we get
u(yi) + Hyk, px + qi) =0 (3.6)
where q = —]%Hyk. Here, it needs to be noted that

|pk|a |pk + qk| < CH)

which comes from Lipschitz continuity of uy. Using (3.5), (3.6) and assumption (H3c), there
exists a constant Cy such that

Wi (xi) —ulyx) < Hlyw, pr + qx) — Hxx, px)
= H(yi, Pk + qx) — H(yx, px) + H(yk, Px) — H(xx, px)
< CH|qk’ + CH|Xk — Yy

16CHChy Ch _8CuCh Cn
< T|Uk| + 53 < . + Pk (3.7)
If we stop here, the fact that ®*(x,yx) = ®*(x,x) for x € B(0,k) gives
8C C C(1+ XZ
U (x) —u(x) < ug(xx) —ulyx) + k_2H|X|2 < - 4 ( kz| <)

for all k > 2. This gives us the rate of convergence of uy to u is O(%) for x € B(0, R), which
is typically the case in light of the doubling variables method.

Nevertheless, a key new point here is to bootstrap once more to improve this rate. The
monotonicity of {u} allows us to bound [y;| better. We use that ®*(xy,yi) > ©*(0,0)
together with (3.7) and uy, > u to yield

ff_zH () — e (0) + w(0) — ulyy)

2CHKkAxx —yk|2 + |1Jk|2
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Therefore,
. C 1 . C
2<2C M P 2CE R
lyxl HYKl + 8Ch, 2|Uk| + 20 + 8C,,

In particular, [yy| < C. This bound is much better than the earlier bound that [y| < %

L
z|yk| + C.

Now for any x € B(0, k), clearly we have that ®*(xy,yy) = ®*(x,x). This, together with
(3.7) and |yx| < C, implies

8C C(1+ xI?
we(x) —u(x) < ue(x) —ulyy) + k—zH|X|2 < (TH)
for all k > 2. If |x| < R, then
C(1+R?)
0 <o) —u(¥) <~
which gives the desired result. 0

Remark 2. In the general setting, one only has that ®*(x,y) achieves a global maximum
over B(0,k) x R™ at (xy,yx) where |[yyx| < ‘z‘ and [xx| < k. In our current situation, the
monotonicity of {u,} allows us to bootstrap once more to deduce further that |y, < C,
which helps to obtain O (%) rate of convergence. This seems to be the best convergence rate
that one is able to get through the doubling variables method here as it is unlikely that [yy|
vanishes as k — co.

We do not know yet whether the O (%) rate of convergence is optimal or not in the general

nonconvex setting. See Questions 1 and 2 in Section 7 below.

4. AN OPTIMAL RATE FOR A CLASS OF NONCONVEX HAMILTONIANS ON UNBOUNDED
DOMAIN

In this section, we show that the rate of convergence uy, — 1 is of order O(e~<¥) for a class
of possibly nonconvex Hamiltonians which are written as H(x,p) = a(x)K(p) with K(0) =0
and 0 < « < a(x) < B. The aforementioned rate is indeed optimal.

A brief idea for the proof is that we construct a supersolution to (3.1) by finding a sym-
metric Hamiltonian H such that H(0) = 0 and H < H. The following proposition is needed
as a building block.

Proposition 4.1. Let H: R™ — R be defined by

H(p) = —alp|  forlpl < B,
PP ) foripl > 8

where o, 3 > 0 and f: R™ — R is a coercive continuous function such that f(p) = —«f for
Ipl = B and mingn f = —xf3. Then,

uk(x) = ape S

for x € B(0,k) is the unique solution to the state-constraint problem (3.1).
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Proof. 1t is clear that ui(x) + H(Duyk(x)) = 0 in B(0,k)\{0} in classical sense. For x €
0B(0,k) and ¢ € C'(B(0,k)) such that ux — ¢ has a local minimum over B(0, k) at x, we
have wy (x) + H(D@(x)) = 0 since ux(x) = «fp = —min H. We only need to check if uy is a
viscosity supersolution at x = 0.

Let @ € C'(R™) such that ¢(0) = ux(0) and u, — ¢ has a local minimum over B(0, k)
at x = 0. Since uy is convex, we can replace @ by an affine function @(x) = & - x + uy(0)
for some & € R™. Without loss of generality, it suffices to consider & # 0. For |x| sufficiently

small, we have ui(x) — @(x) > ur (0) — @(0), which implies that

ape = (e% 1) =&-x (4.1)

Now we choose x = t% for t > 0 small, then (4.1) implies that afe = (ei —1) > tl¢

for all t > 0 sufficiently small. Dividing both sides by t and sending t to 0, we deduce that
ID@(0)| = |&] < pe«. Therefore,

wc(0) + H(De(0)) = ae” = — aDe(0)| > 0.
Consequently, uy is the unique viscosity solution to (3.1). 0

Proof of Theorem 1.2. Since K(0) = 0, u = 0 is the unique solution to (3.3). Recalling the a
priori estimate ||ux||re(B(0,x)) + [IDUk||t(B(0,k)) < Cn, condition (H3c) gives

[K(p) =K(q)l < Llp —q|

for all p,q € B(0,Cy). Let K(po) = minK < 0 for some py € R™. Let f(p) be a coercive,
continuous function such that f(p) = —L|pol for [p| < |pol, ming~ f = —L|po|, and f(p) < K(p)
for [p| = [pol.- Now we consider

fip) = —Lipl for [p| < Ipol,
f(p)  for |pl = Ipol.
H(p)
po
K(p) !
””” )

FIGURE 4.1. The graph of H(p) and K(p).

The graph of H is described in Figure 4.1. It is clear that ]:l(p) < K(p) for all p € R™.
Moreover, using Proposition 4.1, the unique viscosity solution to the state-constraint problem

Wi (x) + BH(Di(x)) = 0 in B(0, k) is given by iy (x) = [SI_I]DOIe‘Xrl%Lk for x € B(0, k).
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It is clear that 1, is also the unique viscosity solution to 1Eﬁk(x) + H(Duy(x)) = 0 in
B(0,k). Since B > a(x) > o > 0 and H < K, we deduce that

F(x) + H(D (X)) < gltie(x) + K(Di (x))

on B(0,k). Therefore, i, (x) + a(x)K(Dlk(x)) = 0 on B(0, k). By the comparison principle,
one gets
0 < ux(x) < BLipole 50

for all x € B(0,k). The conclusion for |x| < R follows immediately. O

In case that H(x,p) = K(p) for (x,p) € R™ x R™, where K is locally Lipschitz continuous
and coercive in R™, we have the unique viscosity solution to (3.3) is uw = —K(0). Therefore,
we can assume that K(0) = 0, and Corollary 1.3 follows without assuming that K(0) = 0.

It should be noted that the local Lipschitz continuity of Hamiltonians is important when
it comes to getting an exponential rate of convergence. If a Hamiltonian is only Holder
continuous around 0, we get a slower rate of convergence depending on the regularity of H
as described in the following proposition.

Proposition 4.2. Let H: R™ — R defined by

—Ipl” if Ipl <1
Hip)=4 7 st
f(p) if Ipl =1,
where y € (0,1) and f : R™ — R is a continuous, coercive function with f(x) = —1 for

Ix| <1, and mingn f = —1. Then, the solution to (3.1) is given by

v

we(x) = [‘*TV <k+%—!x!>}ﬁ, x € B(0,K). (4.2)

As a consequence, wy, — 0 with the rate O ( #)
k1-v

Proof. Let us first consider the one dimensional case. The higher dimensional setting can be
done in a same manner. Let p = y~', we look for a nonnegative solution to u(x)* = u’(x)
where x € (0,k). We have

u)! = —wx—C = ul) = (n=1)E(Co—x) T,
We want to choose Cy such that u’(x) € [0, 1] for x € (0,k). Equivalently,
w(x) =ux)* = (u—1)T8(C—x) T €[0,1]

for x € (0,k). Since it is an increasing function, Cy = k +
that uy is written as

ﬁ. Using symmetry, we guess
!
1 T
uk(x) = (u— ‘I)lfu (k—l— ﬁ - |X|> : .

It is straightforward to see that w, satisfies the equation in the classical sense wy(x) —
luy, (x)[Y =0 in (—k, k)\{0}. Since Ju, (x)| < 1 on (—k, k)\{0}, we have w,(x) +H(u,(x)) =0
in the classical sense in (—k, k)\{0}. At |x| = k, we have ux(x) = 1 > —min H. Therefore,
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the supersolution test at these points are satisfied. Finally, at x = 0 we only need to verify
the supersolution test, which is simple since if p € D~ uy (0) then

0

PI<=17% (k+325)"" = w0 +Hp) > uwl0)—[pl* > 0.

Thus, uy defined above is the unique viscosity solution to the constraint problem (3.1). Using
a similar argument as in the proof of Proposition 4.1, this formula of uy can be extended
naturally to the n-dimensional case, as given in (4.2) and the conclusion follows. 0J

Remark 3. From Proposition 4.2 we see that the optimal rate of convergence can be as slow
as we wish as the Holder exponent y — 0. This shows that the required condition (H3c) is
really essential in this section.

When Hamiltonians are of the form H(x,p) = K(p) 4+ V(x), the situation becomes much
more complicated. See Example 2 for a situation where we get the optimal exponential rate
of convergence with nonconvex K.

5. AN OPTIMAL RATE FOR CONVEX HAMILTONIANS

In this section, the assumptions (H1), (H2), (H3b), (H5) are always in force. The state-
constraint problem was studied in the context of optimal control for convex Hamiltonians
(see [27, 10, 4] for instance). When H is convex, we are able to obtain a representation
formula for the viscosity solution based on the optimal control theory. Let us assume the
following superlinear property (see Remark 4 where we can remove this assumption), which
is

(H6) p — H(x,p) is superlinear uniformly for x € Q, that is,

H
mn(mf(”m>=+m. (H6)
[pl—o0 \ Xx€EQ |‘p|

If (H5) and (H6) hold, then the Legendre transform L : Q x R™ of H is defined as
L(x,v):= sup {p-v—H(x,p)}, (x,v) € Q x R™,

peER™

Lemma 5.1. Assume (H5) and (H6). Then, L: Q x R™ — R is continuous satisfying:
(L1) If (H1) holds, then L(x,0) < Cy for allx € Q; o
(L2) If (H2 holds, then L(x,v) = —Cy for all (x,v) € Q x R™;
(L3) If (H3b) holds, then for each R > 0 there exists a modulus Wg(-) such that
IL(x,v) = L{y,v)| < @r(lx —yl)  for allx,y € Q,v| <R.

(L5) v = L(x,V) is convex for each x € Q; B
(L6) v — L(x,Vv) is superlinear uniformly in x € Q, i.e.,

MIGML%y):+m. (L6)

lpl—=oc0 \xeQ

We omit the proof of this lemma and refer the interested readers to [9].
For each x € Q, we define the admissible set of paths as

Ay = {n € AC([0,00);R™) :1(0) = x andn(s) € Q for all s > 0}
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where AC([0,00);]R“) denotes the set of absolutely continuous curves from [0, 00) to R™.
Note that Ay # () since n(s) = x for all s € [0,00) is an admissible path. From this, define
the value function as

u(x) == ﬂiélfflx J Ix,ml (5.1)

where the cost functional is defined as
o

T b, = j e*L(n(s), —7(s)) ds

0
for (x,m) € Q x A,. Now we have the following classical dynamic programming principle.

Theorem 5.2 (Dynamic Programming Principle). For any t > 0, we have

u(x) = inf {J e_SL(n(s),—ﬁ(s)) ds + e_tu(n(t))}.

nEAx O

Using the Dynamic Programming Principle, one can prove that u € BUC(Q) and indeed
a viscosity solution to (2.1) as stated in the following theorems.

Theorem 5.3. Assume (H1), (H2), (H3c), (H5) and (H6), then the function w(x) defined
by (5.1) is bounded and is uniformly continuous up to the boundary, which is u € BUC(Q).

Theorem 5.4. The value function w € BUC(Q) defined in (5.1) is a viscosity solution to
the state-constraint Hamilton-Jacobi equation w(x) + H(x, Du(x)) =0 in Q, i.e.,
u(x) + H(x,Du(x)) <0 in Q,
u(x) + H(x, Du(x)) > 0 on Q.

We omit the proofs of Theorems 5.2, 5.3 and 5.4. We refer to [27, 10, 4] for those who are
interested.

On the other hand, when Q = R™, it is known that the function u(x) defined in (5.1)
satisfies the Hamilton-Jacobi equation (3.3) in viscosity sense (see [4, 22] for instance).

Theorem 5.5. For each x € R™, we define
u(x) = inf J e *L(n(s),—m(s)) ds (5.2)
T]EAX 0
subject to Ay = {n € AC([O,oo);]R“) :n(0) = x}. Then, u € BUC(R™) is a viscosity solu-
tion to (3.3) and we have the following priori estimate:

[wflreo gy + DL (rn) < Chie (5.3)

Remark 4. We may assume that H is just coercive rather than superlinear. When a Hamil-
tonian is coercive, we still have that (5.3) holds for some C = Cyy > 0. Therefore, for |p| > C,
we can modify H so that (H6) holds. Furthermore, we can impose a quadratic growth rate
on H as following.

(H7) There exist some positive constants A, B such that
A2 =B <H(x,p) <ANV?+B  for (x,p) € R™ x R™, (H7)

It is easy to see from (H7) that we have (4A)"'W[? — B < L(x,v) < 4Av]? + B for all
(x,v) € R™ x R™. By making A bigger, we can assume the following.



14 YEONEUNG KIM, HUNG V. TRAN, AND SON N. T. TU

(L7)
A T2 —-B <L(x,v) <AM?*+B  for (x,v) € R™ x R™. (L7)

We give a proof for the existence of a minimizer with bounded velocity to (5.2) for the
sake of readers’ convenience in Appendix. This is an extremely important fact in our analysis
and is a key element in the proof of Theorem 1.4 (see Remark 6 for further discussions). To
establish this point, the following lemma on the subdifferentials of L(x,Vv) in v is needed.
For continuously differentiable Lagrangians, it is obvious, but we state here a slightly more
general version.

Lemma 5.6. Let L: R™ x R™ — R be continuous and satisfy (L5) and (L7). There exists
CrL > 0 such that for all v € R™, we have

€] < Cr(1T+ M) whenever & € D L(x, V). (5.4)

For simplicity, let us assume further that
(L8) (x,Vv) +— L(x,V) is continuously differentiable on R™ x R™.
This assumption can be removed in the proof of Theorem 1.4 due to the fact that the estimate

(1.1) does not depend on the regularity of H, hence, we can approximate H by convex, smooth
Hamiltonians.

Theorem 5.7 (Existence of a minimizer). Let L(x,V) be a continuous Lagrangian satisfying
(L5), (L7) and (L8). Then, for each x € R™, there exists N € Ay such that Jx,n] = u(x)
and also ||e™*/*1(s)||12(0,00) < Ca where C4 depends only on Cy, A, B.

The existence of minimizers of smooth Lagrangian is sufficient for our proof of Theorem 1.4
since the last estimate does not depend on the smoothness of L or H. Clearly, a minimizer for
a general continuous Lagrangian can be obtained via approximation of smooth Lagrangians
(see Appendix).

A minimizer to (5.2) satisfies the following properties.

Lemma 5.8. Let x € R™ and n be a corresponding minimizer. For any t > 0, we have

u(x) = L e *L(n(s),—l(s)) ds+e *u(n(t)). (5.5)

Furthermore, for every t,h > 0, we have

(0.¢]

uln(t) = etj e*L(n(s), —(s)) ds (5.6)

t
and
t+h
e um(t) = | e tLnlsh-ils)) ds e Nu e ). (5.7)
t
Lemma 5.9. Let x € R™ andn be a minimizer to (5.2) associated with it. Then, there exists
a constant Cs > 0 depending only on Cy, A, B such that n(s)| < Cs for a.e. s € (0,00).

Remark 5. We provide here a connection between a minimizer n of u(x) = J[x,n] and some
properties in the view of the method of characteristics. If H is assumed to be C?, then L € C?
and 1 is a weak solution to the Euler-Lagrange equation

D.L(n(s), ~(s)) ~ DuLin(s), ~(s)) + < (DoLin(s), () =0. (5.9
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Assume that n € C? (it holds if, for instance L € C** for some « € (0,1)). Then, one can
define the momentum p(s) = D,L(n(s),—(s)) and show that

() + H(n(t), p(t) = 0 (5.9)
for t > 0. Indeed, for every fixed x € R™, we recall that
ve D H(x,p) & peD,Lx,v) & Hx,p)+Lxv)=p-v. (5.10)
Using (5.10) we can deduce that

4 (e=3p(s)) =e*DyLn(s),n(s)),
(

From that, we can derive the characteristic ODEs for s > 0, which are

—1(s) = DyH(n(s),p(s)),
p(s) =p(s) — DxL(n(s),—n(s)).

This together with (5.6) yields that
u(n(t)) + H(n(t),p(t)) = Ce*  where  C = lim e “H(n(a),p(a)).

a— oo

Lemma 5.6 together with Lemma 5.9 gives us a uniform bound on p, thus C = 0. Hence,
(5.9) follows.

Now we give a proof for Theorem 1.4. Recall that we have the value function

w0 = i | e *Lin(s),—i(s) s (5.11)
neAk Jo

where A¥ = {n € AC([0,00); R™) : 1(0) = x and n(s) € B(0, k) for s > o}. Then, 1, solves

the state-constraint problem (3.1).

Proof of Theorem 1.4. Let k € N be given. We may assume that H satisfies (H6) and (HT7)
up to modification for [p| large enough. Also, since the final estimate does not depend on
the smoothness of L, we can assume H is smooth and thus L is smooth without any loss of

generality. Clearly, A* C A, for any x € B(0, k), which implies that w, (x) > u(x).

For x € B(0,k), let 1 € A, be a minimizer to (5.2), if n(s) € B(0,k) for all s > 0, then
n € A¥ as well, hence u(x) = ui(x). Otherwise, there exists t > 0 such that n(t) € 9B(0, k)
and n(s) € B(0,k) for all s € (0,t). By Lemma 5.9, we have

t

K = ()] < )] +J (s)] ds < x|+ Cst,
0

Xl Tet us define

k—
Cs
(s) = n(s) ifs e [0,tl,
YT 00 ifs e[t 00),

which implies that t >
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so that vy € A¥. Using Lemma 5.8, we have

rt

u(x) = . e *L(n(s),—(s)) ds+e ‘"un(t)

> | e *L(v(s),—v(s)) ds — Cne™"

0
(oo

WV

e *L(y(s),—¥(s)) ds —Cie” " — Cpe "

JO
x| k

> () = ((C1 + Cr)es ) e .
Consequently, we obtain (1.1). The conclusion for |x| < R follows immediately. O

Remark 6. Here, we note that the constants in the proof above do not depend on the
regularity of the Lagrangian. As long as a minimizer exists, we get the same exponential rate
of convergence. See Appendix for a discussion on the existence of minimizers. It is worth
noting here that, for each x € B(0,k), the existence of a minimizer n € Ay to (5.2) with
bounded velocity is a nontrivial fact and plays an essential role in the proof above. Moreover,

the bound on the velocity of n only depends on Cy, A, B.

In the rest of this section, we provide two explicit examples to show that the rate O (e_%>

is indeed optimal.

5.1. Examples with exponential rate of convergence.

Proposition 5.10. Let H(p) : R — R be defined by H(p) = |p — 1| —1 for p € [0,2] and
H(p) > 0 elsewhere such that H is continuous and coercive. Let uy be the solution to (3.1) on
[—k, K], then w, — O locally uniformly on R as k — oco. Here, w = 0 is the unique solution
to (3.3). Furthermore, we have ux(k) =1 for all k € N and

we(x) = e 2% on [k, K.

Proof. It is clear that w(x) = e ¥ solves v(x) + H(v/(x)) = 0 in (—k, k) in the classical
sense, and indeed, in viscosity sense. We need to verify that uy is a viscosity supersolution
on [—k,k]. Let u, — @ has a local minimum at x = —k for ¢@(x) € C'(R). Clearly, we can
see that

@' (—k) < up(—k) = e ¥,

which implies e 2% + H(¢’(—k)) > 0. On the other hand, at x = k, one has

uk(k) + H(e'(k)) =1+ H(e'(k)) >0

since by definition of H, it is bounded below by —1. Therefore, w,(x) = e* ¥ is the unique

viscosity solution to (3.1), and furthermore e %% < w(x) < (e"") e ® for all x € [k, k].
In addition to that, we have w (k) = 1 for all k € N, hence, the convergence fails when
x = k. O
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5.2. Optimal control formulations. We give another example from the optimal control
theory point of view (see [27]). Let us recall briefly the setting of optimal control as follows.
Let U be a compact metric space. We regard a control as a Borel measurable map « :
[0,00) — U. Let Q be an open subset of R™ with the connected boundary satisfying (A).
We also assume that b =b(x,a) : Q x U — R™, f =1(x,a): Q x U — R satisfy

sgglb(x, a) —b(y,a)l < L(b)x —y| for all x,y € Q,
81618 |b(x, a)] < K(b) for all x € Q,
SZEH(X) a) — f(y, a)l < we(lx —yl) for all x,y € Q,
51618 If(x, a)] < K(f) for all x € Q,

where K(b), L(b), K(f) are positive constants and w; is a nondecreasing continuous function
with w¢(0") =0.

For each x € Q and a given control &(-) : [0,00) — U, let y**(t) be a controlled process
(we will write o instead of x(-) as a control for simplicity), which is a solution to
*(t) = b (y©=(t), «(t)) for t >0,

Sy
y©*(0) = x.

We denote the set of controls (strategies) o where y©*(t) € Q for all t > 0 and y®* solves
the ODE above by A,. The value function is defined by

u(x) = o(ig}ix L e (Y™ (t), «(t)) dt.

Here, one can define the Hamiltonian associated with b and f as
H(x,p) :== sup {—b(x,a) - p —f(x,a)} € C (ﬁ X ]R“;R) .
aclU

It was proved in [27] that u is a viscosity solution to (2.1).

Proposition 5.11. Let n =1 and U = [—1,1]. Let us consider the following Hamiltonian
defined as
Hox,p) = sup {—a-p—e™}=pl—e™,  (xp) eRxR
ae[—1,1]

—|x| ele 2k

Then, the solution to (3.1) is given by wi(x) = 5+
to (3.3) isu(x) =

forx € [—k, kl, while the solution

—Ix . . .
“5—. Hence, the exponential rate of convergence 1s obtained.

Proof. In the optimal control setting, the Hamiltonian above is obtained by considering
U=[-1,1], b(x,a) = a and f(x,a) = e *I. To find uy(xo) and u(x), one needs to find a
control o(t) that minimizes

y(t) =aft) € [-1,1],

J e s W) gs subject to
y(0) =xo.

0

It is easy to see the following points:
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(i) An optimal control for the unconstrained problem with xo > 0 (xo < 0) is «(t) =1
(x(t) = —1, respectively).

(ii) An optimal control for the constrained problem on [—k, k] with xo > 0 (xo < 0) is
a(t) = 1 on [0,k — xp] and 0 elsewhere (x(t) = —1 on [0,k + x¢] and 0 elsewhere,
respectively).

Once we have the optimal controls, we can easily compute the value function and the result
follows. In conclusion, for all x € [—k, k] we have

0 <ug(x) —ulx) = (?) e 2k,

In this example, the convergence holds everywhere in [k, k] with the rate O (e*k). 0

Remark 7. One interesting fact to point out here is that the optimal path starting from x¢
for the state-constraint problem on [—k, k] in Proposition 5.11 stays on the boundary +k for
all t 2 k— |X0|.

6. THE CASE OF BOUNDED DOMAIN

(H2),

The second prototype case is considered in this section. Let us assume that (P2), (H1),
0,1). Let

(H3c) and (H4) are enforced. Recall that Qi =B (0,1 — 1) for k € N, and Q = B(0,
uy € Lip (ﬁk) be the unique viscosity solution to

uk(x) + H(x, Dux(x)) <0 in Qy, (6.1)
uk(x) + H(X, Duk(x)) = 0 on ﬁk. .
It is clear that we still have the following priori estimate
Uil @y + DUk, < Chie (6.2)

Proposition 6.1. For each k € N, let uy be the unique solution to (6.1). Then, there exists
u € BUC(Q) such that ux — u locally uniformly on Q as k grows to infinity. Moreover, u
has the same bounds as in (6.2) and solves

{u(x) + H(x, Du(x)) in Q

<0 ,
_ 6.3
S0 (6.3)

u(x) + H(x, Du(x)) on Q

In viscosity sense.

Proof. From a priori estimate (6.2), by Arzela-Ascoli’s theorem and a diagonal argument we
can extract a subsequence such that uy,_ — u uniformly on compact subsets of ). By the
stability of viscosity solutions we obtain that u € C(Q) is a viscosity solution to

u(x) + H(x, Du(x)) = in Q. (6.4)

)
We deduce that [u(x)| < Cg and [u(x) — u(y)|
u € Lip(Q) with the same priori bound as in (
supersolution to u(x) + H(x, Du(x)) =0 on Q.

We can verify it using Corollary 2.2. Indeed, let v € C(Q) be a viscosity subsolution to
(6.4) in Q. Applying the comparison principle to wu(x) + H(x, Duy(x)) = 0 on Qy, we
have that v(x) < uk(x) for x € Q. Now fixing r € (0,1), we have v(x) < uy(x) for all

< Culx —yl for x,y € Q. We can extend
6.2). We need to show that u is a viscosity
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x € B(O,7) andr<1—1 1f k is large enough. Letting k — oo, we deduce that v(x) < u(x)

for x € B(0,r). Since we have u,v € C(B(0, 1)), the inequality v < u on B(0, 1) follows.
Hence, u is a viscosity supersolution to (6.4) by Corollary 2.2. 0

Now we are ready to give a proof for Theorem 1.5. We note that star-shaped and scaling
properties of {Q}} play an important role.

Proof of Theorem 1.5. The fact that ui(x) > u(x) on Qy is clear by the comparison princi-
ple. For k > 2, let us define

k k—1 E—
U (x) := k—]uk< . x) for x € B(0,1).

It is clear that 1y is a viscosity subsolution to

k—1_
k

k—1
W (x)+H ( X, Dﬂk(x)> =0 in B(0,1). (6.5)
From (6.2) and (H3c), there exists C such that [H(x,p) — H(x,p)| < Culx — yl for all
x,y € Q and [p| < Cy. Therefore, by using (6.5) we have
1

000 + H (6, Dil(x)) < it (x) + H (3, Dile[x)) — H (

k—1 Cu + Cn

k

%, Dak(x)> <

for all x € B(0,1). By the comparison principle and the fact that u solves (6.3) in the
viscosity sense, we deduce that

Cu+C -
i (x) — % <u(x) forallx BT
Consequently, we obtain the conclusion uy(x) < u(x) + % for x € Qy where the constant C
can be chosen as C = 2CH + CH. O
Remark 8.

(i) It is clear from the proof that prototype condition (P2) can be relaxed as following.

(P27) Assume 0 € Qy for all k € N, Q = [J,cy Qx is bounded, and the comparison
principle for the state-constraint problem holds on Qy, Q). Assume further that,

for k € N,
1
1——1QC Q.

(ii) Theorem 1.5 can also be proved using the doubling variable method with the following
auxiliary function (see [10])

O*(x,y) = T (F57x) —uly) — Cuk?x —yf?

for (x,y) € (14+ 1) Q x Q.

The following remark shows that the rate O (%) is indeed optimal.
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) solves

==

Remark 9. Let H be defined as in Proposition 5.10, we see that w,(x) = e (1-
(6.1) and u(x) = e*~ ! solves (6.3), therefore

1 2
0 < ue(x) —u(x) = e ! (eE — 1) < .

for x € [— (1 — l) , 11— ] Besides, ex —1> E’ and so, O (%) is optimal.

7. DISCUSSIONS

We give here some further discussions along the line with the topics considered in the paper.
Firstly, when our Hamiltonian is given as H(x,p) = a(x)K(p) in the first prototype (P1),
we get an exponential rate of convergence provided that the assumption (H1) is enforced
(Theorem 1.2). Without this assumption, we have an example with a polynomial rate of
convergence whose power can be increased or decreased as much as we want.

Example 1. Let us consider n = 1, H(x,p) = <1+TM> K(p) form > 1 and K: R — R
defined by

—[p| orlpl < 1,
Kip)=1{ ¥ forlp (7.1)
Ipl =2 forlpl >1
The unique viscosity solution to (3.1) is
(T+xh™
uk(X) = W fOT'X c [—k, k].

Clearly, w(x) — 0 locally uniformly with rate O( o ) for any given m > 1. We should
note that the limit 0 is not a unique solution to (3.3). Another solution to (3.3) is u(x) =
11+ [x])™, but it does not belong to BUC (R).

Example 2. Assume n = 1, H(x,p) = K(p) + V(x) where V(x) = e and K: R = R

defined by
—Ipl forlpl <1
pl—=2  forlpl =
The unique state-constraint viscosity solution to (3.1) is
1 1
i (x) = —ze""' + (ek — zeZk) elXl, x € [k, X,

and the unique viscosity solution to (3.3) is

u(x) = —Ee’lxl, x € R.

We have w, — u locally uniformly in R with rate O(e™*).

Secondly, prototype condition (P1) can be relaxed as follows.

Remark 10. It is clear from the proofs of our main results (Theorems 1.1, 1.2, 1.4, and
Corollary 1.3) that prototype condition (P1) can be relaxed as following,.
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(P17) Assume Qy is bounded, B(0,k) C Qy, and the comparison principle for the state-
constraint problem holds on Qy for all k € N. Of course, Q = (J,cy Qx = R"
here.

Thirdly, there are some open questions we are not able to answer yet.

Question 1. In the first prototype (P1) case, what is the optimal rate of convergence of wy
to u in the general nonconvex setting?

A more specific question is as follows.

Question 2. Assume (P1), and H(x,p) = K(p) + V(x), where K € Lip (R™) is coercive
and nonconvex, and V € BUC(R™). Is it true that we always have an exponential rate of
convergence of Wy to u?

8. APPENDIX

8.1. Proofs of some lemmas.

Proof of Lemma 5.6. We first prove the result for all (x,v) with [v| < 1, then by scaling we
get the result for all (x,v). Using (L7) we have —B < L(x,v) < 4A + B for all (x,v) with
vl < 2. Foru,v € B(0,1) withu#v, let w=v+|v—ul""(v—u). Then, jw| < [v|+1 < 2.
Let A=(1+u—v|)~" €(0,1), we have v = Au+ (1 — A)w. By the convexity, one obtains

L(x,v) —L(x,u) < (1 —A)(L(x,w) — L(x,u)) < (4A + 2B)lu —vl.

By symmetry, we deduce that |L(x,u) —L(x,v)| < (4A 4+ 2B)lu—v| for all (x,v) with [v| < 1.
In other words, we have that |&] < 4A +2B whenever & € D L(x,v) for (x,v) € R* x B(0, 1).
Now for T > 1, we define L,(x,v) = r2L(x,1v) for (x,Vv) € R“ x R™. We observe that

A2 —B <A W2 —=Br 2 <L(x,v) <ANM?+Br2<Ap?+B

for all (x,v). Forv e R™ with [v| > 1, let r=2|v| > 1 and u = ﬁ € B(0,1) so that v =ru.
Since & € D, L(x,Vv) 1mphes € DL, (x,u), we have |§] < (4A +2B)|r| = (8A +4B)|v|. O

Proof of Theorem 5.7. Let N}, C Ax be a minimizing sequence in AC([0, co0)) such that
limy o J [x,M] = u(x). From the uniform boundedness of u and the quadratic bounds of
L(x,Vv), we have

He_%ﬁk(s)”LZ((O,oo);R“) < C4-
Here, C4 can be chosen as (A(2Cy + B))%. By the weak compactness of L2, there exists g
such that e"2g(s) € Lz((O, 00); ]R“) and a subsequence {k;} — oo such that e*%ﬁkj — e ig
weakly in Lz((O, oo);R“) as j — oo.
100((0,%);R“).

For t > 0, we let n(t) = x + fo g(s) ds. Clearly, n € Ay and one obtains that ny, — n
pointwise with 11 = g almost everywhere. On the other hand, the convexity of L implies

L (i, (8), =1 (8)) = L (i (8), =0 (s)) — DL (i (s), =0 (s)) - (s (s) —n(s)) -

Writing g as e2g-e~? and using the Cauchy-Schwartz inequality, we get g € L



22 YEONEUNG KIM, HUNG V. TRAN, AND SON N. T. TU

Therefore,

Jo e °L (ny;(s), =y, (s)) ds > Jo e °L (ny;(s),—(s)) ds

+J e 2Dy L (i, (s),—n(s)) - €% (M, (s) —7(s)) ds.
0
Since |D, L (nkj(s),—ﬁ(s)) | < CL(1+n(s)]) for a.e. s € (0,00), it is clear that

e /2D, L (ny,(s), —n(s)) = e */?D,L(n(s),—n(s))
in L2((0,00); R™) and thus

| e DAL (51, (8)) - i (5) () s

converges to 0 as k goes to infinity, which yields that J[x,n] < u(x). Hence J[x,n] =u(x). O
Proof of Lemma 5.8. By the definition of w in (5.1), we have

o0

u(n(t)) < J:o e *L(v(s),—v(s)) ds = etJ e “L(n(&),—(&)) dg,

t
where y(s) =n(t+s) for s > 0. Thus,

e u(niv) < | e L), () de 81)
By the dynamic programming principle and (8.1), we have
w((0) < | e *Lnls)—(s)) ds e unv) < | e Lnis) ils)) ds = u(n(0))
Therefore, (5.5), (5.6) and (5.7) follow. O

Proof of Lemma 5.9. For every t,h > 0, by Lemma 5.8 we have that
e fu(m(t)) —e M Mum(t+h) 1 J'J‘Jrh

h h
Let @ € C'(R) such that u— ¢ has a local min at n(t) and u(n(t)) = (p(n(t)), then

e u((®) —e Mumit+h) _ e to(n(t) —e Mo+ h)
h A h

e *L(n(s), —i(s)) ds.

t

Therefore,
1 (e . e to(m(t)) —e Mo n(t+h))
KL e*L(n(s),—(s)) ds < . .

Since 1 (t) is differentiable a.e. in (0, 00), at those t where n(t) is differentiable, let h — 0%
we deduce that

. d/ _ _ _ .
e'L{n(t), (1) < —7 (o (mv)) = e o (n(t) —e D (n(t) -A(t).
Thus, for a.e. t > 0 where 1 is differentiable, we have

L(n(t),—(t) < ¢(n(t)) —De(n(t)) -n(t).
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By (L7) and a priori estimate (5.3) for a.e. t € (0, 00) we have that

AT ()P =B < e(n(t)) —De(n(t)) -1(t) < Cu + Culn(t)l.
This shows that (t)] < Cs for a.e. t € (0,00), and Cs only depends on Cy, A, B. O

It is worth emphasizing again here that the bound Cs on the velocity of 1 only depends
on Cy, A, B, which can be seen clearly from the last chain of inequalities in the above proof.
In fact, one can choose explicitly that Cs = (2AB + 2ACy + A2CZ)1/2.

8.2. Existence of minimizers in the general case. We show that one can remove the
smoothness of L in Theorem 5.7 under the assumption (L3).

Let us consider mollifiers in R?™ defined as {n }e =0 such that n.(x) = alﬁn (f) for x € R*™

where 1 € CX(R?™) satisfying 0 <1 < 1, supp (n) C Bgza(0,1) and [, n(x) dx = 1.
For each ¢ > 0 we define the convolution L* = n, * L € C®(R™ x R™). It is easy to see
that L¢ is bounded below, (L5), (L6) are preserved to L® and (L7) now becomes:

(L7¢) There exist positive constants A, B, such that A7 — BT < L¥(x,v) < A¢Iv]? + B
for all (x,v) € R* x R", and A, - A,B, - Base — 0.

By Theorem 5.7, there exists a minimizer vy, in A, such that

(e¢]

ut(x) = infx Joo e L (g(s),—C(s)) ds :J e L (ve(s), —ve(s)) ds.

0 0

Let H® be the Legendre transform of L. Then, we can show that u® is the unique solution
to u(x) + H¥(x,Du®(x)) = 0 in R™. It is easy to see that H®* — H locally uniformly in
R™ x R™, therefore by stability of viscosity solutions, u® — u locally uniformly in R™ as
e — 0.

We indeed have that y® is smooth according to Remark 5. Furthermore, Theorem 5.7
yields that ||e™2v,(s)||;2 < C and |y.| < C pointwise in (0,00). Therefore, we can define
v € A, such that (up to subsequence) y. — v locally uniformly on [0, c0) and e~ 2y, — e~ 2y
weakly in L?. Since L® — L uniformly on a compact set and { —y.(s)},., is bounded, we
obtain that

L (ve(s), =Ve(s)) = L(v(s),—Ve(s)) + D, (e) + e, (hye(s) —v(s)])
using (L3). Therefore, it suffices to show that

J e SL(y(s),—y(s)) ds < limigfj e *L(v(s),—vVe(s)) ds. (8.2)
0 = 0

For simplicity, let du = e~ *ds be a probability measure on [0, 00). It is easy to see that the
functional I : L?(n) — R maps f — fgo L(y(s), f(s))du(s) is convex and lower semicontinu-
ous, thus it is also weakly lower semicontinuous. Now since Y. — vy weakly in L?(dp), we
obtain (8.2) and thus y is a minimizer for u(x).

Remark 11. Inequality (8.2) for the Cauchy problem (finite time horizon) is proved using a
different argument by H. Ishii in [16] under more general assumptions. Such inequalities are
crucial for the analysis of large time behavior of solutions to the time-dependent problems.
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