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Abstract—The stability issues of DC power grids are attracting
researchers’ attention, especially with the increasing adoption of
power electronic devices and nonlinear loads. Large-signal stability
analysis is required to detect and avoid large disturbance and
destabilization, which can cause detrimental effects on DC power
grids. However, the issue is still unsolved due to the complicated
dynamics of large-scale power grids. This paper develops a novel
method for estimation of the region of attraction (ROA) with less
conservativeness using the Brayton-Moser mixed potential theory.
This reliable and robust ROA estimation method provides useful
insights into the stable operation of DC power grids. Moreover, this
paper reveals the weak correlation between the state variables' of
branch currents and system stability. It makes it possible to reduce
computational cost and lessen the curse of dimensionality by
separating these state variables. The case study shows that the
proposed approach can obtain a much less conservative ROA
compared to traditional methods such as Lyapunov’s method.

Index Terms—power electronics-dominated power grids, large-signal
stability, region of attraction (ROA) estimation, potential theory,
constant power loads.

I. INTRODUCTION

ODERN DC power grids have seen a renaissance in
recent years, equipped with more complicated power
electronic devices and nonlinear power loads, such as constant
power loads (CPLs). Modern DC grids have several unique
advantages compared to AC power systems, for example,
increased efficiency of power conversion, less copper, and higher
power density. However, the distinct DC-grid characteristics of
direct P-V coupling and low system inertia pose great challenges
to grid stability. Even a small load or generation change can lead
to voltage flickers and equipment malfunctions.

The stability issues of DC power grids are attracting
researchers’ attention. Stability analysis of DC grids can be
categorized into two groups: small-signal analysis and large-signal
analysis. Most stability studies of DC microgrids are performed
using small-signal and linearized models, especially for large-
scale DC microgrids with multiple converters and CPLs. Small-
signal stability can ensure the stability of the system in the vicinity
of the equilibrium point, but the boundary of the stability region
cannot be determined and there are limitations when the system
has large disturbances. Additionally, linearized models of
microgrids are not always applicable because the power converter
dynamics can be approximated by a nonlinear state-space
averaging model only if the system bandwidth is well below the

! Here, the “state variables” refer to several branch currents, defined as i =
[Ipl,lpz, wor Lo Ig Igzs o Igno Tens ezs ooos Iews Ipa, ...,IfM] in the manuscript, which
show a weak correlation with system stability. I, Iy, ..., [,y are the branch
currents through source-side resistors Ry,q,Rp, ... Rpy, respectively.
Ig1 Igzs o Igy  are  the through source-side resistors
Ry, Rga, .. Ryn, respectively. I, Iy, .., Iy are the currents through source-side

branch currents
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switching frequency [1]. In contrast, large-signal stability analysis
is required to detect and avoid large disturbance and
destabilization, which can cause detrimental effects on DC power
grids. Large-signal stability analysis can determine the safe
operation regions of power grids going through large disturbances.
In control theory, the region of attraction (ROA) of complex
dynamic systems is a reliable measure of stability level and system
robustness against external disturbances. Reliable ROA estimation
provides useful insights into the stable operation of DC power
grids from the perspective of controlled dynamic systems. The
ROA ensures safe operation in the event of a large disturbance,
such as load switching, pulse power load, and faults, which is
possible in the real-world operation of DC microgrids.

There have been some recent studies on large-signal stability
analysis and ROA estimation. Some of these studies were
developed based on the design of Lyapunov-based controllers.
Grid stability can be guaranteed during the design procedure of
Lyapunov-based controllers. Paper [2] presents the stability
analysis for a hybrid DC microgrid using nonlinear backstepping
controllers (NBCs). The controller is designed to control the
output power as well as to minimize the mismatch between
generation and consumption while maintaining stable voltages.
The design of the controller for each component of the microgrid
is based on the Lyapunov theory. The stability analysis is through
the formulation of control Lyapunov functions (CLFs), and the
theoretical stability is ensured through the negative semi-
definiteness of the derivatives of CLFs. In papers [3] and [4],
input-to-state-stability (ISS) Lyapunov-based distributed control
is proposed for DC microgrids, which realizes a Lyapunov-based
power sharing while stabilizing the grid. The distributed
controllers are dedicated to grid voltage regulation to effectively
stabilize a DC microgrid. A Lyapunov function composed of
different Lyapunov functions is investigated to guarantee stability.
Paper [5] proposes a robust nonlinear control approach to solve
the instability problem of a buck converter with a CPL in DC
microgrids. The approach is developed based on passivity-based
control (PBC), which guarantees system stability due to its
characteristic of transient energy dissipation. Moreover, there are
some other approaches not relying on Lyapunov-based controllers
that investigate the stability of microgrids with established
architecture. In paper [6], the Takagi—Sugeno (TS) fuzzy model is
applied to estimate the ROA for a given electric system, which
includes a DC power supply and a constant power load connected

transmission line resistors Ryq, Ryy, ... Rey, respectively. Irq,...,lry are the
currents through load-side transmission line resistors Rry, Ry, ...Rpy, respectively.
All state variables of the grid model also include all capacitor voltages and load
voltages, but these variables show a stronger correlation with system stability
compared to the state variables of branch currents.
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to an output filter. The stability analysis of the TS model is
performed using a quadratic Lyapunov candidate function. Paper
[7] proposes a practical Lyapunov-based genetic algorithm for the
estimation of ROA in electric power distribution systems. It
utilizes a genetic algorithm to optimize the size of the estimated
ROA by searching a proper Lyapunov function. However, the
computational cost may burden the algorithm when the considered
Lyapunov function is of high complexity. Papers [8] and [9]
estimate the ROA of a DC-link motor drive and a synchronous
generator, respectively, using the reverse trajectory principle. An
approximate reverse system is proposed, and then the backward
iteration on this system is performed from the boundary of an
initially estimated domain of stability to a larger ROA. However,
the approximation inverting the recurrent state functions may lose
the generality of the original model. Additionally, this method
becomes more difficult to implement for higher-dimension
systems and does not give the closed-form equation of ROA. In
paper [10], a novel method using the generalization of energy
methods for assessment of the transient stability of a system with
strong nonlinearity is proposed. The stability assessment is
constructed via a sequence of convex optimization problems that
are tractable even for large-scale dynamic systems. In addition,
our previous study in [11] discusses the defects of the well-known
Brayton-Moser mixed potential theory [12] and then develops a
comprehensive approach to evaluate the large-signal stability in
DC power grids. The proposed stability condition consists of grid
parameters such as line impedance, capacitance, and inductance.
It is worth mentioning that the set constructed by the proposed
stability condition in [11] is different from the ROA. In terms of
DC power grids, the ROA refers to a space of operating states
(such as bus voltages, branch currents) that can converge to a
steady-state equilibrium, from the perspective of controlled
dynamic systems. Furthermore, the sum of squares (SOS)
technique using a polynomial Lyapunov function in control
system analysis is promising for global stability [13]-[15]. Paper
[16] outlines a stability analysis approach based on a polynomial
Lyapunov function, which is determined using the SOS technique
to maximize the ROA of an equilibrium solution. In paper [17],
the authors propose a SOS methodology for stability analysis and
ROA estimation for nonlinear systems represented by polynomial
fuzzy models via piecewise polynomial Lyapunov functions.

Nevertheless, these approaches may not be tractable for dealing
with the characteristics of the potential functions in large-scale DC
power grids with multiple CPLs. The SOS techniques for ROA
estimation usually deal with polynomial systems. The
approximation of nonpolynomial systems to polynomial systems
may lead to modeling inaccuracy and high computational cost.
Paper [18] investigates the Lyapunov stability of a bidirectional
power converter feeding a single CPL. The stability analysis is
based on a SOS programming method and an approximation of the
converter system. However, the idea in [18] is hard to tailor to fit
large-scale DC power grids due to the complicated dynamics and
the curse of dimensionality in complex systems.

In a nutshell, large-signal stability analysis and ROA estimation
of DC power grids are still open problems. This paper presents for
the first time a rigorous approach to solve this problem. The main
contributions of this paper can be summarized as follows:

2

First, we develop a novel approach to ROA estimation with less
conservativeness, using a revised Brayton-Moser mixed potential
theory. The approach tackles the common conflict between model
accuracy of ROA estimation and computational overhead.

Second, this paper reveals the weak correlation between some
state variables and system stability. It makes it possible to reduce
computational cost and lessen the curse of dimensionality by
separating these state variables.

Third, we carry out a comparison between the proposed novel
ROA estimation approach and a traditional Lyapunov-based ROA
estimation method. Our case study shows that the proposed
approach can obtain a much less conservative ROA compared to
the traditional method solving Lyapunov equations directly.

The structure of this paper is organized as follows: In section 11
and section III, the modeling of DC microgrids with multiple
sources, converters, and CPLs is described and the necessary
stability descriptions are discussed. In section IV, we study the DC
microgrids model in a steady state and formulate an equilibrium
analysis using a potential-based approach. We also point out
several misunderstandings of the conventional potential theory. In
Section V, we present the ROA estimation techniques of the DC
microgrids model. Section VI substantiates our theoretical work
through a case study.

II. DC MICROGRIDS MODELING & PROBLEM FORMULATION

A. The General Framework of DC Microgrids

A generalized circuit framework of a DC microgrid with
multiple power converters and CPLs is described in Fig. 1.
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Fig. 1. The circuit structure of a typical DC microgrid.

Without loss of generality, we make the following assumptions
about the circuit diagram of typical DC microgrids:

1) The power supplies are all constant-voltage sources.

2) The DC-DC power converters are deployed to step up or step
down the voltage outputs. They can be ideal buck converters,
boost converters, or buck-boost converters. No parasitic resistance
or parasitic capacitance is considered.

3) The transmission lines are considered as impedances.

4) The demand side is composed of multiple CPLs. The CPL
model is shown in Fig. 2(a), described by the following function:
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Ip, = Inax Vi < Vinin
VL = PL/IPL' Vmin < VL < Vmax (1)
VL = Vmax' IPL < Imin
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Fig. 2. The CPL model: (a) the realistic model with operational bounds; (b) the
traditional model without operational bounds.

In the existing literature on stability analysis of DC microgrids,
the conventional modeling of CPLs does not consider operational
bounds such as current limits or voltage limits, which is shown in
Fig. 2(b). The traditional CPL model is not suitable for potential-
based large-signal stability analysis due to violation of the
prerequisites of potential theory. One prerequisite is that the
domain of the studied dynamic model needs to be a compact
positively invariant set; another prerequisite is that the studied
model should be continuous and differentiable [19]. These
prerequisites are not satisfied in the traditional CPL model.
Alternatively, the CPL model in Fig. 2(a) indicates the operational
upper bounds on load voltage and current, considering the
practical conditions of CPLs in power grids. Having operational
bounds is an intrinsic property of the CPL model. From the
perspective of circuit characteristics, a parallel diode of CPL can
be used to clamp the load voltage no smaller than the minimum
voltage Viyin (Vpin > 0) . This CPL model satisfies the
prerequisites of the potential theory mentioned above.

B. Microgrids Model with Closed-Loop Converter Controllers

The proposed ROA estimation approach supports the utilization
of several common controllers for power converters, such as
traditional droop controllers, lag compensators, and lead
compensators. The design of converter controllers can smooth the
power flow and improve the quality of electric power through the
regulation of output voltage. In our paper [11], we propose and
validate a novel type of converter controller, called the droop-
inertia controller, which generalizes better characteristics than the
traditional droop controller in terms of control error and stability.
The reason we set a traditional droop controller as the benchmark
is that it is often utilized in existing microgrids with distributed
control. However, the traditional droop controller has to
compromise between large control error and weak stability: the
traditional droop controller with larger resistance generates large
steady-state control error, while the traditional droop controller
with smaller resistance leads to larger oscillation and weak
stability. In contrast, the proposed droop-inertia controller can
ensure both smaller control error and smaller oscillation because
of its higher degree of control, which shows the superiority of the
proposed novel controller. Besides the better performance of the
droop-inertia controller, the similarity in the structure between the
novel controller and the droop controller also makes it more
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convenient and promising to be developed in DC microgrids in
practice.

The circuit diagram of a power converter with a droop-inertia
controller is described in Fig. 3. The proposed droop-inertia
controller is intended to regulate the output voltage Vi; to an
expected value V;..¢; through the switching of Iy;, which is a type
of current control.

The transfer function of the droop-inertia controller can be
obtained from its equivalent circuit, shown in Fig. 4, which is
shown as follows:

Isi(s) Rp,: +SLqi +qu
Vrefi(s) = Vei(s) Rpi(SLqi + qu)

where Y}, is the equivalent admittance of the block in Fig. 4.

Therefore, we can develop the equivalent circuit structure of the
microgrid model in Fig. 1, which is depicted in Fig. 5.

Notably, the droop-inertia controller can be downgraded to a PI
controller by setting Ry; = 0 if needed. However, although a PI
controller can ensure a zero steady-state error, it cannot realize the
regulation of the power output of power sources, which is very
critical in the operation of microgrids.

The current controller is designed to control the output voltage
of the switching power converter. The idea behind the current-
mode control is to build a voltage-controlled current source. Then
the output of the current source is modulated to guarantee a
constant output voltage from the power converter with changing
load current. This idea is implemented through the collaboration
of a current control loop and a voltage loop. The current control
loop (inner loop) monitors the inductor current and builds the
voltage-controlled current source. The voltage loop (outer loop)
monitors the converter’s output voltage and compiles the
controlled current source to regulate the output voltage of the
power converter.

G(s) = =Yin(s) = (2)

current
controller

droop-inertia
controller

Fig. 3. The circuit diagram of a power converter with a droop-inertia controller.

Vrefi

Fig. 4. The equivalent circuit of the proposed converter controller.
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Fig. 5. The equivalent model of a DC microgrid under current-mode control.

III. LARGE-SIGNAL STABILITY ANALYSIS USING POTENTIAL
FUNCTIONS

The Brayton-Moser mixed potential theory provides basic
rigorous derivatives for large-signal stability analysis in nonlinear
circuits [12]. In our paper [11], we dig into this theory more deeply
and reveal its insufficiencies and flaws. In this section, we
reintroduce the revised potential theory with our supplemental
studies.

Specifically, our supplemental studies indicate the following
three conclusions on the potential-based stability analysis:

1) We derive a more comprehensive analysis of the stability
condition based on the original potential theory.

2) We realize the restriction of the prerequisite of the LaSalle
theorem [19], which is ignored in the original potential theory. In
fact, the conventional CPL model without operational bounds
violates the prerequisite of the LaSalle theorem. It is necessary to
pay attention to the boundary issues in the modeling of electric
devices. The modified CPL model with operational bounds is an
illustrative example.

3) We work on an accurate definition of large-signal stability,
especially with consideration of multiple equilibrium points,
which is not mentioned in the original potential theory.

Definition (Potential function [12]): Suppose there are r
inductors, s capacitors, and b nonlinear resistors and power
supplies in total in a circuit system. The components are
sequentially numbered by p starting from inductors and capacitors
to resistors and power supplies. The potential function P (i, v) of a
circuit system is calculated as follows:

r+s r+s+b
PG = ) et ) fvﬂdiﬂ 3)
u=r+1 u>r+s r

where v, and i, are element voltage and current, respectively.
Regarding the notations of the elements, 1,2,...,r represent
inductors; r + 1, ...,r + s represent capacitors; r +s+ 1, ...,r +
s+ b represent nonlinear resistors and power sources. The
integral term is also defined as voltage potential.
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Additionally, there are several fundamental properties of the
potential theory that have often been misconceived in previous
studies.

1) The potential theory supports stability analysis in autonomous
systems only. The potential theory is not appliable to time-variant
systems, i.e., non-autonomous systems. This is restricted by the
LaSalle stability theorem [19], which provides a theoretical
foundation for the potential theory.

2) The potential function of circuits depends only on the starting
point and end point of the motion trajectory, independent of the
trajectory itself. This characteristic is the same as gravitational
potential.

3) The potential function is not a Lyapunov function or an energy
function. Non-negativity is a necessary condition of being a
Lyapunov function or an energy function. Nevertheless, the
potential function could be negative based on its definition.
Assume a nonlinear element with the voltage potential 7 =

foil v,di, . The dual function of the voltage potential is { =

) (;] ! i, dv,, also called current potential. The voltage potential and

current potential are visualized in Fig. 6. Considering that the unit
of the circuit potential is power, we can calculate the total power
dissipation of the element, notated by V.

i1 V1
Y=iv = f v#diﬂ +f iﬂdvu =n+]{ 4)
0 0
Vp A .
vy = f (i)
v1 ------------

0 i1 Iy

Fig. 6. Potential functions of a nonlinear element.

Considering that there are N source branches and M load
branches, the potential function of the microgrid model in Fig. 5
is shown as follows.

N N N
- 1 2 1 2
P(i,v) = Z Viepi (Ipi + 15:) — Ez Ryl " — Ez Rgilgi
i=1 =1 =1

1 N 1 M N
_Ez Ruly® — EZ Rylsi* — z Vei(Lyi + 1y — 1)
i=1 j=1 i=1
N M M
—Vp thi—ZIf, +ZZ,- (5)
=1 = =

where

Pt gy b v — 1V, > Y
v —Prj =V j(sj — I1j), Vij > Vinin_j

I,
Z] = Vmin _J v (6)
Imax_j (VLj - Vmin,j) = Prj = Vij(sj — Imax_j)» Vij < Viin_j

L,; and I are the currents through resistors R,; and Ry,
respectively. Vinin ; is the lower bound of output voltage of the j-
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th CPL and Iy, j is the upper bound of the current of the j-th
CPL, as shown in Fig. 2(a). Other notations correspond to those
marked in Fig. 5.

IV. ROA ESTIMATION USING POTENTIAL THEORY

In this section, we utilize the linearization of the nonlinear
microgrid model to find a Lyapunov function to facilitate the ROA
estimation. It is worth mentioning that this does not mean that the
stability analysis is a small-signal analysis.

In terms of circuit analysis, small-signal stability analysis refers
to the circuit stability subject to sufficient small disturbances.
Small-signal stability analysis often utilizes classical eigenvalues
or impedance techniques, where the stability is strictly defined as
follows. In a continuous time-invariant dynamic model, x = f(x),
an equilibrium state x, is stable if there is an &5 > 0 with the
following property: For all €1, 0 < & < &, there is an € > 0 such
that if ||x, — x(to)|| < €, then ||x, — x(t)|| < & for all t > t,.
This definition indicates that the equilibrium state x, will be stable
if the trajectory x(t)(t > t,) never leaves the &;-neighborhood of
X, given the initial state x(ty) in a e-neighborhood. From the
definition of neighborhood, the area of the neighborhood of radius
€ is sufficient small, which means that the ROA based on small-
signal stability practically does not exist. In other words, small-
signal stability analysis does not characterize the boundary of the
asymptotic stability region. We cannot estimate the ROA of
microgrid systems using small-signal stability analysis.

In this manuscript, we estimate the ROA of each stable
equilibrium of the microgrid model using a Lyapunov function.
Because the proposed approach can characterize the boundary of
the asymptotic stability region for the system, it belongs to the
scope of large-signal stability analysis.

Moreover, we would like to clarify some related concepts about
stability analysis here.

Small-signal stability analysis
(applicable to sufficient small
oscillations only)

Large-signal stability analysis
(applicable to both small and
large oscillations)

v

Global/local stability with ROA  Instability  Local stability without ROA [nstability

A specific stable equilibrium

Single/multiple stable equilibrium(s)

No practical ROA: The area of
ROA s sufficient small

Practical ROAs exist: a specific set of
ROA exists for each stable equilibrium

Fig. 7. The relationships among different types of stability.

From the perspective of circuit control, stability analysis can be
classified into large-signal stability analysis and small-signal
stability analysis. Large-signal stability analysis does not require
the disturbances of the targeted system to be sufficient small;
small-signal stability analysis is applicable only to systems with
sufficient small disturbances. With large-signal stability analysis,
we can know whether a microgrid system is globally stable,
locally stable, or unstable. Global stability and local stability can
be checked by finding a Lyapunov function that is positive definite
with a negative definite time derivative. A locally stable system
determined by large-signal stability analysis has a “practical”
ROA, that is, the area of ROA is not sufficient small. With small-
signal stability analysis, we can determine whether a microgrid
system is locally stable or unstable. It is worth mentioning that a
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local stable system determined by small-signal stability analysis
does not have a “practical” ROA, that is, the area of ROA is
sufficient small. Therefore, we cannot estimate the ROA of
microgrid systems using small-signal stability analysis.

The approach of ROA estimation is investigated in section IV
and section V. The general procedure is visualized in the following
flowchart, where the formulas and notations are explained in detail
in the following sections.

Model the system using dynamic functions
Solve stable equilibria of the dynamic system

ROA estimation using Lyapunov theory and potential theory

Step 1: Solve the sufficient condition of

ROA based on Lyapunov theory ez 1|: V@) >0

Condition 2: V(%) <0
1

Step 2: Derive the sufficient condition of

v
Naturally holds
the conditionsin step 1 v

V@ <0V®)|_ =0

¥
Original optimization problem:
¢=min £"H,
x

Step 3: Derive the sufficient condition of
the conditions in step 2 and propose the
optimization problem in (36)(37) L =

StAQ+T +T,<0  st.T3+@A—-1)0>0

+ +

Step 4: Find a convex subset of the
conditions in step 3 and propose the
revised optimization problem in (49)(50)

Convex subset S Convex subset @

solve the revised optimization
problem in (49)(50)

Fig. 8. The flowchart of the ROA estimation.

A. Problem Formulation

In potential theory, the dynamic equation of the model in Fig. 5

can be described as follows:
dx 0P(x)
7 = 7
dt Ox ( )

where x = [i v]7, ] = diag{[-L C]}, and L and C are the
diagonal inductance matrix and the diagonal capacitance matrix,
respectively. i and v are the current vector and the voltage vector,
respectively.

i =L Ly o Lows Lo Lz oo Lgn Teas Tz o Lo It o Lo,

v = [Veiy e, Venr Voo Vits -0 Vil

Nevertheless, whether ] is positive definite (p.d.) is highly
dependent on the values of L and C under this description. Hence,
another expression of this system is proposed and preferred, which
considers (P*, J*) instead of (P, ]), such that

,dx — vp*
J' o =P

(8)

where

. 0%2P(x) e 1 /0P(x) oP(x)
] —(/1H+W:/V[> ], P —/1P+—< ax ax )

2
(9)
where [ is the identity matrix, M can be any constant symmetric
matrix, and A can be any constant. Under this description, J*is
always positive definite in stable dynamic systems. V represents
the gradient operator.

The following Theorem 1 provides accurate stability
information for each equilibrium point of the microgrid model.
The theorem investigates sufficient conditions for the large-signal
stability of equilibrium points and shows the sufficient conditions
for the existence of a Lyapunov function at equilibrium points,
which facilities the ROA estimation.
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Theorem 1: Given a nonlinear circuit % = f(x), as shown in Fig.
5, the potential-based dynamic function of the circuit is —J* % =
ap;ix). Let f:R"™ > R be a C! function and P*: R" - R be a
C? function. Suppose D is a neighborhood of equilibrium point x,.
If J* > 0, H(P*)|x=x, > 0, P*(x) is radially unbounded and all
equilibrium points of the system form a compact set, then x = x,
is a stable equilibrium point and there exists a Lyapunov function
at x = Xxg.

The proof is presented in Appendix A.

Suppose an equilibrium point x = x, of the microgrid model
with the dynamics that satisfies the conditions mentioned in
Theorem 1. Then we can construct a Lyapunov function at the
equilibrium point x = x, according to the following Theorem 2.

. . . ., dx . .
Theorem 2: Given a nonlinear circuit prl f(x), as shown in Fig.

5, the potential-based dynamic function of the circuit is —J* % =
IP*(x)
ox
equilibrium point of the system. Then a Lyapunov function at x =

X, can be constructed as follows:

V(R) = £TH(P) |y=x, & = 2TH,, 2, (10)
where X = x — x,, H(P")|;=y, is the Hessian matrix of the
potential function P*(x) at x = x,; H(P")|,=y, is also shortened
as H,,.

Proof: In Appendix A, the dynamic model is linearized as follows:

x =A% (11)
where A = —(J*) "' H,,.
Consider the Lyapunov equation corresponding to the Lyapunov
function L(x):
(12)

. Suppose J* >0, H(P*)|y=y, >0, where x, is an

ATN + VA = —Q

where V' = H,,. Then we will prove Q > 0,Q = Q".
1) @ > 0: Considering that H,, is symmetric, we have

ATN + WA = —Hy,"(U)™) Hy, = Hy, ) Hy,

=—H,, - ((UI)™D"+U)™)  Hy, (13)

Lemma: For J* >0, J*€ R™" , (J9)T and (J*)™! are also
positive definite. Hence, we have (J*)~ > 0, ((J*)~1)T > 0.
Given any vector y # 0, we have:

y'goTty >0,y ()Y >0
=y (U)TT+HWEIH)y>0
which means (J*)™! + (J*)™HT > 0.
Denote S = (J*)™1 + (U™ HT > 0.
yT(ATN + NA)y = yT ’ {_er S er} "y
= ~(Hy,y) *S Hyy (15)
Since H,, is a symmetric and positive definite matrix, Hy, has full
rank. So H,,,y # 0 Vy # 0. Considering S > 0, we have
—(Hy,y) S Hyy<0= ATN + NA=—-Q < 0= Q> 0(16)
2) Q = Q": Because V = H,,, we have N’ = N'". Hence,
QT = -NTA-ATNT = - NA-ATN =Q (17)
Conclusion: From Q > 0 and Q = QT, we can conclude that
L(x) = J?THXEJ? is a Lyapunov function at x = x,.

(14)

6

Theorem 2 rigorously derives a Lyapunov function for the
microgrid system in Fig. 5. With the potential-based modeling of
the microgrid system, we can directly use H(P*)|,=y, to construct
a Lyapunov function. This technique reduces the computational
cost of solving a Lyapunov equation in the traditional ROA
estimation approach. In the traditional approach, it is necessary to
solve the Lyapunov equation ATV + NA = —Q to obtain the
Lyapunov function in the form of L(X) = 2TN%. Matrix Q is
supposed as an arbitrary real symmetric and positive definite
matrix (usually Q is supposed as an identity matrix). The
Hessenberg-Schur algorithm is often utilized to solve Lyapunov
equations, which has a high computational cost.

In a dynamic system, the ROA can be estimated by finding a
Lyapunov function that is positive definite with time derivative
negative definite. In other words, the estimated ROA is the set
where the following conditions are satisfied:

V) >0

{V(a?) <0 (18)
Considering that V(X) > 0 always holds, the ROA can be
estimated as the solution of V(%) < 0. However, the calculation is
not simple, especially when the microgrid system is one with high
dimensionality. In the following section B and section C, we
present how to solve this condition with less computational burden.

B. Sufficient Condition of V(%) < 0
At the end of the above section, there are two conditions to
estimate the ROA. Since H,, > 0, V(&) = " H, & > 0 always
holds. Therefore, we only need to solve V(%) < 0 with the
potential-based modeling of microgrid dynamics. In this section,
we propose a novel approach to solve the condition V(%) < 0. The
solution of V(%) < 0 can be seen as the estimated ROA for stable
equilibrium points.
First, we have the following sufficient condition to guarantee
V(%) <0:
VIV (®) <0
{V(f)L?:O =0

Hence, we aim to solve the above two conditions next.

(19)

The nonlinear circuit shown in Fig. 5 can be described by % =
Ldx _ 9P*(x)
f) or =] = ="=2
expression of the dynamic function, and the second function is the
dynamic function constructed from the perspective of potential
theory. Consider the first dynamic function
x=f(x) (20)
Linearizing the system at equilibrium x = x,, we have
2= flx, +%)
=Vf(x )X+ f(xe + %) = Vf(x)x (21)
where X = x — x,.
Considering the equivalence of the two different dynamic

functions, we have
dx

== -0 = f@) (22)
Hence, we have A = —(J*)"'H,, = Vf(x,). The first equality
holds due to the definition of the matrix A in the proof of Theorem
2. Then we obtain the linearized system:

. The first equation is a common
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x =A% (23)
Moreover, define the residual term as follows:
9(®) = fxe +2) = Vf (x)% (24)
Plugging the dynamic functions with all circuit variables into the
residual function g(X), we obtain
g = [01X(4-N+M+1): ¢(I7L)1><M]T (25)
where CD(VL) = [@1(D11), o, @ (Dpy)]- Tt is worth mentioning
that the non-zero elements of g(x) correspond to M load voltages
only; the other elements of g(X) corresponding to other state
variables are all zero. We label the load voltages as the state
variables showing strong relationships to system stability; state
variables other than load voltages are labeled as those showing
weak relationships to system stability.
Considering the dynamics of circuit elements, we obtain

Py ;°
o) = v oy (26)
and
(pjl(ﬁ}) Cf ‘U *2 ( (‘U]-*+17]-)2) (27)

where j € {1,2, ..., M}.

Then we calculate the derivative of the Lyapunov function V (X)
as follows:

V(®) =2TH, %+ 2TH, %

= f(xe + X)"Hy & + R"H, f (x, + %)

= [Vf(xe)2 + g Hy & + 2TH, [Vf (xe)% + g ()]

= AT[VfT(xe)er + erVf(xe)]x +2%"H,,g(%) (28)
Considering the equivalence of the two different dynamic
functions, we have

VfT(xe)Hy, + Hy VS (x,)
= _VT((]*)_lvp*(xe))er - erv((]*)_lvp*(xe))
= _erT((]*)_l)Ter - er(]*)_lee

=—Q<0 (29)
where Q is firstly defined in the proof of Theorem 2.
Suppose
0=-— Q11 le] H,, = Hyq Hiz] (30)
Qa1 0C Hyy H

where Q;; € R(4N+M+1)><(4N+M+1)‘
Hll € R(4N+M+1)X(4N+M+1) Q € RMXM H € RMXM.

Denote % = [%,7,7,' 7, where V, = [V o,Vin], %o =
[lpll ey IpN’ Iql’ weey IqN’ Itl’ weey IfN’ Ifl’ ey IfM’ VCl’ ey VCN’ VD]'
Then the Hessian of V(%) can be calculated as follows:
V2V (%)
Qll QlZ + 2H12VC¢(I7L)
(31)

T 0w+ 20,700 0+ 2 (0, AO(D,)) + 280H T (P,

ch)(]?L) = diag{Ve, (D), ..., Vou (Du)}, VCZ(D(VL) =
diag{V?@,(01), ..., V> @u (Ds)}-

The calculation is shown in Appendix B.

Formulating a transformation using the properties of the Schur
complement, we have

where

7

V2V() <0
&0 +2v? (17LTH<1>(17L)) + 28,HpV, 20 (D)

—(Q21 + 2Vc¢(‘7L)H12T))Qll_1(le +2H;,V,2(7,)) <0 (32)

~ T

Denote T, £ 2v? (VL HCD(VL)) T, 2 28,H,V20(0,), T 2

(0,, +2v.0(P)H12M)Q,, ™t (le + zylzvccb(lh)).
Then we obtain

VW(R) <0 Q+T, +T,—T; <0 (33)
Given a proper A € R, the above condition can be relaxed as

follows:
AW+T+T,— (T3 +(A-1)Q) <0 (34)
Then the sufficient condition of the above condition is as follows:
{/1@+T1+T2A<0 (35)

T;+(A—-1)0Q >0

The derivation reduces the computational cost and lessens the
curse of dimensionality, which enables our approach to fit for
large-scale power grid models. It is noted that the computational
dimension of the constraints in (35) is M2, which is much lower

than the dimension of the traditional ROA estimation method, i.e.,
(4N + 2M + 1)%

V. CONVEXITY ANALYSIS & OPTIMIZATION PROBLEM
FORMULATION

Considering the sufficient condition of V(&) < 0 derived at
the end of section IV, we can formulate an optimization problem
to solve the boundary of ROA as follows:

(36)
. {/1@+T1+T2 <0

T5+(A—1)Q0 >0 (37)
However, the feasible set may not be convex, which burdens the
solving of the optimization problem. Therefore, it is essential to
discuss the convexity of the feasible set before solving the
optimization problem. In fact, the feasible set may not be convex
according to our rigorous proof, which requires us to solve a
convex subset of the feasible region. In this section, we present a
discussion of the convexity of the feasible region of the
optimization problem, which is constructed by the constraints in
37).

A. Convexity of the first condition 20 + T, + T, < 0

c =min £TH, &
% e

In this part, we discuss the convexity of the solution of AQ +
T,+T,<0.

The term AQ +T, + T, is a diagonal matrix. Denote the
diagonal elements by f,;(9;),i = 1, ..., M. Then the element is
solved as follows:

fui(ﬁi)
A d?
= /1Ql + ZW(_

=K' + 0" (Ky'0; + 2K,'Ly (I, 9r) ) + 2Ky 0"

Py SN d? AP a
oz + 2Rfi> 0;0:(D;) + 22— @: (D) (Iri — DrRy1)
i dvi

i A i PLi Ppi_1 i
where Ky' = 10, K,' = 2( Li >+ 2Rﬁ) (_C_;Vi*2>’KZL =
PLi 1 9,2
ci % —5 Ly (I, o) = I = vTth'U(v )=
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Next, we discuss the convexity of AQ+T, +T, <0 by
categorized discussion.
(@) 2K,' + K,' > 0:
In this case, it can be proved that the solution of f,;(%;) < 0,i =
1,2, ..., M is convex. The proof is shown in Appendix C.
(b) 2K\ + K,' < 0:
In this case, the solution of f,;(¥;) < 0 is not convex. We then
need to find a convex subset of the solution that is as large as
possible while decreasing the computational cost.
Assume D; > D; . Linearize g(9;, I;, O1) at 9; = D i

L30T 0) > o (20 + K + i)
+3(v;" + ﬁi_min)z(ﬁi — Di_min)] (39)

Therefore, we obtain a convex subset as follows:

A~ A 1 i i * A~
Ly (®; It br) > 202 (2K, + Ko [(vi" + Vi,min)3
L

+3(vi" + Pimin) (B = Oimin)] (0 = Bimar) (40)
Combining case (a) with case (b), the convex subset of the
solution of A0 + T; + T, < 0 is the intersection set of all convex
sets/subsets corresponding to each load branch respectively as in
the above discussion. For example, given a DC microgrid model,
we first need to determine which category each load branch
belongs to by calculating 2K, " + K,". If the result is non-negative,
the solution of f,;(D;) < 0 is convex; if the result is negative, the
solution of f,;(¥;) < 0 is not convex, and hence we will find a
convex subset using the above equation, where i represents the
corresponding load branch. Next, we solve the intersection set of
all convex sets/subsets obtained in the first step. Finally, we can
get a convex subset of the solution of AQ + T; + T, < 0.

Fig. 9. Intersection set.

As visualized in Fig. 9, the convex subsets of 10 + T; + T, <
0 are S=5,n-§5n-8y where S,..,S; .., Sy are the
convex sets/subsets corresponding to each point of load (PoL),
respectively, and can be solved by the above category discussion.

B. Convexity of the second condition Ty + (A —1)Q > 0
In this part, we discuss the convexity of the solution of T; +
(A-1)Q > 0.
Considering
Ts 2 (Q,, +2v.@(V)H;,")0,, ™t (le + 2H12VC®(I7L)) (41)
we can formulate a transformation using the Schur complement as
follows:

0,,<0 Q11 Q12 + Zlech)(‘?L)
— X = ~ T ~
Qy +2V.@(V )Hy, a-ne

where V. ®(V,) = diag{Ve, (9,), ..., Vou (Da)}.

<0(42)

8

In addition, we have already derived that

*2
i

(43)

@' (B) = — P“;z(l— )
Crivi (" + )

Theorem 3: Given the above definition of matrix X in (42), X <
0 is a linear matrix inequality (LMI) of [..., @;(D;), ... ], where i €

{1,2,..,M}.
Proof: we have
_|%u Qi 0 2H .,V (V)
X= [Qu 1- /1)@] * [ZVC¢(I7L)H12T 0 ] (44)

It can be written in the form of

X =Ag+ 4,0, (D) + -+ Ayoy' (Dy) (4’5)
where Ay, ..., Ay are parameter matrices. Therefore, X < 0 is a
linear matrix inequality (LMI) of [...,@;(?;),...], where i €
{1,2,..,M}.

From Theorem 3, we know that X < 0 is an LMI, which
indicates that the solution of X < 0 is a convex set. However, the
computational cost of brutally solving X < 0 is high because X is
non-symmetric and high-dimensional. Considering v; = v;* +
D; > 0, @;'(9;) is monotonic, we can therefore choose a convex
subset ® of the solution of X < 0 as follows to decrease the
computational complexity:

O: lbi < ﬁl’ < ubi, Vi € {1,2, ,M}

(46)

X<0

Fig. 10. The convex subset ©.

C. Optimization problem formulation for ROA estimation

Review the optimization problem proposed at the beginning of

section V.
(47)
{/1@+T1+Ta<0 (48)
T3+(A—-1)Q >0
Based on the above analysis, we know that the original feasible
region constructed by the constraints is not convex, which burdens
the solving of the optimization problem. Therefore, we find a
convex subset of the original feasible region to estimate the ROA
with less computational cost.

The convex subset of the original feasible region is solved as
{SN0O}. Then the optimization problem to solve the ROA
boundary can be revised as follows:

¢ = min £"H, X (49)
X

s.t. 9{S N 6} (50)

It is worth mentioning that the revised feasible region is the
boundary of set {S N 0} instead of the set {S N O} itself, which is

¢ =min XTH, %
£ e
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visualized as the black curve in Fig. 11. The ROA is estimated as
{QC:J?THXEJ? <c}.

X=<0

o

Fig. 11. The domain of the optimization problem.

Our following derivation leverages the characteristics of the two
constraints in the optimization problem. The first constraint AQ +
T, +T, <0 involves only diagonal matrices; the second
constraint T3 + (A — 1)Q > 0 involves non-diagonal matrices but
refers only to load voltages in all state variables. In our algorithm,
we label the load voltages as the state variables showing strong
relationships to system stability; state variables other than load
voltages are labeled as those showing weak relationships to system
stability. Separating the state variables with strong relationships
from those with weak relationships can reduce computational cost
and lessen the curse of dimensionality, which enables our
approach to fit for large-scale power grid models.

In the proposed novel ROA estimation approach, there are
multiple techniques applied to reduce the computational costs. We
conclude the techniques and their influence on the computational
costs and compare them with the traditional ROA estimation
method. The comparison is visualized in the following table.

TABLE 1. COMPARISON OF COMPUTATION COSTS BETWEEN DIFFERENT ROA
ESTIMATION METHODS

The traditional ROA
estimation method

Algorithm steps and
computational cost

The proposed novel ROA
estimation method

No need to solve the
Lyapunov equation.
According to the
proposed potential-based
approach, we directly set
N = Hy,.

Step 1: solve the
Lyapunov equation
ATN + VA =—Qto
determine the Lyapunov
function V(%) = 2TV %

Given that Q is an identity
matrix, solve the
Lyapunov equation
ATN + NA = —Q.

Computational

2
dimension of step 1 (4N +2M +1)

None

¢ =min £TNV%
X

¢ V(E) >0
st V(®) <0

Step 2: solve the
optimization problem to
estimate ROA

¢ =min 2TH, %
X
5.t 9{S N 6}

The dimension of the
objective function is
(4N + 2M + 1)?; the
dimension of the
constraintis M2, based
on the definition of set S
and set 0. Set S involves
only load voltagesin all
state variables.

The dimensions of the

objective function and

the constraints are all
(4N + 2M + 1)2.

Computational
dimension of step 2

VI. CASE STUDY

In this case study, we investigate ROA estimation for a DC
microgrid model with multiple CPLs to illustrate our proposed
techniques.

9

The DC microgrid model is built as in Fig. | with N = M = 2,
where N and M are the numbers of source branches and load
branches, respectively. With the utilization of droop-inertia
converter controllers, the equivalent circuit diagram of the grid
model is depicted as follows:

L It Ry

Liz l2Re2

Lo Raz—l=y
CbZ Cc2

L

+

vrefZ

Fig. 12. The equivalent circuit diagram of the microgrid model.

The model parameters are shown in the following table:

TABLE II. SIMULATION PARAMETERS
(The unit: V, H, F, Ohm, W)

Vierr 200 R, 5 Ry 5 Ly 01 Cpy |
R, 8 Ly, O.1 Ry 5 Ly 01 Cy |1

Vierz 200 R,, 5 Ry 5 Ly 01 Cp |1
R, 8 L, 0.1 Ry, 3 Ly 01 Cp |1
CD 1 Imaxl *© Vminl 0 Im,axz 20 Vminz 20

P, 200 P, 400

Given the parameter settings, load P;; always works in constant
power mode; load P, works in constant power mode only when
the load voltage is higher than the voltage lower bound Vi,inz-
Here, we estimate ROA for the stable equilibrium point(s) only
when both CPLs work in constant power mode, which is the
regular operating condition in power grids.

A. Steady-State Analysis of the Microgrid Model

In this section, we aim at solving the stable equilibrium point(s)
of the given model. First, we solve the Thevenin equivalence of
the model in steady-state. The circuit structure of the Thevenin
equivalent circuit is shown as follows:

leg Req Re
Rp ILq
Veq L P P
P

Fig. 13. The Thevenin equivalent circuit model.

Considering the characteristics of the given parameters, the
parameters R, and V., of the Thevenin equivalent circuit are
solved as follows:

(51)
(52)
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As per our assumption, both CPLs in the DC microgrid are
working in constant power mode. Then we obtain the following
power balancing equations of the model:

{PLI = Veq I — ILIZ(Req + Rf1) - RquLIILZ (53)
P =Veg 12— ILZZ(Req + sz) — Reglialy,
Solving the power balancing equations, we get four equilibrium
points of the model, as shown in the following table:

TABLE III. EQUILIBRIUM POINTS IN THE MICROGRID MODEL

Equilibrium  1st 2nd 3rd 4th
I, 11338 154912 10.2877 3.1258
I,° 22829 53914 143068  19.8052

Second, we identify the stable equilibrium point(s) using
Theorem 1. The analysis shows that there exists only one stable
equilibrium point, that is, (I;1", I,,") = (1.1338,2.2829)(A). The
corresponding  steady-state load voltages are (V% V,,") =
(176,175)(V). The identification of the stable equilibrium point
is presented in Appendix D.

B. ROA Estimation

In this section, we estimate the ROA of the stable equilibrium
point using the approach proposed in section IV. The stable
equilibrium point is solved at the end of section V. A.

First, we formulate the optimization problem to solve the
boundary ¢ of ROA as follows:
(54)

c=min X"H, %
X
(55)

A+T,+T,<0
{Tg +1A-10>0

Then we investigate the convexity of the feasible region of the

optimization problem.

1) First, we discuss the convexity of A0 + T, + T, < 0.

According to the derivatives in section IV, we conclude that:

(a) If 2K, + K,' > 0, the solution of f,;(#;) < 0 is convex.

(b) If 2K, 4+ K,' < 0, the solution of f,;(D;) < 0 is not convex.

In case (b) we choose a convex subset as follows:

.. 1 ) ; N
L3 (fh" Iﬂ, UT) > _2]]'*2 (2K1l + Kol)[(vi + vi?mi‘n.):g
13

+3(v;" + Pimin) (B = Oimin)] (0 = D) (56)
Combining case (a) with case (b), it is concluded that the convex
subset of the solution of 1Q + T; + T, < 0 is the intersection set
of all convex sets/subsets corresponding to each load branch
respectively.

Considering that there are two CPLs in this model, the
dimension of AQ + T; + T, is 2. Set A = 1.3e — 4. It is verified
that 2K1i + Koi < 0,Vi € {1,2}. Therefore, we choose the
convex subsets in the form of

Ls(9,15,97) > ad; + b, (B; = D; in) (57)
where a, b are constant. Denote the subsets by S;,i € {1,2},
respectively.
2) Second, we discuss the convexity of T3 + (1 — 1)@ > 0.
As proved in section IV, we can choose a convex subset © of the
solution of T3 + (1 — 1)Q > 0 in the form of

10

(58)

The set O can be determined with low computational cost using a
binary search algorithm. In this example, set © is solved as:

O: lbi < ﬁl’ < ubi, Vi € {1,2, ,M}

0:-12<9, <7,-3<9, <17

(59)

3) Third, we formulate the optimization problem to estimate

ROA.
c= mfin £"H, % (60)
s.t. SN 6} (61)
where 0{S N O} represents the boundary of set {S N &}. The
obtained ROA is in the form of {Q: X" H, & < c}.
This optimization problem is solved by dividing it into multiple
sub-problems. The objective function remains unchanged, and the

feasible region is divided into multiple parts that are separately
considered in different sub-problems.

TABLE IV. THE ORIGINAL OPTIMIZATION PROBLEM AND ITS SUB-PROBLEMS

Original optimization Original feasible set

Optimal solution ¢

problem a{Sn 6}
s.t.0{S;}nS, NnoO ¢, = 73820
Sub-problems s.t. 0{S,}NS; NO c, =117318
s.t.d{@}nS; NS, c; =112

It is concluded from Table IV that the optimal solution to the
original optimization problem is ¢ = min{c;,c,, c3} = 112.
Therefore, the estimated ROA is {Q.: " H, & < 112}.

1w |

W)
2

L

woow
1

Fig. 14. The novel estimated ROA with less conservativeness vs. the
traditional estimated ROA.

We visualize the ROA in the subspace consisting of the load
voltages (V;1,V,,) in Fig. 14. The yellow cross represents the
stable equilibrium point, and the blue ellipse represents the
estimated ROA using our proposed method. The red ellipse
represents the benchmark ROA obtained by the traditional
Lyapunov method introduced in [21]. The benchmark ROA is
solved as 2., = {x € R", J?TerJ? < 0.4490}. The derivatives are
shown Appendix E. It is observed that the novel estimated ROA
is less conservative than the benchmark ROA.

Moreover, we validate the system stability and the correctness
of the estimated ROA through MATLAB/Simulink simulations.
Considering that it is not practical to test all points in the estimated
ROA using simulations, we test several typical data points and
present the verification results here. The function values of
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L(x) = J?TerJ? at the chosen data points are very close to the
solved c¢ value, which is the estimated upper bound of L(x). In this
case study, we have ¢ = 112. The chosen data points are
represented by the “+” signs in Fig. 15. The dimension of the ROA
is 13. Nevertheless, in order to formulate the cases with more
typical disturbances and have a better visualization, we consider
the cases with the largest oscillations of PoL voltages. In other
words, we suppose the PoL voltage has the largest initial voltage
difference compared to the equilibrium state (V,;",V,,") =
(176,175)(V).

190

novel estimated ROA
(less-conservative)
traditional ROA
equilibrium point
+ datapoints

180 [

TN 175

VL

165 [

0 ‘ ‘ ‘ ‘ : ‘ ‘ |
155 160 165 170 175 180 185 190 195
VL, (V)

Fig. 15. Tested datapoints in the novel estimated ROA.

More details about the chosen data points are introduced in the
following table.

TABLE V. DESCRIPTIONS OF THE TEST DATA POINTS

Tested data  Position in L(x) System
points Fig. 15 V11, Vi) (V) value stability
Datapoint 1 Right (193,175) 105.6567 Stable
Datapoint 2 Left (160,175) 110.0692 Stable
Datapoint 3 Up (176,188) 101.4380 Stable
Datapoint 4 Down (176,163) 104.1449 Stable
Voltage at datapoint 1 Voltage at datapoint 2
190 VL, 190 VL,
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Fig. 16. Simulation results of PoL voltages.

A disturbance usually considered in large-signal stability
analysis is the start-up of the system. The microgrid system is
going through a significant load change during its start-up. The
stability of a microgrid which has suffered the disturbance of load
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change can be evaluated by applying the proposed novel method
to the microgrid with updated system parameters.

In this case study, we investigate the system stability with the
disturbance of system start-up. The microgrid stability at these
chosen data points is evaluated in the MATLAB/Simulink
platform. The simulation results are shown in Fig. 16. It can be
seen from Fig. 16 that the load voltages at PoLs converge to the
equilibrium point as we expected in all cases. The simulation
results validate the effectiveness of the proposed novel ROA
estimation approach.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we propose a novel approach to ROA estimation
in complex DC microgrids from the perspective of potential theory.
Specifically, we investigate the ROA estimation method with less
conservativeness using a revised Brayton-Moser mixed potential
theory. The approach targets the nonlinear microgrid model itself
instead of the linearized model, which improves the algorithm
accuracy. Moreover, our proposed approach is scalable in large-
scale DC power grids with algorithm strategies. For example, we
separate the state variables with strong relationships to stability
from those with weak relationships. This strategy reduces the
computational cost and lessens the curse of dimensionality. It is
also verified in our case study that our approach obtains a less-
conservative ROA compared to the traditional Lyapunov method.
Our future work will discuss ROA estimation methods in complex
power grids with stochastic environments.
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Appendix A

Proof: The proof of the stability of the equilibrium point x = x,,
is proposed in our previous study [11]. Here we show the proof of
the existence of a Lyapunov function.
As introduced in the previous section, the grid model with
dynamics can be described as
t= )% (62)
where x = [i v]”, J* > 0 for stable systems. J* does not need to
be a symmetric matrix, considering that J* > 0, (J*)™! exists.
Then the above system can be equivalently formulated as follows:
x=—(")"tvp (63)
Linearizing the system at equilibrium x = xe, we have:
55\_(7( un- tvp* M= xe'
=-(") 1((7(VP ))|x=xe !
= —() T HP) my, * £ (64)
where X = x — x,. J is the Jacobian matrix and H is the Hessian
matrix. Define A = —(]*)_1H(P*)|x=xe. Then we obtain the
linearized system:
x =A% (65)

Adding the residual term, we get the original nonlinear system as
follows:
(66)

x=AXx +g(®)
where g(%X) = f(X + x,) — AX.

A Lyapunov function can be constructed as follows:
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L=(x=x)"N(x—x), (67)
where N is the positive definite solution of the following
Lyapunov equation:

(68)

ATN+NA=-0,0>0
From J* > 0, we conclude that (J*)T > 0 and (J*)™ > 0;
Considering that H(P*)|y=x, > 0, J* > 0, the eigenvalues of
()" - H(P*)|x=x, have positive real parts. Therefore, all
eigenvalues of A = —(J*)™1H (P*)|x=x, have a negative real part,
that is, matrix A is Hurwitz. Therefore, N exists and is the unique
solution of the Lyapunov equation [20].

Appendix B

Suppose

Qi1 Q2 Hy; H;,

o=-[g0 Gl H] @)

Q1 Q H,, H
where Q;; € R(4N+M+1)><(4N+M+1)’
Hll € R(4N+M+1)X(4N+M+1) Q € RMXM H € RMXM.
Denote % = [%,7,7,]7, where V, =[Vip o, Vind, %o =
Uty oo Ions Igas o Igno Ters oo Lews Iy oo Lo Vers s Vens Vil

Then the Hessian of V(%) can be calculated as follows.
H H
28TH, g(x) = 2 [xa 0, ] [ 1 12] [0,2(7,)]"
=2(&, Hyp +V, H)CD(VL) (70)

The gradient and the Hessian of ZJ?Ter g(x) are calculated as
follows:

v (227 H,, g()?))
~ =N ~ . =N T
=2 [H12<I>(VL), 2 H,V,®(V,) + V(VLTHfb(VL))]
v2 (227 H,, g()?))
0 H12Vc¢([7L)
=2 (Hy,V,0(7,))" V2 (VLTﬁcb(I?L)) + R Hy V20 (0,)

(71)

(72)
Considering that

V(®) = 2T [VfT(xo)Hy, + He Vf ()% + 22TH, ,g(®) (73)

Q= _(va(xe)er + ervf(xe)) (74‘)
then the Hessian of V(%) is calculated as follows:
V2V (%)
0 Hy,V.9(V,)
~ \\T AT~ ~ ~

lechn(VL)) v? (VL HCD(VL)) + %, Hy, VA 0(V,)

Qll Q12 + 2H12VC¢(I7L)

=Q+2
(

- Qa1 +2(Hp, V. @V )T Q + 2V? (VLTﬁ(D(VL)) + 2%,H;, V2D (V,) (75)
where V. ®(V,) = diag{Ve,(D,), ..., Vou (D1}, V2 D(V,) =

diag{V?@,(01), ..., V> @u (Ds)}-

Appendix C

fui(ﬁi)

2

Pii |\ or) ppi( zd2 5.)(Ir; — DR
057 _F-l- ri ) Dipi (D) + W‘Pi(”i)(fi_vT i)

=K' + 0" (Ky'0; + 2K,'Ly (I, 9r) ) + 2Ky 0"

(76)
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Where Kol = AQ\U Kll = 2( PL[ )( ZLL 1*2) Kzl =
LiVi
P 1 ~ AN ﬁiz .
CLivi 2 'Ll(lfl' UT) = Ifl UTRfi'O-(vi) = m,l = 1,2, ,M

Denote L, (Dy, Iyi, O7) = Ki'0; + 2K, Ly (I, Dr).

Since o' =1——2% 5" =2 _ 50 weh
ince 0’ = w2 (Vi*+17i)3 Wwe have
fui(i)i) <0
~ A~ _ZKII:(T, - Kol
- Lz(vi, i UT) <R

PR (vl + 93 + K (v + D) (77)

Define Ly(, 17 07) 2 Ky '(v;" + 9;) — Ly (9,15, 7). Then we
have
2K, ' + K,' R
T(VL +0)° (78)
Additionally, it is worth mentioning that L (?;i, Igi, sz) is a linear
function.

L3(ﬁi, ifl' ﬁT) = Kll(vl:* + ﬁl) - Kllﬁl' - ZKZLLl(ifi, ﬁT)
_ZKzlLl(if“ ﬁT) + Klivl:*

fu®) <0 Ly(, Iy, 07) >

(79)

When 2K’ +K0i > 0,it can be proved that the solution of
fui(@) < 0 is convex as follows.

Suppose
202 (2K, + KoD) (v + D)3

(80)
(81)

g(vl, Ifl, UT) =
Then
fm(f’i) <0< LS(ﬁilifi'ﬁT) > g(ﬁi' ifi' 1A’T)
Denote X = [¥;, ifi, Uyl
Considering that v; = v;* + ¥; > O,g(ﬁi,iﬁ,ﬁT) is a convex
function, then Vx,, x,, @ € [0,1],
st fLE> 9@
L3 () > g9(53)’
and the following formulation holds:
Ly(ax; + (1 — a)5;) = aLls(51) + (1 - a)L3(%;)
>ag(x) + (1 -a)g(xy)
> g(ax; + (1 - A)%)

(52)

(83)

Therefore, the solution of L (%, 11, 97) > g(®, 17, 9r) is a convex
set. In other words, the solution of f,;;(#;) < 0 is convex.

Appendix D

The potential function of the model is calculated as follows.

2 2
1 1
P(i,v) = Z Vrei (Ipi + 1) — Ez Ryil* — Ez Ryilyi®
i=1 i=1
1 2 2
Z Rul? =5 ) Ryilpi® = > Vorlbpt + It = I
i=1 i=1
2 2
=Vp (Z Iy = Z Ifi> + Z Z;i(i,v)
i=1 i=1 i=1

(84)
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where
Vit PLL
] f —dv — Py — Vi (lyy — 1), Vi > Vinini
Zi(LJ U) = Vmin v
Imax :(Vi = Vimini) = Pt = Vii (gt — Imax ) Vii < Vinin i

(85)

L,; and Ig; represent the currents through resistors Rp,; and Ry,
respectively.

Add virtual inductors L,; = 0 in series with R,; for i = {1,2} in
the original model. Then we define the following notations:

R = dlag([Rpl, sz, qu, qu, Rfl’ RfZ'Rfll sz])
= diag([Rp'Rq'Rt' Rf])'

L= diag([Lpl, Lpz, qu, qu, Ltl’ szl Lfl’ sz])
= diag([Lp'Lq'Lt'Lf])'

€ = diag([Cp1, Coa Cp, Cp1, Cr,]) = diag([Cp, Cp, Cr]),

T T
= [Ip'lq'lt' If] ’
Ve, Vo, VLI

L= [Ipl'1p2'1q1'1q2'1t1'1t2'1f1'Ifz]
v = [Ver, Vo, Vb, VL1'VL2]T =

Then the above potential function can be rewritten in the form of

(86)

where A: R® - R,B: R® - R,y is a constant matrix and a is a
constant vector; (-, -) represents an inner product. It is obtained

P(i,v) = —%(i,Ai) +BW) + (i,yv —a)

that
_Hsz 02><1 02><2
1 -1 0 0
A =—iTRi, — 2X2 2X1 2X2 , 87
2 v Ioxz  —Iox1 Ozx ( )
02x2 1ox1 =2 8x5
2
B®) = ) h(w), (88)
i=1

PLL (1n VLL

max_L VLL'

InVinin 1), Vii > Vinin_i
Imax_i Vmin_i' VLi < Vmin_i

bi(v) = { (89)

where I is an identity matrix.

Next, we rigorously examine the stability of the equilibrium points
using the proposed sufficient condition for stability in our previous
study [11].

1) First, it is verified that f(x) = x: R™ —» R is a C* function and
P*:R™ > R is a C? function. Additionally, all equilibrium points

of the system form a compact set because the number of
equilibrium points in this model is finite.

2) J* > 0. This condition is equivalent to
Omax(LY2A7yC7Y2) < 1

(90)
where 0,4, (*) represents the largest singular value.

3)HP )=y, =
equation:

0. This condition is equivalent to the following

92B(v)
dv?

+yT4A™y =0

V=V,

(91)

Considering that
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PL'
’b;(v) |-—=%, V>V (92)
vz Li
0, Vii < Viin_i
we have
92B(v) 0%b,(v) 0%b,(v)
—=di 0,0,0, , 93
dv? lag{ dv? ov? } ( )

4) P*(x) is radially unbounded, i.e., P*(x) — o as ||x]|| = .
This condition is checked directly in specific circuits.

We obtain the stable equilibrium points of the model after testing
all existing equilibrium points using the above four conditions.

Appendix E
Pick up N = H(P")|=y, > 0. Then the Lyapunov function L(x)

is constructed as
L =2TNg, (94)

where X = x —x,. The derivative of the Lyapunov function
dL/dt is solved as follows:
dL

T xX"N% + 2TN%
(RTAT + g"(®))N2 + 2TN(A% + g(2))
= 2T(ATN + NA)% + 28T Ng (%)
= —xTQx + 28"Ng(®)
where g(®) = f(® + x,) — A%, Q = ATN + NA > 0.
Because ||g(®)|l, = o(|IX]|2), there exists y > 0 such that

(95)

V(ZI <y, lg@lz < allXl, (96)
where @ € R*. Then we have
dL o N R
e —2TQx +2(NT®)Tg(®)
< Amin @ + 2|INT 2l g ()|
< Amin @IIZN? + 2a|INTZ||]12]]
< Amin @R + 2040, (N) || 2|7 (97)

dL
To guarantee RS 0, set

~Amin @IIZN? + 2aAna (NIZ]? < 0

Then «a is solved as

(98)

Amin (Q)
= ()

Next, we solve y. We have

Vil < v,

(99)

lg@ll, < allZll, (100)
We know
g®) =fR&+x,)— A%

=X+ ()T HHP ) yy X

=% = V()| or,® (101)
Denote the elements in the vector g(%) by g,(), k=
1,2,...,N + M. The fact is that g, (%;) = O for variable x;: x; =
fie () if fr. (%) is linear. In the proposed microgrid model, the
state variables Loy Igio Ieis I j, Vi (i=12,..,N,j=1.2,..,M)
are under this situation. Moreover, g, (X;) # 0 for variables
Vi (G=1,2,..,M) because these state variables involve
nonlinear dynamic functions. Considering that

14
. =L, = Fu
Vi = ful) == =3 (102)
Then we can calculate gy (17,3) as follows:
gk(@) = VL] - ka('x)lVL]'=VL]‘* ‘X
—2
S/ - (103)
V" + VG (V)
where V; ;" is the steady-state voltage of V ;.
Next, we solve
lg@®ll < ali2ll, (104)
A sufficient condition of the above inequality is as follows:
low) I, <), vi=12..m  (105)
Solving this expression, we obtain that
V(=Y 2 Y
7= OASUES N (106)
Y, —1
where
C,:
Y = a?(ZH2v,;)* (107)

It is worth mentioning that we need to ensure that ¥; < 1, which
can be realized by tuning «. Then y is solved from its definition:

=)
V= jedetm ¥ -1 (105)

Then the ROA is estimated as the set Q. = {x € R™, L(x) < c},
where

c2 min xTNx = A, (N)y? (109)

[IZll2=y
N = H(P*)|y=x,. The optimization problem can be solved by a
quadratic programming (QP) solver.
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