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ABSTRACT Many combinatorial optimization problems can be mapped onto the ground-state search
problem of an Ising model. Exploiting the continuous-time dynamics of a network of coupled phase-
transition nano-oscillators (PTNOs) allows building an Ising Hamiltonian solver for obtaining optimum or
near-optimum solution with a large speed-up over discrete-time iterative digital hardware. Here, we provide
insights into the continuous-time dynamics of such a PTNO-based Ising Hamiltonian solver. We highlight
the formation of stable attractor states in the phase space of the coupled PTNO network using second-
harmonic injection locking (SHIL) that corresponds to the minima of the Ising Hamiltonian. We show that
the emergent synchronized dynamics of the PTNO network is maximized near the critical point of oscillator
phase bistability beyond which the dynamics is limited by freeze-out effects. Such dynamical freeze-out
severely limits the performance of the PTNO-based Ising solver from obtaining the global optimum. We
highlight an improvement in the success probability of reaching the ground state by introducing an annealing
scheme with linearly increasing SHIL amplitude compared with a constant SHIL. Finally, we estimate the
‘‘effective temperature’’ of the PTNO-based Ising solver by comparing it with the Markov chain Monte Carlo
simulations. The PTNO-based Ising solver behaves like a low-temperature Ising spin system, indicating its
effectiveness for optimization tasks.

INDEX TERMS Injection-locked oscillators, Ising machine, nonlinear dynamical systems, optimization.

I. INTRODUCTION

COMBINATORIAL optimization problems have
immense real-world applications, including financial

portfolio optimization, bioinformatics, drug discovery,
cryptography, operations research, resource allocation,
satellite-based target tracking, and trajectory and route
planning [1]–[4]. However, many of these problems belong
to the nondeterministic polynomial time (NP)-hard or
NP-complete complexity class, indicating an exponential
increase in the resources required to solve the problem as the
problem size increases. Interestingly, many such problems
can be reformulated into another physics problem—finding
the ground state of an Isingmodel [4]–[6]. The Ising Hamilto-
nian describes the energy of a spin systemwith discrete binary
spins states σ and a symmetric coupling matrix J and is given
by H = −

∑N
i=1 Jijσiσj. Exact algorithms, such as branch-

and-bound, can take a prohibitively large time to reach a

guaranteed ground state of the Ising model for a reasonable
problem size of a few hundred spins. As such, heuristic algo-
rithms and stochastic methods, such as semidefinite program
[7], breakout local search [8], metropolis algorithm (MA)
[9], and simulated annealing [10], have been proposed that
can provide approximate solutions (optimum or suboptimal
solutions) in a reasonable timeframe.

An exciting new avenue of research has been focused on
building the IsingHamiltonian solvers using physical systems
called Ising machines that hold the promise of providing
solutions much faster than an iterative algorithm running on
a digital computer. Recently, various proposals for build-
ing such special-purpose Ising machines using a variety of
techniques have been put forward. These include supercon-
ducting qubits and trapped ion-based quantum computing and
quantum annealing [11]–[13], digital and mixed-signal com-
plementary metal–oxide–semiconductor (CMOS) annealers
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[14]–[19], photonic Ising machine [20], and coherent net-
works of degenerate optical parametric oscillators [21], [22].
Qubit-based quantum annealers add a high overhead in terms
of cost and complexity due to cryogenic operating con-
ditions. The optical coherent Ising machine proves to be
competitive when compared against quantum annealer [23]
but requires a long fiber ring cavity for implementing Ising
spins. In addition, it requires an extremely fast and power-
hungry field-programmable gate array (FPGA) for imple-
menting coupling in a measure-and-feedback scheme [22].
The CMOS-based annealing machines use techniques, such
as near-memory [17] or in-memory [24] computing, to reduce
the memory bottleneck and improve the energy-efficiency
and speed of the optimization solver. Such CMOS-based
annealers have greatly improved upon the original Simulated
Annealing algorithm with parallel spin update algorithms
[17] that reduce the time and energy to the solution. However,
even with parallel spin updates, each update step in a digital
annealer requires several hundreds of clock cycles to calcu-
late the change in Ising energy per spin-flip through multiply-
and-accumulate (MAC) operations and compare the change
to a random number to implement a probabilistic spin flip.

In contrast, in this work, we utilize the notion of using
a continuous-time dynamical system (CTDS) to solve opti-
mization problems. Using a CTDS approach to solve a com-
binatorial optimization problem involves setting up the CTDS
appropriately such that the stable attractor state of the system
represents the solution of the problem. Hence, as the system
evolves in time through energy minimization, it can dynam-
ically locate the global minima. The fundamental advantage
in the CTDS approach compared with a digital system comes
from the inherently distributed nature and highly parallel
processing capability based on the continuous physical inter-
action between compute elements. This allows the CTDS
to dynamically find the ground-state or near-optimum solu-
tion with immense speed-up compared with a sequentially
working digital computer. Recently, there have been several
proposals to build a CTDS using CMOS oscillators, such
as LC [25] or ring oscillators [19]. In contrast, we focus
on utilizing ultralow-power phase-transition nano-oscillators
(PTNOs) for building a CTDS that is extremely energy-
efficient compared with LC or ring oscillators [26]–[28].
A PTNO-based CTDS relies on emulating the Ising

Hamiltonian through its own ‘‘energy’’ function [28], [29].
Briefly describing, a PTNO consists of a two-terminal
phase-transition hysteretic device in series with a transis-
tor. Recently, a prototypical PTNO using vanadium dioxide
(VO2) has been experimentally demonstrated. A schematic of
the PTNO considered in this work is shown in Fig. 2(a). The
working principle of the VO2-based PTNO has been reported
elsewhere [27], [29], [30]. Below the insulator-to-metal
(IMT) phase-transition temperature and under zero external
electric fields or current, VO2 shows insulating behavior.
Upon applying an electric field across the two terminals of
the device, the material undergoes an abrupt change in phase
from insulating to the metallic state. The hysteretic phase
transition is reflected as an abrupt hysteretic current–voltage

(I–V ) characteristic of the device. Pairing a transistor in series
with the VO2 device such that the load line passes through the
unstable region of the I–V curve, self-sustained oscillations
can be obtained.

An overview of using such a PTNO-based Ising solver
is shown in Fig. 1. The real-world problems are first
mapped onto the ground-state search problem of an Ising
model [4]–[6]. As shown in Fig. 1, the Ising problem is
represented as a graph problem where the nodes represent
binary spin states and the adjacency matrix is defined by the
Ising interaction or coupling matrix J . In the correspond-
ing PTNO-based Ising solver, spins are represented by the
bistable electronic phases of the PTNOs. The Ising interaction
can be realized using passive electrical elements. Particularly,
it has been shown that resistive coupling is equivalent to
ferromagnetic interaction (J = +1) and capacitive coupling
emulates antiferromagnetic interaction (J = −1) [28], [29].
The temporal dynamics of the PTNO network is dictated
by energy minimization. Hence, if the Ising energy can be
represented by the ‘‘energy’’ function of the network, then,
as the network evolves in time, it can dynamically reach
the global or local minima of the Ising model. As shown
in Fig. 1, this ground-state search can be further improved
by exploiting the inherent stochasticity of the PTNOs and
introducing annealing schemes as described later.

While both experimental as well numerical simulations
have highlighted a clear advantage of PTNO-CTDS-based
Ising solver over other aforementioned proposals in terms of
time-and energy-to-solution [28], [29], a deeper understand-
ing of the inherent dynamics of the PTNO network is still
remaining. In this work, we present a detailed analysis of the
continuous-time dynamics of the PTNO network as it evolves
toward the lowest energy state. We use experimentally cal-
ibrated numerical simulations to highlight the impact of
second-harmonic injection locking (SHIL) on the dynamics
of the PTNO network. While the synchronized dynamics is
maximized just beyond the critical point of phase-bistability,
further increasing the SHIL amplitude causes freeze-out of
the oscillator phases. Such dynamical freeze-out can severely
limit the ability of the network to reach the ground state.
We highlight a performance improvement by introducing an
annealing scheme with time-varying SHIL amplitude instead
of a constant SHIL strength. We also shed light on an
open question regarding the ‘‘effective temperature’’ of the
PTNO-based Ising solver. By comparing with Markov chain
Monte Carlo (MCMC) simulations, we show that our Ising
solver behaves like a low-temperature Ising spin system, thus
indicating its effectiveness in solving optimization problems.

II. CONTINUOUS-TIME DYNAMICS AND NUMERICAL
SIMULATION FRAMEWORK OF PTNO-BASED
ISING SOLVER
We start by describing the PTNO network using the dynam-
ical systems theory. A dynamical system is represented by
a change in the state of the system x as a function of time
t . Without loss of generality, a CTDS can be described by
the time evolution of state x as dx(t)

dt = g(x), where g can
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FIGURE 1. Illustrative overview of a PTNO-based Ising solver. Various real-world problems combinatorial optimization problems are
mapped onto the ground-state search problem of an Ising model. The Ising Hamiltonian H is defined by the spins σi and a
symmetrical interaction or coupling matrix J. This can be mapped onto the PTNO-based Ising solver where the spins are represented
by the bistable electronic phases of the PTNOs. The Ising interaction matrix J is mapped onto coupling matrix W for the PTNO
network and is realized using passive electrical elements. Resistive coupling is equivalent to ferromagnetic interaction (J = +1) and
capacitive coupling emulates antiferromagnetic interaction (J = −1). The dynamics of the PTNO network is dictated by energy
minimization. Hence, if the Ising energy can be represented by the ‘‘energy’’ function of the network, then, as the network evolves in
time, it can dynamically reach the global or local minima of the Ising model. The ground-state search can be further improved by
exploiting the inherent stochasticity of the PTNOs and introducing classical annealing.

be a linear or a nonlinear function describing the system.
The continuous-time dynamics of our PTNO network can be
described in terms of the oscillator phases. Particularly, since
we consider the scenario of injection locking, we can invoke
a generalized version of Adler’s equation (Gen–Adler) [31]
to describe the phase difference θ between the oscillator and
the injection locking signal. A schematic of the PTNO with
a sinusoidal injection locking signal Sinj = Vinjsin(2π finjt)
is shown in Fig. 2(a). The injection locking signal is applied
across a capacitance CINJ. The PTNO dynamics is described
by [28]

dθ (t)
dt
= −(finj − nH f o)+ K

H
inj

∫ 2π

0
ξ (θ (t)+ ϑ)cos(ϑ)dϑ

(1)

where nH is the nth harmonic of the PTNO and KH
inj =

2πnH f ofinjCinjV inj. The first term describes the frequency
mismatch between Vout and Sinj, which contributes to phase
slipping. The second term captures the excess phase gener-
ated over 1 oscillation cycle due to the injection locking sig-
nal. It depends on the phase delay due to Sinj and is described
in terms of the perturbation-projection-vector (PPV) ξ . The
PPV is the phase response of the PTNO to an impulse current
input normalized to the amount of injected charge and the
oscillator frequency and is calculated numerically using a
SPICE circuit simulation. The details of the PPV calculation
are given in [28]. The corresponding ‘‘energy’’ or the Lya-
punov function is then obtained following the equation of a
gradient system [32] and is given by:

dθ (t)
dt
= −

∂E(θ )
∂θ

. (2)

Thus, the ‘‘energy’’ of a single injection-locked oscillator is
given by [28]

E(θ )= (finj−nH f0)θ−KH
inj

∫ θ

0

∫ 2π

0
ξ (φ+ϑ)cos(ϑ)dϑdφ.

(3)

The first energy term is due to the frequency mismatch that
creates an overall bias in the energy landscape. However, this
being a linear term does not introduce any new valleys or
peaks in the energy landscape. The second term describes the
interaction between Sinj and PTNO. Equation (1) can predict
the existence of stable phases locked between the PTNO and
the injection locking signal when (dθ(t))/(dt) = 0. These
also correspond to stable minima or attractor states in the
energy landscape obtained from (3).

We numerically solve (1) to simulate the continuous-time
dynamics of a single PTNO subjected to injection locking.
The corresponding energy landscape is obtained by numer-
ically solving (3). In our simulations, the IMT transition
voltage VIMT was considered as 0.7 V, and a VDD = 1 V
was used in our simulations. The total capacitance of the
VO2 device was assumed to be 200 fF, while the metallic
and insulating resistances were 2 and 100 k�, respectively.
An injection locking capacitance Cinj = 1 fF was used.
This resulted in an operating frequency of f0 = 160 MHz
in our simulations. The PTNOs exhibit inherent stochasticity
during the abrupt phase transition between the insulator and
metallic phase, occurring twice in every oscillation cycle.
Such stochasticity of the PTNO is manifested as the oscillator
jitter noise and is replicated in our simulations by adding
a Gaussian phase noise twice every oscillation cycle. We
solve the resultant stochastic version of (1) numerically using
the Euler–Maruyama method. Unless mentioned, we use an
oscillator-period jitter of 0.5%.

When Vinj = 0, the PTNO is freely running. Fig. 2(b-i)
shows the simulated voltage output waveform Vout recorded
over multiple runs. The corresponding oscillator phase θ ,
measured with respect to a reference sinusoidal signal of
the same frequency f0, shows a uniform probability distri-
bution over the entire phase space, as shown in Fig. 2(c-i).
The ‘‘energy’’ function of the PTNO stays flat, as shown in
Fig. 2(c-i). Interestingly, when the injection locking signal is
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FIGURE 2. (a) Schematic for a single PTNO with a sinusoidal injection locking signal. (b) Numerical simulation results showing the
output voltage waveforms of the PTNO for an applied SHIL signal. Two scenarios of (i) no injection locking signal (Vinj = 0 V) and
(ii) with SHIL signal (Vinj = 3 V) are shown. SHIL allows the creation of bistable oscillator phases emulating Ising spin. (c) Calculated
energy landscape of the PTNO (i) with (Vinj = 0 V) and (ii) without (Vinj = 3 V) SHIL. The application of SHIL creates a double-energy
landscape, highlighting equiprobable and bistable oscillator phases separated by 180◦. (d) Modulation of the energy barrier of the
double-well energy landscape with Vinj. (e) Decrease in stochastic fluctuation of the oscillator phase with increasing Vinj.
(f) Illustration showing the evolution of the complex energy landscape for a coupled PTNO network with increasing amplitude of the
SHIL signal. Usually, the attractor state with the lowest energy for the PTNO network without the SHIL and the global minimum of the
Ising Hamiltonian do not coincide. However, as the amplitude of the SHIL is increased, the desired attractor state of the PTNO
network corresponding to the lowest energy of the Ising Hamiltonian becomes the global minimum.

applied at twice the frequency of the oscillator, finj ≈ 2f0,
also known as the SHIL condition, the simulated oscilla-
tor output waveform shows both in-phase and out-of-phase
configurations when recorded over multiple runs, as shown
in Fig. 2(b-ii). The corresponding probability distribution of
the oscillator phase exhibits a double-Gaussian distribution
highlighting equiprobable and bistable phase portraits, as
shown in Fig. 2(c-ii). This bistability allows us to emulate the
Ising spin in the electrical domain, where θ = 40◦ represents
up-spin, i.e., = +1, and θ = 220◦ represents down-spin,
i.e., σ = −1. These two peaks obtained using numerical
simulations are also consistent with the predicted equilibrium
points θ ∼= 0.2π and θ ∼= 1.2π obtained using dθ(t)

dt = 0. This
is also supported by the energy landscape calculated using
(3), which gives a double-well energy landscape that results in
a double Gaussian distribution in the phase space (assuming
zero frequency mismatch).

There exists a critical amplitude of the injection signal
V critical
inj below which no stable solution exists. Fig. 2(d)

shows the modulation of the energy barrier of the double-well
energy landscape with Vinj. As the strength of Vinj increases,
the depth of the double-well energy landscape increases.
The modulation of the energy barrier is also associated with
the stochastic fluctuation of the phase of the oscillator [28].
Such stochastic fluctuations, measured in terms of flips-per-
second, are essential to escaping local minima, as will be

discussed later. Fig. 2(e) shows that, close to the critical
voltage V critical

inj , the bistable oscillator phases exhibit con-
stant temporal fluctuation with a very low dwell time and
high flips/s. As the strength of Vinj increases, the depth
of the double-well energy landscape (or energy barrier EB)
increases, resulting in a decrease in the number of flips per
second. The decrease in flips/s with increasing Vinj accurately
follows the characteristics of Arrhenius’s relation αfe−EB/η,
where f is the fundamental frequency of the oscillator, α is the
fitting parameter, and η is the stochastic noise in the PTNO.
This characteristic of reduction in the temporal fluctuations of
the oscillator’s phase with increasing amplitude of injection
locking signal proves to be a key knob toward performing
classical annealing in our hardware.

Using a similar mathematical treatment, as mentioned ear-
lier, we can describe the continuous-time dynamics of a net-
work of coupled PTNOs. It has been shown that PTNOs can
be coupled using simple passive electrical elements, such as
resistance and capacitance. The nature of coupling, resistance
or capacitance, dictates the tendency of the PTNOs to remain
in-phase or out-of-phase with each other [27], [33], [34].
Recently, this was further exploited to establish that resistive
or capacitive coupling can indeed establish ferromagnetic or
antiferromagnetic interaction in a PTNO-based Ising Hamil-
tonian solver [28], [29]. In the following, we describe the
continuous-time dynamics of such a coupled PTNO network
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subjected to SHIL and incorporating resistive or capacitive
coupling

dθi(t)
dt
=−(finj − nH f o,i)+ K

H
inj,i

∫ 2π

0
ξi(θi(t)+ ϑ)cos(ϑ)dϑ

+ f0
N∑

j=1,j6=i

∫ 2π

0
ξi(θ (t)+ ϑ)Iosc,jdϑ. (4)

Note the additional third term describing the coupling
interaction energy between pairs of oscillators. Iosc,j =
CC,j(dVosc, j)/(dt) or = −(Vosc,j)/(RC,j) depending on
capacitive coupling (using CC,j) or resistive coupling (using
RC,j), respectively. The corresponding ‘‘total energy’’ func-
tion of the PTNO network is

E(Eθ ) =
N∑
i=1

(finj − nH f0)θi

−KH
inj

N∑
i=1

∫ θi

0

∫ 2π

0
ξi(φ + ϑ)cos(ϑ)dϑdφ

− f0
N∑

i,j=1,i6=j

∫ θi

0

∫ 2π

0
ξi(φ + ϑ)Iosc,jdϑdφ. (5)

To simulate the dynamics of the PTNO-based Ising solver,
(4) is solved numerically using the Euler–Maruyama method.
Throughout our simulation, we use coupling capacitance
CC = 30 fF. The corresponding ‘‘energy’’ function is
obtained by solving (5). In general, when the amplitude of
SHIL is less than the critical voltage V critical

inj , the oscillator
phases are not constrained into only binarized phases, and the
coupled PTNO network can contain multiple attractor states.
A schematic of such a complex phase space in the continuous
phase space domain is illustrated in Fig. 2(f), exhibiting four
attractor states: one global and three local minima. Note
that, usually, the attractor state with the lowest energy for
the PTNO network without the SHIL and the global mini-
mum of the Ising Hamiltonian do not coincide. However, as
shown in Fig. 2(f), by increasing the amplitude of the SHIL
signal beyond V critical

inj , binarization of the oscillator phases
occurs, and the desired attractor state of the PTNO network
corresponding to the lowest energy of the Ising Hamiltonian
becomes the global minimum. Thus, this ensures that, as the
PTNOs settle in the appropriate phase configuration, they
also minimize the Ising Hamiltonian. However, while the
SHIL facilitates the binarization of the oscillator phases and
creation of the Ising attractor states, the amplitude of the
SHIL has a crucial influence on the dynamics of the PTNO
network and is discussed in detail next.

III. DYNAMICAL FREEZE-OUT EFFECT AND IMPACT ON
GROUND-STATE SEARCH
To better understand the PTNO dynamics and the impact of
the SHIL amplitude during the ground-state search process,
we start by analyzing a 2-D square lattice structure with
periodic boundary conditions for which the ground state is
already known [35]. We consider a lattice of size 40 × 40

with nearest-neighbor antiferromagnetic coupling (J = −1).
For this problem, the ground state corresponds to an alter-
nating arrangement of spin-up and spin-down states in a
checkerboard pattern. We use capacitive coupling in our sim-
ulation for mimicking the antiferromagnetic interactions. An
SHIL signal of constant amplitude and greater than V critical

inj
is applied through the simulation time to maintain binarized
oscillator phases. Fig. 3(a) shows the time evolution of the
2-D domain structure for all the 1600 PTNOs in the Ising
solver. The different snapshots correspond to different oscil-
lation cycles, and the top and bottom figures correspond to
different SHIL amplitudes. Note that the PTNO phases are
multiplied with a checkerboard pattern that transforms the
problem into a ferromagnetic case, making it easier to visual-
ize the evolution of domains. Thus, blue domains correspond
to one antiferromagnetic configuration (↑↓↑↓ . . . ↑↓), and
yellow domains correspond to the opposite antiferromagnetic
configuration (↓↑↓↑ . . . ↓↑). We start the simulations
from a randomized spin state. As the PTNO network evolves
in time, the oscillator phases start to reorganize, as shown
in Fig. 3(b). This causes the corresponding artificial spins in
the 2-D lattice to self-organize into domains such that one
domain (say blue) grows in size, while the other domain
(say yellow) shrinks in order to minimize the Ising energy
of the system by reducing the total boundary between two
domains where unfavorable configurations (↑↑ or ↓↓) exist.
In Fig. 3(a) and (b), the temporal evolution of the domains
and the oscillator phases for two different SHIL amplitudes
are shown. For an SHIL amplitude of Vinj = 3.5 V, the
evolution of domains continues until the network reaches the
ground state. This is also reflected in the temporal evolution
of the Ising energy in Fig. 3(c), where, for Vinj = 3.5 V,
the network reaches the ground-state energy. However, as
shown in Fig. 3(a), a higher SHIL amplitude of Vinj = 6 V
causes the creation of smaller domains with a large number
of domain walls. The temporal dynamics remain very slow,
and ultimately, the network exhibits a freeze-out where the
domain evolution stops and remains in this frozen state as
its final configuration. This is also reflected in the temporal
evolution of the phases of the oscillations showing reduced
dynamics and frozen behavior of the network. This indi-
cates a significant influence of the SHIL amplitude on the
continuous-time dynamics of the PTNO-based Ising solver.

Fig. 3(c) shows the temporal evolution of the Ising energy
for different SHIL amplitudes. For a low SHIL amplitude of
Vinj = 2.5 V, the network evolves to a higher Ising energy
state compared with the ground state. This is because, for
smaller SHIL amplitude, the network gets stuck in an attractor
state that does not correspond to the global minimum of
the Ising Hamiltonian [similar to the scenario explained in
Fig. 2(d)]. On the other hand, arbitrarily increasing the ampli-
tude of the SHIL signal causes a freeze-out effect, forcing
the network to evolve to a final configuration having a higher
Ising energy, as shown in Fig. 3(c). There remains a close
interplay between the SHIL amplitude and the stochasticity
present in the system. Fig. 3(d) shows the success probability
of reaching the ground-state energy configuration for varying
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FIGURE 3. (a) and (b) Snapshots of the temporal evolution of the domains and oscillator phases during the ground-state search for two
different SHIL amplitudes. For Vinj close to the critical value, the PTNO network is able to reach the ground state. However, there
remains an optimum Vinj for which the ground-state search is maximized. For a high Vinj, freeze-out effect is seen. (c) Temporal
evolution of the Ising energy for different SHIL amplitudes. (d) Probability of reaching the ground state for varying SHIL amplitude
and different oscillator jitter noise. (e) Spatial correlation length as a function of SHIL amplitude and different oscillator jitter noises.

SHIL amplitude and different oscillator jitter noises. For a
given noise of 0.5% jitter, we see that, far from V critical

inj , the
final state of the network reaches only 46% of the ground-
state energy before freeze-out, while, just above V critical

inj ,
the network can reach the ground-state energy. This sheds
light on the fact that the dynamics of the PTNO network is
maximumnear the critical point of oscillator phase bistability.
Stochasticity also plays a critical role in affecting the like-
lihood of the oscillator network to escape the local energy
minima and reach the global optimum. Too little stochasticity
(oscillator jitter) means that the system gets stuck in local
minima and is not able to jump out to reach the global
minimum. On the other hand, a very large amount of intrinsic
noise would cause the system to jump out of the global energy
minimum configuration even at the highest SHIL, leading to
lower success probability. By varying the amount of oscil-
lator jitter noise, we found that a 0.5% jitter was the ideal
amount of noise to achieve maximum success probability. As
will be discussed later, the success probability of reaching
the ground state for other nonplanar complex graphs also
shows a similar trend with varying SHIL amplitude and a
peak just beyond the critical point. Note that the range of
optimum SHIL amplitude required is quite narrow, as shown
in Fig. 3(d). This can be further improved by introducing
annealing schemes and is discussed later. Similar dynamical
freeze-out effects have been reported in coherent networks
of degenerate optical parametric oscillators (coherent Ising
machine) used to minimize the Ising energy [36], [37].

Another key metric to quantify the dynamics of the
PTNO network for such a 2-D lattice is to calculate the
spatial correlation length. The spatial correlation length λ

is calculated by fitting the 2-D autocorrelation function of
the spin configuration with an exponential function er/λ,
where r is the spatial coordinate. It is seen in Fig. 3(e) that
the spatial correlation length increases drastically around the
optimal SHIL amplitude, just beyond the critical point. This
is because, for suboptimal SHIL amplitude, larger domains
are formed that contributes to increase the correlation among
domains. As the SHIL amplitude is further increased beyond
the optimal regime, the dynamical freeze-out effect sets in
creating a large number of domains of smaller size and a
smaller correlation length. The requirement for optimum
stochasticity (oscillator jitter noise) is also seen in Fig. 3(e),
where the spatial correlation length is maximum for 0.5%
oscillator jitter. Overall, this sheds light on the fact that the
PTNO-based Ising solver needs to be operated with optimum
stochasticity and optimal SHIL amplitude in order to avoid
the freeze-out effect and enable an effective ground-state
search.

IV. ESTIMATING EFFECTIVE TEMPERATURE OF
PTNO-BASED ISING SOLVER
It has been shown that the amplitude of SHIL plays a crucial
role during the ground-state search and can be utilized as
a mechanism to perform classical annealing to obtain pro-
gressively better solutions [28], [29]. This has a close resem-
blance with the simulated annealing algorithm that utilizes
a decaying temperature parameter to obtain progressively
improved solution [10]. Thus, it is informative to estimate
the ‘‘effective temperature’’ of the PTNO-based Ising solver
under different SHIL amplitudes. For this, we compare the
results of our PTNO network for the 2-D square lattice with
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FIGURE 4. (a) Schematic of the MA used for MCMC simulations of the 2-D square lattice. (b) Temporal evolution of the Ising energy and
correlation length during the ground-state search for both MCMC simulations at different temperatures and PTNO-based Ising solver
for different SHIL amplitudes. This establishes that different SHIL amplitudes do not emulate varying temperature parameters. Instead,
the dynamics of the PTNO-based Ising solver mimics a low-temperature Ising spin system. (c) Schematic of the proposed MA-EB.
(d) Temporal evolution of the Ising energy and correlation length for both MCMC simulations with different energy barriers EB and
PTNO-based Ising solver for different SHIL amplitudes. The excellent match validates the role of the SHIL in introducing an energy
barrier in the energy landscape rather than behaving as the temperature parameter.

MCMC simulations using aMA at different temperatures [9].
As illustrated schematically in Fig. 4(a), the MA involves
flipping of a randomly selected single spin in each iteration
and comparing the energy of the new configuration with the
previous one. If the energy gets reduced by1E , the spin flip is
accepted with a probability of P1E<0 = 1. On the other hand,
if the energy increases by 1E , the spin flip is, nonetheless,
accepted with a probability given by the Boltzmann factor
P1E>0 = e−1E/kT , where k is the Boltzmann factor and T is
the temperature.

To perform a quantitative comparison, we follow the
methodology delineated by [36] where we track the temporal
evolution of the Ising energy and the correlation length. We
compare the trajectories in the phase space of correlation
length versus the Ising energy for both our PTNO-based Ising
solver and the MCMC simulation. It is seen from the MCMC
simulations that, for low T = 0.01, the correlation length
initially remains low and drastically increases as the Ising
energy approaches the ground state. For higher temperatures
of T = 1.3 and 2.1, the trajectory deviates significantly from
the low-temperature behavior where the correlation length
remains higher for a given Ising energy. Interestingly, we
see that all the trajectories of the PTNO-based Ising solver
for different SHIL amplitude align with the trajectory cor-
responding to T = 0.01 of the MCMC simulation. This
establishes the fact that, although a temporally varying SHIL
amplitude can be used to perform classical annealing through
controlling the temporal fluctuation in the oscillator phases,

SHIL does not emulate the temperature parameter of the
simulated annealing algorithm. It also indicates that dynamics
of the PTNO-based Ising solver mimics a low-temperature
Ising spin system and, thus, can be effectively used for solving
optimization problems [36].

To further shed light on the mechanism behind the freeze-
out effect, we mimic the continuous-time and continuous-
space dynamics of the PTNO-based Ising solver with a
discrete-time and discrete-space MA augmented with an
energy barrier (MA-EB), as shown in Fig. 4(c). Note that
this is a simplified discrete-state interpretation of the energy
landscape, which qualitatively matches with the continuous-
space energy landscape shown in Fig. 4(c) around the energy
minima points but remains effective in explaining the freeze-
out effect. As mentioned earlier, an increase in the amplitude
of the SHIL causes an increase in the depth of the individual
energy minima, while the difference between the minima
1E remains the same, as shown in Fig. 4(c). This, in turn,
introduces an additional energy barrier EB. Thus, in contrast
to the MA, here if the oscillator phases try to stochastically
rearrange themselves to a newer configuration that reduces
the energy by 1E , the subsequent probability will be given
by P1E<0 = e−EB/kT . This is because the PTNO network
still needs to overcome the additional energy barrier EB
introduced by the SHIL. On the other hand, the probability
that the oscillator phases stochastically rearrange themselves
to a newer configuration that increases the energy by 1E is
given by P1E>0 = e−(EB+1E)/kT . Thus, with an increasing
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FIGURE 5. (a) Illustration of the two different schemes of
applying the SHIL signal. (b)–(d) Success probability of finding
the ground state as a function of Vinj for three different graphs.
Each simulation is rerun for 100 trials to calculate the success
probability. For random cubic graphs, we ran the simulations
for 20 different representative graphs. This illustrates that using
an annealing scheme can widen the parameter space for
optimizing the performance and even enhance the probability of
reaching the ground state as the complexity of the problem
increases.

amplitude of SHIL, EB increases, which contributes to the
oscillator phases getting trapped in local minima and causing
the freeze-out effect. We also compare the trajectories in the
phase space of correlation length versus the Ising energy for
our PTNO-based Ising solver and MCMC simulations using
the new MA-EB algorithm. As shown in Fig. 4(d), they show
an excellent match, thus validating the role of the SHIL in
introducing an energy barrier in the energy landscape rather
than behaving as the temperature parameter of a simulated
algorithm. In fact, the role of the temperature parameter
is rather mimicked by the inherent stochastic noise of the
PTNOs.

V. PERFORMANCE IMPROVEMENT OF PTNO-BASED
ISING SOLVER WITH ANNEALING
Next, we extend our analysis to calculating the success prob-
ability of finding the ground state for three different graphs:
1) a 2-D lattice of size 40 × 40 with periodic boundary
condition; 2) a 100-node Mobius Ladder graph; and 3) 20
randomly generated representative 60-node cubic graphs of
degree 3, all with antiferromagnetic interaction (capacitive
coupling). We consider two different schemes of applying
the SHIL signal, as shown in Fig. 5(a). For each data point
in Fig. 5(b)–(d), the simulation was rerun for 100 trials to
calculate the success probability. For a constant SHIL, the
amplitude is kept constant throughout the simulation. For an
increasing SHIL, the amplitude is linearly increased from 0
to the desired Vinj. As shown in Fig. 5(b)–(d), the success
probability of obtaining the ground state increases as the
SHIL amplitude Vinj increases from suboptimal to an optimal

value. Beyond the optimal point, a constant SHIL scheme
shows a monotonic decline in the performance of the Ising
solver. Hence, for the constant SHIL scheme, the parameter
space of SHIL amplitude that optimizes the performance
of the PTNO-based Ising solver is narrow. Note that, for a
constantly applied SHIL, the solver performs the stochastic
search in the solution space thatmay provide a limited success
probability for complicated problems.

In contrast, when resorting to a linear anneal scheme with
linearly increasing SHIL amplitude, the performance of the
Ising solver shows negligible degradation even if Vinj is
increased beyond the optimal regime. Thus, using a linear
anneal scheme widens the parameter space for optimizing
the performance. This is because, as the amplitude of SHIL
is slowly varied from the suboptimal to the optimal regime,
the continuous-time dynamics of the PTNO network allows
an effective exploratory search of the state space and allows
obtaining a progressively better solution. As the amplitude of
SHIL is further increased linearly beyond the optimal regime,
the exploratory dynamics of the network is curtailed with a
reduction of spin flips per second. Overall, our Ising solver is
able to reach a success probability of over 95% for both the
SHIL schemes. Interestingly, the average success probability
obtained over 20 random cubic graphs by annealing is higher
than that obtained by performing the stochastic search with a
constant SHIL, as shown in Fig. 5(d). We further investigate
the sensitivity of success probability on non-idealities such as
oscillator noise and frequency variation (see supplementary
information for details).

VI. CONCLUSION
We provide crucial insight into the continuous-time dynamics
of a PTNO-based Ising Hamiltonian solver. Through exper-
imentally calibrated numerical simulations, we delineate the
notion of creating attractor states in the phase space of the
coupled PTNO network that will correspond to the minima of
the Ising Hamiltonian. Through comprehensive analysis, we
establish that the dynamics of the PTNOnetwork ismaximum
just beyond the critical point of oscillator phase bistability.
This can be effectively exploited to perform an exploratory
search for the ground state in the solution space. This is in
line with a general concept witnessed in dynamical systems
that emergent complex dynamics occur near a criticality point
[38]. A great example is the spin dynamics at the subcritical,
critical, and supercritical temperatures, exhibiting second-
order ferromagnetic–paramagnetic phase transition. Only at
the critical temperature, the system shows highly correlated
domains. We also highlight SHIL-induced dynamic freeze-
out effects that curtail the dynamics of the solver and hinder
the ground-state search. Subsequently, we provide a path-
way toward improving the performance of the Ising solver
by utilizing annealing schemes. Finally, we provide an esti-
mation of the ‘‘effective temperature’’ of the PTNO-based
Ising solver by comparing it with MCMC simulations and
highlight a low-temperature Ising spin behavior exhibited by
our PTNO-based Ising solver.
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