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Abstract. In this paper, we prove the existence of asymptotic speed of solutions to
fully nonlinear, possibly degenerate parabolic partial differential equations in a general
setting. We then give some explicit examples of equations in this setting and study
further properties of the asymptotic speed for each equation. Some numerical results
concerning the asymptotic speed are presented.

1. Introduction

This is a continuation of [13], where we discussed large time average of solutions to a

model equation in the crystal growth theory to be described in Section 2. Motivated by

this work, in this paper, we study a fully nonlinear, possibly degenerate parabolic partial

differential equation (PDE) of the type

(C)

{
ut + F (Du,D2u) = f(x) in Rn × (0,∞),

u(·, 0) = u0 on Rn,

where u : Rn × [0,∞) → R is a unknown function, and ut, Du and D2u denote the time

derivative, the spatial gradient and Hessian of u, respectively. Here F : (Rn\{0})×Sn → R
is a given continuous function, where Sn denotes the space of n×n real symmetric matrices.

We assume further that F is degenerate elliptic, that is,

F (p,X + Y ) ≤ F (p,X) for all p ∈ Rn \ {0}, X, Y ∈ Sn with Y ≥ 0,

and F∗(0, 0) = F ∗(0, 0) = 0, where we denote by F∗, F
∗ the upper and lower semicontin-

uous envelope of F , respectively (see [7, 10] for definitions). Typical examples of F we

have in our mind are the ones appearing in the level set approach for surface evolution

equations.

The function f : Rn → [0,∞) on the right hand side of (C) is called a source term in

the paper, which is assumed to be Lipschitz continuous and have a compact support. The

Date: February 7, 2019.
2010 Mathematics Subject Classification. 35B40, 35K93, 35K20.
Key words and phrases. Asymptotic speed; Birth and spread type nonlinear PDEs; Fully nonlinear

parabolic equations; Forced Mean Curvature Flow; Truncated Inverse Mean Curvature Flow; Crystal
growth; Volcano formation model.

The work of YG was partially supported by Japan Society for the Promotion of Science (JSPS) through
grants KAKENHI #26220702, #16H03948. The work of HM was partially supported by KAKENHI
#15K17574, #26287024, #16H03948. The work of HT was partially supported by NSF grant DMS-
1664424.

1



following condition is often set in the paper

f ∈ C1
c (Rn) and there exists R0 > 0 such that supp (f) ⊂ B(0, R0). (1.1)

We also suppose that the initial condition u0 : Rn → R is in BUC (Rn), where BUC (Rn)

is the set of bounded uniformly continuous functions on Rn. We are always concerned

with viscosity solutions in this paper, and the term “viscosity” is omitted henceforth.

The well-posedness (existence, comparison principle and stability results) for (C) is well

established in the theory of viscosity solutions under suitable assumptions (see [7, 10] for

instance). Our main goal in this paper is to study the large time average of u as t→ ∞,

that is,

lim
t→∞

u(x, t)

t
, for each x ∈ Rn. (1.2)

We call the limit in (1.2) the asymptotic speed of the solution u to (C) if it exists. This

question is important as a starting point to study qualitative and quantitative behaviors

of u(x, t) as t→ ∞.

A common strategy in the literature to obtain (1.2) is to construct appropriate barriers

by using subsolutions and supersolutions to (C) which have the same asymptotic speed.

Let us briefly describe this strategy in periodic homogenization theory by assuming that

f is Zn-periodic instead of (1.1) for the moment. Note that under this periodic situation,

(1.1) does not hold unless f ≡ 0. Because of the periodic structure, one is able to study

the following ergodic (cell) problem

(E) F (Dv,D2v) = f(x) + c in Tn := Rn/Zn.

Here (v, c) ∈ C(Tn)×R is a pair of unknowns. Under some appropriate assumptions, we

can show that there exists a unique constant c ∈ R so that (E) has a solution v ∈ C(Tn)

(see [18] for example). This yields that v(x)+C − ct is a solution to (C) with initial data

v(x) + C for any C ∈ R. Set C1 = ‖v‖L∞(Tn) + ‖u0‖L∞(Rn). By the comparison principle

for (C), it is straightforward to see that

v(x) − C1 − ct ≤ u(x, t) ≤ v(x) + C1 − ct for all (x, t) ∈ Rn × [0,∞),

which clearly implies that

lim
t→∞

u(x, t)

t
= −c for each x ∈ Rn.

The simple fact that ‖v‖L∞(Rn) = ‖v‖L∞(Tn) <∞ plays a crucial role here.

As already noted, the source term f in this paper satisfies (1.1) and is compactly

supported in B(0, R0), which means that (C) does not have a periodic structure of any

sort and that there is no corresponding cell/ergodic problem in a compact set. The above

approach (though quite natural and general) therefore is not applicable in this setting.

In this paper, we develop a method to prove the existence of the asymptotic speed for

solution of (C) under quite general assumptions ((A1)–(A3) in Section 3) in Theorem 3.3.

We put this in an abstract framework as our approach is quite general. A key point is

to keep track of m(t) = supx∈Rn u(x, t) for t ≥ 0 and show that m is subadditive in time

t. A similar idea in the periodic setting appears in [2, Section 10.3]. Then, in Section

4, we show that (A1)–(A3) hold true for three classes of equations by deriving a global
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Lipschitz bounds: first-order Hamilton-Jacobi equations, a forced mean curvature flow (a

crystal growth model), and a truncated inverse mean curvature flow (a volcano formation

model). Thus, we have existence of asymptotic speed for solutions to these equations.

For overview of the theory of large time behavior for fully nonlinear equations the readers

are referred to [2, 17, 11], and papers cited there.

In Section 5, we study qualitative properties of asymptotic speed of each equation

pointed out in Section 4. The asymptotic speed of solutions to first-order Hamilton-

Jacobi equations and truncated inverse mean curvature flow is completely characterized

in Subsection 5.1. For forced mean curvature flow, it is harder to analyze the asymptotic

speed of its solution. In the radially symmetric setting, we give a complete and satisfactory

characterization in Subsection 5.2. In non-radially symmetric settings, the situation seems

much more complicated and we obtain some partial results in Subsection 5.3. We present

some numerical results in Section 6, and indicate further questions which still remain

open. Finally, in Appendix, we introduce a volcano formation model, and discuss some

background on inverse mean curvature flow. Some typical results of this paper have been

announced in [11].

Acknowledgement. The authors thank Professors Fumio Nakajima for giving us papers

[20, 4] by J. Milne and G. F. Becker as well as useful information on volcanoes’ shapes.

The authors also thank Professor Takehiro Koyaguchi for giving us valuable information

on modern theory of volcanoes’ formation.

2. Birth and spread type nonlinear PDEs

In this section, we derive a PDE of the form of (C) as a continuum limit of a birth

and spread type model in the theory of crystal growth (see [22, Section 2.6] for instance).

From the continuum point of view, it is derived from the Trotter-Kato approximation as

following. Let u0 be the given height of a crystal surface at initial time immersed in a

supersaturated medium. We assume that there is no dislocation in the crystal lattice.

Then, the crystal grows according to the following processes.

(1) Birth: adatoms (atoms on the surface) make a small “terrace” on the surface by

their concentration.

(2) Spread: the terraces evolve by catching adatoms.

Fix a small time step τ > 0. Within time τ , the birth process starts in B(0, R0) with

supersaturation rate f(x) at each x ∈ B(0, R0), and the crystal surface evolves vertically

as the graph of v0 = u0(·) + τf(·). During the next short time τ , the terraces evolve

horizontally by the spread process, which is described by the evolution of each level set

of v0 by the surface evolution equation

V = g(n(x), κ(x)). (2.1)

More precisely, let D0 = {x ∈ Rn : v0(x) > c} be a terrace of the surface at height c ∈ R
and Γ0 = ∂D0 be the edge of the terrace after the birth process. Then, the terrace evolves

horizontally as Dτ
0 = {x ∈ Rn : dist(x,D0) < τV } with (2.1), where dist (x,D0) :=

inf{|x − y| : y ∈ ∂D0} if x ∈ Rn \ D0 and dist (x,D0) := − inf{|x − y| : y ∈ ∂D0} if

x ∈ D0. Here, g is a given function and V is the outward normal velocity of Γ0. The
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functions n(x), κ(x), respectively, are the outer unit normal and mean curvature of Γ0

at x ∈ Γ0. In the spread process, the above evolution occurs for all height c ∈ R as in

the continuum sense, and we obtain the height u(·, 2τ) of the crystal surface at t = 2τ .

Then, we return to the birth process by resetting u0 = u(·, 2τ). By repeating the above

processes, we obtain the Trotter-Kato approximation.

Let us describe this in a clear mathematical framework with a double-step method.

Consider two initial value problems

(N)

{
vt = f(x) in Rn × (0,∞),

v(·, 0) = u0 in Rn,

and

(P)

 wt = g

(
− Dw

|Dw|
, div

( Dw
|Dw|

))
|Dw| in Rn × (0,∞),

w(·, 0) = u0 in Rn,

where g : Rn × R → R is a given function. Notice that the equation in (P) is the level

set equation (see [10]) for the surface evolution equation V = g(n(x), κ(x)) on Γt. Under

some suitable assumptions on g, the well-posedness for (P) holds.

We call (N) and (P) the nucleation problem and the propagation problem, respectively.

Define the operators S1(t), S2(t) : Lip (Rn) → Lip (Rn) by

S1(t)[u0] := u0(·) + tf(·), and S2(t)[u0] := w(·, t), (2.2)

where w is the unique viscosity solution of (P) with given initial data u0. For x ∈ Rn,

small time step τ > 0, and i ∈ N, set

U τ (x, iτ) := S1(τ)
(
S2(τ)S1(τ)

)i
[u0](x). (2.3)

This is called the Trotter-Kato product formula with value function U τ (x, iτ). By using

a general framework in [3], for t = iτ > 0 fixed, uniqueness and stability yield that

lim
i→∞
iτ=t

U τ (x, iτ) = u(x, t) locally uniformly for x ∈ Rn, (2.4)

and u is the unique viscosity solution to (C) with

F (p,X) := −g
(
− p

|p|
,

1

|p|
tr

((
In − p⊗ p

|p|2

)
X

))
|p|,

where In is the identity matrix of size n, and for Y ∈ Sn, trY denotes the trace of Y .

We call this equation a birth and spread type nonlinear partial differential equations in

the paper. From the derivation, we can see that the equation has double nonlinear effects

coming from the interaction of the nucleation and the surface evolution.

It is worth emphasizing that the geometric structure of the operator for F is not nec-

essarily required to obtain convergence result (2.4). We have restricted the propagation

problem to equation (P) just to simplify explanation of a birth and spread model.
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3. Existence of asymptotic speed

In this section, we provide a simple way to prove the existence of the asymptotic speed

for the solution u of (C) in an abstract way. The assumptions we put are in the general

abstract form, which will be verified later for each situation. In particular, we do not need

to assume (1.1) here. We assume the followings.

(A1) The comparison principle holds for (C) in the class of bounded functions on Rn ×
[0, T ] for each T > 0. Moreover, for any given initial data u0 ∈ BUC (Rn), (C) has

a viscosity solution u ∈ C(Rn × [0,∞)) which is bounded on Rn × [0, T ] for each

T > 0.

(A2) For u0 ≡ 0, the solution u to (C) is uniformly continuous in the space variable x for

all t ≥ 0, that is, there exists a continuous, increasing function ω : [0,∞) → [0,∞)

with ω(0) = 0 such that

|u(x, t) − u(y, t)| ≤ ω(|x− y|) for all x, y ∈ Rn, t ≥ 0.

(A3) For u0 ≡ 0, let u be the corresponding solution to (C). There exists R0 > 0 such

that for each T > 0, we have

u(xT , sT ) = max
Rn×[0,T ]

u for some (xT , sT ) ∈ B(0, R0) × [0, T ].

Let us first give a few comments about assumptions (A1)–(A3). While (A1)–(A2) are

quite standard in the theory of viscosity solutions, (A3) looks a bit restrictive. This turns

out to be natural if we assume that f satisfies (1.1) thanks to the maximum principle and

the fact that F is independent of x.

Lemma 3.1. Assume that (A1) and (1.1) hold. Then (A3) is valid.

Proof. If f ≡ 0, then u ≡ 0 and there is nothing to prove. We hence may assume that

f 6≡ 0. It is clear then that u ≥ 0 and u 6≡ 0.

Fix T > 0 and notice that supRn×[0,T ] u > 0. For ε, δ > 0 sufficiently small, there exists

(xε,δ, tε,δ) ∈ Rn × (0, T ] such that

u(xε,δ, tε,δ) = max
Rn×[0,T ]

(
u(x, t) − εt− δ(|x|2 + 1)1/2

)
> 0.

By the definition of viscosity subsolution, we have

ε+ F

(
δ

xε,δ

(|xε,δ|2 + 1)1/2
, δ

(|xε,δ|2 + 1)In − xε,δ ⊗ xε,δ

(|xε,δ|2 + 1)3/2

)
≤ f(xε,δ).

Let δ → 0 first to deduce that (xε,δ, tε,δ) → (xε, tε) by passing to a subsequence if necessary

and xε ∈ B(0, R0) as f = 0 on Rn \ B(0, R0). We then let ε → 0 to get the desired

result. �

Lemma 3.2. Assume that (A1) holds. Let u be the solution to (C) with the initial data

u0 ≡ 0. Then, u is Lipschitz in time, and

‖ut‖L∞(Rn×[0,∞)) ≤M,

where M = maxRn f .
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Proof. It is clear that ϕ(x, t) = Mt for (x, t) ∈ Rn × [0,∞) is a supersolution to (C)

because of the fact that F∗(0, 0) = F ∗(0, 0) = 0. We use the comparison principle to get

0 ≤ u(x, t) ≤Mt for all (x, t) ∈ Rn × [0,∞). (3.1)

Thus, ‖ut(·, 0)‖L∞(Rn) ≤M .

For any given s > 0, both (x, t) 7→ u(x, t+s) and (x, t) 7→ u(x, t) are viscosity solutions

to (C) with initial data u(·, s) and u(·, 0), respectively. By the comparison principle in

(A1) and (3.1),

‖u(·, t+ s) − u(·, t)‖L∞(Rn) ≤ ‖u(·, s) − u(·, 0)‖L∞(Rn) ≤Ms.

Divide both sides of the above by s and let s→ 0+ to get the conclusion. �

Below is one of our main results of this paper on the existence of asymptotic speed.

Theorem 3.3. Assume that (A1)–(A3) hold. Assume also that M = maxRn f exists and

finite. Let u be the solution to (C) with a given initial data u0 ∈ BUC (Rn). There exists

c ∈ [0,M ] such that

lim
t→∞

u(x, t)

t
= c locally uniformly for x ∈ Rn. (3.2)

Furthermore, c is independent of the choice of u0.

Proof. Since the comparison principle holds, in order to prove (3.2), we can assume that

u0 ≡ 0. Recall that (3.1) gives us

0 = u0(x) ≤ u(x, t) ≤Mt.

For t ≥ 0, set m(t) = supx∈Rn u(x, t). We now show that

m(t+ s) ≤ m(t) +m(s) for all s, t ≥ 0. (3.3)

Fix s ≥ 0. We note that (x, t) 7→ v(x, t) = u(x, t+ s)−m(s) and (x, t) 7→ u(x, t) are both

solutions to (C), and

v(x, 0) = u(x, s) −m(s) ≤ 0 = u(x, 0).

Thus, v(x, t) ≤ u(x, t) in light of the comparison principle. In particular, we get that

(3.3) holds, which means that m is subadditive on [0,∞). By Fekete’s lemma (see [8], [2,

page 95] for instance), there exists c ∈ [0,∞) such that

lim
t→∞

m(t)

t
= c = inf

s>0

m(s)

s
. (3.4)

It is clear that c ≤ M because of (3.1). If c = 0, then (3.2) holds immediately. We

therefore only need to consider the case that c > 0. Fix ε > 0. There exists T = T (ε) > 0

such that

c ≤ m(t)

t
≤ c+ ε for all t > T.

For t > max{MT
c
,M}, we use (A3) to have that

ct ≤ max
Rn×[0,t]

u = u(xt, st) ≤Mst for some (xt, st) ∈ B(0, R0) × [0, t], (3.5)
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which implies that st ≥ ct
M

≥ T . Thus, we are able to improve (3.5) as

ct ≤ max
Rn×[0,t]

u = u(xt, st) ≤ (c+ ε)st, (3.6)

which yields st ≥ c
c+ε

t. So for any x ∈ B(0, R) for R > 0 given, we use (A2) and Lemma

3.2 to estimate that

|u(x, t) − u(xt, st)| ≤ ω(|x− xt|) + C|t− st| ≤ ω(R +R0) +
Cεt

c+ ε
.

Hence, for t > max{MT
c
,M},

c− Cε

c+ ε
− ω(R +R0)

t
≤ u(x, t)

t
≤ c+ ε.

The proof is complete. �

Remark 1. We note that the use of the Fekete lemma is quite natural in the literature

once some subadditive quantities are identified. A similar argument in the periodic setting

appeared in a lecture note of Barles [2] (see Section 10.3, the proof of Theorem 10.2). This

is exactly the setting described in Introduction, and we can also obtain the same result by

using the cell/ergodic problem. In general, the lack of periodicity prevents us from using

the natural compactness property of Tn. In a sense, (A3) is a compactness assumption,

which is a simple and effective replacement for the periodicity. Furthermore, (A3) holds

if we are in the periodic setting.

We show next that (A1) also yields that if u0 ≡ 0, then u is Lipschitz continuous in the

space variable x on Rn× [0, T ] for each T > 0, however, the Lipschitz constant C depends

on T in this result.

Proposition 3.4. Assume that (A1) holds. Let u be the solution to (C) with a given

initial data u0 ≡ 0. Then, for each t > 0,

|u(x1, t) − u(x2, t)| ≤
(
‖Df‖L∞(Rn)t

)
|x1 − x2| for all x1, x2 ∈ Rn.

Proof. Fix y ∈ Rn. Let{
v−(x, t) = u(x+ y, t) − ‖Df‖L∞(Rn)|y|t for (x, t) ∈ Rn × [0,∞),

v+(x, t) = u(x+ y, t) + ‖Df‖L∞(Rn)|y|t for (x, t) ∈ Rn × [0,∞).

It is straightforward to see that v− and v+ are a subsolution and a supersolution to (C)

respectively, and

v−(x, 0) = u0(x) = v+(x, 0) = 0.

Therefore, the comparison principle in (A1) yields v−(x, t) ≤ u(x, t) ≤ v+(x, t). We thus

have

|u(x+ y, t) − u(x, t)| ≤ ‖Df‖L∞(Rn)|y|t for all x ∈ Rn, t ≥ 0. �

Remark 2. It is worth emphasizing that the Lipschitz bound obtained in Proposition 3.4

is not enough to obtain the existence of the asymptotic speed, and assumption (A2) plays

an essential role in the proof of Theorem 3.3 (see the last part of the proof of Theorem

3.3). In fact, (A2) can be replaced by the following weaker assumption.
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(A2)’ For u0 ≡ 0, the solution u to (C) is uniformly continuous in the space variable x

for each t ≥ 0, that is, there exists a continuous, increasing function ωt : [0,∞) →
[0,∞) with ωt(0) = 0 such that

|u(x, t) − u(y, t)| ≤ ωt(|x− y|) for all x, y ∈ Rn.

And for each fixed R > 0,

lim
t→∞

ωt(R)

t
= 0.

On the other hand, (A2) is easier to be verified than (A2)’. We need to check (A2)

carefully for each application in the next section.

4. Applications

4.1. First-order Hamilton-Jacobi equations. Assume that (1.1) holds and F (p,X) =

−H(p) where H : Rn → R is a continuous function satisfying

H(0) = 0 and lim
|p|→∞

H(p) = +∞. (4.1)

It is clear that if (4.1) holds, then we have the validity of (A1)–(A3) and hence also of

Theorem 3.3.

A special case is when H is 1-homogeneous, that is, H(p) = g
(

p
|p|

)
|p| for all p 6= 0 and

H(0) = 0. Here, g : Rn → (0,∞) is a given continuous function. This situation appears

if we consider the surface evolution equation V = g(n(x)) in the birth and spread type

model in Section 2. Notice that H is not necessarily convex.

4.2. Forced mean curvature flow. Consider a forced mean curvature flow

V = κ+ 1

in the birth and spread type model in Section 2. Then, the associated PDE in (C) becomesut −
(
div

(
Du
|Du|

)
+ 1
)
|Du| = f(x) in Rn × (0,∞),

u(x, 0) = u0(x) on Rn.
(4.2)

Assume that (1.1) holds. We have that (A1) holds (see [10] for instance). Therefore, we

only need to verify (A2) here.

Lemma 4.1. Assume that (1.1) holds. Let u be the solution to (4.2) with given initial

data u0 ≡ 0. Then, u is Lipschitz in space, and there exists C > 0 depending only on f

and n such that

‖Du‖L∞(Rn×[0,∞)) ≤ C.

Proof. For ε ∈ (0, 1), we consider the following approximated equationuε
t −

(
div

(
Duε√

|Duε|2+ε2

)
+ 1

)√
|Duε|2 + ε2 − f = 0 in Rn × (0,∞),

uε(x, 0) = 0 on Rn.

(4.3)
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This has a unique solution uε ∈ C2
c (Rn × [0,∞)). Setting bε(p) := In − p⊗ p/(|p|2 + ε2),

we rewrite (4.3) as

uε
t − bεij(Du

ε)uε
xixj

−
√
|Duε|2 + ε2 − f = 0 in Rn × (0,∞). (4.4)

Here we use Einstein’s convention.

We use the Bernstein method to get the gradient bound for uε, hence u. Let wε :=

|Duε|2/2. Differentiate the above equation with respect to xk and multiply by uε
xk

to yield

wε
t − bεij

(
wε

xixj
− uε

xjxk
uε

xixk

)
−Df ·Duε − uε

xixj
Dpb

ε
ij ·Dwε +

Duε ·Dwε√
|Duε|2 + ε2

= 0.

Fix T > 0. Take (x0, t0) ∈ Rn × (0, T ] so that wε(x0, t0) = maxRn×[0,T ]w
ε. At this point,

we have

bεiju
ε
xjxk

uε
xixk

−Df ·Duε ≤ 0. (4.5)

By using a modified Cauchy-Schwarz inequality (see Remark 3 below)

(trAB)2 ≤ tr (ABB)trA for all A,B ∈ Sn, A ≥ 0, (4.6)

we obtain

Df ·Duε ≥ tr (bε(Duε)D2uεD2uε) ≥ (tr (bε(Duε)D2uε))
2

tr (bε(Duε))
≥ (tr (bε(Duε)D2uε))

2

n
. (4.7)

By repeating the proof of Lemma 3.2, we have that ‖uε
t‖L∞(Rn×[0,∞)) ≤ M + 1, where

M = maxRn f , for all ε ∈ (0, 1). We use this and (4.4) to yield

(
tr (bε(Duε)D2uε)

)2
=
(
uε

t −
√
|Duε|2 + ε2 − f

)2

≥ 1

2
|Duε|2 − C, (4.8)

where C = 4(2M + 1)2.

Combining (4.7) and (4.8) together, we obtain

1

2
|Duε|2 − C ≤ nDf ·Duε ≤ C|Duε|,

which implies that ‖Duε‖L∞(Rn×[0,∞)) ≤ C for some C > 0 depending only on ‖f‖L∞ ,

‖Df‖L∞ , and n. Let ε→ 0 to yield the desired result. �

Remark 3. We give a simple proof of (4.6) here. By the Cauchy-Schwarz inequality, we

always have

0 ≤ (tr (ab))2 ≤ tr (a2)tr (b2) for all a, b ∈ Sn.

For A,B ∈ Sn with A ≥ 0, set a := A1/2 and b := A1/2B. Then,

(tr (AB))2 ≤ tr (A)tr (A1/2BA1/2B) = tr (A)tr (ABB).
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4.3. Truncated inverse mean curvature flow. Consider a truncated normal velocity

V =
1

χ(κ)
(4.9)

in the birth and spread type model in Section 2, where we set

χ(r) := min{max{r, λ},Λ} for r ∈ R. (4.10)

Here λ is sufficiently small and Λ is sufficiently large satisfying 0 < λ < Λ are given

constants. Then, the associated PDE in (C) becomes
ut −

|Du|

χ
(

−tr (b(Du)D2u)
|Du|

) = f(x) in Rn × (0,∞),

u(x, 0) = u0(x) on Rn,

(4.11)

where b(p) = In − p⊗ p/|p|2.

Lemma 4.2. Assume that (1.1) holds. Let u be the solution to (4.11) with given initial

data u0 ≡ 0. Then, u is Lipschitz in space, and there exists C > 0 depending only on f

and Λ such that

‖Du‖L∞(Rn×[0,∞)) ≤ C.

Proof. Note first that ‖ut‖L∞(Rn×[0,∞)) ≤M . Set L = Λ(M + ‖f‖L∞(Rn)) + 1. Fix T > 0.

For each δ > 0, we consider the following auxiliary function

φ(x, y, t) = u(x, t) − u(y, t) − L|x− y| − δ(|y|2 + 1)1/2 for (x, y, t) ∈ Rn × Rn × [0, T ].

Assume that φ has a max at (x0, y0, t0) ∈ Rn × Rn × [0, T ] with x0 6= y0. We claim that

t0 = 0. Assume otherwise, then there exists (α, p,X) ∈ P 2,+u(x0, t0) such that

α− |p|

χ
(

−tr (b(p)X)
|p|

) ≤ f(x0),

where P denotes the parabolic semi-jets (see [7, 10] for instance). Hence,

M + ‖f‖L∞(Rn) ≥ −α + f(x0) ≥
|p|

χ
(

−tr (b(p)X)
|p|

) ≥ |p|
Λ

=
L

Λ
,

which contradicts with the choice of L. Hence t0 = 0 or x0 = y0. We let δ → 0 to get the

result with C = L. �

Remark 4. It is worthwhile to emphasize that if we consider (4.11) in the two dimensional

setting (n = 2) with u0 ≡ 0, and f(x) = 1B(0,R0)(x) for some R0 > 0, and all x ∈ R2, then

interestingly, the graph of its maximal solution u(x, t) describes pretty well the shape of

Mt. Fuji, a stratovolcano. Note that (1.1) does not hold here since f is not continuous. We

provide a heuristic explanation about a volcano formation model, and explain in details

the maximal viscosity solution in this setting in Appendix.
10



5. Some estimates on asymptotic speed

In this section, we proceed to study further properties of asymptotic speed for solutions

of equations in the previous section. Let u be the solution to (C). Assume (A1)–(A3).

Let cf be the asymptotic speed given by (3.2). By (A1), we always have

cf ≤ max
x∈Rn

f(x) =: Mf . (5.1)

We now give further characterization results on cf .

5.1. Positive normal velocity (V > 0). We first consider two cases in Subsections 4.1,

4.3, which are rather simple because of the fact that normal velocities are always positive.

Indeed, we have the following.

Theorem 5.1. Assume that (1.1) holds. Let F be either the operator given in Subsection

4.1 or Subsection 4.3. Then, cf = Mf .

To prove this theorem, we need the following simple lemma.

Lemma 5.2. Let f : Rn → R be a function satisfying (1.1), and δ > 0 be a given constant.

Let w be the solution to{
wt − δ|Dw| = f(x) in Rn × (0,∞),

w(x, 0) = 0 on Rn.
(5.2)

Then,

lim
t→∞

w(x, t)

t
= Mf locally uniformly for x ∈ Rn.

Proof. First of all, it is clear that ϕ(x, t) = Mf t for (x, t) ∈ Rn × [0,∞) is a supersolution

to (5.2). Therefore, by the usual comparison principle,

w(x, t) ≤Mf t for all (x, t) ∈ Rn × [0,∞). (5.3)

Besides, we have the following optimal control formula for w

w(x, t) = sup

{∫ t

0

f(γ(s)) ds : γ ∈ AC ([0, t],Rn), γ(0) = x, |γ′| ≤ δ a.e. on [0, t]

}
.

Here, AC ([0, t],Rn) is the set of absolutely continuous functions from [0, t] to Rn. Fix

R > 0 and x ∈ B(0, R). Pick y ∈ B(0, R0) such that f(y) = Mf . For t > (R+R0)/δ, set

γ(s) =

{
x+ δs y−x

|y−x| for 0 ≤ s ≤ |y−x|
δ
,

y for |y−x|
δ

≤ s ≤ t.

Then

w(x, t) ≥
∫ t

0

f(γ(s)) ds ≥Mf

(
t− |y − x|

δ

)
≥Mf

(
t− R +R0

δ

)
. (5.4)

We combine (5.3) and (5.4) to reach the conclusion. �
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Proof of Theorem 5.1. This is a straightforward consequence of Lemma 5.2. We only

consider the case in Subsection 4.3. Let u be the solution to (4.11). Noting that λ ≤
g(r) ≤ Λ for all r ∈ R, we deduce that u is a supersolution to

ut −
|Du|
Λ

≥ f(x) in Rn × (0,∞).

We then use Lemma 5.2 and (5.1) to get the conclusion. �

5.2. Forced mean curvature flow in the radially symmetric setting. In this sub-

section, we assume f is radially symmetric, that is, f(x) = f̃(|x|) for x ∈ Rn, where

f̃ : [0,∞) → [0,∞) is given. The following theorem gives a complete characterization of

cf in term of f̃ (or f).

Theorem 5.3. Assume that u0 ∈ BUC (Rn) and f(x) = f̃(|x|) for x ∈ Rn, where

f̃ ∈ Cc([0,∞), [0,∞)) ∩ Lip ([0,∞), [0,∞)). Let u be the solution to (4.2). Then

cf = max
r∈[n−1,∞)

f̃(r) = max
|x|≥n−1

f(x).

In order to prove this theorem, we here consider a radially symmetric solution u(x, t) =

φ(|x|, t), where φ = φ(r, t) : [0,∞) × [0,∞) → R, with u(x, 0) = 0 for all (x, t) ∈
Rn × [0,∞). Then,

ut = φt, Du = φr
x

|x|
, D2u = φrr

x⊗ x

|x|2
+ φr

1

|x|

(
I − x⊗ x

|x|2
)
.

Plugging these into (4.2) to reduce it to{
φt − n−1

r
φr − |φr| = f̃(r) in (0,∞) × (0,∞),

φ(·, 0) = 0 on [0,∞).
(5.5)

Notice here that since we consider the viscosity solution (which may not be smooth at

x = 0) of (4.2), we do not know the boundary condition of φ at r = 0 a priori.

Besides, the Hamiltonian of (5.5) is H(p, r) = −n−1
r
p−|p|− f̃(r) for (p, r) ∈ R×(0,∞),

which is concave in p and singular in r at r = 0. Its corresponding Lagrangian L is

L(q, r) =

{
f̃(r) if

∣∣q + n−1
r

∣∣ ≤ 1,

−∞ otherwise.

Let us define the value function φ̃ : (0,∞) × [0,∞) with a state constraint condition by

φ̃(r, t) = sup

{∫ t

0

f̃(γ(s)) ds : γ([0, t]) ⊂ (0,∞), γ(t) = r,

∣∣∣∣γ′(s) +
n− 1

γ(s)

∣∣∣∣ ≤ 1 a.e.

}
.

(5.6)

Lemma 5.4. Let φ̃(r, t) : (0,∞) × [0,∞) be the function defined by (5.6). Then, φ̃ is

Lipschitz continuous on (0,∞)× [0, T ] for any T > 0, and is a viscosity solution to (5.5).
12



Proof. Let 0 < r1 < r2 and t > 0. We first consider the case where n− 1 < r1 < r2 with

r2 − r1 < t. Take an arbitrary γ in the admissible class of (5.6) such that γ(t) = r2. Let

η be the solution of the following ODEη
′(s) +

n− 1

η(s)
= −1 for s > 0,

η(0) = r2.

Since |η′(s)| = 1 + (n− 1)/η(s) ≥ 1 as long as η(s) > 0, there exists α1 > 0 such that

η(α1) = r1, α1 ≤ r2 − r1 < t.

Set γ̃ : [0, t] → (0,∞) such that

γ̃(s) =

{
γ(s+ α1) for 0 ≤ s ≤ t− α1,

η(s− (t− α1)) for t− α1 ≤ s ≤ t.

Then γ̃ is also in the admissible class of (5.6) with γ̃(t) = r1. Because of the boundedness

of f , one has

φ̃(r1, t) ≥
∫ t

0

f̃(γ̃(s)) ds =

∫ t−α1

0

f̃(γ(s+ α1)) ds+

∫ t

t−α1

f̃(γ̃(s)) ds

≥
∫ t

α1

f̃(γ(s)) ds− Cα1 ≥
∫ t

0

f̃(γ(s)) ds− C ′α1.

Take the supremum of the above over all admissible curves γ to yield

φ̃(r2, t) ≤ φ̃(r1, t) + Cα1 ≤ φ̃(r1, t) + C(r2 − r1).

By a similar argument, we get

φ̃(r1, t) ≤ φ̃(r2, t) + C(r2 − r1).

We next consider the case where r1 < r2 ≤ n−1 with r2−r1 ≤ β, where β will be fixed

later. We repeat the above argument with a slight modification. Take an arbitrary γ in

the admissible class of (5.6) such that γ(t) = r2. Let η be the solution of the following

ODE η
′(s) = −n− 1

η(s)
for s > 0,

η(0) = r2.

Noting that |η′| = (n − 1)/η ≥ (n − 1)/r2, we see that there exists α2 > 0 such that

η(α) = r1 and

α2 ≤
r2(r2 − r1)

n− 1
.

Choose β > 0 so small that r2(r2 − r1)/(n− 1) < t.

By a similar argument to the above, we obtain

|φ̃(r1, t) − φ̃(r2, t)| ≤ Cr2(r2 − r1). (5.7)

Similarly, we can prove the Lipschitz continuity with respect t, and we obtain the

conclusion.

By using the dynamic programing principle, we can easily prove that φ̃ is a viscosity

solution to (5.5). �
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In view of Lemma 5.4, the function φ̃ can be uniquely extended to a continuous function

on (r, t) ∈ [0,∞) × [0, T ]. We still denote it by φ̃.

Lemma 5.5. Let φ̃ be the function on [0,∞)×[0,∞) defined in the above. Then, φ̃r(0, t) =

0 for all t > 0.

The proof of this lemma is a straightforward result of inequality (5.7).

Lemma 5.6. Set u(x, t) := φ̃(|x|, t) for all (x, t) ∈ Rn × [0,∞). Then, u is the viscosity

solution to (4.2).

Proof. It is clear from Lemma 5.4 and [13, Lemma A.1, Appendix A] that u is a viscosity

solution to 
ut −

(
div

(
Du
|Du|

)
+ 1
)
|Du| = f(x) in (Rn \ {0}) × (0,∞),

u(0, t) = φ̃(0, t) in (0,∞),

u(x, 0) = u0(x) on Rn.

(5.8)

We thus only need to check that u is a viscosity solution to (4.2) at x = 0. Note first

that, in light of Lemma 5.5, Du(0, t) = 0 for all t > 0. Let us only check the viscosity

subsolution property at x = 0 as the supersolution property at x = 0 follows in a similar

manner.

Let ϕ be a smooth test function such that u − ϕ has a strict maximum at (0, t0) for

some t0 > 0. Obviously, Dϕ(0, t0) = Du(0, t0) = 0. Let {pk} ⊂ Rn be a sequence of

non-zero vectors such that |pk| is sufficiently small for all k ∈ N and limk→0 pk = 0. For

each k ∈ N, we have that u(x, t) − ϕ(x, t) − pk · x attains a local maximum at (xk, tk)

and, by passing a subsequence if necessary, limk→∞(xk, tk) = (0, t0). Since pk 6= 0, xk 6= 0

for all k ∈ N. Set qk = Dϕ(xk, tk) + pk for all k ∈ N. By the definition of the viscosity

subsolution, we yield

ϕt(xk, tk) − tr

((
In − qk ⊗ qk

|qk|2

)
D2ϕ(xk, tk)

)
− |qk| ≤ f(xk).

Let k → ∞ to get the desired conclusion. �

We are now ready to prove the main result in this subsection, Theorem 5.3.

Proof of Theorem 5.3. Take R ∈ (0, n − 1). If γ is in the admissible class of (5.6) such

that γ(s) ∈ (0, R), then

γ′(s) ≤ 1 − n− 1

γ(s)
≤ 1 − n− 1

R
= −n− 1 −R

R
=: −d < 0.

Hence

|{s ∈ [0, t] : γ(s) ∈ (0, R)}| ≤ R

d
.

Here, for a Lebesgue measurable set A, |A| denotes its Lebesgue measure. In particular,

for t > R/d, we have that

φ(r, t) ≤ R

d
max

r∈[0,∞)
f̃(r) +

(
t− R

d

)
max
r≥R

f̃(r). (5.9)
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Divide both sides of (5.9) by t and let t→ ∞ to yield

cf ≤ max
r≥R

f̃(r).

We then let R → n− 1 to get

cf ≤ max
r≥n−1

f̃(r). (5.10)

We need to show that the reverse inequality of (5.10) holds as well. Take r0 ≥ n − 1

such that f̃(r0) = maxr≥n−1 f̃(r). Fix r ∈ (0,∞) and r0 > r0, and consider two cases.

Case 1: r > r0. Set T1 := r0(r−r0)
r0−(n−1)

∈ (0,∞). For t > T1, define γ : [0, t] → (0,∞) as

γ(s) :=

r0 for 0 < s < t− T1,

r0 + (s− t+ T1)
r0 − (n− 1)

r0
for t− T1 < s < t.

It is clear that γ is admissible in formula (5.6) and hence

φ(r, t) ≥
∫ t

0

f̃(γ(s)) ds ≥
∫ t−T1

0

f̃(γ(s)) ds = f̃(r0)(t− T1),

as f̃ is nonnegative, which is sufficient to get the conclusion by letting r0 → r0.

Case 2: 0 < r ≤ r0. We first consider the following ODEξ
′(s) = −1 − n− 1

ξ(s)
for s > 0,

ξ(0) = r0.

Take T2 > 0 to be the smallest value such that ξ(T2) = r. It is immediate that T2 ≤ r0−r.
For t > T2, consider γ : [0, t] → (0,∞) as

γ(s) :=

{
r0 for 0 ≤ s < t− T2,

ξ(s− t+ T2) for t− T2 < s ≤ t.

Again, it is obvious that γ is admissible in formula (5.6) and

φ(r, t) ≥
∫ t

0

f̃(γ(s)) ds ≥ f̃(r0)(t− T2).

The proof is complete by letting r0 → r0. �

5.3. Forced mean curvature flow in non-radially symmetric settings. In non-

radially symmetric settings, the situation seems much more complicated. At least at this

moment, it is quite hard to obtain detailed qualitative properties of the asymptotic speed.

We here give some partial results based on the analysis of the radially symmetric setting

in Subsection 5.2.

The first result concerns a situation where f does not take values near its maximum

outside of the critical ball B(0, n− 1).

Lemma 5.7. Assume that u0 ∈ BUC (Rn) and f : Rn → R satisfying (1.1). Assume

further that there exist s ∈ (0,Mf ) and R < n− 1 such that

{x ∈ Rn : Mf − s ≤ f(x) ≤Mf} ⊂ B(0, R).

Let u be the solution to (4.2). Then cf ≤M − s.
15



Proof. Define

f(x) = max
|y|=|x|

f(y) for x ∈ Rn.

Then f ≥ f , f is radially symmetric, and {f ≥Mf − s} ⊂ B(0, n− 1) by assumption. In

particular,

max
|x|≥n−1

f(x) ≤Mf − s.

Let v be the solution to (4.2) with the right hand side f in place of f . Then, by the

comparison principle, 0 ≤ u ≤ v. This, together with Theorem 5.3, implies

0 ≤ cf ≤Mf − s. �
Next, we consider a setting where f takes its maximum value in the whole critical ball

B(0, n− 1), in which case we easily verify that cf = Mf .

Lemma 5.8. Assume that u0 ∈ BUC (Rn) and f : Rn → R satisfying (1.1). Assume

further that there exists R ≥ n− 1 such that

B(0, R) ⊂ {x ∈ Rn : f(x) = Mf}

Let u be the solution to (4.2). Then cf = Mf .

Proof. The proof goes in a similar manner to that of Lemma 5.7. Define

f(x) = min
|y|=|x|

f(y) for x ∈ Rn.

Then, f ≤ f , f is radially symmetric, f = Mf on B(0, R). In particular,

max
|x|≥n−1

f(x) = Mf .

Let w be the solution to (4.2) with the right hand side f in place of f . Then, by the

comparison principle, 0 ≤ w ≤ u. This, together with Theorem 5.3, implies

Mf = cf ≤ cf ≤Mf . �
Remark 5. Under the setting of Lemma 5.8, cf = Mf . It is important going further to

study finer asymptotics of u(x, t) as t → ∞ (more or less next terms in the asymptotic

expansion of u). A natural question to ask here is

lim
t→∞

(u(x, t) − cf t) =?

In general, this is an open problem as we are in the setting that F is fully nonlinear, and

degenerate elliptic (thus no strong maximum principle) and F is not convex in p. See

discussions in [17, Section 5.7]. We will address this question in the near future.

Remark 6. The asymptotic limit defined in Remark 5 is sometimes called (unrescaled)

asymptotic profile. In the case of forced mean curvature flow, it is known in [11, Theorem

1.4] that a rescaled asymptotic profile is of the form

lim
λ→∞

u(λx, λt)/λ = cf (t− |x|)+

if u0 = 0; as far as u0 is compactly supported it can be easily generalized for the case

u0 is not identically equal to zero. In [11] this rescaled limit is also established when the

spreading law is anisotropic.
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Note that in [13] and also in [11], it is shown that the asymptotic speed cf can be

strictly smaller than Mf . In [13] the case when f is a characteristic function is discussed

in detail. By the way, it is shown that the maximum points of u(·, t) is contained in the

convex hull of the set of maximum points of f in [11, Lemma 3.7], which is stronger than

(A3).

Finally, we recall some front propagation problems with obstacles developed in [13].

For an open set A ⊂ Rn (resp., a closed set B ⊂ Rn), we denote by F−[A](t) (resp.,

F+[B](t)) the level set solution of the following front propagation with obstacles

V = κ+ 1 with obstacle A, i.e., F−[A](t) ⊂ A

(resp., V = κ+ 1 with obstacle B, i.e., B ⊂ F+[B](t)),

for any t ≥ 0, and F−[A](0) = A, F+[B](0) = B.

Lemma 5.9. Assume that u0 ∈ BUC (Rn) and f : Rn → R satisfying (1.1). Let u be the

solution to (4.2). We have the following conclusions.

(i) If there exists t0 > 0 such that

F−[{f > 0}](t0) = ∅,

then cf < Mf .

(ii) If there exists s ∈ (0,Mf ) such that

F+[{f ≥ s}](t) → Rn as t→ ∞,

then cf > 0.

This is a straightforward result of Theorem 3.3 together with [13, Theorems 5.4, 5.6].

6. Further on asymptotic speed and numerical results

In this section, we give numerical schemes for the birth and spread type PDEs, (4.2)

and (4.11), and provide numerical results on asymptotic speed of (4.2) in two dimensions

(n = 2). With the aid of numerical simulation, we raise several concrete questions to be

studied in the future.

6.1. Numerical Schemes. We discretize (4.2) and (4.11) by the usual finite difference

schemes. We now recall the discretization of the curvature term as in [23] with some

remarks for equations with outer force term. See also [24].

We discretize the spatial derivative terms of the equations on the Cartesian grid

D = {xi,j = (i∆x, j∆x) : −N ≤ i, j ≤ N}

of a square domain Ω = [−R,R]2 ⊂ R2 with a uniform grid spacing ∆x > 0 and number

of points N ∈ N. We first omit the time variable t for simplicity to obtain the discretiza-

tion of the curvature and eikonal term. For a given function u : Ω → R, let us set

ui,j = u(i∆x, j∆x). To avoid the division by zero on the curvature term, we introduce a

regularized curvature term

κ̃ = div

(
Du√

ε2 + |Du|2

)
.
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Then, the forced mean curvature operator with source term in (4.2) is approximated as

Φ(u)i,j := |D̂ui,j|κ̃i,j + |D̃ui,j| + f(xi,j). (6.1)

The curvature term κ̃i,j is discretized as follows

κ̃i,j =
P+

i,j − P−
i,j

∆x
+
Q+

i,j −Q−
i,j

∆x
,

P±
i,j =

∂±x1
ui,j√

ε2 + (∂±x1
ui,j)2 + (∂̄±x2

ui,j)2
, Q±

i,j =
∂±x2

ui,j√
ε2 + (∂̄±x1

ui,j)2 + (∂±x2
ui,j)2

,

where the partial differences ∂±x1
ui,j and ∂̄±x1

ui,j on x1 are given by

∂±x1
ui,j = ±ui±1,j − ui,j

∆x
, ∂̄±x1

ui,j =
1

2∆x

(
ui+1,j±1 + ui+1,j

2
− ui−1,j±1 + ui−1,j

2

)
.

The terms ∂±x2
ui,j and ∂̄±x2

ui,j are also defined analogously as above. The term |D̂ui,j| in

front of κ̃ is discretized by

|D̂ui,j| =

√
|∂̂x1ui,j|2 + |∂̂x2ui,j|2,

|∂̂x1ui,j| =


∣∣∣∣ui+1,j − ui−1,j

2

∣∣∣∣ if

∣∣∣∣ui+1,j − ui−1,j

2

∣∣∣∣ ≥ ρ,

max{|∂+
x1
ui,j|, |∂−x1

ui,j|} otherwise

with a small constant ρ > 0. The term |∂̂x2ui,j| is defined as the same manner of |∂̂x1ui,j|.
We remark that ρ > 0 should be chosen small, but not too small. In fact, for example,

when u(x) = −|x|2/2 then it is well known that |Du|div(Du/|Du|) = −1 in viscosity sense.

However, if |Du| was approximated just with the center differences (ui+1,j −ui−1,j)/(2∆x)

and (ui,j+1 − ui,j−1)/(2∆x), then the numerical result of |Du0,0|κ̃0,0 would be zero. This

discrepancy would cause some irregular numerical results, in particular, when f 6≡ 0. We

choose adequate ρ > 0 to avoid such irregular numerical results.

On the other hand, the first order term |D̃ui,j| =
√

|∂̃x1ui,j|2 + |∂̃x2ui,j|2 is discretized

with an upwind differencing

|∂̃x1ui,j| = max{(∂̃+
x1
ui,j)+, (−∂̃−x1

ui,j)+},

where (a)+ = max{a, 0} for a ∈ R,

∂̃±x1
ui,j = ∂±x1

ui,j ∓
∆x

2
µ

(
ui±2,j − 2ui±1,j + ui,j

∆x2
,
ui+1,j − 2ui,j + ui−1,j

∆x2

)
,

µ(p, q) =

{
p if |p| < q,

q otherwise.

The term |∂̃x2ui,j| is also defined with the same manner as ∂̃x1ui,j.

We now let u : Ω × [0,∞) → R be the unknown. We calculate the approximate force

mean curvature flow

ut = Φ(u)i,j = |D̂ui,j|κ̃i,j + |D̃ui,j| + f(xi,j)
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with an explicit finite difference scheme, i.e.,

uk
i,j = uk−1

i,j + ∆tΦ(u)k−1
i,j , (6.2)

where uk
i,j = u(i∆x, j∆x, k∆t) with a time span ∆t > 0 for k ∈ N.

Next, we consider a discretized equation of a truncated inverse mean curvature flow

equation with a source (4.11). Notice that (4.9) with (4.10) has a direction of the flow

such that V > 0. Hence, V = ut/|Du| for (4.9) should be discretized with an upwind

differencing like as the eikonal equation. In this paper we choose the following scheme for

(4.11)

uk
i,j = uk−1

i,j + ∆t

(
|D̄uk−1

i,j |
χ(−κ̃k−1

i,j )
+ fi,j

)
, (6.3)

where χ is the function defined by (4.10). Note that the coefficient |D̄uk−1
i,j | in (6.3) is

calculated with

|D̄uk−1
i,j | =

√
|∂̄x1u

k−1
i,j |2 + |∂̄x2u

k−1
i,j |2,

|∂̄x1u
k−1
i,j | = max{(∂+

x1
uk−1

i,j )+,−(∂−x1
uk−1

i,j )−},

and |∂̄x2u
k−1
i,j | is calculated with the same manner as that of |∂̄x1u

k−1
i,j |. Although the

approximation order of |D̄u| is lower than that of |D̃u|, |D̄u| is more accurate than |D̃u|
for (6.3) because of the direction of the flow.

Note that the above discretization implies the data outside of the domain, that is,

uk
±(N+1),j or uk

i,±(N+1) for −(N + 1) ≤ i, j ≤ N + 1. These data should be given by a

boundary condition. Although such a situation is different from the Cauchy problem

we considered in the previous sections, we impose the Neumann boundary condition

~ν ·Du = 0, i.e.,

u±(N+1),j = u±N,j, ui,±(N+1) = ui,±N for − (N + 1) ≤ i, j ≤ N + 1

for the numerical simulations in this paper.

6.2. Propagation by forced mean curvature and asymptotic speed. In this sub-

section, we present some numerical results of asymptotic speed c = limt→∞ u(x, t)/t on

(4.2) by (6.2) with (6.1). We already have some mathematical results on the asymptotic

speed for several concrete examples of f(x). We now verify them, and give some numerical

predictions on the asymptotic speed for other cases.

Throughout this subsection, we set R = 2.56 and N = 128, then ∆x = 0.02 for

parameters of the spatial discretization. The time span for (6.2) is chosen as ∆t =

0.2 × ∆x2. For the solution u(x, t) to (4.2), the numerical data of the growth speed of u

at time t is calculated by the mean value of u(x, t)/t on Ω, that is,

c4(t) :=
1

|Ω|

∫
Ω

u(x, t)

t
dx =

1

(2R)2

∫
[−R,R]2

u(x, t)

t
dx, (6.4)

where |Ω| is the Lebesgue measure of Ω. Then, we see the numerical results of the

asymptotic speed limt→∞ u(x, t)/t by c4(T ) with T > 0 chosen large enough. In this

section we choose T = 40 so that we calculate (6.2) for 1 ≤ k ≤ K = 5 × 105. The

parameters ε and ρ are chosen as ε = 0.001, and ρ = 0.01, respectively.
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Example 1. A downward cone source (benchmark test). We first consider the

case that

f(x) = (r − |x|)+ for x ∈ R2, (6.5)

with r ≥ 0 given, where |x| is the usual norm of x ∈ R2. In this case, we have

c = c(r) = (r − 1)+. (6.6)

due to Theorem 5.3. From the above result, the numerical data also depends on r, i.e.,

c4 = c4(t; r). The left figure of Figure 1 presents a graph of r 7→ c4(40; r) and r 7→ c(r)

(dashed line) for this situation.
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Figure 1. Graph of the numerical results r 7→ c4(t; r) (left) and the L2

error r 7→ e4(t; r) := ‖u(·, t)/t − c(r)‖L2/(4R2) (right) at t = 40 for the

case (6.5). The dashed line in the left figure denotes r 7→ c(r).

In this case, we have a rigorous target as in (6.6) so that we calculate the L2 error

e4(t; r) =
1

(2R)2

∥∥∥∥u(·, t)t
− c(r)

∥∥∥∥
L2

.

The right figure of Figure 1 presents a graph of r 7→ e4(40; r), from which one can find

c4(·; r) is very close to c(r). Figure 2 shows the graphs of t 7→ c4(t; r) for r = 0.80,

1.00, 1.20, 1.40 and 1.60, which implies c4(t; r) seems to be converging to a constant

monotonically for t� 1.

Note that the critical value of r, which is the maximum of r satisfying c4(t; r) ≈ 0, is

slightly different from 1.0. It is not because of the finite terminal time T = 40, but the

numerical error by the discretization of (4.2) and approximation of the curvature term.

See Figure 3 which are graphs of t 7→ c4(t; r) focusing up the results around r = 1.0.

One can find t 7→ c4(t; r) is clearly increasing for t � 1 if r ≥ 0.98. More precisely, our

numerical data shows that t 7→ c4(t; r) increases if t ≥ 5.04 for r = 1.00, t ≥ 7.16 for

r = 0.98, and t ≥ 8.96 for r = 0.96.

Example 2. A square downward cone. We next examine the `1-norm type force

term

f(x) = (r − |x|1)+ = (r − (|x1| + |x2|))+ for x = (x1, x2) ∈ R2. (6.7)
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Figure 2. Graph of t 7→ c4(t; r) for r = 0.80 (the line with �), 1.00 (with

�), 1.20 (with ◦), 1.40 (with •) and 1.60 (with 4).
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Figure 3. Graph of t 7→ c(t; r) for r = 0.90 (the line with �), 0.92 (with

�), 0.94 (with ◦), 0.96 (with •), 0.98 (with 4), and 1.00 (with N). The

case r ≥ 0.98 clearly shows the trend aforementioned.

A discontinuous case of this example was first studied in [13]. Also, see an interesting

paper [19] of the crystal growth.

In this case, we analytically have

c(r) = lim
t→∞

c(t; r) =


= 0 if r < 1, (6.8)

> 0 if 1 < r <
√

2, (6.9)

≥ r −
√

2 if r >
√

2. (6.10)

Indeed, by constructing a source function g which is radially symmetric, and satisfies

f(x) ≤ g(x) for x ∈ R2, and using Theorem 5.3 and the comparison principle, we obtain

(6.8). Also, by Lemma 5.9 and [13, Section 6], we obtain (6.9). Finally, noting that

f(r) ≥ (r −
√

2 − ε)1B(0,1+ε),

for any ε ∈ (0, 1), and using Theorem 5.3 and the comparison principle again, we obtain

inequality (6.10).
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As we see in the above, we only have quite partial information on c(r). We want to

understand the profile of c(r) more, and with the aid of numerical simulation, we raise

some concrete questions below.

Figure 4 presents a graph of r 7→ c4(40; r) for 0.8 ≤ r ≤ 2.0. The chain line in the

graph denotes the lower bound line r 7→ r −
√

2. One can find that c4(40; r) looks like a

line for 1.6 ≤ r ≤ 2.0. We now calculate the fitting line of c4(40; r) by the least square

method with the data for 1.6 ≤ r ≤ 2.0 and obtain

c4(40; r) ≈ 0.966253713 × r − 1.238608703,

which is drawn as the dashed line in Figure 4.

Question 1. From the observation of Figure 4, it is reasonable to raise the following

questions:

(i) Are there r0 >
√

2 and a <
√

2 such that c(r) = r − a for all r ≥ r0?

(ii) Is the function r 7→ c(r) convex?
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Figure 4. Graph of r 7→ c4(40; r) for (6.7). The dashed line means the

fitting line of c4(40; r) calculated with the data for 1.6 ≤ r ≤ 2.0. The

chain line means the lower bound of c(r), which is r 7→ r −
√

2.

Example 3. Sum of two downward cones. We next consider the situation that

the source term is given by the sum of two downward cones. From the physical point of

view, it is important to understand the relation of the asymptotic speed and the distance

between two cones.

Let us consider a representative example:

f(x) = (R0 − |x− (r, 0)|)+ + (R0 − |x+ (r, 0)|)+ (6.11)

with a parameter r > 0 and a fixed constant R0 > 0. If R0 ∈ (1/2, 1), then we have

c(r) = 0 if r ∈ [0, 1 −R0) ∪ (R0,∞).

On the other hand, if R0 > 1, then

c(r) =

{
2(R0 − 1) if r = 0,

R0 − 1 if r > R0.
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We examine the above cases with R0 = 0.8 and R0 = 1.2 to verify the mathematical

results and get some predictions for the cases when r falls within the unclear regime in

the above discussions. Figure 5 presents the numerical results of r 7→ c4(40; r) with

R0 = 0.8 and 1.2. In the right figure (case R0 = 1.2) of Figure 5, we draw horizontal

dashed lines at c4 = 0.2 = R0 − 1 and c4 = 0.4 = 2(R0 − 1), and vertical dashed line at

r = 1.2 = R0. Our numerical results follow the mathematical ones. In particular, one can

find c4(40; r) ≈ 0 for r < 1−R0 if R0 = 0.8 ∈ (1/2, 1), and c4(T ; r) ≈ R0 − 1 for r > R0

if R0 = 1.2. On the other hand, the profiles of c4 within the situation in the unclear

regime are asymmetric. The speed c4 grows slowly when the two sources of birth depart

from the overlapping situations, but reduces rapidly when the two sources reaches to the

far apart situations.

Question 2. From the observation of Figure 5, the following points are of interests.

(i) Can we estimate the maximum value of c(r)?

(ii) Does the function r 7→ c(r) have the maximum at only one point?
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Figure 5. Graph of c(40; r) for (6.11) with R0 = 0.8 (left) and R0 = 1.2

(right). In the left figure, the black dot and lines indicate the mathematical

results, that is, c = 2(R0 − 1) if r = 0 and c = R0 − 1 if r > R0.

7. Conclusion

In this paper, we have established the existence result, Theorem 3.3, for asymptotic

speed of solutions to nonlinear parabolic partial differential equations in a rather general

setting. Typical equations which we have in our mind are birth and spread type partial

differential equations which are derived by a continuum limit of a Trotter-Kato formula in

Section 2. Three concrete examples, first-order Hamilton-Jacobi equations, forced mean

curvature flow, truncated inverse mean curvature flow, are considered as applications of

a general framework established in Section 3.

We next investigate qualitative properties of asymptotic speeds. If the front propagation

in the horizontal direction is always monotone, that is, V = g(n(x), κ(x)) > δ in (2.1)

everywhere for some fixed δ > 0, then the asymptotic speed is simply the maximum of

the source term f .
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On the other hand, if the front propagation in the horizontal direction is not monotone

(e.g., (4.2)), then a double nonlinear effect coming from the interaction of the nucleation

and the surface evolution gives strong influence to the asymptotic speed. In the case that

f is radially symmetric, we obtain precise formula for the asymptotic speed as (4.2) can

be reduced to a Hamilton-Jacobi equation with a noncoercive and concave Hamiltonian,

which is studied by the optimal control formula. In the non-radially symmetric setting,

the behavior of solutions is much more involved by the double nonlinear effect. We give

several nontrivial properties of the asymptotic speed in this setting in Lemmas 5.7, 5.8,

and 5.9.

In Section 6, we give numerical schemes for the forced mean curvature flow (4.2) and a

truncated inverse mean curvature flow (4.11), and numerical results on asymptotic speed

for (4.2). With the aid of numerical simulation, we raise several concrete questions to be

studied in the future.

Finally, in Appendix below, we discuss a volcano formation model, and provide its

numerics and also a bit background on inverse mean curvature flow.

8. Appendix

In Appendix, we consider (4.11), and discuss in the following a model of volcano for-

mation, and some background on inverse mean curvature flow.

8.1. An explicit solution to (4.11). In this subsection, we consider (4.11) in the two

dimensional setting (n = 2) with the source of the form

f(x) = 1B(0,R0)(x), (8.1)

where R0 > 0 is a given constant. Fix u0 ≡ 0. Notice that since f is not continuous, (1.1)

does not hold. We construct here the maximal viscosity solution of (4.11) by using the

method in [13].

Since both f and u0 are radially symmetric, it is reasonable to consider (4.11) in the

radially symmetric setting. Assume u(x, t) = φ(|x|, t), and f(x) = f̃(|x|) for all x ∈ R2,

and t ≥ 0, then φ satisfies

φt −
|φr|

χ
(
− φr

r|φr|

) = f̃(r) for (r, t) ∈ (0,∞) × (0,∞).

Under an additional condition that φr(r, t) ≤ 0 for r > 0, the above is simplified into

φt +
φr

χ(1/r)
= f̃(r) for (r, t) ∈ (0,∞) × (0,∞). (8.2)

Set

H(p, r) :=
p

χ(1/r)
− f̃(r) for (p, r) ∈ (−∞, 0] × (0,∞).

Then p 7→ H(p, r) is linear, hence both convex and concave for all r > 0. Therefore, we

have both of the inf and sup stabilities of viscosity solutions to (8.2) (see [17, Corollary

7.27] for example).
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We fix Λ ≥ 1
R0

and λ ∈ (0,Λ) sufficiently small. Set T := log Λ − log λ, and define the

function φ : [0,∞) × [0,∞) → R as following. For t < T ,

φ(r, t) :=

{
t for all (r, t) ∈ [0, R0] × [0, T ),

max{t+ log(R0/r), 0} for all (r, t) ∈ (R0,∞) × [0, T ).

Moreover, for t ≥ T , set

φ(r, t) :=


t for all (r, t) ∈ [0, R0] × [T,∞),

t+ log(R0/r) for all (r, t) ∈ (R0, 1/λ] × [T,∞),

max{t− λr − T, 0} for all (r, t) ∈ (1/λ,∞) × [T,∞).

Notice here that, for (x, t) ∈ B(0, 1/λ) × [0,∞), we have

u(x, t) = φ(|x|, t) = min {t,max {0, t− log |x| + logR0}} . (8.3)

It is not hard to check that this is the maximal viscosity solution to (4.11) on R2×[0,∞)

by approximating f with a family of continuous functions. See [13] for details.

8.2. A volcano formation model. The formation of shapes of volcanoes is often ex-

plained by a porous medium equation [25, 5]. Let h = h(x, t) be the height of volcano at a

place x ∈ R2 and at time t ∈ [0,∞). A typical evolution of h is modeled as a conservation

of mass

ht + div(uh) = 0,

where u is given by Darcy’s law

u = −Dp,

where p is the pressure. A typical choice of the pressure is h itself. Here we set all physical

constants just one to clarify the argument. The resulting equation for the height is

ht = div(hDh)

or equivalently,

2ht = ∆h2,

which is a particular form of the porous medium equation ht = ∆hm. This model is

proposed for example in [25, Sections 9.5, 9.6]. In [5], a model with m = 4 is also

proposed. To grow a volcano by eruption, we need external supply terms. One possible

idea is to consider

ht = div(hDh) + κδ

with κ > 0, where δ is the Dirac delta function, which is equivalent to give a singular

Neumann data at the origin (as in [25]) when one considers axisymmetric solution. In

[25], a radial self-similar solution of the form h(x, t) = f
(
x/

√
t
)

is proposed to explain

the shape of a volcano. Near x = 0, it is like h2 ∼ − log |x|, a logarithmic shape which

looks similar to the shape of a volcano.

However, according to real observation of stratovolcanoes whose shapes are roughly

circular cones, this model seems to be insufficient to explain the shape. In 1878, a geosci-

entist J. Milne [20] measured several volcanoes in Japan including Mt. Fuji and observed
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that the height of each is a logarithmic function from the crater at least in the mountain’s

breast. More precisely, if the crater is located at the origin, then

h ∼ −c1 log |x| + c2

for “middle range” of |x|, where c1 and c2 are positive constants. Much more modern

observation is done in [21] for the shape of Mt. Iwate, Japan. By these observations, it

is rather clear that the model by porous medium equations is not sufficient because h2 is

logarithmic, not h itself.

There is an earlier theoretical explanation given by G. F. Becker [4]. Let y be the

radius at the given height h assuming that a volcano is axisymmetric. He proposed that

the shape of each volcano satisfies the least variable resistance, which is a minimizer of∫ h0

0

(
y2 + α(y′)2

)
dh,

where h0 is the height of the volcano and α is a positive constant. In [4], the sign in front

of α is taken in a wrong way and zero of the region of integration is taken as h. However,

it is not clear why such shape is kept during evolution (eruption).

Our truncated inverse mean curvature flow model does not have physical basis so far,

but as discussed in Subsection 8.1, when f = 1B(0,R0), (4.11) has a solution h = − log |x|+
t + logR0 in the middle range of |x| (see (8.3)), which fits well with what was observed

in [20, 21].

Thus, we propose our equation (4.11) as a model of volcano’s evolution. The inverse

mean curvature flow on each level set describes a spreading effect because of the highly

viscous lavas while source term represents new eruption, which is supposed to occur

regularly like Mt. Fuji.

8.3. Numerical results for the volcano formation model. In this section we give

numerical results for (4.11) with a discretization (6.3). We first consider the function f

given by (8.1). Figure 6 presents the profiles of u and the difference |u − φ| at t = 1.25,

and t = 2.50 with the source size R0 = 0.20 and the cut-off parameters λ = 0.5 and

Λ = 0.202 = 1.01R0, where u is the function computed numerically with (6.3) and φ is

the function defined in Section 8.1. The spatial domain parameters of the calculation are

chosen as R = 2.56, and N = 128, then ∆x = 0.02. The time span is ∆t = 0.025 × ∆x2.

Our numerical result is very close to the target φ.

One may naively think that sending λ→ 0, and Λ → ∞ yields

ut − |Du|
{
−div

(
Du

|Du|

)}−1

= f in Rn × (0,∞), (8.4)

which is the inverse mean curvature flow equation with a source. Equation (8.4) is also

of particular interest.

We discuss here about the difference between (4.11) and (8.4). First, if we consider a

specific situation in Section 8.1, then we realize that the truncation from above does not

have any effect. In general, since the mean curvature of the flow which moves following to

(4.9) may become bigger than Λ, the behavior of solutions to (4.11) and (8.4) are slightly

different.
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Figure 6. Profile of the solution u to (6.3) with (8.1) and the difference

|u− φ| with λ = 0.5 at t = 1.25 (top) and t = 2.5 (bottom).

On the other hand, the truncation from below has a subtle and mathematically inter-

esting problem. We first notice that if we do a numerical simulation with a very small λ,

then the difference |u−φ| is not small. We think that this is because of not only numeri-

cal instability but also inconsistency between the solution u to (6.3) and φ given by (8.3)

when λ is too small, and there might be a hidden reason of this type of inconsistency.

When one considers the inverse curvature flow equation (8.4) in the place with initial data

consisting of two non-overlapping circle, a variational solution constructed by [15] may

suddenly jump if two circles are close enough. In other words, the motion may not be

local. Since we impose the Neumann boundary condition for numerical simulations, it is
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the same as periodic case so there are many circles of a positive level set. If these circles

are too close it may jump suddenly to the level c > 0 such that {x : u(x, t) = c} = ∅.
This might be a hidden reason why the numerical solution is not so close to the explicit

solution φ. It seems that, when λ = 0, then there might be a case that there exists no

solution to (4.11) continuous up to initial data even if initial data is continuous or even

smooth.

In the simulation in Figure 6 we choose λ = 0.5. To determine λ = 0.5 in our simulation,

we consider the curvature of level sets {u = c} for every c ∈ R for equation (8.4). Note that

u is radially symmetric if u0 is so. Then, we observe that the curvature of {x : u(x, t) = c}
for any c ∈ R and t > 0 is larger than R

√
2 in [−R,R]2 provided that r 7→ u(re, t) for

e ∈ S1 is monotone decreasing. Hence, it suffices to choose λ to satisfy λ < R
√

2 for

verifying the volcano formation on [−R,R]2. According to the above discussion and

numerical simulations, we choose a fine parameter λ = 0.5 in this subsection, although

we impose the Neumann boundary condition for numerical simulations.

Next, we give a numerical result of volcano formation with two craters. Figure 7 presents

a profile of the solution u (left) to (8.4), and the difference |u − ψ̄| (right) at t = 1.25,

t = 2.5 with source size R0 = 0.20, cut-off parameters λ = 0.5, Λ = 0.202 = 1.01R0, and

f(x) = 1B(−a,R0)∪B(a,R0), a = (0.8, 0), (8.5)

which is calculated with (6.3). The target ψ̃ in this case is chosen as

ψ̃(x, t) = min{t,max{0, ψ1(x, t), ψ2(x, t)}},
ψ1(x, t) = t− log |x− (0.8, 0)| + logR0,

ψ2(x, t) = t− log |x+ (0.8, 0)| + logR0.

We define the function ψ̃ with an analogy of (8.3) and intuition, but we do not know

yet whether ψ̃ is the viscosity solution to (4.11) or not even for a short time.

Our simulation shows that the solution u is very close to ψ̄.

8.4. Inverse mean curvature flow. In case f ≡ 0, (8.4) becomes

ut − |Du|
{
− div

(
Du

|Du|

)}−1

= 0 in Rn × (0,∞), (8.6)

which is the level set flow equation of the inverse mean curvature flow V = −1/κ. The

inverse mean curvature flow equation is an important tool to prove the Riemann Penrose

inequality in general relativity. It asserts that the total mass mADM (often called ADM

mass [1]) of an asymptotically flat three-dimensional Riemann manifold (3-manifold M)

of nonnegative scalar curvature is bounded from below in terms of each smooth, compact

outermost minimal surface in the 3-manifold. An outermost minimal surface is a mini-

mal surface which is not separated from infinity by any other compact minimal surface.

Hawking [14] introduced the Hawking quasi-local mass of a 2-surface and observe that

it approaches to the ADM mass for large coordinate spheres. For study of the Hawking

mass, Geroch [9] first introduced the inverse mean curvature flow and the Hawking mass

(sometimes called Geroch mass) is monotone nondecreasing under this flow provided that
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Figure 7. Profile of u (left) to (6.3) with (8.5) and |u − ψ̃| (right) with

λ = 0.5 at t = 1.25 (top) and t = 2.5 (bottom).

the surface is connected and the scalar curvature of the ambient 3-manifold M is nonnega-

tive. Jang and Wald [16] observed that if there was a classical solution of the inverse mean

curvature flow starting at the inner boundary and converging to large coordinate sphere

as the time tends to ∞, the monotonicity result would imply the Penrose inequality since

the Hawking mass converges to the ADM mass.

Unfortunately, (8.6) may not have a classical solution. To realize this idea, Huisken and

Ilmanen [15] introduced a notion of weak solution, which is formulated as a stationary
29



type solution. In other words, we set u(x, t) = v(x)− t in (8.6) and observe that v solves− div
(

Dv
|Dv|

)
= −|Dv| in Ω ⊂M,

v = 0 on ∂Ω,

where the initial surface is ∂Ω, the boundary of a domain Ω containing the space infinity.

They introduced a kind of variational weak solution and construct a globally-in-time weak

solution having the monotonicity property of the Hawking mass when the initial surface is

connected. This yields the Penrose inequality mADM ≥
√
|N |/16π, where |N | is an area

of connected component of ∂M which is outermost minimal. Note that this philosophy is

closely related to that in Remark 5 about large time behavior of u. Another proof for the

Penrose inequality without assuming that N is connected was given by Bray [6] by using

a different method.
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