
1.  Introduction
Open-bottom permeameters (OBP) are commonly used in investigations of surface water-groundwater in-
teractions (e.g., Rosenberry et al., 2008; Zlotnik et al., 2016). Some applications include obtaining proper-
ties of the hyporheic zone, including hydraulic conductivity (Chen, 2000; Chen et al., 2009, 2011; Kelly & 
Murdoch,  2003; Vasilevskiy et  al.,  2019), fluxes across streambeds (e.g., Harvey & Wagner,  2000; Solder 
et al., 2016; Solomon et al., 2020) and lakebeds (e.g., Ong & Zlotnik, 2011), tidal effects (e.g., Liu et al., 2018), 
submarine groundwater discharge (Liu et al., 2018), and discharge into wetlands (Rosenberry & Hayas-
hi, 2013). The OBP geometry is defined by the permeameter tube of radius R, inserted to depth L into the 
generally anisotropic sediment/aquifer with horizontal and vertical conductivity values Kr and Kz, respec-
tively (Figure 1a). The lower part or the chamber of the tube is filled with the substrate material, while the 
upper part containing water is used for monitoring the water level under static or dynamic conditions. Typi-
cally, the total substrate thickness greatly exceeds the penetration depth. The upper water-holding chamber 
can sometimes amplify or accelerate flow within it by having a constricted radius RS relative to the bottom 
sediment-penetrating chamber as shown in Figure 1b (Solder et al., 2016; Solomon et al., 2020).

If the head at the interface inside the tube (water level) exceeds the head (water level) at the stream-sub-
strate interface by the value H, the water flux is directed from the upper chamber of the OBP through the 
lower chamber with the substrate sediments and out toward the interface. (The direction is opposite if the 
water level inside is lower than the water level outside). This OBP, like any other tube permeameter with 
different screen configurations (e.g., Bouwer, 1978; Cardenas & Zlotnik, 2005), creates a dipole-flow system 
between the upper chamber and the stream (e.g., Zlotnik & Ledder, 1996). Head distribution changes are 
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localized near this dipole; hence, the OBP is mainly sensitive to the hydraulic conductivity of the sediment 
inside the bottom chamber and within the chamber's immediate vicinity.

The steady-state discharge Q through the tube follows Darcy's equation modified for the flow geometry:

 
 


 2 ,z z

r

K H KRQ R R
L KLF R

� (1)

where  F R  is the shape factor, which depends on a single dimensionless parameter R*, defined by the sub-
strate properties (Kr and Kz) and the OBP geometry (R and L). Physically, the shape factor indicates the mag-
nitude of resistance of sediments to the flow outside of the lower chamber of the permeameter, in addition 
to the resistance of the bottom chamber. Value    1F R  indicates that the resistance of sediments outside 
the bottom chamber can be neglected. (In the following text, we will use a shape factor F with subscripts to 
reconcile previously known notations).

The realistic range of parameter R* can be assessed based on the OBP geometry in slug tests and flux meas-
urements, considering the small scale anisotropy of the substrate. In general, the OBP tests are performed 
using elongated tubes with / 0.1R L  (e.g., Chen et al., 2011; Landon et al., 2001). For flux measurements, 
this ratio may vary from approximately 0.15 (Solder et al., 2016; Solomon et al., 2020) for small footprint 
measurements to 15–30 for larger-footprint seepage meters made of metal barrels that are commonly used 
(R = 0.3 m) and penetration depth on the order of 0.01 m (Rosenberry et al., 2008). Values of small-scale 
anisotropy of hydraulic conductivity ( /r zK K ) in natural fluvial environments range from 1 to 10 (Burger & 
Belitz, 1997). Therefore, the practically important range of dimensionless radius is  0.01 100R .

For example, the shape factor ascribed to Hvorslev (1951) by Chen (2000), Landon et al. (2001), and others 
for tubes with small /R L ratio is as follows:

    1 ,
5.5HF R R� (2)

where R  is typically less than approximately 0.2. Considering practical applications with small R , one 
obtains  1HF , that is, the resistance of sediments outside the lower chamber to the flow is commonly 
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Figure 1.  Schematic diagram of the OBP in the substrate: (a) small-radius footprint, (b) large-radius footprint with 
amplifier. OBP, open-bottom permeameters.
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neglected (Chen et al., 2011). Paradoxically, the OBP design is absent from a compilation of different flow 
test geometries by Hvorslev (1951) where many similar configurations of the lower chamber and the per-
forated screens are presented. The needed OBP design was studied by Bouwer (1978, Table 5.6) using elec-
trical analog models.

Considering the potential for broad application of the permeameter test, Pozdnyakov et al. (2016) revisited 
the OBP problem and proposed a more accurate shape factor as a function of R* for the small footprint 
scenario:
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Although the accuracy of this form was assessed by using a finite-difference flow model, the relative error 
as a function of R  was not tabulated but we will show it below.

The significance of this parameter in surface water-groundwater interactions studies and in data interpreta-
tion is as follows: Various OBP-based tests register the responses of the water level  H t  in the upper cham-
ber. For example, in the falling head slug test, the water level recovery H(t) in the upper chamber of the OBP 
(Figure 1a) after a rapid increase in water level there by the value H0 (Freeze & Cherry, 1979; Hvorslev, 1951) 
is recorded. The water level reduces exponentially with time following     0 exp / LH t H t t . The term 
“time lag” for parameter Lt , determined by the chamber geometry and substrate properties was introduced 
by Hvorslev (1951):

 /L zt LF K� (4)

Calver (2001) considered the range for streambed hydraulic conductivity values between 0.01 m day−1 and 
100 m day−1 as typical. For L = 0.3 m and R = 0.05 m that are typical of OBP applications in automated 
seepage meters (Solomon et al., 2020),  1F  as discussed above. Thus, Lt  may range from 5 min to 30 days. 
The commonly occurring large time lags can affect the feasibility of the test due to temporally fast changes 
in stream stage, tide level, etc. Reducing the time lag would be a major advantage which requires particular 
attention to selection of the instrument design (i.e., R and L).

One of the approaches to reduce this time lag is to add the amplifier mentioned above by using a smaller-ra-
dius tube SR  over the upper chamber (Figure 1b) for monitoring  H t  (e.g., Solder et al., 2016). In this case, 
the adjusted time lag is

 
  

 

2
S

L
z

LF Rt
K R

� (5)

The resulting increase in the footprint of the OBP typically reduces the penetration depth, resulting in 
changes to the ratio /R L and the value of R*. In fact, such large footprint design could provide vertical 
stability of the OBP in different environments. While such design makes OBP tests more feasible, the shape 
factor values for the range  0.1 100R  have not been reported. Determining the shape factor  F R  as a 

function of R* is the primary goal of this note.

Using finite element flow modeling and analytical techniques, we provide a simple solution for both the-
oretical and practical purposes, including the design of various instruments. The focus here is on hydro-
logical applications with attention on changes in discharge and time lag; the complete technical details are 
presented as supporting information.

2.  Statement of the Boundary Value Problem
Due to the small vertical and horizontal scales of the dipole system, one can neglect the compressibility 
effects in the volume inside and outside the OBP in the groundwater flow equation:
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The boundary condition at the interface indicates the difference between the head inside and outside the 
OBP:
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The walls of the tube are impermeable:
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r
� (8)

The boundary condition at z-axis indicates axial symmetry as follows:
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r
� (9)

and the function with derivatives vanishes far from the OBP:
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2 2
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h r z� (10)

Discharge is evaluated by summing up the fluxes across the interface z = 0 inside the upper chamber:
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Thereby, the problem of finding the dimensionless shape factor F in Equation 1 is reduced to determination 
of the flux Q:




2 /zK HR L
F

Q
� (12)

3.  Dimensionless Variables
Dimensionless coordinates (  ,r z ), OBP radius ( R ), and head (h*)

  
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are applied to transform the boundary value problem as follows:
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The discharge in dimensionless coordinates Q* depends on one param-
eter R*:
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The dimensional injection rate Q is related to Q* as follows:

   rQ K HLQ R� (20)

Equation 12 for the shape factor now depends on the dimensionless ra-
dius R* only:
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4.  Computation of the Shape Factor Using Numerical 
Modeling
The definition following Equation 21 permits a straightforward evalua-
tion of the shape factor by numerical methods when the boundary value 

problem 10–14 in dimensionless variables is solved for various values of the parameter R*. We used the finite 
element approach implemented in COMSOL Multiphysics, a commercial software. This method requires 
constraining the semi-infinite domain in Equation 14 radially and vertically to the finite domain.

The following approach was used considering that OBP fluxes are similar to the dipole where the source 
of water in the upper chamber is balanced by the sink distributed across the stream-streambed interface 
outside the OBP and vice versa. Head and velocity magnitude variations outside the lower OBP cham-
ber decay very rapidly in all directions. Therefore, we limited our domain vertically by  0 10z  and by 

  0 10R R  horizontally. Details on selecting the mesh size are available in Text S1.

The dimensionless function   Q R  was calculated by discretized Equation 19 within the COMSOL Mul-

tiphysics and presented in Table 1. The accuracy of the numerical solution was almost unaffected by the 
increasing size of the computational finite domain and the reduction of mesh size. In particular, the differ-
ence between dipole fluxes across the interface (inside the OBP permeameter and outside) was on the order 
of 0.1% at any R* (Text S1).

The corresponding shape factor F(R*) was calculated from   Q R  using Equation 21 and given in Table 1 
and Figure 2. For comparison, shape factors by Hvorslev (1951), denoted FH and Pozdnyakov et al. (2016), 
and denoted FP are depicted, showing their narrow range of validity based on the desired accuracy of 5%.
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R* Q*(R*) F(R*) FI(R*)

0.01 0.00031229 1.006 1.008

0.05 0.0076291 1.029 1.040

0.075 0.016919 1.044 1.058

0.1 0.029651 1.059 1.077

0.2 0.1125 1.117 1.146

0.3 0.24107 1.173 1.211

0.4 0.40953 1.227 1.273

0.5 0.61325 1.281 1.333

0.6 0.84839 1.333 1.392

0.7 1.1117 1.385 1.449

0.8 1.4007 1.435 1.505

0.9 1.7129 1.486 1.559

1 2.0464 1.535 1.613

2 6.2816 2.000 2.114

3 11.627 2.432 2.571

5 24.323 3.229 3.412

8 46.551 4.319 4.565

10 62.846 4.999 5.287

15 108.41 6.520 6.990

20 155.87 8.062 8.593

40 367.31 13.684 14.455

50 481.68 16.304 17.188

70 721.58 21.332 22.414

80 845.76 23.771 24.938

100 1,102 28.506 29.851

Table 1 
The OBP Shape Factors  F R  and  

IF R
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To assist with practical applications, the function  F R  in Table 1 was approximated by the function  
AF R ,  

using elementary functions with accuracy better than 1%:

F R R R
A

             


exp[ . . ln . ln

.

0 435710 0 326818 0 0786683

0

2

000169158 0 00095506
3 4

         ln . ln ]R R

� (22)

as explained in Text S2 (A better approximation can be achieved if needed by shortening the range of R*). 
The approximation  

AF R  virtually coincides with the numerical model determined result F(R*) in Fig-

ure 2a. Note that the relative errors in shape factors  
HF R  and  

PF R  increase rapidly with R/L > 3, but 

 
PF R  is applicable in a greater range if the accuracy requirements are about 5%–8% (Figure 2b).

5.  Analytical Estimate of the Shape Factor
The numerical model results gave a clear presentation of data for fixed values of parameters in the expected 
ranges. However, analytical solutions can provide trends that are beyond these ranges. An accurate solution 
of the problem with Equations 6–10 is possible by splitting the flow domain into subdomains, then deter-
mining the solution in each one while imposing the continuity of head and flux on each interface (Cole 
et al., 2011, Ch. 12). However, the resulting solution involves numerous poorly convergent integrals and 
does not offer practical advantages over numerical modeling results such as above. Previously, all approx-
imations of shape factors were developed for low values of R*. We explored solutions for similar geometry 
with high values of R*. The limiting case of such an analytical solution was presented by Bruggeman (1999, 
p.369) in a compact form or in a more general form, but it was presented in a more complicated form by 
Tartakovsky et al. (2000). They utilized a first type boundary condition equivalent to Equation 7. However, it 
was found that application of these solutions for deriving shape factors based on definitions in Equations 11 
and 12 above results in a singular solution involving divergent integrals.

Our modification of the problem centers on the role of the OBP's lower chamber and is based on the analy-
ses of R* values. This chamber has a very short length L compared to R, which results in small resistance to 
the flux of the lower chamber. Then, the boundary condition Equation 7 can be written as follows:
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Figure 2.  Shape factor (F): (a) comparison of numerically estimated shape factor F with previously published results; 
FH – Hvorslev (1951) shape factor, FP – Pozdnyakov et al. (2016), FA – shape factor approximation based on numerical 
modeling results; and (b) relative accuracy of previously used shape factors.
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where the right-hand side divided by the small finite parameter L is large 
compared to the left-hand side and the left-hand side is negligibly small. 
Thus, this boundary condition is close to the original Equation 7, while 
the left-hand side serves for improvement of convergence of solutions af-
ter substituting into Equations 11 and 12. These approximations obviate 
the need for the zero-flux boundary condition in Equation 8 but allow 
for retaining the effect of hydraulic resistance of sediments in the lower 
chamber to the flow. More details can be found in Text S3.

The purpose of this solution is the availability of reasonable head esti-
mates (to be shown below) and Stokes stream functions. This regulariza-
tion approach of the problem could be assessed using perturbation meth-
ods (Bender & Orszag, 1999). Instead, we will compare it with numerical 
model results summarized by  

AF R  in Equation 22.

The corresponding solution of the problem  6, 9, 10 and  23 by Green's 
function technique was constructed from the Hankel transform proce-
dure (Cole et al., 2011) and explained in Text S3. In our notation, it is as 
follows:

     


  



  

 0 1
0

,
1

zeh r z HR J R J R d� (24)

From here, flux through the lower OBP chamber, defined by Equation 11, can be calculated using Equa-
tion  23, dimensionless variables by Equation  13, and definition of dimensionless flux in Equation  19 
(Cole, 2020):

       
0

2 ,0 ,
R

z
r

K
Q H h r rdr K LH Q

L
� (25)

where the dimensionless flux Q* is equal to 
IQ , containing infinite domain integral as follows:
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(Here, identity     0 1xJ x dx xJ x  is used after Abramowitz and Stegun,  1965, Equation 11.3.20). The 
shape factor, denoted as IF , is calculated according to the definition in Equation 21:
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0
1 2

1I

J R
F R d� (27)

The integration converges slowly because of the oscillating nature of the integrand (e.g., Ledder & Zlot-
nik, 2017) and the results are shown in Table 1 for comparison. This shape factor FI in Figure 3 is compared 
with the shape factor FA (see the left axis), and the relative error is shown on the right axis. The Matlab script 
for calculations is given in Text S4. Function IF  provides adequate approximation of numerical results in 
the entire practical range of R*, if 5% error is acceptable. Moreover, the asymptotic behavior seems to be 
behaving as    lnO R R  at large values.
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Figure 3.  Comparison of approximate analytical (FI) and accurate (F) 
shape factors (left vertical axis). The relative error  /IF F F is shown on 
the right vertical axis.
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This solution can be used for determining the point head values and flownet construction in various appli-
cations of OBP.

6.  Discussion and Summary
The results of our analyses show the limitations of the traditional view on OBP test interpretation and 
provide their remediation. Indeed, Equation 1 shows that the one-dimensional Darcy's law is applicable 
to the interpretation of data only for designs with a small footprint R/L because the shape factor F may 
exceed 1 significantly. For a small footprint, the hydraulic resistance of sediments in the substrate around 
the lower chamber can be neglected compared to the one inside the lower chamber; for a large footprint, 
the fraction of substrate resistance around the lower chamber vastly exceeds the resistance of sample in the 
lower chamber.

The physical reason for this behavior in F is the structure of the flow inside the lower chamber. For R L,  
the flow in the chamber is near-uniform and one-dimensional. For R L, the short chamber creates a 
nonuniform and three-dimensional flow with a large horizontal velocity component (see also Kelly & Mur-
doch, 2003). Therefore, Equations 4 and 5 offer three possible modifications of OBP configuration: Smaller 
penetration, larger radius, and using the amplifier (Figure 1b above and Solder et al., 2016).

The shape factor F depends on the radius-to-penetration ratio /R L. Thus, according to Equation  1, an 
increase in R may not necessarily produce a quadratic increase in discharge Q, and a decrease in L may not 
necessarily produce an inversely proportional Q increase as it could follow for Darcy's interpretation of OBP 
tests. (It is assumed that H, Kr, and Kz are fixed at the test location, when different instruments are used.) To 
compare the discharge from two configurations (parameters 1 1,L R , and discharge 1Q , and parameters 2 2,L R ,  
and discharge 2Q ) the following expression follows from Equations 20 and 21 at a given interface location:

 
 

 
 

 

 

  
      

2
2 12 2 2 2

1 1 111 2

Q R F RQ L R L
Q L LRQ R F R

� (28)

where   Q R  and  F R  are calculated in Equation 22. This discharge ratio 2 1/Q Q  significantly differs 

from an estimate, which ignores the flow's three-dimensionality when      1 2 1F R F R .

We illustrate the point by comparison of fluxes (seepage rate) measured by two different instruments in an 
anisotropic aquifer. One instrument has a small footprint and dimensions of a seepage meter described by 
Solder et al. (2016) or Solomon et al. (2020): L1 = 0.3 m and R = 7.5 cm, with R/L = 0.25. The alternative is 
the footprint of typical seepage meters (Rosenberry et al., 2008), made of a standard oil barrel with radius 
R2 = 30 cm and shallow penetration L2 = 3 cm, resulting in R* = R/L = 10. If the flow in the lower chamber 
is considered as one-dimensional in Equation 26 and the identity      1 2 1F R F R  is assumed, the gain 

in discharge is 2 1/Q Q  160. However, consideration of three-dimensionality produces the corrected gain 
2 1/Q Q  60 that should be considered in the design of the OBP.

Another important use of the obtained theoretical results is an ability to control and design the time lag of 
the instruments. OBP tests (slug tests and flux measurements using seepage meters) can sometimes require 
significant time to conclude. In these cases, the design of the instrument can be modified to reduce time 
lag, that is,    

2 1L Lt t .

 
 

 
 





 
  

 

2
222

1 11

L S

L

F Rt L R
L Rt F R

� (29)

The same instruments can be used for illustration. Without an amplifier (i.e., SR R), the time lag is de-
creased by a factor of 3.8. If an amplifier with SR  = 7.5 cm is used (which is consistent with existing designs), 
the time lag reduction gains a factor of (30.0/7.5)2 = 16. The test acceleration can be characterized by the 
value    2 1

/L Lt t , which is approximately 61.
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Finally, the results of this study can be applied to the design of new tests and refinement or modification of 
existing procedures. For example, the piezo-seep test for measurements of Kz proposed by Kelly and Mur-
doch (2003, Figure 4) combined the pumping discharge Q from the sealed-at-the-top upper chamber and 
by taking the head difference between the upper chamber and a single streambed point at the axis (r = 0). 
The point location must obey the additional constraint (z < 0.8 L) to have 1D flow in the lower chamber. 
However, this coefficient 0.8 is not universal. It depends on R/L, which may play an important role in data 
interpretation. Reliance on a single head reading may introduce significant bias in Kz values compared to 
other methods. To avoid reliance on a single point head, a piezomanometer could be repurposed for finding 
the head difference between the upper chamber and the stream (see also Solder et al., 2016). Then, Kz could 
be found from Equation 1 as   2/zK QLF R H , where the shape factor accounts for the head distribution 

in its entirety and explicitly considers OBP geometry.

It should be noted that all these estimates implicitly assume perfect knowledge of test geometry, precise 
procedures, and homogeneity of streambed parameters. In fact, these characteristics have different viola-
tions of these assumptions, and sensitivity analyses to various parameters based on error propagation is 
recommended (see example in Text S5). Unfortunately, it is rare to see studies on the role of “noise” in the 
test data interpretations based on OBP.

These conclusions illustrate various practical ramifications for ubiquitous applications of OBP. In the past, 
streambed tests were performed with a small footprint due to the need to provide the vertical stability of the 
test tube, whether for hydraulic conductivity or for flux measurements. In many cases, this resulted in using 
small discharge values in OBP-based tests, causing test times to be excessive and limiting test feasibility in 
highly transient environments (e.g., streams, estuaries, and tide-influenced zones).

In summary, the theoretical analysis of the OBP shape factor suggests and enables possible test modifi-
cations by increases in footprint and reductions in penetration. These modifications also reduce time lag, 
thereby increasing the feasibility of these tests in dynamic settings.

Data Availability Statement
Data were not used, nor created for this research study.
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