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Abstract—The stability issues of DC power grids are attracting 
researchers’ attention, especially with the increasing adoption of 
power electronic devices and nonlinear loads. Large-signal stability 
analysis is required to detect and avoid large disturbance and 
destabilization, which can cause detrimental effects on DC power 
grids. However, the issue is still unsolved due to the complicated 
dynamics of large-scale power grids. This paper develops a novel 
method for estimation of the region of attraction (ROA) with less 
conservativeness using the Brayton-Moser mixed potential theory. 
This reliable and robust ROA estimation method provides useful 
insights into the stable operation of DC power grids. Moreover, this 
paper reveals the weak correlation between the state variables1 of 
branch currents and system stability. It makes it possible to reduce 
computational cost and lessen the curse of dimensionality by 
separating these state variables. The case study shows that the 
proposed approach can obtain a much less conservative ROA 
compared to traditional methods such as Lyapunov’s method.  
 
Index Terms—power electronics-dominated power grids, large-signal 
stability, region of attraction (ROA) estimation, potential theory, 
constant power loads. 

I. INTRODUCTION 

ODERN DC power grids have seen a renaissance in 
recent years, equipped with more complicated power 

electronic devices and nonlinear power loads, such as constant 
power loads (CPLs). Modern DC grids have several unique 
advantages compared to AC power systems, for example, 
increased efficiency of power conversion, less copper, and higher 
power density. However, the distinct DC-grid characteristics of 
direct P-V coupling and low system inertia pose great challenges 
to grid stability. Even a small load or generation change can lead 
to voltage flickers and equipment malfunctions.  

The stability issues of DC power grids are attracting 
researchers’ attention. Stability analysis of DC grids can be 
categorized into two groups: small-signal analysis and large-signal 
analysis. Most stability studies of DC microgrids are performed 
using small-signal and linearized models, especially for large-
scale DC microgrids with multiple converters and CPLs. Small-
signal stability can ensure the stability of the system in the vicinity 
of the equilibrium point, but the boundary of the stability region 
cannot be determined and there are limitations when the system 
has large disturbances. Additionally, linearized models of 
microgrids are not always applicable because the power converter 
dynamics can be approximated by a nonlinear state-space 
averaging model only if the system bandwidth is well below the 
 
1  Here, the “state variables” refer to several branch currents, defined as 𝑖𝑖 =
�𝐼𝐼𝑝𝑝1, 𝐼𝐼𝑝𝑝2, … , 𝐼𝐼𝑝𝑝𝑝𝑝 , 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2, … , 𝐼𝐼𝑞𝑞𝑞𝑞 , 𝐼𝐼𝑡𝑡1, 𝐼𝐼𝑡𝑡2, … , 𝐼𝐼𝑡𝑡𝑡𝑡 , 𝐼𝐼𝑓𝑓1, … , 𝐼𝐼𝑓𝑓𝑓𝑓� in the manuscript, which 
show a weak correlation with system stability. 𝐼𝐼𝑝𝑝1, 𝐼𝐼𝑝𝑝2, … , 𝐼𝐼𝑝𝑝𝑝𝑝  are the branch 
currents through source-side resistors 𝑅𝑅𝑝𝑝1,𝑅𝑅𝑝𝑝2,  … 𝑅𝑅𝑝𝑝𝑝𝑝 ,  respectively. 
𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2, … , 𝐼𝐼𝑞𝑞𝑞𝑞  are the branch currents through source-side resistors 
𝑅𝑅𝑞𝑞1,𝑅𝑅𝑞𝑞2, …𝑅𝑅𝑞𝑞𝑞𝑞, respectively. 𝐼𝐼𝑡𝑡1, 𝐼𝐼𝑡𝑡2, … , 𝐼𝐼𝑡𝑡𝑡𝑡  are the currents through source-side 

switching frequency [1]. In contrast, large-signal stability analysis 
is required to detect and avoid large disturbance and 
destabilization, which can cause detrimental effects on DC power 
grids. Large-signal stability analysis can determine the safe 
operation regions of power grids going through large disturbances. 
In control theory, the region of attraction (ROA) of complex 
dynamic systems is a reliable measure of stability level and system 
robustness against external disturbances. Reliable ROA estimation 
provides useful insights into the stable operation of DC power 
grids from the perspective of controlled dynamic systems. The 
ROA ensures safe operation in the event of a large disturbance, 
such as load switching, pulse power load, and faults, which is 
possible in the real-world operation of DC microgrids.  

There have been some recent studies on large-signal stability 
analysis and ROA estimation. Some of these studies were 
developed based on the design of Lyapunov-based controllers. 
Grid stability can be guaranteed during the design procedure of 
Lyapunov-based controllers. Paper [2] presents the stability 
analysis for a hybrid DC microgrid using nonlinear backstepping 
controllers (NBCs). The controller is designed to control the 
output power as well as to minimize the mismatch between 
generation and consumption while maintaining stable voltages. 
The design of the controller for each component of the microgrid 
is based on the Lyapunov theory. The stability analysis is through 
the formulation of control Lyapunov functions (CLFs), and the 
theoretical stability is ensured through the negative semi-
definiteness of the derivatives of CLFs. In papers [3] and [4], 
input-to-state-stability (ISS) Lyapunov-based distributed control 
is proposed for DC microgrids, which realizes a Lyapunov-based 
power sharing while stabilizing the grid. The distributed 
controllers are dedicated to grid voltage regulation to effectively 
stabilize a DC microgrid. A Lyapunov function composed of 
different Lyapunov functions is investigated to guarantee stability. 
Paper [5] proposes a robust nonlinear control approach to solve 
the instability problem of a buck converter with a CPL in DC 
microgrids. The approach is developed based on passivity-based 
control (PBC), which guarantees system stability due to its 
characteristic of transient energy dissipation. Moreover, there are 
some other approaches not relying on Lyapunov-based controllers 
that investigate the stability of microgrids with established 
architecture. In paper [6], the Takagi–Sugeno (TS) fuzzy model is 
applied to estimate the ROA for a given electric system, which 
includes a DC power supply and a constant power load connected 

transmission line resistors 𝑅𝑅𝑡𝑡1,𝑅𝑅𝑡𝑡2,  … 𝑅𝑅𝑡𝑡𝑡𝑡 ,  respectively.  𝐼𝐼𝑓𝑓1, … , 𝐼𝐼𝑓𝑓𝑓𝑓  are the 
currents through load-side transmission line resistors 𝑅𝑅𝑓𝑓1,𝑅𝑅𝑓𝑓2, …𝑅𝑅𝑓𝑓𝑓𝑓 , respectively.  
All state variables of the grid model also include all capacitor voltages and load 
voltages, but these variables show a stronger correlation with system stability 
compared to the state variables of branch currents.  
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to an output filter. The stability analysis of the TS model is 
performed using a quadratic Lyapunov candidate function. Paper 
[7] proposes a practical Lyapunov-based genetic algorithm for the 
estimation of ROA in electric power distribution systems. It 
utilizes a genetic algorithm to optimize the size of the estimated 
ROA by searching a proper Lyapunov function. However, the 
computational cost may burden the algorithm when the considered 
Lyapunov function is of high complexity.  Papers [8] and [9] 
estimate the ROA of a DC-link motor drive and a synchronous 
generator, respectively, using the reverse trajectory principle. An 
approximate reverse system is proposed, and then the backward 
iteration on this system is performed from the boundary of an 
initially estimated domain of stability to a larger ROA. However, 
the approximation inverting the recurrent state functions may lose 
the generality of the original model. Additionally, this method 
becomes more difficult to implement for higher-dimension 
systems and does not give the closed-form equation of ROA. In 
paper [10], a novel method using the generalization of energy 
methods for assessment of the transient stability of a system with 
strong nonlinearity is proposed. The stability assessment is 
constructed via a sequence of convex optimization problems that 
are tractable even for large-scale dynamic systems. In addition, 
our previous study in [11] discusses the defects of the well-known 
Brayton-Moser mixed potential theory [12] and then develops a 
comprehensive approach to evaluate the large-signal stability in 
DC power grids. The proposed stability condition consists of grid 
parameters such as line impedance, capacitance, and inductance. 
It is worth mentioning that the set constructed by the proposed 
stability condition in [11] is different from the ROA. In terms of 
DC power grids, the ROA refers to a space of operating states 
(such as bus voltages, branch currents) that can converge to a 
steady-state equilibrium, from the perspective of controlled 
dynamic systems. Furthermore, the sum of squares (SOS) 
technique using a polynomial Lyapunov function in control 
system analysis is promising for global stability [13]–[15]. Paper 
[16] outlines a stability analysis approach based on a polynomial 
Lyapunov function, which is determined using the SOS technique 
to maximize the ROA of an equilibrium solution. In paper [17], 
the authors propose a SOS methodology for stability analysis and 
ROA estimation for nonlinear systems represented by polynomial 
fuzzy models via piecewise polynomial Lyapunov functions.  

Nevertheless, these approaches may not be tractable for dealing 
with the characteristics of the potential functions in large-scale DC 
power grids with multiple CPLs. The SOS techniques for ROA 
estimation usually deal with polynomial systems. The 
approximation of nonpolynomial systems to polynomial systems 
may lead to modeling inaccuracy and high computational cost. 
Paper [18] investigates the Lyapunov stability of a bidirectional 
power converter feeding a single CPL. The stability analysis is 
based on a SOS programming method and an approximation of the 
converter system. However, the idea in [18] is hard to tailor to fit 
large-scale DC power grids due to the complicated dynamics and 
the curse of dimensionality in complex systems.  

In a nutshell, large-signal stability analysis and ROA estimation 
of DC power grids are still open problems. This paper presents for 
the first time a rigorous approach to solve this problem. The main 
contributions of this paper can be summarized as follows: 

First, we develop a novel approach to ROA estimation with less 
conservativeness, using a revised Brayton-Moser mixed potential 
theory. The approach tackles the common conflict between model 
accuracy of ROA estimation and computational overhead. 

Second, this paper reveals the weak correlation between some 
state variables and system stability. It makes it possible to reduce 
computational cost and lessen the curse of dimensionality by 
separating these state variables. 

Third, we carry out a comparison between the proposed novel 
ROA estimation approach and a traditional Lyapunov-based ROA 
estimation method. Our case study shows that the proposed 
approach can obtain a much less conservative ROA compared to 
the traditional method solving Lyapunov equations directly. 

The structure of this paper is organized as follows: In section Ⅱ 
and section III, the modeling of DC microgrids with multiple 
sources, converters, and CPLs is described and the necessary 
stability descriptions are discussed. In section IV, we study the DC 
microgrids model in a steady state and formulate an equilibrium 
analysis using a potential-based approach. We also point out 
several misunderstandings of the conventional potential theory. In 
Section V, we present the ROA estimation techniques of the DC 
microgrids model. Section Ⅵ substantiates our theoretical work 
through a case study. 

II. DC MICROGRIDS MODELING & PROBLEM FORMULATION  

A. The General Framework of DC Microgrids  
A generalized circuit framework of a DC microgrid with 

multiple power converters and CPLs is described in Fig. 1. 
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Fig. 1. The circuit structure of a typical DC microgrid. 

 
Without loss of generality, we make the following assumptions 

about the circuit diagram of typical DC microgrids: 
 

1) The power supplies are all constant-voltage sources. 
2) The DC-DC power converters are deployed to step up or step 
down the voltage outputs. They can be ideal buck converters, 
boost converters, or buck-boost converters. No parasitic resistance 
or parasitic capacitance is considered. 
3) The transmission lines are considered as impedances. 
4) The demand side is composed of multiple CPLs. The CPL 
model is shown in Fig. 2(a), described by the following function:  
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�
 𝐼𝐼𝑃𝑃𝑃𝑃 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑉𝑉𝐿𝐿 ≤ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝐿𝐿 = 𝑃𝑃𝐿𝐿/𝐼𝐼𝑃𝑃𝑃𝑃 , 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑉𝑉𝐿𝐿 ≤ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝐿𝐿 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ,  𝐼𝐼𝑃𝑃𝑃𝑃 <  𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
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Fig. 2. The CPL model: (a) the realistic model with operational bounds; (b) the 

traditional model without operational bounds. 
 

In the existing literature on stability analysis of DC microgrids, 
the conventional modeling of CPLs does not consider operational 
bounds such as current limits or voltage limits, which is shown in 
Fig. 2(b). The traditional CPL model is not suitable for potential-
based large-signal stability analysis due to violation of the 
prerequisites of potential theory. One prerequisite is that the 
domain of the studied dynamic model needs to be a compact 
positively invariant set; another prerequisite is that the studied 
model should be continuous and differentiable [19]. These 
prerequisites are not satisfied in the traditional CPL model. 
Alternatively, the CPL model in Fig. 2(a) indicates the operational 
upper bounds on load voltage and current, considering the 
practical conditions of CPLs in power grids. Having operational 
bounds is an intrinsic property of the CPL model. From the 
perspective of circuit characteristics, a parallel diode of CPL can 
be used to clamp the load voltage no smaller than the minimum 
voltage 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 > 0) . This CPL model satisfies the 
prerequisites of the potential theory mentioned above.  

 

B. Microgrids Model with Closed-Loop Converter Controllers 
The proposed ROA estimation approach supports the utilization 

of several common controllers for power converters, such as 
traditional droop controllers, lag compensators, and lead 
compensators. The design of converter controllers can smooth the 
power flow and improve the quality of electric power through the 
regulation of output voltage. In our paper [11], we propose and 
validate a novel type of converter controller, called the droop-
inertia controller, which generalizes better characteristics than the 
traditional droop controller in terms of control error and stability. 
The reason we set a traditional droop controller as the benchmark 
is that it is often utilized in existing microgrids with distributed 
control. However, the traditional droop controller has to 
compromise between large control error and weak stability: the 
traditional droop controller with larger resistance generates large 
steady-state control error, while the traditional droop controller 
with smaller resistance leads to larger oscillation and weak 
stability. In contrast, the proposed droop-inertia controller can 
ensure both smaller control error and smaller oscillation because 
of its higher degree of control, which shows the superiority of the 
proposed novel controller. Besides the better performance of the 
droop-inertia controller, the similarity in the structure between the 
novel controller and the droop controller also makes it more 

convenient and promising to be developed in DC microgrids in 
practice. 

The circuit diagram of a power converter with a droop-inertia 
controller is described in Fig. 3. The proposed droop-inertia 
controller is intended to regulate the output voltage 𝑉𝑉𝐶𝐶𝐶𝐶  to an 
expected value 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 through the switching of 𝐼𝐼𝑠𝑠𝑠𝑠 , which is a type 
of current control.  

The transfer function of the droop-inertia controller can be 
obtained from its equivalent circuit, shown in Fig. 4, which is 
shown as follows: 

𝐺𝐺(𝑠𝑠) =
𝐼𝐼𝑠𝑠𝑠𝑠(𝑠𝑠)

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) − 𝑉𝑉𝐶𝐶𝐶𝐶(𝑠𝑠) = 𝑌𝑌𝑖𝑖𝑖𝑖(𝑠𝑠) =  
𝑅𝑅𝑝𝑝𝑝𝑝 + 𝑠𝑠𝐿𝐿𝑞𝑞𝑞𝑞 + 𝑅𝑅𝑞𝑞𝑞𝑞
𝑅𝑅𝑝𝑝𝑝𝑝�𝑠𝑠𝐿𝐿𝑞𝑞𝑞𝑞 + 𝑅𝑅𝑞𝑞𝑞𝑞�

(2) 
 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the equivalent admittance of the block in Fig. 4.  
Therefore, we can develop the equivalent circuit structure of the 

microgrid model in Fig. 1, which is depicted in Fig. 5.   
Notably, the droop-inertia controller can be downgraded to a PI 

controller by setting 𝑅𝑅𝑞𝑞𝑞𝑞 = 0 if needed. However, although a PI 
controller can ensure a zero steady-state error, it cannot realize the 
regulation of the power output of power sources, which is very 
critical in the operation of microgrids. 

The current controller is designed to control the output voltage 
of the switching power converter. The idea behind the current-
mode control is to build a voltage-controlled current source. Then 
the output of the current source is modulated to guarantee a 
constant output voltage from the power converter with changing 
load current. This idea is implemented through the collaboration 
of a current control loop and a voltage loop. The current control 
loop (inner loop) monitors the inductor current and builds the 
voltage-controlled current source. The voltage loop (outer loop) 
monitors the converter’s output voltage and compiles the 
controlled current source to regulate the output voltage of the 
power converter. 
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Fig. 3. The circuit diagram of a power converter with a droop-inertia controller. 
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Fig. 4. The equivalent circuit of the proposed converter controller. 
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Fig. 5. The equivalent model of a DC microgrid under current-mode control. 

 

III. LARGE-SIGNAL STABILITY ANALYSIS USING POTENTIAL 
FUNCTIONS 

The Brayton-Moser mixed potential theory provides basic 
rigorous derivatives for large-signal stability analysis in nonlinear 
circuits [12]. In our paper [11], we dig into this theory more deeply 
and reveal its insufficiencies and flaws. In this section, we 
reintroduce the revised potential theory with our supplemental 
studies.  

Specifically, our supplemental studies indicate the following 
three conclusions on the potential-based stability analysis: 
1)  We derive a more comprehensive analysis of the stability 
condition based on the original potential theory. 
2) We realize the restriction of the prerequisite of the LaSalle 
theorem [19], which is ignored in the original potential theory. In 
fact, the conventional CPL model without operational bounds 
violates the prerequisite of the LaSalle theorem. It is necessary to 
pay attention to the boundary issues in the modeling of electric 
devices. The modified CPL model with operational bounds is an 
illustrative example. 
3) We work on an accurate definition of large-signal stability, 
especially with consideration of multiple equilibrium points, 
which is not mentioned in the original potential theory. 
 
 

Definition (Potential function [12]): Suppose there are 𝑟𝑟 
inductors, 𝑠𝑠  capacitors, and 𝑏𝑏  nonlinear resistors and power 
supplies in total in a circuit system. The components are 
sequentially numbered by 𝜇𝜇 starting from inductors and capacitors 
to resistors and power supplies. The potential function 𝑃𝑃(𝑖𝑖, 𝑣𝑣) of a 
circuit system is calculated as follows:  
 

𝑃𝑃(𝑖𝑖, 𝑣𝑣) = � 𝑣𝑣𝜇𝜇𝑖𝑖𝜇𝜇|Γ

𝑟𝑟+𝑠𝑠

𝜇𝜇=𝑟𝑟+1

+ � �𝑣𝑣𝜇𝜇𝑑𝑑𝑖𝑖𝜇𝜇
 

Γ

𝑟𝑟+𝑠𝑠+𝑏𝑏

𝜇𝜇>𝑟𝑟+𝑠𝑠

(3) 

 

where 𝑣𝑣𝜇𝜇  and 𝑖𝑖𝜇𝜇  are element voltage and current, respectively. 
Regarding the notations of the elements, 1,2, … , 𝑟𝑟  represent 
inductors; 𝑟𝑟 + 1, … , 𝑟𝑟 + 𝑠𝑠 represent capacitors; 𝑟𝑟 + 𝑠𝑠 + 1, … , 𝑟𝑟 +
𝑠𝑠 + 𝑏𝑏  represent nonlinear resistors and power sources. The 
integral term is also defined as voltage potential. 

Additionally, there are several fundamental properties of the 
potential theory that have often been misconceived in previous 
studies. 
1) The potential theory supports stability analysis in autonomous 
systems only. The potential theory is not appliable to time-variant 
systems, i.e., non-autonomous systems. This is restricted by the 
LaSalle stability theorem [19], which provides a theoretical 
foundation for the potential theory. 
2) The potential function of circuits depends only on the starting 
point and end point of the motion trajectory, independent of the 
trajectory itself. This characteristic is the same as gravitational 
potential.   
 

3) The potential function is not a Lyapunov function or an energy 
function. Non-negativity is a necessary condition of being a 
Lyapunov function or an energy function. Nevertheless, the 
potential function could be negative based on its definition. 
Assume a nonlinear element with the voltage potential  𝜂𝜂 =
∫ 𝑣𝑣𝜇𝜇𝑑𝑑𝑖𝑖𝜇𝜇

 𝑖𝑖1
0 . The dual function of the voltage potential is 𝜁𝜁 =
∫ 𝑖𝑖𝜇𝜇𝑑𝑑𝑣𝑣𝜇𝜇
𝑣𝑣1 
0 , also called current potential. The voltage potential and 

current potential are visualized in Fig. 6. Considering that the unit 
of the circuit potential is power, we can calculate the total power 
dissipation of the element, notated by Ψ.  
 

Ψ = 𝑖𝑖1𝑣𝑣1 = � 𝑣𝑣𝜇𝜇𝑑𝑑𝑖𝑖𝜇𝜇
 𝑖𝑖1

0
+ � 𝑖𝑖𝜇𝜇𝑑𝑑𝑣𝑣𝜇𝜇

𝑣𝑣1 

0
= 𝜂𝜂 + 𝜁𝜁 (4) 

 
 

0

v1
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vμ 

iμ 

η 

ζ 
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Fig. 6. Potential functions of a nonlinear element. 

 
Considering that there are 𝑁𝑁  source branches and 𝑀𝑀  load 

branches, the potential function of the microgrid model in Fig. 5 
is shown as follows. 

 

𝑃𝑃(𝑖𝑖, 𝑣𝑣) = �𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�𝐼𝐼𝑝𝑝𝑝𝑝 + 𝐼𝐼𝑞𝑞𝑞𝑞� −
1
2
�𝑅𝑅𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝𝑝𝑝2
𝑁𝑁

𝑖𝑖=1

−
1
2
�𝑅𝑅𝑞𝑞𝑖𝑖𝐼𝐼𝑞𝑞𝑞𝑞2
𝑁𝑁

𝑖𝑖=1

−
1
2
�𝑅𝑅𝑡𝑡𝑡𝑡𝐼𝐼𝑡𝑡𝑡𝑡2
𝑁𝑁

𝑖𝑖=1

−
1
2
�𝑅𝑅𝑓𝑓𝑓𝑓𝐼𝐼𝑓𝑓𝑓𝑓2
𝑀𝑀

𝑗𝑗=1

−�𝑉𝑉𝐶𝐶𝐶𝐶�𝐼𝐼𝑝𝑝𝑝𝑝 + 𝐼𝐼𝑞𝑞𝑞𝑞 − 𝐼𝐼𝑡𝑡𝑡𝑡�
𝑁𝑁

𝑖𝑖=1  

−𝑉𝑉𝐷𝐷 ��𝐼𝐼𝑡𝑡𝑡𝑡

𝑁𝑁

𝑖𝑖=1

−�𝐼𝐼𝑓𝑓𝑓𝑓

𝑀𝑀

𝑗𝑗=1

� + �𝑍𝑍𝑗𝑗

𝑀𝑀

𝑗𝑗=1

                             �5�

 

where 

𝑍𝑍𝑗𝑗 =

⎩
⎨

⎧�
𝑃𝑃𝐿𝐿𝐿𝐿
𝑣𝑣 𝑑𝑑𝑑𝑑

𝑉𝑉𝐿𝐿𝐿𝐿

𝑉𝑉min _𝑗𝑗

− 𝑃𝑃𝐿𝐿𝐿𝐿 − 𝑉𝑉𝐿𝐿𝐿𝐿(𝐼𝐼𝑓𝑓𝑓𝑓 − 𝐼𝐼𝐿𝐿𝐿𝐿),𝑉𝑉𝐿𝐿𝐿𝐿 > 𝑉𝑉min_𝑗𝑗

𝐼𝐼max
 

_ 𝑗𝑗 �𝑉𝑉𝐿𝐿𝐿𝐿 − 𝑉𝑉min
 

_𝑗𝑗� − 𝑃𝑃𝐿𝐿𝐿𝐿 − 𝑉𝑉𝐿𝐿𝐿𝐿(𝐼𝐼𝑓𝑓𝑓𝑓 − 𝐼𝐼max
 

_𝑗𝑗),𝑉𝑉𝐿𝐿𝐿𝐿 ≤ 𝑉𝑉min_𝑗𝑗

�6� 

 

𝐼𝐼𝑝𝑝𝑝𝑝  and 𝐼𝐼𝑞𝑞𝑞𝑞  are the currents through resistors 𝑅𝑅𝑝𝑝𝑝𝑝  and 𝑅𝑅𝑞𝑞𝑞𝑞 , 
respectively. 𝑉𝑉min_𝑗𝑗 is the lower bound of output voltage of the 𝑗𝑗-
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5 

th CPL and  𝐼𝐼max_𝑗𝑗 is the upper bound of the current of the 𝑗𝑗-th 
CPL, as shown in Fig. 2(a). Other notations correspond to those 
marked in Fig. 5. 
 

IV. ROA ESTIMATION USING POTENTIAL THEORY 
In this section, we utilize the linearization of the nonlinear 

microgrid model to find a Lyapunov function to facilitate the ROA 
estimation. It is worth mentioning that this does not mean that the 
stability analysis is a small-signal analysis.  

In terms of circuit analysis, small-signal stability analysis refers 
to the circuit stability subject to sufficient small disturbances. 
Small-signal stability analysis often utilizes classical eigenvalues 
or impedance techniques, where the stability is strictly defined as 
follows. In a continuous time-invariant dynamic model, 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥), 
an equilibrium state 𝑥𝑥𝑒𝑒  is stable if there is an 𝜀𝜀0 > 0  with the 
following property: For all 𝜀𝜀1, 0 < 𝜀𝜀1 < 𝜀𝜀0, there is an 𝜀𝜀 > 0 such 
that if ‖𝑥𝑥𝑒𝑒 − 𝑥𝑥(𝑡𝑡0)‖ < 𝜀𝜀 , then ‖𝑥𝑥𝑒𝑒 − 𝑥𝑥(𝑡𝑡)‖ < 𝜀𝜀1  for all 𝑡𝑡 > 𝑡𝑡0 . 
This definition indicates that the equilibrium state 𝑥𝑥𝑒𝑒 will be stable 
if the trajectory 𝑥𝑥(𝑡𝑡)(𝑡𝑡 > 𝑡𝑡0) never leaves the 𝜀𝜀1-neighborhood of 
𝑥𝑥𝑒𝑒 , given the initial state 𝑥𝑥(𝑡𝑡0) in a 𝜀𝜀-neighborhood. From the 
definition of neighborhood, the area of the neighborhood of radius 
𝜀𝜀 is sufficient small, which means that the ROA based on small-
signal stability practically does not exist. In other words, small-
signal stability analysis does not characterize the boundary of the 
asymptotic stability region. We cannot estimate the ROA of 
microgrid systems using small-signal stability analysis.  

In this manuscript, we estimate the ROA of each stable 
equilibrium of the microgrid model using a Lyapunov function. 
Because the proposed approach can characterize the boundary of 
the asymptotic stability region for the system, it belongs to the 
scope of large-signal stability analysis. 

Moreover, we would like to clarify some related concepts about 
stability analysis here. 

 

 
Fig. 7. The relationships among different types of stability. 

 
From the perspective of circuit control, stability analysis can be 

classified into large-signal stability analysis and small-signal 
stability analysis. Large-signal stability analysis does not require 
the disturbances of the targeted system to be sufficient small; 
small-signal stability analysis is applicable only to systems with 
sufficient small disturbances. With large-signal stability analysis, 
we can know whether a microgrid system is globally stable, 
locally stable, or unstable. Global stability and local stability can 
be checked by finding a Lyapunov function that is positive definite 
with a negative definite time derivative. A locally stable system 
determined by large-signal stability analysis has a “practical” 
ROA, that is, the area of ROA is not sufficient small. With small-
signal stability analysis, we can determine whether a microgrid 
system is locally stable or unstable. It is worth mentioning that a 

local stable system determined by small-signal stability analysis 
does not have a “practical” ROA, that is, the area of ROA is 
sufficient small. Therefore, we cannot estimate the ROA of 
microgrid systems using small-signal stability analysis.  

The approach of ROA estimation is investigated in section Ⅳ 
and section Ⅴ. The general procedure is visualized in the following 
flowchart, where the formulas and notations are explained in detail 
in the following sections.  

 

 
Fig. 8. The flowchart of the ROA estimation. 

 

A. Problem Formulation 
In potential theory, the dynamic equation of the model in Fig. 5 

can be described as follows: 

−𝐽𝐽
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

�7� 
 

where 𝑥𝑥 = [𝑖𝑖  𝑣𝑣]𝑇𝑇 ,  𝐽𝐽 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{[−𝐿𝐿 𝐶𝐶]} , and 𝐿𝐿  and 𝐶𝐶  are the 
diagonal inductance matrix and the diagonal capacitance matrix, 
respectively. 𝑖𝑖 and 𝑣𝑣 are the current vector and the voltage vector, 
respectively. 

𝑖𝑖 = �𝐼𝐼𝑝𝑝1, 𝐼𝐼𝑝𝑝2, … , 𝐼𝐼𝑝𝑝𝑝𝑝 , 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2, … , 𝐼𝐼𝑞𝑞𝑞𝑞 , 𝐼𝐼𝑡𝑡1, 𝐼𝐼𝑡𝑡2, … , 𝐼𝐼𝑡𝑡𝑡𝑡 , 𝐼𝐼𝑓𝑓1, … , 𝐼𝐼𝑓𝑓𝑓𝑓�, 
𝑣𝑣 = [𝑉𝑉𝐶𝐶1, … ,𝑉𝑉𝐶𝐶𝑁𝑁 ,𝑉𝑉𝐷𝐷 ,𝑉𝑉𝐿𝐿1, … ,𝑉𝑉𝐿𝐿𝐿𝐿]. 
Nevertheless, whether 𝐽𝐽  is positive definite (p.d.) is highly 
dependent on the values of 𝐿𝐿 and 𝐶𝐶 under this description. Hence, 
another expression of this system is proposed and preferred, which 
considers (𝑃𝑃∗, 𝐽𝐽∗) instead of (𝑃𝑃, 𝐽𝐽), such that 

−𝐽𝐽∗
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ∇𝑃𝑃∗(𝑥𝑥) �8� 
 

where 

𝐽𝐽∗ = �𝜆𝜆𝜆𝜆 +
𝜕𝜕2𝑃𝑃(𝑥𝑥)
𝜕𝜕𝑥𝑥2

ℳ� ∙ 𝐽𝐽,𝑃𝑃∗ = 𝜆𝜆𝜆𝜆 +
1
2
�
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

,ℳ
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

�

                                                                                                           �9�
 

where 𝕀𝕀 is the identity matrix, ℳ can be any constant symmetric 
matrix, and 𝜆𝜆 can be any constant. Under this description,  𝐽𝐽∗ is 
always positive definite in stable dynamic systems. ∇ represents 
the gradient operator.  
 

The following Theorem 1 provides accurate stability 
information for each equilibrium point of the microgrid model. 
The theorem investigates sufficient conditions for the large-signal 
stability of equilibrium points and shows the sufficient conditions 
for the existence of a Lyapunov function at equilibrium points, 
which facilities the ROA estimation.  
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Theorem 1: Given a nonlinear circuit 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥), as shown in Fig. 

5, the potential-based dynamic function of the circuit is −𝐽𝐽∗ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝑃𝑃∗(𝑥𝑥)
𝜕𝜕𝜕𝜕

.  Let 𝑓𝑓:ℛ𝑛𝑛 → ℛ  be a 𝐶𝐶1 function and 𝑃𝑃∗:ℛ𝑛𝑛 → ℛ  be a 
𝐶𝐶2 function. Suppose 𝐷𝐷 is a neighborhood of equilibrium point 𝑥𝑥𝑒𝑒.  
If 𝐽𝐽∗ ≻ 0, 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 ≻ 0, 𝑃𝑃∗(𝑥𝑥) is radially unbounded and all 
equilibrium points of the system form a compact set, then 𝑥𝑥 = 𝑥𝑥𝑒𝑒  
is a stable equilibrium point and there exists a Lyapunov function 
at 𝑥𝑥 = 𝑥𝑥𝑒𝑒 .  
The proof is presented in Appendix A. 
 

Suppose an equilibrium point 𝑥𝑥 = 𝑥𝑥𝑒𝑒  of the microgrid model 
with the dynamics that satisfies the conditions mentioned in 
Theorem 1. Then we can construct a Lyapunov function at the 
equilibrium point 𝑥𝑥 = 𝑥𝑥𝑒𝑒  according to the following Theorem 2. 

Theorem 2: Given a nonlinear circuit 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥), as shown in Fig. 

5, the potential-based dynamic function of the circuit is −𝐽𝐽∗ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝑃𝑃∗(𝑥𝑥)
𝜕𝜕𝜕𝜕

.  Suppose 𝐽𝐽∗ ≻ 0 , 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 ≻ 0 , where 𝑥𝑥𝑒𝑒  is an 
equilibrium point of the system. Then a Lyapunov function at 𝑥𝑥 =
𝑥𝑥𝑒𝑒 can be constructed as follows:  

𝑉𝑉(𝑥𝑥�) = 𝑥𝑥�𝑇𝑇𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒𝑥𝑥� = 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥�, �10� 
where 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥𝑒𝑒 ,𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒  is the Hessian matrix of the 
potential function 𝑃𝑃∗(𝑥𝑥) at 𝑥𝑥 = 𝑥𝑥𝑒𝑒; 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒  is also shortened 
as 𝐻𝐻𝑥𝑥𝑒𝑒 . 
Proof: In Appendix A, the dynamic model is linearized as follows: 

𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� �11� 
where 𝐴𝐴 = −(𝐽𝐽∗)−1𝐻𝐻𝑥𝑥𝑒𝑒 . 
Consider the Lyapunov equation corresponding to the Lyapunov 
function 𝐿𝐿(𝑥𝑥): 

 𝐴𝐴𝑇𝑇𝒩𝒩 + 𝒩𝒩𝒩𝒩 = −𝑄𝑄 �12� 
where 𝒩𝒩 = 𝐻𝐻𝑥𝑥𝑒𝑒 . Then we will prove 𝑄𝑄 ≻ 0,𝑄𝑄 = 𝑄𝑄𝑇𝑇. 
1) 𝑸𝑸 ≻ 𝟎𝟎: Considering that 𝐻𝐻𝑥𝑥𝑒𝑒  is symmetric, we have 

 𝐴𝐴𝑇𝑇𝒩𝒩 + 𝒩𝒩𝒩𝒩 = −𝐻𝐻𝑥𝑥𝑒𝑒
𝑇𝑇((𝐽𝐽∗)−1)𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒 − 𝐻𝐻𝑥𝑥𝑒𝑒(𝐽𝐽∗)−1𝐻𝐻𝑥𝑥𝑒𝑒

= −𝐻𝐻𝑥𝑥𝑒𝑒 ∙ (((𝐽𝐽∗)−1)𝑇𝑇 + (𝐽𝐽∗)−1) ∙ 𝐻𝐻𝑥𝑥𝑒𝑒 �13�
 

Lemma: For 𝐽𝐽∗ ≻ 0, 𝐽𝐽∗ ∈ ℛ𝑛𝑛×𝑛𝑛 , (𝐽𝐽∗)𝑇𝑇  and (𝐽𝐽∗)−1  are also 
positive definite. Hence, we have (𝐽𝐽∗)−1 ≻ 0, ((𝐽𝐽∗)−1)𝑇𝑇 ≻ 0. 
Given any vector 𝑦𝑦 ≠ 0, we have: 

𝑦𝑦𝑇𝑇(𝐽𝐽∗)−1𝑦𝑦 > 0, 𝑦𝑦𝑇𝑇((𝐽𝐽∗)−1)𝑇𝑇𝑦𝑦 > 0
⇒ 𝑦𝑦𝑇𝑇 ⋅ ((𝐽𝐽∗)−1 + ((𝐽𝐽∗)−1)𝑇𝑇) ⋅ 𝑦𝑦 > 0 �14�

 

which means (𝐽𝐽∗)−1 + ((𝐽𝐽∗)−1)𝑇𝑇 ≻ 0. 
Denote 𝑆𝑆 = (𝐽𝐽∗)−1 + ((𝐽𝐽∗)−1)𝑇𝑇 ≻ 0. 

 𝑦𝑦𝑇𝑇(𝐴𝐴𝑇𝑇𝒩𝒩 + 𝒩𝒩𝐴𝐴)𝑦𝑦 = 𝑦𝑦𝑇𝑇 ∙  �−𝐻𝐻𝑥𝑥𝑒𝑒 ∙ 𝑆𝑆 ∙ 𝐻𝐻𝑥𝑥𝑒𝑒� ∙ 𝑦𝑦

= −�𝐻𝐻𝑥𝑥𝑒𝑒𝑦𝑦�
𝑇𝑇 ∙ 𝑆𝑆 ∙ 𝐻𝐻𝑥𝑥𝑒𝑒𝑦𝑦 �15�

 

Since 𝐻𝐻𝑥𝑥𝑒𝑒  is a symmetric and positive definite matrix, 𝐻𝐻𝑥𝑥𝑒𝑒  has full 
rank. So 𝐻𝐻𝑥𝑥𝑒𝑒𝑦𝑦 ≠ 0 ∀𝑦𝑦 ≠ 0. Considering  𝑆𝑆 ≻ 0, we have 

−�𝐻𝐻𝑥𝑥𝑒𝑒𝑦𝑦�
𝑇𝑇 ∙ 𝑆𝑆 ∙ 𝐻𝐻𝑥𝑥𝑒𝑒𝑦𝑦 < 0 ⇒ 𝐴𝐴𝑇𝑇𝒩𝒩 + 𝒩𝒩𝒩𝒩 = −𝑄𝑄 ≺ 0 ⇒ 𝑄𝑄 ≻ 0�16� 

2) 𝑸𝑸 = 𝑸𝑸𝑻𝑻: Because 𝒩𝒩 = 𝐻𝐻𝑥𝑥𝑒𝑒 , we have 𝒩𝒩 = 𝒩𝒩𝑇𝑇 . Hence,  
 𝑄𝑄𝑇𝑇 = −𝒩𝒩𝑇𝑇𝐴𝐴 − 𝐴𝐴𝑇𝑇𝒩𝒩𝑇𝑇 = −𝒩𝒩𝒩𝒩 − 𝐴𝐴𝑇𝑇𝒩𝒩 = 𝑄𝑄 �17� 

Conclusion: From 𝑄𝑄 ≻ 0  and 𝑄𝑄 = 𝑄𝑄𝑇𝑇  , we can conclude that 
𝐿𝐿(𝑥𝑥) =  𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� is a Lyapunov function at 𝑥𝑥 = 𝑥𝑥𝑒𝑒. 
 

Theorem 2 rigorously derives a Lyapunov function for the 
microgrid system in Fig. 5. With the potential-based modeling of 
the microgrid system, we can directly use 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒  to construct 
a Lyapunov function. This technique reduces the computational 
cost of solving a Lyapunov equation in the traditional ROA 
estimation approach. In the traditional approach, it is necessary to 
solve the Lyapunov equation 𝐴𝐴𝑇𝑇𝒩𝒩 + 𝒩𝒩𝒩𝒩 = −𝑄𝑄  to obtain the 
Lyapunov function in the form of 𝐿𝐿(𝑥𝑥�) = 𝑥𝑥�𝑇𝑇𝒩𝒩𝑥𝑥� . Matrix 𝑄𝑄  is 
supposed as an arbitrary real symmetric and positive definite 
matrix (usually 𝑄𝑄  is supposed as an identity matrix). The 
Hessenberg-Schur algorithm is often utilized to solve Lyapunov 
equations, which has a high computational cost.  
 

In a dynamic system, the ROA can be estimated by finding a 
Lyapunov function that is positive definite with time derivative 
negative definite. In other words, the estimated ROA is the set 
where the following conditions are satisfied: 

�
𝑉𝑉(𝑥𝑥�) > 0
𝑉̇𝑉(𝑥𝑥�) < 0

�18� 

Considering that 𝑉𝑉(𝑥𝑥�) > 0  always holds, the ROA can be 
estimated as the solution of 𝑉̇𝑉(𝑥𝑥�) < 0. However, the calculation is 
not simple, especially when the microgrid system is one with high 
dimensionality. In the following section B and section C, we 
present how to solve this condition with less computational burden. 
 

B. Sufficient Condition of  𝑉̇𝑉(𝑥𝑥�) < 0 
At the end of the above section, there are two conditions to 

estimate the ROA. Since 𝐻𝐻𝑥𝑥𝑒𝑒 ≻ 0 , 𝑉𝑉(𝑥𝑥�) = 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� > 0  always 
holds. Therefore, we only need to solve 𝑉̇𝑉(𝑥𝑥�) < 0  with the 
potential-based modeling of microgrid dynamics. In this section, 
we propose a novel approach to solve the condition 𝑉̇𝑉(𝑥𝑥�) < 0. The 
solution of 𝑉̇𝑉(𝑥𝑥�) < 0 can be seen as the estimated ROA for stable 
equilibrium points. 

First, we have the following sufficient condition to guarantee 
𝑉̇𝑉(𝑥𝑥�) < 0: 

�
∇2𝑉̇𝑉(𝑥𝑥�) ≺ 0
𝑉̇𝑉(𝑥𝑥�)�

𝑥𝑥�=0
= 0 �19� 

Hence, we aim to solve the above two conditions next.  
The nonlinear circuit shown in Fig. 5 can be described by 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

𝑓𝑓(𝑥𝑥)  or −𝐽𝐽∗ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝑃𝑃∗(𝑥𝑥)
𝜕𝜕𝜕𝜕

 . The first equation is a common 
expression of  the dynamic function, and the second function is the 
dynamic function constructed from the perspective of potential 
theory. Consider the first dynamic function  

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) �20� 
Linearizing the system at equilibrium 𝑥𝑥 = 𝑥𝑥𝑒𝑒 , we have 
 

𝑥𝑥�̇ = 𝑓𝑓(𝑥𝑥𝑒𝑒 + 𝑥𝑥�)
= ∇𝑓𝑓(𝑥𝑥𝑒𝑒)𝑥𝑥� + 𝑓𝑓(𝑥𝑥𝑒𝑒 + 𝑥𝑥�) − ∇𝑓𝑓(𝑥𝑥𝑒𝑒)𝑥𝑥� �21�

 

where 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥𝑒𝑒.  
Considering the equivalence of the two different dynamic 
functions, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −(𝐽𝐽∗)−1∇𝑃𝑃∗(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) �22� 

Hence, we have 𝐴𝐴 = −(𝐽𝐽∗)−1𝐻𝐻𝑥𝑥𝑒𝑒 = ∇𝑓𝑓(𝑥𝑥𝑒𝑒).  The first equality 
holds due to the definition of the matrix 𝐴𝐴 in the proof of Theorem 
2. Then we obtain the linearized system: 

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on June 03,2021 at 18:27:12 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3081573, IEEE
Transactions on Smart Grid

 
 

7 

𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� �23� 
Moreover, define the residual term as follows: 

𝑔𝑔(𝑥𝑥�) = 𝑓𝑓(𝑥𝑥𝑒𝑒 + 𝑥𝑥�) − ∇𝑓𝑓(𝑥𝑥𝑒𝑒)𝑥𝑥� �24� 
Plugging the dynamic functions with all circuit variables into the 
residual function 𝑔𝑔(𝑥𝑥�), we obtain  

𝑔𝑔(𝑥𝑥�) = [01×(4𝑁𝑁+𝑀𝑀+1),Φ(𝑉𝑉�𝐿𝐿)1×𝑀𝑀]𝑇𝑇 �25� 
where Φ�𝑉𝑉�𝐿𝐿� = [φ1(𝑣𝑣�𝐿𝐿1), … ,φ𝑀𝑀(𝑣𝑣�𝐿𝐿𝐿𝐿)].  It is worth mentioning 
that the non-zero elements of 𝑔𝑔(𝑥𝑥�) correspond to 𝑀𝑀 load voltages 
only; the other elements of 𝑔𝑔(𝑥𝑥�)  corresponding to other state 
variables are all zero. We label the load voltages as the state 
variables showing strong relationships to system stability; state 
variables other than load voltages are labeled as those showing 
weak relationships to system stability. 
Considering the dynamics of circuit elements, we obtain 

φ𝑗𝑗�𝑣𝑣�𝑗𝑗� = −
𝑃𝑃𝐿𝐿𝐿𝐿
𝐶𝐶𝑓𝑓𝑓𝑓

𝑣𝑣�𝑗𝑗
2

(𝑣𝑣𝑗𝑗∗ + 𝑣𝑣�𝑗𝑗)𝑣𝑣𝑗𝑗∗2
�26� 

and

φ𝑗𝑗′�𝑣𝑣�𝑗𝑗� = −
𝑃𝑃𝐿𝐿𝐿𝐿

𝐶𝐶𝑓𝑓𝑓𝑓𝑣𝑣𝑗𝑗∗2
(1 −

𝑣𝑣𝑗𝑗∗2

(𝑣𝑣𝑗𝑗∗+𝑣𝑣�𝑗𝑗)2
) �27� 

where 𝑗𝑗 ∈ {1,2, … ,𝑀𝑀}. 
 
Then we calculate the derivative of the Lyapunov function 𝑉𝑉(𝑥𝑥�) 
as follows: 
𝑉̇𝑉(𝑥𝑥�) = 𝑥𝑥�̇𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥�̇

= 𝑓𝑓(𝑥𝑥𝑒𝑒 + 𝑥𝑥�)𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑓𝑓(𝑥𝑥𝑒𝑒 + 𝑥𝑥�)
= [∇𝑓𝑓(𝑥𝑥𝑒𝑒)𝑥𝑥� + 𝑔𝑔(𝑥𝑥�)]𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒[∇𝑓𝑓(𝑥𝑥𝑒𝑒)𝑥𝑥� + 𝑔𝑔(𝑥𝑥�)]
= 𝑥𝑥�𝑇𝑇�∇𝑓𝑓𝑇𝑇(𝑥𝑥𝑒𝑒)𝐻𝐻𝑥𝑥𝑒𝑒 + 𝐻𝐻𝑥𝑥𝑒𝑒∇𝑓𝑓(𝑥𝑥𝑒𝑒)�𝑥𝑥� + 2𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑔𝑔(𝑥𝑥�) �28�

 

Considering the equivalence of the two different dynamic 
functions, we have 

∇𝑓𝑓𝑇𝑇(𝑥𝑥𝑒𝑒)𝐻𝐻𝑥𝑥𝑒𝑒 + 𝐻𝐻𝑥𝑥𝑒𝑒∇𝑓𝑓(𝑥𝑥𝑒𝑒)
= −∇𝑇𝑇�(𝐽𝐽∗)−1∇𝑃𝑃∗(𝑥𝑥𝑒𝑒)�𝐻𝐻𝑥𝑥𝑒𝑒 − 𝐻𝐻𝑥𝑥𝑒𝑒∇�(𝐽𝐽∗)−1∇𝑃𝑃∗(𝑥𝑥𝑒𝑒)�
= −𝐻𝐻𝑥𝑥𝑒𝑒

𝑇𝑇((𝐽𝐽∗)−1)𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒 − 𝐻𝐻𝑥𝑥𝑒𝑒(𝐽𝐽∗)−1𝐻𝐻𝑥𝑥𝑒𝑒
= −𝑄𝑄 ≺ 0 �29�

 

where 𝑄𝑄 is firstly defined in the proof of Theorem 2.  
Suppose 

𝑄𝑄 = − �
𝑄𝑄11 𝑄𝑄12
𝑄𝑄21 𝑄𝑄� � ,𝐻𝐻𝑥𝑥𝑒𝑒 = �

𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻� � �30� 

where 𝑄𝑄11 ∈ ℛ(4𝑁𝑁+𝑀𝑀+1)×(4𝑁𝑁+𝑀𝑀+1), 
𝐻𝐻11 ∈ ℛ(4𝑁𝑁+𝑀𝑀+1)×(4𝑁𝑁+𝑀𝑀+1),𝑄𝑄� ∈ ℛ𝑀𝑀×𝑀𝑀,𝐻𝐻� ∈ ℛ𝑀𝑀×𝑀𝑀. 
Denote 𝑥𝑥� = [𝑥𝑥�𝑎𝑎

𝑇𝑇 ,𝑉𝑉�𝐿𝐿
𝑇𝑇]𝑇𝑇 ,  where 𝑉𝑉𝐿𝐿 = [𝑉𝑉𝐿𝐿1, … ,𝑉𝑉𝐿𝐿𝐿𝐿],     𝑥𝑥𝑎𝑎 =

[𝐼𝐼𝑝𝑝1, … , 𝐼𝐼𝑝𝑝𝑝𝑝 , 𝐼𝐼𝑞𝑞1, … , 𝐼𝐼𝑞𝑞𝑞𝑞 , 𝐼𝐼𝑡𝑡1, … , 𝐼𝐼𝑡𝑡𝑡𝑡 , 𝐼𝐼𝑓𝑓1, … , 𝐼𝐼𝑓𝑓𝑓𝑓 ,𝑉𝑉𝐶𝐶1, … ,𝑉𝑉𝐶𝐶𝐶𝐶 ,𝑉𝑉𝐷𝐷]. 
Then the Hessian of 𝑉̇𝑉(𝑥𝑥�) can be calculated as follows: 

∇2𝑉̇𝑉(𝑥𝑥�)

= �
𝑄𝑄11 𝑄𝑄12 + 2𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿�

𝑄𝑄21 + 2(𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿�)𝑇𝑇 𝑄𝑄� + 2∇2 �𝑉𝑉�𝐿𝐿
𝑇𝑇𝐻𝐻�Φ�𝑉𝑉�𝐿𝐿��+ 2𝑥𝑥�𝑎𝑎𝐻𝐻12∇𝑐𝑐2Φ�𝑉𝑉�𝐿𝐿�

� �31�

 

where ∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{∇φ1(𝑣𝑣�1), … ,∇φ𝑀𝑀(𝑣𝑣�𝑀𝑀)},∇𝑐𝑐2Φ�𝑉𝑉�𝐿𝐿� =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{∇2φ1(𝑣𝑣�1), … ,∇2φ𝑀𝑀(𝑣𝑣�𝑀𝑀)}. 
The calculation is shown in Appendix B. 
Formulating a transformation using the properties of the Schur 
complement, we have 

∇2𝑉̇𝑉(𝑥𝑥�) ≺ 0

⇔ 𝑄𝑄� + 2∇2 �𝑉𝑉�𝐿𝐿
𝑇𝑇𝐻𝐻�Φ(𝑉𝑉�𝐿𝐿)� + 2𝑥𝑥�𝑎𝑎𝐻𝐻12∇𝑐𝑐2Φ(𝑉𝑉�𝐿𝐿)

−�𝑄𝑄21 + 2∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)𝐻𝐻12
𝑇𝑇)�𝑄𝑄11

−1(𝑄𝑄12 + 2𝐻𝐻12∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)) ≺ 0 �32�

 

Denote 𝑇𝑇1 ≜ 2∇2 �𝑉𝑉�𝐿𝐿
𝑇𝑇𝐻𝐻�Φ(𝑉𝑉�𝐿𝐿)� ,𝑇𝑇2 ≜ 2𝑥𝑥�𝑎𝑎𝐻𝐻12∇𝑐𝑐2Φ(𝑉𝑉�𝐿𝐿),𝑇𝑇3 ≜

�𝑄𝑄21 + 2∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)𝐻𝐻12
𝑇𝑇)�𝑄𝑄11

−1 �𝑄𝑄12 + 2𝐻𝐻12∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)�. 
Then we obtain 

∇2𝑉̇𝑉(𝑥𝑥�) ≺ 0 ⇔ 𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 − 𝑇𝑇3  ≺ 0 �33� 
Given a proper 𝜆𝜆 ∈ ℛ , the above condition can be relaxed as 
follows: 

𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 − (𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄�)  ≺ 0 �34� 
Then the sufficient condition of the above condition is as follows: 

� 𝜆𝜆𝑄𝑄
� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0

𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0
�35� 

The derivation reduces the computational cost and lessens the 
curse of dimensionality, which enables our approach to fit for 
large-scale power grid models. It is noted that the computational 
dimension of the constraints in (35) is 𝑀𝑀2, which is much lower 
than the dimension of the traditional ROA estimation method, i.e., 
(4𝑁𝑁 + 2𝑀𝑀 + 1)2.  

V. CONVEXITY ANALYSIS & OPTIMIZATION PROBLEM 
FORMULATION  

Considering the sufficient condition of  𝑉̇𝑉(𝑥𝑥�) < 0  derived at 
the end of section Ⅳ, we can formulate an optimization problem 
to solve the boundary of ROA as follows: 

𝑐𝑐 = min
𝑥𝑥�

 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� �36� 

s. t.  � 𝜆𝜆𝑄𝑄
� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0

𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0
�37� 

However, the feasible set may not be convex, which burdens the 
solving of the optimization problem. Therefore, it is essential to 
discuss the convexity of the feasible set before solving the 
optimization problem. In fact, the feasible set may not be convex 
according to our rigorous proof, which requires us to solve a 
convex subset of the feasible region. In this section, we present a 
discussion of the convexity of the feasible region of the 
optimization problem, which is constructed by the constraints in 
(37). 

A. Convexity of the first condition 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0 
 

In this part, we discuss the convexity of the solution of 𝜆𝜆𝑄𝑄� +
𝑇𝑇1 + 𝑇𝑇2 ≺ 0.  

The term 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2  is a diagonal matrix. Denote the 
diagonal elements by 𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖), 𝑖𝑖 = 1, … ,𝑀𝑀.  Then the element is 
solved as follows: 
𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖)

= 𝜆𝜆𝑄𝑄�𝑖𝑖 + 2
𝑑𝑑2

𝑑𝑑𝑣𝑣�𝑖𝑖
2 �−

𝑃𝑃𝐿𝐿𝐿𝐿
𝑣𝑣𝑖𝑖∗2

+ 2𝑅𝑅𝑓𝑓𝑓𝑓� 𝑣𝑣�𝑖𝑖φ𝑖𝑖(𝑣𝑣�𝑖𝑖) + 2
𝑑𝑑2

𝑑𝑑𝑣𝑣�𝑖𝑖
2 φ𝑖𝑖(𝑣𝑣�𝑖𝑖)�𝐼𝐼𝑓𝑓𝑓𝑓 − 𝑣𝑣�𝑇𝑇𝑅𝑅𝑓𝑓𝑓𝑓�

= 𝐾𝐾0𝑖𝑖 + 𝜎𝜎′′ �𝐾𝐾1𝑖𝑖𝑣𝑣�𝑖𝑖 + 2𝐾𝐾2𝑖𝑖𝐿𝐿1�𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇�� + 2𝐾𝐾1𝑖𝑖𝜎𝜎′ �38�

 

where 𝐾𝐾0𝑖𝑖 =  𝜆𝜆𝑄𝑄�𝑖𝑖 ,𝐾𝐾1𝑖𝑖 = 2 �− 𝑃𝑃𝐿𝐿𝐿𝐿
𝑣𝑣𝑖𝑖∗2

+ 2𝑅𝑅𝑓𝑓𝑓𝑓� �−
𝑃𝑃𝐿𝐿𝐿𝐿
𝐶𝐶𝐿𝐿𝐿𝐿

1
𝑣𝑣𝑖𝑖∗2

� ,𝐾𝐾2𝑖𝑖 =

−𝑃𝑃𝐿𝐿𝐿𝐿
𝐶𝐶𝐿𝐿𝐿𝐿

1
𝑣𝑣𝑖𝑖∗2

, 𝐿𝐿1�𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇� = 𝐼𝐼𝑓𝑓𝑓𝑓 − 𝑣𝑣�𝑇𝑇𝑅𝑅𝑓𝑓𝑓𝑓,𝜎𝜎(𝑣𝑣�𝑖𝑖) = 𝑣𝑣�𝑖𝑖
2

𝑣𝑣𝑖𝑖∗+𝑣𝑣�𝑖𝑖
 . 
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Next, we discuss the convexity of 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0  by 
categorized discussion. 
(a) 𝟐𝟐𝑲𝑲𝟏𝟏

𝒊𝒊 + 𝑲𝑲𝟎𝟎
𝒊𝒊 ≥ 𝟎𝟎:  

In this case, it can be proved that the solution of 𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0, 𝑖𝑖 =
1,2, … ,𝑀𝑀 is convex. The proof is shown in Appendix C. 
(b) 𝟐𝟐𝑲𝑲𝟏𝟏

𝒊𝒊 + 𝑲𝑲𝟎𝟎
𝒊𝒊 < 𝟎𝟎:  

In this case, the solution of 𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 is not convex. We then 
need to find a convex subset of the solution that is as large as 
possible while decreasing the computational cost. 
Assume 𝑣𝑣�𝑖𝑖 ≥ 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 . Linearize 𝑔𝑔�𝑣𝑣�𝑖𝑖 , 𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇� at 𝑣𝑣�𝑖𝑖 = 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚: 

𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� >
1

2𝑣𝑣𝑖𝑖∗2
�2𝐾𝐾1

𝑖𝑖 + 𝐾𝐾0𝑖𝑖�[�𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�
3

+3�𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�
2�𝑣𝑣�𝑖𝑖 − 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�] �39�

 

 

Therefore, we obtain a convex subset as follows: 

𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� >
1

2𝑣𝑣𝑖𝑖∗2
�2𝐾𝐾1

𝑖𝑖 + 𝐾𝐾0𝑖𝑖�[�𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�
3

+3�𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�
2�𝑣𝑣�𝑖𝑖 − 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�], (𝑣𝑣�𝑖𝑖 ≥ 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚)�40�

 

 

Combining case (a) with case (b), the convex subset of the 
solution of 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0 is the intersection set of all convex 
sets/subsets corresponding to each load branch respectively as in 
the above discussion. For example, given a DC microgrid model, 
we first need to determine which category each load branch 
belongs to by calculating 2𝐾𝐾1𝑖𝑖 + 𝐾𝐾0𝑖𝑖. If the result is non-negative, 
the solution of 𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 is convex; if the result is negative, the 
solution of  𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 is not convex, and hence we will find a 
convex subset using the above equation, where 𝑖𝑖 represents the 
corresponding load branch. Next, we solve the intersection set of 
all convex sets/subsets obtained in the first step. Finally, we can 
get a convex subset of the solution of 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0. 
 

 
Fig. 9. Intersection set. 

 
As visualized in Fig. 9, the convex subsets of 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 ≺

0  are 𝑆𝑆 = 𝑆𝑆1 ∩ ∙∙∙ 𝑆𝑆𝑖𝑖 ∩ ∙∙∙ 𝑆𝑆𝑀𝑀,  where 𝑆𝑆1, … , 𝑆𝑆𝑖𝑖 , … , 𝑆𝑆𝑀𝑀  are the 
convex sets/subsets corresponding to each point of load (PoL), 
respectively, and can be solved by the above category discussion. 

B. Convexity of the second condition 𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0 
In this part, we discuss the convexity of the solution of 𝑇𝑇3 +

(𝜆𝜆 − 1)𝑄𝑄� ≻ 0.  
Considering  
𝑇𝑇3 ≜ �𝑄𝑄21 + 2∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)𝐻𝐻12

𝑇𝑇)�𝑄𝑄11
−1 �𝑄𝑄12 + 2𝐻𝐻12∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)� �41� 

we can formulate a transformation using the Schur complement as 
follows: 
 

𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0
𝑄𝑄11≺0 
���� 𝑋𝑋 = �

𝑄𝑄11 𝑄𝑄12 + 2𝐻𝐻12∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)
𝑄𝑄21 + 2∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)𝐻𝐻12

𝑇𝑇 (1 − 𝜆𝜆)𝑄𝑄�
� ≺ 0 �42�

 

 

where ∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{∇φ1(𝑣𝑣�1), … ,∇φ𝑀𝑀(𝑣𝑣�𝑀𝑀)}. 

 

In addition, we have already derived that 

φ𝑖𝑖′(𝑣𝑣�𝑖𝑖) = −
𝑃𝑃𝐿𝐿𝐿𝐿

𝐶𝐶𝑓𝑓𝑓𝑓𝑣𝑣𝑖𝑖∗2 (1 −
𝑣𝑣𝑖𝑖∗2

(𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖)
2) �43� 

 
Theorem 3: Given the above definition of matrix 𝑋𝑋 in (42), 𝑋𝑋 ≺
0 is a linear matrix inequality (LMI) of [… ,φ𝑖𝑖

′(𝑣𝑣�𝑖𝑖), … ], where 𝑖𝑖 ∈
{1,2, … ,𝑀𝑀}. 
Proof: we have 

𝑋𝑋 = �
𝑄𝑄11 𝑄𝑄12

𝑄𝑄21 (1 − 𝜆𝜆)𝑄𝑄�� + � 0 2𝐻𝐻12∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)
2∇𝑐𝑐Φ(𝑉𝑉�𝐿𝐿)𝐻𝐻12

𝑇𝑇 0
� �44� 

 

It can be written in the form of  
𝑋𝑋 = 𝐴𝐴0 + 𝐴𝐴1φ1′(𝑣𝑣�1) + ⋯+ 𝐴𝐴𝑀𝑀φ𝑀𝑀′(𝑣𝑣�𝑀𝑀) �45� 

where 𝐴𝐴0, … ,𝐴𝐴𝑀𝑀  are parameter matrices. Therefore, 𝑋𝑋 ≺ 0  is a 
linear matrix inequality (LMI) of [… ,φ𝑖𝑖

′(𝑣𝑣�𝑖𝑖), … ] , where 𝑖𝑖 ∈
{1,2, … ,𝑀𝑀}. 
 

From Theorem 3, we know that 𝑋𝑋 ≺ 0  is an LMI, which 
indicates that the solution of 𝑋𝑋 ≺ 0 is a convex set. However, the 
computational cost of brutally solving 𝑋𝑋 ≺ 0 is high because 𝑋𝑋 is 
non-symmetric and high-dimensional. Considering 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖∗ +
𝑣𝑣�𝑖𝑖 > 0, φ𝑖𝑖′(𝑣𝑣�𝑖𝑖) is monotonic, we can therefore choose a convex 
subset Θ  of the solution of 𝑋𝑋 ≺ 0  as follows to decrease the 
computational complexity: 
 

Θ: 𝑙𝑙𝑏𝑏𝑏𝑏 ≤ 𝑣𝑣�𝑖𝑖 ≤ 𝑢𝑢𝑏𝑏𝑏𝑏 ,∀𝑖𝑖 ∈ {1,2, … ,𝑀𝑀} �46� 
 

 
Fig. 10. The convex subset Θ. 

 

C. Optimization problem formulation for ROA estimation 
Review the optimization problem proposed at the beginning of 

section Ⅴ.  
𝑐𝑐 = min

𝑥𝑥�
 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� �47� 

s. t.  � 𝜆𝜆𝑄𝑄
� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0

𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0
�48� 

Based on the above analysis, we know that the original feasible 
region constructed by the constraints is not convex, which burdens 
the solving of the optimization problem. Therefore, we find a 
convex subset of the original feasible region to estimate the ROA 
with less computational cost.  

The convex subset of the original feasible region is solved as 
{𝑆𝑆 ∩ 𝛩𝛩} . Then the optimization problem to solve the ROA 
boundary can be revised as follows: 

𝑐𝑐 = min
𝑥𝑥�

 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� �49� 
s. t.  𝜕𝜕{𝑆𝑆 ∩ 𝛩𝛩} �50� 

 

It is worth mentioning that the revised feasible region is the 
boundary of set {𝑆𝑆 ∩ 𝛩𝛩} instead of the set {𝑆𝑆 ∩ 𝛩𝛩} itself, which is 
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visualized as the black curve in Fig. 11. The ROA is estimated as 
{Ωc:𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� ≤ 𝑐𝑐}. 
 

 
Fig. 11. The domain of the optimization problem. 

 
Our following derivation leverages the characteristics of the two 

constraints in the optimization problem. The first constraint 𝜆𝜆𝑄𝑄� +
𝑇𝑇1 + 𝑇𝑇2 ≺ 0  involves only diagonal matrices; the second 
constraint 𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0 involves non-diagonal matrices but 
refers only to load voltages in all state variables. In our algorithm, 
we label the load voltages as the state variables showing strong 
relationships to system stability; state variables other than load 
voltages are labeled as those showing weak relationships to system 
stability. Separating the state variables with strong relationships 
from those with weak relationships can reduce computational cost 
and lessen the curse of dimensionality, which enables our 
approach to fit for large-scale power grid models. 

In the proposed novel ROA estimation approach, there are 
multiple techniques applied to reduce the computational costs. We 
conclude the techniques and their influence on the computational 
costs and compare them with the traditional ROA estimation 
method. The comparison is visualized in the following table. 

 
TABLE Ⅰ. COMPARISON OF COMPUTATION COSTS BETWEEN DIFFERENT ROA 

ESTIMATION METHODS 

 

VI. CASE STUDY 
In this case study, we investigate ROA estimation for a DC 

microgrid model with multiple CPLs to illustrate our proposed 
techniques.  

The DC microgrid model is built as in Fig. 1 with 𝑁𝑁 = 𝑀𝑀 = 2, 
where 𝑁𝑁  and 𝑀𝑀  are the numbers of source branches and load 
branches, respectively. With the utilization of droop-inertia 
converter controllers, the equivalent circuit diagram of the grid 
model is depicted as follows: 

 

Lt1 It1 Rt1

Lt2 It2 Rt2

ID

Cf1 PL1

IL1

CD

Lf1 If1 Rf1

Cf2 PL2

IL2

Lf2 If2 Rf2

+

-

VD

+
-
VC2

+
- Cb2

Is2

Rp2

Lq2 Rq2

Vref2

+
-

+
-Cb1

Is1

Rp1

Lq1 Rq1

Vref1

+

+

-

-

VL1

VL2

 
Fig. 12. The equivalent circuit diagram of the microgrid model. 

 
  The model parameters are shown in the following table: 
 

TABLE Ⅱ. SIMULATION PARAMETERS   
(The unit: V, H, F, Ohm, W) 

 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟1 200 𝑅𝑅𝑝𝑝1 5 𝑅𝑅𝑞𝑞1 5 𝐿𝐿𝑞𝑞1 0.1 𝐶𝐶𝑏𝑏1 1 
𝑅𝑅𝑡𝑡1 8 𝐿𝐿𝑡𝑡1 0.1 𝑅𝑅𝑓𝑓1 5 𝐿𝐿𝑓𝑓1 0.1 𝐶𝐶𝑓𝑓1 1 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟2 200 𝑅𝑅𝑝𝑝2 5 𝑅𝑅𝑞𝑞2 5 𝐿𝐿𝑞𝑞2 0.1 𝐶𝐶𝑏𝑏2 1 
𝑅𝑅𝑡𝑡2 8 𝐿𝐿𝑡𝑡2 0.1 𝑅𝑅𝑓𝑓2 3 𝐿𝐿𝑓𝑓2 0.1 𝐶𝐶𝑓𝑓2 1 
𝐶𝐶𝐷𝐷 1 𝐼𝐼max1 ∞ 𝑉𝑉min1 0 𝐼𝐼max2 20 𝑉𝑉min2 20 
𝑃𝑃𝐿𝐿1 200 𝑃𝑃𝐿𝐿2 400       

 
Given the parameter settings, load 𝑃𝑃𝐿𝐿1 always works in constant 
power mode; load 𝑃𝑃𝐿𝐿2 works in constant power mode only when 
the load voltage is higher than the voltage lower bound 𝑉𝑉min2 . 
Here, we estimate ROA for the stable equilibrium point(s) only 
when both CPLs work in constant power mode, which is the 
regular operating condition in power grids. 

A. Steady-State Analysis of the Microgrid Model 
In this section, we aim at solving the stable equilibrium point(s) 

of the given model. First, we solve the Thevenin equivalence of 
the model in steady-state. The circuit structure of the Thevenin 
equivalent circuit is shown as follows: 

 

PL1

IL1

Rf1

PL2

IL2

Rf2

Ieq

+
-

Req

Veq

 
Fig. 13. The Thevenin equivalent circuit model. 

 
Considering the characteristics of the given parameters, the 

parameters 𝑅𝑅𝑒𝑒𝑒𝑒  and  𝑉𝑉𝑒𝑒𝑒𝑒  of the Thevenin equivalent circuit are 
solved as follows: 

𝑅𝑅𝑒𝑒𝑒𝑒 =
1
2
∙ (

𝑅𝑅𝑝𝑝1𝑅𝑅𝑞𝑞1
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑞𝑞1

+ 𝑅𝑅𝑡𝑡1) �51� 

𝑉𝑉𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑠𝑠1 �52� 
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As per our assumption, both CPLs in the DC microgrid are 
working in constant power mode. Then we obtain the following 
power balancing equations of the model: 
 

�
𝑃𝑃𝐿𝐿1 = 𝑉𝑉𝑒𝑒𝑞𝑞 ∙ 𝐼𝐼𝐿𝐿1 − 𝐼𝐼𝐿𝐿12�𝑅𝑅𝑒𝑒𝑒𝑒 + 𝑅𝑅𝑓𝑓1� − 𝑅𝑅𝑒𝑒𝑒𝑒𝐼𝐼𝐿𝐿1𝐼𝐼𝐿𝐿2 
𝑃𝑃𝐿𝐿2 = 𝑉𝑉𝑒𝑒𝑒𝑒 ∙ 𝐼𝐼𝐿𝐿2 − 𝐼𝐼𝐿𝐿22�𝑅𝑅𝑒𝑒𝑒𝑒 + 𝑅𝑅𝑓𝑓2� − 𝑅𝑅𝑒𝑒𝑒𝑒𝐼𝐼𝐿𝐿1𝐼𝐼𝐿𝐿2

(53) 

Solving the power balancing equations, we get four equilibrium 
points of the model, as shown in the following table: 

 
TABLE Ⅲ. EQUILIBRIUM POINTS IN THE MICROGRID MODEL   

 

Equilibrium 1st 2nd 3rd 4th 

𝐼𝐼𝐿𝐿1∗ 1.1338 15.4912 10.2877 3.1258 

𝐼𝐼𝐿𝐿2∗ 2.2829 5.3914 14.3068 19.8052 

 
 

Second, we identify the stable equilibrium point(s) using 
Theorem 1. The analysis shows that there exists only one stable 
equilibrium point, that is, (𝐼𝐼𝐿𝐿1∗, 𝐼𝐼𝐿𝐿2∗) = (1.1338,2.2829)(A). The 
corresponding steady-state load voltages are (𝑉𝑉𝐿𝐿1∗,𝑉𝑉𝐿𝐿2∗) =
(176,175)(𝑉𝑉). The identification of the stable equilibrium point 
is presented in Appendix D. 

 

B. ROA Estimation  
In this section, we estimate the ROA of the stable equilibrium 

point using the approach proposed in section Ⅳ. The stable 
equilibrium point is solved at the end of section Ⅴ. A.  

 
First, we formulate the optimization problem to solve the 

boundary 𝑐𝑐 of ROA as follows: 
𝑐𝑐 = min

𝑥𝑥�
 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� �54� 

s. t.  � 𝜆𝜆𝑄𝑄
� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0

𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0
�55� 

Then we investigate the convexity of the feasible region of the 
optimization problem. 
 

1) First, we discuss the convexity of 𝝀𝝀𝑸𝑸� + 𝑻𝑻𝟏𝟏 + 𝑻𝑻𝟐𝟐 ≺ 𝟎𝟎.  
According to the derivatives in section Ⅳ, we conclude that: 
(a) If 2𝐾𝐾1𝑖𝑖 + 𝐾𝐾0𝑖𝑖 ≥ 0, the solution of 𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 is convex. 
(b) If 2𝐾𝐾1𝑖𝑖 + 𝐾𝐾0𝑖𝑖 < 0, the solution of 𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 is not convex. 
In case (b) we choose a convex subset as follows: 

 
𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� >

1
2𝑣𝑣𝑖𝑖∗2

�2𝐾𝐾1
𝑖𝑖 + 𝐾𝐾0𝑖𝑖�[�𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�

3

+3�𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�
2�𝑣𝑣�𝑖𝑖 − 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚�], (𝑣𝑣�𝑖𝑖 ≥ 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚)�56�

 

Combining case (a) with case (b), it is concluded that the convex 
subset of the solution of 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2 ≺ 0 is the intersection set 
of all convex sets/subsets corresponding to each load branch 
respectively. 

Considering that there are two CPLs in this model, the 
dimension of 𝜆𝜆𝑄𝑄� + 𝑇𝑇1 + 𝑇𝑇2  is 2. Set 𝜆𝜆 = 1.3𝑒𝑒 − 4. It is verified 
that 2𝐾𝐾1𝑖𝑖 + 𝐾𝐾0𝑖𝑖 < 0,∀𝑖𝑖 ∈ {1, 2}.  Therefore, we choose the 
convex subsets in the form of  

𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� > 𝑎𝑎𝑣𝑣�𝑖𝑖 + 𝑏𝑏, (𝑣𝑣�𝑖𝑖 ≥ 𝑣𝑣�𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚) �57� 
where 𝑎𝑎 , 𝑏𝑏  are constant. Denote the subsets by 𝑆𝑆𝑖𝑖 , 𝑖𝑖 ∈ {1, 2} , 
respectively. 
2) Second, we discuss the convexity of 𝑻𝑻𝟑𝟑 + (𝝀𝝀 − 𝟏𝟏)𝑸𝑸� ≻ 𝟎𝟎.  
As proved in section Ⅳ, we can choose a convex subset Θ of the 
solution of 𝑇𝑇3 + (𝜆𝜆 − 1)𝑄𝑄� ≻ 0 in the form of 
 

Θ: 𝑙𝑙𝑏𝑏𝑏𝑏 ≤ 𝑣𝑣�𝑖𝑖 ≤ 𝑢𝑢𝑏𝑏𝑏𝑏 ,∀𝑖𝑖 ∈ {1,2, … ,𝑀𝑀} �58� 
 

The set Θ can be determined with low computational cost using a 
binary search algorithm. In this example, set Θ is solved as:   

Θ:−12 ≤ 𝑣𝑣�1 ≤ 7,−3 ≤ 𝑣𝑣�2 ≤ 17 �59� 
  

3) Third, we formulate the optimization problem to estimate 
ROA. 

𝑐𝑐 = min
𝑥𝑥�

 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� �60� 

s. t.  𝜕𝜕{𝑆𝑆 ∩ 𝛩𝛩} �61� 
 

where 𝜕𝜕{𝑆𝑆 ∩ 𝛩𝛩}  represents the boundary of set {𝑆𝑆 ∩ 𝛩𝛩}. The 
obtained ROA is in the form of {Ωc: 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� ≤ 𝑐𝑐}. 

This optimization problem is solved by dividing it into multiple 
sub-problems. The objective function remains unchanged, and the 
feasible region is divided into multiple parts that are separately 
considered in different sub-problems.  

 
TABLE Ⅳ. THE ORIGINAL OPTIMIZATION PROBLEM AND ITS SUB-PROBLEMS  

   

Original optimization 
problem 

Original feasible set 
𝜕𝜕{𝑆𝑆 ∩ 𝛩𝛩} Optimal solution 𝑐𝑐 

Sub-problems 
s.t. 𝜕𝜕{𝑆𝑆1} ∩ 𝑆𝑆2 ∩ 𝛩𝛩  𝑐𝑐1 = 73820 
s.t. 𝜕𝜕{𝑆𝑆2} ∩ 𝑆𝑆1 ∩ 𝛩𝛩 𝑐𝑐2 = 117318 
s.t. 𝜕𝜕{𝛩𝛩} ∩ 𝑆𝑆1 ∩ 𝑆𝑆2 𝑐𝑐3 = 112 

 
It is concluded from Table Ⅳ that the optimal solution to the 
original optimization problem is 𝑐𝑐 = min{𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3} = 112. 
Therefore, the estimated ROA is {Ωc: 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� ≤ 112}. 
 

 
Fig. 14. The novel estimated ROA with less conservativeness vs. the 

traditional estimated ROA. 
 
 

We visualize the ROA in the subspace consisting of the load 
voltages (𝑉𝑉𝐿𝐿1,𝑉𝑉𝐿𝐿2)  in Fig. 14. The yellow cross represents the 
stable equilibrium point, and the blue ellipse represents the 
estimated ROA using our proposed method. The red ellipse 
represents the benchmark ROA obtained by the traditional 
Lyapunov method introduced in [21]. The benchmark ROA is 
solved as 𝛺𝛺𝑐𝑐1 = {𝑥𝑥 ∈ ℛ𝑛𝑛 , 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥� ≤ 0.4490}. The derivatives are 
shown Appendix E. It is observed that the novel estimated ROA 
is less conservative than the benchmark ROA.  

Moreover, we validate the system stability and the correctness 
of the estimated ROA through MATLAB/Simulink simulations. 
Considering that it is not practical to test all points in the estimated 
ROA using simulations, we test several typical data points and 
present the verification results here. The function values of 
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𝐿𝐿(𝑥𝑥) = 𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑥𝑥�  at the chosen data points are very close to the 
solved 𝑐𝑐 value, which is the estimated upper bound of 𝐿𝐿(𝑥𝑥). In this 
case study, we have  𝑐𝑐 = 112.  The chosen data points are 
represented by the “+” signs in Fig. 15. The dimension of the ROA 
is 13. Nevertheless, in order to formulate the cases with more 
typical disturbances and have a better visualization, we consider 
the cases with the largest oscillations of PoL voltages. In other 
words, we suppose the PoL voltage has the largest initial voltage 
difference compared to the equilibrium state (𝑉𝑉𝐿𝐿1∗,𝑉𝑉𝐿𝐿2∗) =
(176,175)(𝑉𝑉). 

 

 
Fig. 15. Tested datapoints in the novel estimated ROA. 

 
More details about the chosen data points are introduced in the 
following table.  

 
TABLE Ⅴ. DESCRIPTIONS OF THE TEST DATA POINTS  

 
Tested data 

points 
Position in 

Fig. 15 (𝑉𝑉𝐿𝐿1,𝑉𝑉𝐿𝐿2)(𝑉𝑉) 𝐿𝐿(𝑥𝑥) 
value 

System 
stability 

Datapoint 1 Right (193,175) 105.6567 Stable 
Datapoint 2 Left (160,175) 110.0692 Stable 
Datapoint 3 Up (176,188) 101.4380 Stable 
Datapoint 4 Down (176,163) 104.1449 Stable 
 

 
Fig. 16. Simulation results of PoL voltages. 

 
A disturbance usually considered in large-signal stability 

analysis is the start-up of the system. The microgrid system is 
going through a significant load change during its start-up. The 
stability of a microgrid which has suffered the disturbance of load 

change can be evaluated by applying the proposed novel method 
to the microgrid with updated system parameters.  

In this case study, we investigate the system stability with the 
disturbance of system start-up. The microgrid stability at these 
chosen data points is evaluated in the MATLAB/Simulink 
platform. The simulation results are shown in Fig. 16. It can be 
seen from Fig. 16 that the load voltages at PoLs converge to the 
equilibrium point as we expected in all cases. The simulation 
results validate the effectiveness of the proposed novel ROA 
estimation approach. 

 

VII. CONCLUSIONS & FUTURE WORK 
In this paper, we propose a novel approach to ROA estimation 

in complex DC microgrids from the perspective of potential theory. 
Specifically, we investigate the ROA estimation method with less 
conservativeness using a revised Brayton-Moser mixed potential 
theory. The approach targets the nonlinear microgrid model itself 
instead of the linearized model, which improves the algorithm 
accuracy. Moreover, our proposed approach is scalable in large-
scale DC power grids with algorithm strategies. For example, we 
separate the state variables with strong relationships to stability 
from those with weak relationships. This strategy reduces the 
computational cost and lessens the curse of dimensionality. It is 
also verified in our case study that our approach obtains a less-
conservative ROA compared to the traditional Lyapunov method. 
Our future work will discuss ROA estimation methods in complex 
power grids with stochastic environments. 
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Appendix A 

Proof: The proof of the stability of the equilibrium point 𝑥𝑥 = 𝑥𝑥𝑒𝑒  
is proposed in our previous study [11]. Here we show the proof of 
the existence of a Lyapunov function.  
As introduced in the previous section, the grid model with 
dynamics can be described as 

∇𝑃𝑃∗ = −𝐽𝐽∗𝑥̇𝑥 �62� 
where 𝑥𝑥 = [𝑖𝑖  𝑣𝑣]𝑇𝑇 , 𝐽𝐽∗ ≻ 0 for stable systems. 𝐽𝐽∗ does not need to 
be a symmetric matrix, considering that 𝐽𝐽∗ ≻ 0 , (𝐽𝐽∗)−1  exists. 
Then the above system can be equivalently formulated as follows: 

𝑥̇𝑥 = −(𝐽𝐽∗)−1∇𝑃𝑃∗ �63� 
Linearizing the system at equilibrium 𝑥𝑥 = 𝑥𝑥𝑒𝑒 , we have: 

𝑥𝑥�̇ = 𝒥𝒥(−(𝐽𝐽∗)−1∇𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 ∙ 𝑥𝑥�
= −(𝐽𝐽∗)−1(𝒥𝒥(∇𝑃𝑃∗))|𝑥𝑥=𝑥𝑥𝑒𝑒 ∙ 𝑥𝑥�
= −(𝐽𝐽∗)−1𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 ∙ 𝑥𝑥� �64�

 

where 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥𝑒𝑒 . 𝒥𝒥 is the Jacobian matrix and 𝐻𝐻 is the Hessian 
matrix. Define 𝐴𝐴 = −(𝐽𝐽∗)−1𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 .  Then we obtain the 
linearized system: 

𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� �65� 
Adding the residual term, we get the original nonlinear system as 
follows: 

𝑥̇𝑥 = 𝐴𝐴𝑥𝑥� + 𝑔𝑔(𝑥𝑥�) �66� 
where 𝑔𝑔(𝑥𝑥�) = 𝑓𝑓(𝑥𝑥� + 𝑥𝑥𝑒𝑒) − 𝐴𝐴𝑥𝑥�.  
 

A Lyapunov function can be constructed as follows: 

𝐿𝐿 = (𝑥𝑥 − 𝑥𝑥𝑒𝑒)𝑇𝑇𝑁𝑁(𝑥𝑥 − 𝑥𝑥𝑒𝑒), �67� 
where 𝑁𝑁  is the positive definite solution of the following 
Lyapunov equation: 

 𝐴𝐴𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑁𝑁 = −𝑄𝑄,𝑄𝑄 ≻ 0 �68� 
From 𝐽𝐽∗ ≻ 0, we conclude that (𝐽𝐽∗)𝑇𝑇 ≻ 0 and (𝐽𝐽∗)−1 ≻ 0; 
Considering that 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 ≻ 0 , 𝐽𝐽∗ ≻ 0 , the eigenvalues of 
(𝐽𝐽∗)−1 ∙ 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒  have positive real parts. Therefore, all 
eigenvalues of 𝐴𝐴 = −(𝐽𝐽∗)−1𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒  have a negative real part, 
that is, matrix 𝐴𝐴 is Hurwitz. Therefore,  𝑁𝑁 exists and is the unique 
solution of the Lyapunov equation [20]. 
 
 

Appendix B 

Suppose 

𝑄𝑄 = − �
𝑄𝑄11 𝑄𝑄12
𝑄𝑄21 𝑄𝑄� � ,𝐻𝐻𝑥𝑥𝑒𝑒 = �

𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻� � �69� 

where 𝑄𝑄11 ∈ ℛ(4𝑁𝑁+𝑀𝑀+1)×(4𝑁𝑁+𝑀𝑀+1), 
𝐻𝐻11 ∈ ℛ(4𝑁𝑁+𝑀𝑀+1)×(4𝑁𝑁+𝑀𝑀+1),𝑄𝑄� ∈ ℛ𝑀𝑀×𝑀𝑀,𝐻𝐻� ∈ ℛ𝑀𝑀×𝑀𝑀. 
Denote 𝑥𝑥� = [𝑥𝑥�𝑎𝑎

𝑇𝑇 ,𝑉𝑉�𝐿𝐿
𝑇𝑇]𝑇𝑇 ,  where 𝑉𝑉𝐿𝐿 = [𝑉𝑉𝐿𝐿1, … ,𝑉𝑉𝐿𝐿𝐿𝐿],     𝑥𝑥𝑎𝑎 =

[𝐼𝐼𝑝𝑝1, … , 𝐼𝐼𝑝𝑝𝑝𝑝 , 𝐼𝐼𝑞𝑞1, … , 𝐼𝐼𝑞𝑞𝑞𝑞 , 𝐼𝐼𝑡𝑡1, … , 𝐼𝐼𝑡𝑡𝑡𝑡 , 𝐼𝐼𝑓𝑓1, … , 𝐼𝐼𝑓𝑓𝑓𝑓 ,𝑉𝑉𝐶𝐶1, … ,𝑉𝑉𝐶𝐶𝐶𝐶 ,𝑉𝑉𝐷𝐷]. 
Then the Hessian of 𝑉̇𝑉(𝑥𝑥�) can be calculated as follows. 

2𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑔𝑔(𝑥𝑥) = 2 �𝑥𝑥�𝑎𝑎
𝑇𝑇 ,𝑉𝑉�𝐿𝐿

𝑇𝑇�
𝑇𝑇
�
𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻� � �0,Φ�𝑉𝑉�𝐿𝐿��

𝑇𝑇

= 2(𝑥𝑥�𝑎𝑎
𝑇𝑇𝐻𝐻12 + 𝑉𝑉�𝐿𝐿

𝑇𝑇𝐻𝐻�)Φ�𝑉𝑉�𝐿𝐿� �70�
 

The gradient and the Hessian of 2𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑔𝑔(𝑥𝑥) are calculated as 
follows: 

∇ �2𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑔𝑔(𝑥𝑥�)�

= 2 �𝐻𝐻12Φ�𝑉𝑉�𝐿𝐿�, 𝑥𝑥�𝑎𝑎𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿� + ∇(𝑉𝑉�𝐿𝐿
𝑇𝑇𝐻𝐻�Φ�𝑉𝑉�𝐿𝐿�)�

𝑇𝑇
�71�

 

∇2 �2𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑔𝑔(𝑥𝑥�)�

= 2 �
𝟎𝟎 𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿�

(𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿�)𝑇𝑇 ∇2 �𝑉𝑉�𝐿𝐿
𝑇𝑇𝐻𝐻�Φ�𝑉𝑉�𝐿𝐿�� + 𝑥𝑥�𝑎𝑎𝐻𝐻12∇𝑐𝑐2Φ�𝑉𝑉�𝐿𝐿�

� �72�
 

Considering that 
𝑉̇𝑉(𝑥𝑥�) = 𝑥𝑥�𝑇𝑇�∇𝑓𝑓𝑇𝑇(𝑥𝑥𝑒𝑒)𝐻𝐻𝑥𝑥𝑒𝑒 + 𝐻𝐻𝑥𝑥𝑒𝑒∇𝑓𝑓(𝑥𝑥𝑒𝑒)�𝑥𝑥� + 2𝑥𝑥�𝑇𝑇𝐻𝐻𝑥𝑥𝑒𝑒𝑔𝑔(𝑥𝑥�) �73� 

𝑄𝑄 = −(∇𝑓𝑓𝑇𝑇(𝑥𝑥𝑒𝑒)𝐻𝐻𝑥𝑥𝑒𝑒 + 𝐻𝐻𝑥𝑥𝑒𝑒∇𝑓𝑓(𝑥𝑥𝑒𝑒)) �74� 
then the Hessian of 𝑉̇𝑉(𝑥𝑥�) is calculated as follows: 

∇2𝑉̇𝑉(𝑥𝑥�)

= 𝑄𝑄 + 2 �
𝟎𝟎 𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿�

�𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿��
𝑇𝑇

∇2 �𝑉𝑉�𝐿𝐿
𝑇𝑇𝐻𝐻�Φ�𝑉𝑉�𝐿𝐿��+ 𝑥𝑥�𝑎𝑎𝐻𝐻12∇𝑐𝑐2Φ�𝑉𝑉�𝐿𝐿�

�

= �
𝑄𝑄11 𝑄𝑄12 + 2𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿�

𝑄𝑄21 + 2(𝐻𝐻12∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿�)𝑇𝑇 𝑄𝑄� + 2∇2 �𝑉𝑉�𝐿𝐿
𝑇𝑇𝐻𝐻�Φ�𝑉𝑉�𝐿𝐿��+ 2𝑥𝑥�𝑎𝑎𝐻𝐻12∇𝑐𝑐2Φ�𝑉𝑉�𝐿𝐿�

� �75�

 

where ∇𝑐𝑐Φ�𝑉𝑉�𝐿𝐿� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{∇φ1(𝑣𝑣�1), … ,∇φ𝑀𝑀(𝑣𝑣�𝑀𝑀)},∇𝑐𝑐2Φ�𝑉𝑉�𝐿𝐿� =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{∇2φ1(𝑣𝑣�1), … ,∇2φ𝑀𝑀(𝑣𝑣�𝑀𝑀)}. 
 
 

Appendix C 

𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖)

= 𝜆𝜆𝑄𝑄�𝑖𝑖 + 2
𝑑𝑑2

𝑑𝑑𝑣𝑣�𝑖𝑖
2 �−

𝑃𝑃𝐿𝐿𝐿𝐿
𝑣𝑣𝑖𝑖∗2

+ 2𝑅𝑅𝑓𝑓𝑓𝑓� 𝑣𝑣�𝑖𝑖φ𝑖𝑖(𝑣𝑣�𝑖𝑖) + 2
𝑑𝑑2

𝑑𝑑𝑣𝑣�𝑖𝑖
2 φ𝑖𝑖(𝑣𝑣�𝑖𝑖)�𝐼𝐼𝑓𝑓𝑓𝑓 − 𝑣𝑣�𝑇𝑇𝑅𝑅𝑓𝑓𝑓𝑓�

= 𝐾𝐾0𝑖𝑖 + 𝜎𝜎′′ �𝐾𝐾1𝑖𝑖𝑣𝑣�𝑖𝑖 + 2𝐾𝐾2𝑖𝑖𝐿𝐿1�𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇�� + 2𝐾𝐾1𝑖𝑖𝜎𝜎′ �76�
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13 

where 𝐾𝐾0𝑖𝑖 =  𝜆𝜆𝑄𝑄�𝑖𝑖 ,𝐾𝐾1𝑖𝑖 = 2 �− 𝑃𝑃𝐿𝐿𝐿𝐿
𝑣𝑣𝑖𝑖∗2

+ 2𝑅𝑅𝑓𝑓𝑓𝑓� �−
𝑃𝑃𝐿𝐿𝐿𝐿
𝐶𝐶𝐿𝐿𝐿𝐿

1
𝑣𝑣𝑖𝑖∗2

� ,𝐾𝐾2𝑖𝑖 =

−𝑃𝑃𝐿𝐿𝐿𝐿
𝐶𝐶𝐿𝐿𝐿𝐿

1
𝑣𝑣𝑖𝑖∗2

, 𝐿𝐿1�𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� = 𝐼̂𝐼𝑓𝑓𝑓𝑓 − 𝑣𝑣�𝑇𝑇𝑅𝑅𝑓𝑓𝑓𝑓,𝜎𝜎(𝑣𝑣�𝑖𝑖) = 𝑣𝑣�𝑖𝑖
2

𝑣𝑣𝑖𝑖∗+𝑣𝑣�𝑖𝑖
, 𝑖𝑖 = 1,2, … ,𝑀𝑀. 

 
Denote 𝐿𝐿2�𝑣𝑣�𝑖𝑖 , 𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇� = 𝐾𝐾1𝑖𝑖𝑣𝑣�𝑖𝑖 + 2𝐾𝐾2𝑖𝑖𝐿𝐿1�𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇�.  

Since 𝜎𝜎′ = 1 − 𝑣𝑣𝑖𝑖∗2

(𝑣𝑣𝑖𝑖∗+𝑣𝑣�𝑖𝑖)2
,𝜎𝜎′′ = 2𝑣𝑣𝑖𝑖∗2

(𝑣𝑣𝑖𝑖∗+𝑣𝑣�𝑖𝑖)3
> 0, we have 

𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0

⇔ 𝐿𝐿2�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� <
−2𝐾𝐾1𝑖𝑖𝜎𝜎′ − 𝐾𝐾0𝑖𝑖

𝜎𝜎′′

= −
2𝐾𝐾1𝑖𝑖 + 𝐾𝐾0𝑖𝑖

2𝑣𝑣𝑖𝑖∗2
(𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖)3 + 𝐾𝐾1𝑖𝑖(𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖) �77�

 

Define 𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� ≜ 𝐾𝐾1𝑖𝑖(𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖) − 𝐿𝐿2�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� . Then we 
have 

𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 ⇔ 𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇� >
2𝐾𝐾1𝑖𝑖 + 𝐾𝐾0𝑖𝑖

2𝑣𝑣𝑖𝑖∗2
(𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖)3 �78� 

Additionally, it is worth mentioning that 𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� is a linear 
function.  

 𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇� = 𝐾𝐾1𝑖𝑖(𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖) − 𝐾𝐾1𝑖𝑖𝑣𝑣�𝑖𝑖 − 2𝐾𝐾2𝑖𝑖𝐿𝐿1�𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇�
= −2𝐾𝐾2𝑖𝑖𝐿𝐿1�𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇� + 𝐾𝐾1𝑖𝑖𝑣𝑣𝑖𝑖∗ �79�

  

 
When 2𝐾𝐾1

𝑖𝑖 + 𝐾𝐾0𝑖𝑖 ≥ 0, it can be proved that the solution of 
𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 is convex as follows. 
 
Suppose  

𝑔𝑔�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� ≜
1

2𝑣𝑣𝑖𝑖∗2
(2𝐾𝐾1

𝑖𝑖 + 𝐾𝐾0𝑖𝑖)(𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖)3 �80�

Then 
𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 ⇔ 𝐿𝐿3�𝑣𝑣�𝑖𝑖 , 𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇� > 𝑔𝑔�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� �81� 

Denote 𝑥𝑥� = [𝑣𝑣�𝑖𝑖, 𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇].   
Considering that 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖∗ + 𝑣𝑣�𝑖𝑖 > 0,𝑔𝑔�𝑣𝑣�𝑖𝑖 , 𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑣𝑣�𝑇𝑇�  is a convex 
function, then ∀𝑥𝑥1, 𝑥𝑥2,𝛼𝛼 ∈ [0,1], 

𝑠𝑠. 𝑡𝑡.     �𝐿𝐿3
(𝑥𝑥1� ) > 𝑔𝑔(𝑥𝑥1� )

𝐿𝐿3(𝑥𝑥2� ) > 𝑔𝑔(𝑥𝑥2� ) , �82� 
 

and the following formulation holds: 
 

𝐿𝐿3(𝛼𝛼𝑥𝑥1� + (1 − 𝛼𝛼)𝑥𝑥2� ) = 𝛼𝛼𝐿𝐿3(𝑥𝑥1� ) + (1 − 𝛼𝛼)𝐿𝐿3(𝑥𝑥2� )
> 𝛼𝛼𝛼𝛼(𝑥𝑥1) + (1 − 𝛼𝛼)𝑔𝑔(𝑥𝑥2)
> 𝑔𝑔(𝛼𝛼𝑥𝑥1� + (1 − 𝛼𝛼)𝑥𝑥2� ) �83�

 

 

Therefore, the solution of 𝐿𝐿3�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� > 𝑔𝑔�𝑣𝑣�𝑖𝑖, 𝐼̂𝐼𝑓𝑓𝑓𝑓, 𝑣𝑣�𝑇𝑇� is a convex 
set. In other words, the solution of 𝑓𝑓𝜇𝜇𝜇𝜇(𝑣𝑣�𝑖𝑖) < 0 is convex. 

 
 

Appendix D 

The potential function of the model is calculated as follows. 
 

𝑃𝑃(𝑖𝑖, 𝑣𝑣) = �𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

2

𝑖𝑖=1

�𝐼𝐼𝑝𝑝𝑝𝑝 + 𝐼𝐼𝑞𝑞𝑞𝑞� −
1
2
�𝑅𝑅𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝𝑝𝑝2
2

𝑖𝑖=1

−
1
2
�𝑅𝑅𝑞𝑞𝑖𝑖𝐼𝐼𝑞𝑞𝑞𝑞2
2

𝑖𝑖=1

−
1
2
�𝑅𝑅𝑡𝑡𝑡𝑡𝐼𝐼𝑡𝑡𝑡𝑡2
2

𝑖𝑖=1

−
1
2
�𝑅𝑅𝑓𝑓𝑓𝑓𝐼𝐼𝑓𝑓𝑓𝑓2
2

𝑖𝑖=1

−�𝑉𝑉𝐶𝐶𝐶𝐶�𝐼𝐼𝑝𝑝𝑝𝑝 + 𝐼𝐼𝑞𝑞𝑞𝑞 − 𝐼𝐼𝑡𝑡𝑡𝑡�
2

𝑖𝑖=1  

−𝑉𝑉𝐷𝐷 ��𝐼𝐼𝑡𝑡𝑡𝑡

2

𝑖𝑖=1

−�𝐼𝐼𝑓𝑓𝑓𝑓

2

𝑖𝑖=1

� + �𝑍𝑍𝑖𝑖(𝑖𝑖, 𝑣𝑣)
2

𝑖𝑖=1

�84�

 

where 

𝑍𝑍𝑖𝑖(𝑖𝑖, 𝑣𝑣) = �
�

𝑃𝑃𝐿𝐿𝐿𝐿
𝑣𝑣 𝑑𝑑𝑑𝑑

𝑉𝑉𝐿𝐿𝐿𝐿

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

− 𝑃𝑃𝐿𝐿𝐿𝐿 − 𝑉𝑉𝐿𝐿𝐿𝐿(𝐼𝐼𝑓𝑓𝑓𝑓 − 𝐼𝐼𝐿𝐿𝐿𝐿),𝑉𝑉𝐿𝐿𝐿𝐿 > 𝑉𝑉min_𝑖𝑖

𝐼𝐼max _ 𝑖𝑖�𝑉𝑉𝐿𝐿𝐿𝐿 − 𝑉𝑉min_𝑖𝑖� − 𝑃𝑃𝐿𝐿𝐿𝐿 − 𝑉𝑉𝐿𝐿𝐿𝐿(𝐼𝐼𝑓𝑓𝑓𝑓 − 𝐼𝐼max _ 𝑖𝑖),𝑉𝑉𝐿𝐿𝐿𝐿 ≤ 𝑉𝑉min_𝑖𝑖

                                                                                                                      �85�

 

 

𝐼𝐼𝑝𝑝𝑝𝑝  and 𝐼𝐼𝑞𝑞𝑞𝑞  represent the currents through resistors 𝑅𝑅𝑝𝑝𝑝𝑝  and 𝑅𝑅𝑞𝑞𝑞𝑞 , 
respectively. 
 
Add virtual inductors 𝐿𝐿𝑝𝑝𝑝𝑝 = 0 in series with 𝑅𝑅𝑝𝑝𝑝𝑝  for 𝑖𝑖 = {1,2} in 
the original model. Then we define the following notations: 
 

𝑅𝑅 = d𝑖𝑖𝑖𝑖𝑖𝑖��𝑅𝑅𝑝𝑝1,𝑅𝑅𝑝𝑝2,𝑅𝑅𝑞𝑞1,𝑅𝑅𝑞𝑞2,𝑅𝑅𝑡𝑡1,𝑅𝑅𝑡𝑡2,𝑅𝑅𝑓𝑓1,𝑅𝑅𝑓𝑓2�� 
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝑅𝑅𝑝𝑝,𝑅𝑅𝑞𝑞 ,𝑅𝑅𝑡𝑡 ,𝑅𝑅𝑓𝑓��, 
 

𝐿𝐿 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝐿𝐿𝑝𝑝1,𝐿𝐿𝑝𝑝2, 𝐿𝐿𝑞𝑞1, 𝐿𝐿𝑞𝑞2,𝐿𝐿𝑡𝑡1, 𝐿𝐿𝑡𝑡2, 𝐿𝐿𝑓𝑓1, 𝐿𝐿𝑓𝑓2�� 
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝐿𝐿𝑝𝑝, 𝐿𝐿𝑞𝑞 , 𝐿𝐿𝑡𝑡 , 𝐿𝐿𝑓𝑓��, 
 

𝐶𝐶 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝐶𝐶𝑏𝑏1,𝐶𝐶𝑏𝑏2,𝐶𝐶𝐷𝐷 ,𝐶𝐶𝑓𝑓1,𝐶𝐶𝑓𝑓2�� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝐶𝐶𝑏𝑏 ,𝐶𝐶𝐷𝐷,𝐶𝐶𝑓𝑓��, 
 

𝑖𝑖 = �𝐼𝐼𝑝𝑝1, 𝐼𝐼𝑝𝑝2, 𝐼𝐼𝑞𝑞1, 𝐼𝐼𝑞𝑞2, 𝐼𝐼𝑡𝑡1, 𝐼𝐼𝑡𝑡2, 𝐼𝐼𝑓𝑓1, 𝐼𝐼𝑓𝑓2�
𝑇𝑇 = �𝐼𝐼𝑝𝑝, 𝐼𝐼𝑞𝑞 , 𝐼𝐼𝑡𝑡 , 𝐼𝐼𝑓𝑓�

𝑇𝑇 , 
 

𝑣𝑣 = [𝑉𝑉𝐶𝐶1,𝑉𝑉𝐶𝐶2,𝑉𝑉𝐷𝐷 ,𝑉𝑉𝐿𝐿1,𝑉𝑉𝐿𝐿2]𝑇𝑇 = [𝑉𝑉𝐶𝐶 ,𝑉𝑉𝐷𝐷 ,𝑉𝑉𝐿𝐿]𝑇𝑇 . 
 

Then the above potential function can be rewritten in the form of   
 

𝑃𝑃(𝑖𝑖, 𝑣𝑣) = −
1
2

(𝑖𝑖,𝐴𝐴𝐴𝐴) + 𝐵𝐵(𝑣𝑣) + (𝑖𝑖, 𝛾𝛾𝛾𝛾 − 𝑎𝑎) �86� 
 

where 𝐴𝐴: ℝ6 → ℝ,𝐵𝐵: ℝ 
3 → ℝ, 𝛾𝛾 is a constant matrix and 𝑎𝑎 is a 

constant vector; ( ∙ , ∙ ) represents an inner product. It is obtained 
that 
 

     𝐴𝐴 =
1
2
𝑖𝑖𝑇𝑇𝑅𝑅𝑅𝑅, 𝛾𝛾 = �

−𝕀𝕀2×2
−𝕀𝕀2×2

02×1
02×1

02×2
02×2

𝕀𝕀2×2
02×2

−12×1
12×1

02×2
−𝕀𝕀2×2

�

8×5

, �87� 

 

𝐵𝐵(𝑣𝑣) = �𝑏𝑏𝑖𝑖(𝑣𝑣)
2

𝑖𝑖=1

, �88� 

 

𝑏𝑏𝑖𝑖(𝑣𝑣) = �
𝑃𝑃𝐿𝐿𝐿𝐿  (ln𝑉𝑉𝐿𝐿𝐿𝐿 − ln𝑉𝑉min _𝑖𝑖),𝑉𝑉𝐿𝐿𝐿𝐿 > 𝑉𝑉min_𝑖𝑖
𝐼𝐼max

 
_ 𝑖𝑖  𝑉𝑉𝐿𝐿𝐿𝐿 − 𝐼𝐼max

 
_ 𝑖𝑖  𝑉𝑉min

 
_𝑖𝑖 ,𝑉𝑉𝐿𝐿𝐿𝐿 ≤ 𝑉𝑉min_𝑖𝑖

�89� 
 

where 𝕀𝕀 is an identity matrix. 
 

Next, we rigorously examine the stability of the equilibrium points 
using the proposed sufficient condition for stability in our previous 
study [11].  
 

1) First, it is verified that 𝑓𝑓(𝑥𝑥) = 𝑥̇𝑥:ℛ𝑛𝑛 → ℛ is a 𝐶𝐶1 function and 
𝑃𝑃∗:ℛ𝑛𝑛 → ℛ is a 𝐶𝐶2 function. Additionally, all equilibrium points 
of the system form a compact set because the number of 
equilibrium points in this model is finite. 
 

2) 𝐽𝐽∗ ≻ 0. This condition is equivalent to  
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿1/2𝐴𝐴−1𝛾𝛾𝐶𝐶−1/2� < 1 �90� 

 

where 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚(∙) represents the largest singular value. 
 

3) 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 ⪰ 0. This condition is equivalent to the following 
equation: 
 

 
𝜕𝜕2𝐵𝐵(𝑣𝑣)
𝜕𝜕𝑣𝑣2

+ 𝛾𝛾𝑇𝑇𝐴𝐴−1𝛾𝛾�
𝑣𝑣=𝑣𝑣𝑒𝑒

⪰ 0 �91� 

Considering that 
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𝜕𝜕2𝑏𝑏𝑖𝑖(𝑣𝑣)
𝜕𝜕𝑣𝑣2

= �
−
𝑃𝑃𝐿𝐿𝐿𝐿
𝑉𝑉𝐿𝐿𝐿𝐿2

  ,      𝑉𝑉𝐿𝐿𝐿𝐿 > 𝑉𝑉min_𝑖𝑖

     0,            𝑉𝑉𝐿𝐿𝐿𝐿 ≤ 𝑉𝑉min_𝑖𝑖

�92� 

we have  
𝜕𝜕2𝐵𝐵(𝑣𝑣)
𝜕𝜕𝑣𝑣2

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{0,0,0,
𝜕𝜕2𝑏𝑏1(𝑣𝑣)
𝜕𝜕𝑣𝑣2

,
𝜕𝜕2𝑏𝑏2(𝑣𝑣)
𝜕𝜕𝑣𝑣2

} �93� 
 

4) 𝑃𝑃∗(𝑥𝑥) is radially unbounded, i.e., 𝑃𝑃∗(𝑥𝑥) → ∞ as ‖𝑥𝑥‖ → ∞. 
This condition is checked directly in specific circuits.  
 

We obtain the stable equilibrium points of the model after testing 
all existing equilibrium points using the above four conditions. 
 
 

 
Appendix E 

Pick up 𝑁𝑁 = 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 ≻ 0. Then the Lyapunov function 𝐿𝐿(𝑥𝑥) 
is constructed as 

𝐿𝐿 = 𝑥𝑥�𝑇𝑇𝑁𝑁𝑥𝑥�, �94� 
where 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥𝑒𝑒 . The derivative of the Lyapunov function 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is solved as follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥�̇𝑇𝑇𝑁𝑁𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑁𝑁𝑥𝑥�̇

= �𝑥𝑥�𝑇𝑇𝐴𝐴𝑇𝑇 + 𝑔𝑔𝑇𝑇(𝑥𝑥�)�𝑁𝑁𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑁𝑁�𝐴𝐴𝑥𝑥� + 𝑔𝑔(𝑥𝑥�)�
= 𝑥𝑥�𝑇𝑇(𝐴𝐴𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑁𝑁)𝑥𝑥� + 2𝑥𝑥�𝑇𝑇𝑁𝑁𝑔𝑔(𝑥𝑥�)
= −𝑥𝑥�𝑇𝑇𝑄𝑄𝑥𝑥� + 2𝑥𝑥�𝑇𝑇𝑁𝑁𝑔𝑔(𝑥𝑥�) �95�

 

where 𝑔𝑔(𝑥𝑥�) = 𝑓𝑓(𝑥𝑥� + 𝑥𝑥𝑒𝑒) − 𝐴𝐴𝑥𝑥�, 𝑄𝑄 = 𝐴𝐴𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑁𝑁 ≻ 0. 
 

Because ‖𝑔𝑔(𝑥𝑥�)‖2 = 𝑜𝑜(‖𝑥𝑥�‖2), there exists 𝛾𝛾 > 0 such that 
∀‖𝑥𝑥�‖ ≤ 𝛾𝛾, ‖𝑔𝑔(𝑥𝑥�)‖2 < 𝛼𝛼‖𝑥𝑥�‖2 �96� 

 

where 𝛼𝛼 ∈ ℛ+. Then we have 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑥𝑥�𝑇𝑇𝑄𝑄𝑥𝑥� + 2(𝑁𝑁𝑇𝑇𝑥𝑥�)𝑇𝑇𝑔𝑔(𝑥𝑥�)

≤ −𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄)‖𝑥𝑥�‖2 + 2‖𝑁𝑁𝑇𝑇𝑥𝑥�‖‖𝑔𝑔(𝑥𝑥�)‖
≤ −𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄)‖𝑥𝑥�‖2 + 2𝛼𝛼‖𝑁𝑁𝑇𝑇𝑥𝑥�‖‖𝑥𝑥�‖
≤ −𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄)‖𝑥𝑥�‖2 + 2𝛼𝛼𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁)‖𝑥𝑥�‖2 �97�

 

 

To guarantee 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ 0, set 

 

−𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄)‖𝑥𝑥�‖2 + 2𝛼𝛼𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁)‖𝑥𝑥�‖2 ≤ 0 �98� 
 

Then 𝛼𝛼 is solved as 

𝛼𝛼 ≤
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄)

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁) �99� 
 

Next, we solve 𝛾𝛾. We have  
 

∀‖𝑥𝑥�‖ ≤ 𝛾𝛾, ‖𝑔𝑔(𝑥𝑥�)‖2 < 𝛼𝛼‖𝑥𝑥�‖2 �100� 
We know  

𝑔𝑔(𝑥𝑥�) = 𝑓𝑓(𝑥𝑥� + 𝑥𝑥𝑒𝑒) − 𝐴𝐴𝑥𝑥�
= 𝑥̇𝑥 + (𝐽𝐽∗)−1𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒𝑥𝑥�
= 𝑥̇𝑥 − ∇𝑓𝑓(𝑥𝑥)|𝑥𝑥=𝑥𝑥𝑒𝑒𝑥𝑥� �101�

 

 

Denote the elements in the vector 𝑔𝑔(𝑥𝑥�)  by 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘�), 𝑘𝑘 =
1,2, … ,𝑁𝑁 + 𝑀𝑀. The fact is that 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘�) = 0 for variable 𝑥𝑥𝑘𝑘: 𝑥̇𝑥𝑘𝑘 =
𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) if 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) is linear. In the proposed microgrid model, the 
state variables 𝐼𝐼𝑝𝑝𝑝𝑝 , 𝐼𝐼𝑞𝑞𝑞𝑞 , 𝐼𝐼𝑡𝑡𝑡𝑡 , 𝐼𝐼𝑓𝑓𝑓𝑓 ,𝑉𝑉𝐶𝐶𝐶𝐶  (𝑖𝑖 = 1,2, … ,𝑁𝑁, 𝑗𝑗 = 1,2, … ,𝑀𝑀) 
are under this situation. Moreover, 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘�) ≠ 0  for variables 
𝑉𝑉𝐿𝐿𝐿𝐿  (𝑗𝑗 = 1,2, … ,𝑀𝑀)  because these state variables involve 
nonlinear dynamic functions. Considering that 

𝑉𝑉𝐿𝐿𝐿𝐿̇ = 𝑓𝑓𝑘𝑘(𝑥𝑥) = 1
𝐶𝐶𝑓𝑓𝑓𝑓

(𝑖𝑖𝑓𝑓𝑓𝑓 −
𝑃𝑃𝐿𝐿𝐿𝐿
𝑉𝑉𝐿𝐿𝐿𝐿

) �102�

Then we can calculate 𝑔𝑔𝑘𝑘�𝑉𝑉𝐿𝐿𝐿𝐿�� as follows: 
 

𝑔𝑔𝑘𝑘�𝑉𝑉𝐿𝐿𝐿𝐿��  = 𝑉𝑉𝐿𝐿𝐿𝐿̇ − ∇𝑓𝑓𝑘𝑘(𝑥𝑥)|𝑉𝑉𝐿𝐿𝐿𝐿=𝑉𝑉𝐿𝐿𝐿𝐿∗ ∙ 𝑥𝑥�

= −
𝑃𝑃𝐿𝐿𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿�

2

(𝑉𝑉𝐿𝐿𝐿𝐿∗ + 𝑉𝑉𝐿𝐿𝐿𝐿� )𝐶𝐶𝑓𝑓𝑓𝑓(𝑉𝑉𝐿𝐿𝐿𝐿
∗)2

�103�
 

 

where 𝑉𝑉𝐿𝐿𝐿𝐿∗ is the steady-state voltage of 𝑉𝑉𝐿𝐿𝐿𝐿.  
 
Next, we solve 

‖𝑔𝑔(𝑥𝑥�)‖2 < 𝛼𝛼‖𝑥𝑥�‖2 �104� 
 

A sufficient condition of the above inequality is as follows: 
�𝑔𝑔𝑘𝑘�𝑉𝑉𝐿𝐿𝐿𝐿�� �

2
< 𝛼𝛼�𝑉𝑉𝐿𝐿𝐿𝐿��

2
, ∀𝑗𝑗 = 1,2, … ,𝑀𝑀 �105� 

Solving this expression, we obtain that 

𝑉𝑉𝐿𝐿𝐿𝐿� =
𝑉𝑉𝐿𝐿𝐿𝐿∗(−𝑌𝑌𝑗𝑗 ± �𝑌𝑌𝑗𝑗)

𝑌𝑌𝑗𝑗 − 1
,∀𝑗𝑗 = 1 …𝑀𝑀 �106� 

where  

𝑌𝑌𝑗𝑗 = 𝛼𝛼2(
𝐶𝐶𝑓𝑓𝑓𝑓
𝑃𝑃𝐿𝐿𝐿𝐿

)2(𝑉𝑉𝐿𝐿𝐿𝐿∗)4 �107� 

It is worth mentioning that we need to ensure that 𝑌𝑌𝑗𝑗 < 1, which 
can be realized by tuning 𝛼𝛼. Then 𝛾𝛾 is solved from its definition: 

𝛾𝛾 = min
𝑗𝑗∈{1,2,…,𝑀𝑀}

𝑉𝑉𝐿𝐿𝐿𝐿∗(𝑌𝑌𝑗𝑗 − �𝑌𝑌𝑗𝑗)
𝑌𝑌𝑗𝑗 − 1

�108� 
 

Then the ROA is estimated as the set Ω𝑐𝑐 = {𝑥𝑥 ∈ ℛ𝑛𝑛, 𝐿𝐿(𝑥𝑥) ≤ 𝑐𝑐}, 
where 

𝑐𝑐 ≜ min
‖𝑥𝑥�‖2=𝛾𝛾

𝑥𝑥𝑇𝑇𝑁𝑁𝑁𝑁 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁)𝛾𝛾2 �109� 
 

𝑁𝑁 = 𝐻𝐻(𝑃𝑃∗)|𝑥𝑥=𝑥𝑥𝑒𝑒 . The optimization problem can be solved by a 
quadratic programming (QP) solver. 
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