

1 **Arctic open-water periods are projected to lengthen dramatically by 2100**

2 Alex Crawford^{*1}, Julienne Stroeve^{1,2,3}, Abigail Smith⁴, Alexandra Jahn⁴

3 ¹Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB, Canada

4 ²Department of Earth Sciences, University College London, London, UK

5 ³National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Science,

6 University of Colorado, Boulder, USA

7 ⁴ Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research,

8 University of Colorado, Boulder, USA

9

10 [*alex.crawford@umanitoba.ca](mailto:alex.crawford@umanitoba.ca)

11

An edited and typeset version of this paper was published by Communications Earth & Environment and is available at: <https://www.nature.com/articles/s43247-021-00183-x>

Citation: Crawford, A., Stroeve, J., Smith, A. and Jahn, A. Arctic open-water periods are projected to lengthen dramatically by 2100. *Commun Earth Environ* 2, 109 (2021). <https://doi.org/10.1038/s43247-021-00183-x>

12 **Abstract**

13 **The shrinking of Arctic-wide September sea ice extent is often cited as an indicator of**
14 **modern climate change; however, the timing of seasonal sea ice retreat/advance and the**
15 **length of the open-water period are often more relevant to stakeholders working at regional**
16 **and local scales. Here we highlight changes in regional open-water periods at multiple warming**
17 **thresholds. We show that, in the latest generation of models from the Coupled Model**
18 **Intercomparison Project (CMIP6), the open-water period lengthens by 63 days on average with**
19 **2°C of global warming above the 1850-1900 average, and by over 90 days in several Arctic seas.**
20 **Nearly the entire Arctic, including the Transpolar Sea Route, has at least 3 months of open**
21 **water per year with 3.5°C warming, and at least 6 months with 5°C warming. Model bias**
22 **compared to satellite data suggests that even such dramatic projections may be conservative.**

23

24 **Introduction**

25 Rapid decline of Arctic sea ice extent in the late 20th century was an early signal that
26 anthropogenic climate change was not just a future likelihood but a present reality^{1,2}. Exceptional
27 decreases have continued in both sea ice extent^{3,4} and thickness⁵, and model projections of the
28 future suggest frequent ice-free Septembers with 2°C of warming from pre-industrial conditions^{6–}
29 ⁸, or by the middle of the 21st century^{9–12}. Ice-free Septembers are less likely but still possible
30 even under a 1.5°C warming scenario^{7,8,11}. Pan-Arctic September sea ice extent is a useful long-
31 term climate indicator; however, regional variability is large¹⁰, and regional and local sea ice
32 conditions are often most relevant for specific stakeholders in the Arctic^{13–15}. At these scales, the
33 length of the seasonal open-water period has major implications for phytoplankton

34 productivity^{16,17}, coastal erosion¹⁸, hunting and fishing^{13,19}, marine shipping^{14,15}, and tourism²⁰.
35 The timing of sea ice retreat and advance, more particularly, also have important implications.
36 For example, the most intense Arctic storms occur November to February²¹, so delayed sea ice
37 advance exacerbates ocean swell¹⁸.

38 Since 1979, the open-water period has increased in nearly every region of the Arctic
39 Ocean, due both to earlier retreat and later advance^{22–25}. In the Pacific-side Arctic, the trend
40 toward later advance outpaces the trend toward earlier retreat^{25–27}. The larger change in ice
41 advance is a result of more ocean heat-uptake in summer as a result of earlier formation of open
42 water, which in turn delays fall advance^{28–30}. However, in other regions (e.g., Hudson Bay) the
43 trend toward earlier retreat day drives observed lengthening of the open-water period²⁵.

44 A few studies have examined future projections of open-water periods using previous
45 intercomparison of global climate models (CMIP5), but only under a high-emissions scenario
46 (RCP8.5). These simulations show that the lengthening of the projected pan-Arctic open-water
47 period through 2200 is dominated by later ice advance³⁰. Under RCP8.5 in one CMIP5 model (the
48 Community Earth System Model), the open-water period exceeds 6 months a year by 2100
49 throughout most of the Arctic Ocean, including the Transpolar Sea Route³¹. However, the impacts
50 of warming lower than projected under RCP8.5 (i.e., below 4°C³²) have not been assessed,
51 although they are highly relevant given the Paris Agreement goal of limiting warming to less than
52 2°C³³, which is much less than achieved under RCP8.5 by 2100 (**Supplementary Figure 1**). To
53 address this gap, we here provide stakeholder relevant projections of open-water periods for 15
54 Arctic regions as well as the Northern Sea Route and the Transpolar Sea Route. The open-water
55 period is assessed in terms of both time and global temperature anomalies (e.g., 1.5°C and 2°C)

56 using output from CMIP6 models forced by low, medium and high emissions scenarios (SSP126,
57 SSP245, and SSP585). This assessment aims to provide guidance and future projections of the
58 open-water period (and the timing of sea ice retreat and advance) at multiple spatial scales and
59 temperature thresholds. If and when we reach those thresholds depends on the choices that we
60 make today.

61 **Results**

62 **Comparison of CMIP6 Models to Satellite Record.** For this study, sea ice retreat day is defined
63 as the last time sea ice concentration (SIC) falls below 15% before reaching its minimum annual
64 value. Advance day is the first time after the minimum that SIC rises above 15%. The time
65 between retreat and advance is the open-water period.²⁴ To assess the robustness of future
66 projections of the open-water period, we first evaluate how well CMIP6 models capture its
67 historical average, trend, and sensitivity to temperature. The pan-Arctic multi-model mean of the
68 average open-water period is nearly identical to the observational mean (**Figure 1a**). However,
69 several models underestimate the length of the open-water period, indicated by lying beyond
70 the X's that mark the uncertainty range around the observational mean. This range is calculated
71 by combining the average internal variability in the models with the uncertainty in the
72 observations (Equations 1-4). Internal variability for each of the 19 models with at least three
73 simulations is plotted as gray shading centered on the observational mean.

74 Examining each region, underestimation of the open-water period is most prevalent in
75 the Greenland and Barents seas, which have long open-water periods and together comprise 20%
76 of the study area. By contrast, overestimation is more common in the Gulf of St. Lawrence,
77 Canadian Arctic Archipelago, Beaufort Sea, Chukchi Sea, Kara Sea, and Hudson Bay (34% of the

78 study area altogether). This is consistent with Smith et al.³⁴, who reported mean open-water
79 periods were overestimated for the area north of 66°N in a subset of CMIP6 models. Altogether,
80 a good match exists between models and observations for the pan-Arctic mean, but this occurs
81 in part because of compensating biases in different regions, highlighting the importance of
82 regional analysis.

83 Figure 1d shows what percentage of each region is open before the first day of the given
84 month. The later the average retreat day is in a region, the smaller the percentage will be. This
85 metric is better than using the average retreat day because the retreat day is an invalid quantity
86 if SIC is always above or always below 15% for the entire year. Especially with climate change,
87 the size of the area in each region that has valid retreat days each year changes, which can mask
88 trends. Taking the percentage of each region open before a given date avoids this issue. If sea ice
89 retreat is biased early in a model, the retreat percentage will be overestimated, and the model
90 will lie above the uncertainty range. If sea ice retreat is biased late, the retreat percentage will
91 be underestimated.

92 In general agreement with previous analysis³⁴, bias resulting in excessively long open-
93 water periods always occurs because of sea ice retreat occurring too early in the multi-model
94 mean, and sometimes also advance occurring too late (Figure 1d-e). Specifically, Hudson Bay, the
95 Gulf of St. Lawrence, and the Beaufort Sea exhibit both biases; the Kara Sea and Canadian Arctic
96 Archipelago only exhibit too early retreat. The only case of sea ice retreat occurring too late is in
97 the Sea of Okhotsk. This partially compensates for the bias in other regions, so pan-Arctic retreat
98 shows less consistent bias than the area poleward of 66°N described by Smith et al.³⁴ No region
99 exhibits a multi-model mean biased toward too early advance.

100 The historical trend (1979-2013) in open-water period (Figure 1b) and the sensitivity of
101 open-water period to pan-Arctic temperature anomalies (Figure 1c) show substantial internal
102 variability in model ensembles, making the uncertainty range around the observations relatively
103 large. Therefore, although the trend and temperature sensitivity are higher for observations than
104 the multi-model mean in nearly every region (the Bering Sea being a notable exception), the
105 multi-model mean is within the observational uncertainty range for all regions. In other words,
106 discrepancies between models and observations could be explained by internal variability.
107 However, especially for temperature sensitivity, there are many more cases of models falling
108 below the uncertainty range than above, suggesting that the open-water period in some CMIP6
109 models may not be sensitive enough to warming.

110 The multi-model mean of the metrics used for regional retreat and advance of sea ice
111 similarly show stronger trends and temperature sensitivity for observations than for the multi-
112 model mean (Figure 1f-i). In several regions, this discrepancy cannot be explained by internal
113 variability. Sensitivity to pan-Arctic warming is too low in the multi-model mean for both retreat
114 and advance in the Laptev Sea. For Hudson Bay and the Chukchi, East Siberian, and Beaufort seas,
115 sensitivity to pan-Arctic warming is only too low for sea ice advance. Overall, more bias exists in
116 the temperature sensitivity than in the trends, which is consistent with how some models that
117 overestimate warming better match the observed trend in September sea ice extent^{35,36}. Because
118 there are no compensating biases in other regions (i.e., nowhere is the sensitivity to pan-Arctic
119 warming overestimated by the multi-model mean), low sensitivity is more likely caused by a bias
120 in energy transfer between the atmosphere and ice/ocean surface than a bias in dynamics.

121 Because of the positive feedback between sea ice concentration, albedo, and ocean heat-
122 uptake, earlier ice retreat is typically followed by later ice advance²⁴. Past studies have found that
123 this feedback amplifies the trend toward later advance, leading to a stronger change in advance
124 day than retreat day in observations^{24,26} and CMIP5 models^{27,30}. It would be logical, then, if the
125 temperature sensitivity of sea ice advance in Hudson Bay and the Chukchi, East Siberian, and
126 Beaufort seas stemmed from these positive feedbacks being too weak. However, compared to
127 observations, CMIP6 models yield similar or stronger correlations between de-trended sea ice
128 retreat day and advance day (1979-2013; **Supplementary Figure 2**), consistent with a strong ice-
129 albedo feedback. The four regions in question are no exception.

130 These results have focused on an open-water period defined by retreat and advance
131 relative to 15% SIC. Using 80% as the SIC threshold yields longer open-water periods, but results
132 are otherwise comparable to using a 15% SIC threshold for most regions (**Supplementary Figures**
133 **3-6**). Hudson Bay is the clear exception. Although the open-water period is too long for Hudson
134 Bay in nearly every model when using 15% (Figure 1a), the multi-model mean is well within the
135 observational uncertainty range using 80% (Supplementary Figure 3). In other words, for several
136 models, opening in Hudson Bay begins at a reasonable time, but the ice-loss period is too rapid.

137
138 **Projections of Future Open-Water Period.** The rate of increase in open-water period is
139 comparable for all three emissions scenarios until the 2040s (**Figure 2**), when the rate of change
140 declines in SSP126 (blue), persists in SSP245 (orange), and accelerates in SSP585 (red). The most
141 southerly regions (Sea of Okhotsk, Bering Sea, Gulf of St. Lawrence, and Labrador Sea) become
142 ice-free year-round by the end of the century in SSP585, and some models also show the

143 Greenland and Barents seas reach 365 days of open water for all grid cells by 2100. Winter sea
144 ice still forms in all regions except the Gulf of St. Lawrence in SSP126. The absence of sea ice in
145 this region for SSP126 may not be credible, though, since the multi-model mean open-water
146 period is biased high for 1979-2013.

147 The Kara, Laptev, East Siberian, Chukchi, and Beaufort seas all experience dramatic ice
148 cover changes from 1950 to 2100: going from about 2-3 months to 9-10 months of open water
149 in SSP585. Changes in SSP126 are much less dramatic: up to 4-5 months in the Kara, Laptev, and
150 East Siberian Seas and 6 months in the Chukchi and Beaufort Seas by 2100. At least for the
151 Chukchi Sea, this represents faster change in CMIP6 than CMIP5. The mean SSP585 trend for the
152 Chukchi Sea is $+1.66 \pm 0.22$ days yr^{-1} from 2015-2044, which is about twice as fast as in the subset
153 of CMIP5 models used by Wang et al.²⁷ under the similar RCP8.5 scenario. Another area
154 undergoing dramatic changes is the central Arctic Ocean, which had mostly perennial ice cover
155 in the historical experiments, but by 2100, has up to 3 months (SSP126) or nearly 8 months
156 (SSP585) of open-water conditions on average. The open-water period in Hudson Bay extends to
157 over 10 months per year by 2100 under SSP585. Since the multi-model mean overestimates
158 Hudson Bay open-water periods by about a month (34 days; Figure 1a), a more realistic
159 estimate may be exceeding 9 months by 2100. However, since Hudson Bay exhibits a better
160 match between CMIP6 models and observations using 80% SIC instead of 15% (Supplemental
161 Figure 3a), the 11-month open-water period below 80% SIC by 2100 under SSP585 (Supplemental
162 Figure 4c) is likely reasonable.

163 Trends in open-water period incur errors both from errors in sensitivity of open-water
164 period to warming and errors in sensitivity of temperature to emissions. Comparing the length

165 of the open-water period to global temperature anomalies of 0°C and 2°C relative to 1850-1900
166 (**Figure 3a**) eliminates the error source related to the sensitivity of temperature to emissions and
167 is independent of emissions scenario (**Supplementary Figure 7**). Additionally, average global
168 warming by 2100 in the aggressive emission-reduction scenario (SSP126) for these models is
169 exactly 2.0°C. With 2°C of warming, the open-water period increases on average by about 2
170 months (63 days) overall, with the greatest changes in the Barents (123 days), Chukchi (99), Kara
171 (99), and East Siberian (92) seas. With about half of the 2°C of warming having occurred by 2013,
172 it is unsurprising that these are also the fastest-changing seas during the satellite record. From
173 1979-2016, the Barents Sea was the greatest contributor to sea ice area loss in every month from
174 November through March, and the Kara, Chukchi, and East Siberian seas were the three greatest
175 contributors to September sea ice loss⁴. Major change is also apparent in the central Arctic
176 Ocean. This region exhibits a relatively moderate increase in open-water period (56 days), but
177 that is compared to nearly ubiquitous permanent ice cover in the late 20th century.

178 The increase in open-water period results from both earlier sea ice retreat (**Figure 3b**) and
179 later sea ice advance (**Figure 3c**). Overall, the percentage of grid cells experiencing retreat before
180 July 1 goes from 44% to 61%, and the percentage experiencing advance after October 31 goes
181 from 49% to 74%. Greater change in advance than retreat is consistent with observations^{24,26},
182 CMIP5^{27,30,31}, and our understanding of the ice-albedo feedback^{22,24,37}. The greatest amplification
183 of changing advance compared to changing retreat in CMIP6 is in the Kara and Chukchi seas
184 (**Supplementary Figure 8**). Based on observed trends, these two seas have been projected as the
185 most likely to transition to having permanent open water areas next (after the Barents Sea).⁴

186 Maps of the year or temperature threshold at which the open-water period will exceed
187 90, 180, or 270 days (**Figure 4**) highlight how continued warming will increase accessibility of
188 shipping routes crossing multiple regions. The Northern Sea Route has two choke points (at
189 Severnaya Zemlya and the New Siberian Islands) that open for over 90 days on average above
190 3.0°C of warming from 1850-1900 levels. With 3.5°C of warming, almost all of the Arctic Ocean
191 (and therefore the Transpolar Sea Route) has a 90-day open-water period (Figure 4j), with only
192 parts of the Canadian Arctic Archipelago and north of Greenland being open for less time. When
193 this occurs consistently (at least 5 years in a row) depends strongly on the emissions scenario: by
194 2070 in SSP585, by 2090 in SSP245, and not at all before 2100 in SSP126. This is comparable to
195 past work showing ice-free conditions (average SIC < 15%) for August-October in the central
196 Arctic Ocean by 2050 in the multi-model mean under SSP585 but stabilizing not before 2100 in
197 SSP126.¹⁰

198 The CMIP6 multi-mean shows 2085 as the first year that the average open-water period
199 north of 80°N regularly exceeds 180 days under the SSP585 scenario. This is similar to results
200 from the Community Earth System Model³⁸ under the RCP8.5 scenario, for which the central
201 Arctic Ocean is open for over 180 days by 2100³¹. Here we show that this occurs only with 5.0°C
202 of warming (Figure 4k), and so is avoided in the twenty-first century with SSP245 or SSP126. In
203 the CMIP6 models, open-water periods exceed 270 days for the Bering Sea, most of Hudson Bay,
204 and even part of the Kara Sea at 4.5°C of warming. The entire Chukchi Sea becomes open for at
205 least 270 days with 5.5°C. However, even under the strongest warming scenario, places like Baffin
206 Bay, the Laptev Sea, and the Beaufort Sea maintain over three months of sea ice cover beyond

207 2100 (Figure 4i). Under SSP126, those same regions still have sea ice for over half the year in 2100
208 (Figure 4b). This is consistent with using monthly SIC instead of the open-water period¹⁰.

209

210 **Discussion and Conclusions**

211 CMIP6 models exhibit some bias in the average open-water period in a few regions; for
212 example, models exhibit an open-water period that is generally too long in Hudson Bay and too
213 short in the Barents Sea. Because these biases roughly cancel out, they are obscured in the pan-
214 Arctic average, which is more consistent with observations. The temperature sensitivity of the
215 open-water period is higher in observations than the multi-model mean for most regions (but
216 not the Bering Sea). However, this can largely be explained by internal variability for many
217 models. This is similar to results for pan-Arctic sea ice extent and area^{6,11,39} and regional monthly
218 SIC¹⁰. Since there are no simulations for which the average or temperature sensitivity of open-
219 water period falls within the uncertainty range for every region (**Supplementary Figure 9**), no
220 attempt was made here to examine a subset of high-performing models.

221 The CMIP6 multi-model mean matches several important characteristics of the historical
222 open-water period and its response to warming. CMIP6 models correctly show rapid lengthening
223 of the open-water period overall, especially in the Barents Sea (Figure 1)^{22,24,25}. On the Pacific-
224 side of the Arctic Ocean, lengthening has been driven more by later advance than by earlier
225 retreat²⁴⁻²⁶. The ice-albedo/ocean heat-uptake feedback in CMIP6 models is significantly
226 stronger than in observations for some regions (Supplementary Figure 2), and the CMIP6 multi-
227 model mean captures the greater importance of the later advance in driving longer open-water
228 periods (Figure 1). However, temperature sensitivity for sea ice advance is too low in Hudson Bay

229 and several Pacific-side seas, even accounting for the uncertainty from internal variability and
230 satellite retrieval. In other words, the CMIP6 multi-model mean of the open-water period is
231 generally a good match for observations, and the biases that exist may lead to conservative
232 projections of sea ice change for the future.

233 Similar to what has been seen in CMIP5 models^{27,30,31}, the open-water period continues a
234 steady lengthening and becomes months longer during the 21st century (Figure 2), although
235 CMIP6 models show faster change than CMIP5 in some areas (e.g., the Chukchi Sea). Continuing
236 the observed change over the historical period^{25–27}, and similar to projections from the
237 Community Earth System Model Large Ensemble³¹, CMIP6 models show that trends toward later
238 advance outpace trends toward earlier retreat in the future (Figure 3). Under the strong warming
239 scenario, the projected open-water period exceeds 6 months for most of the Arctic by the end of
240 the century (Figures 2 and 4). However, the magnitude of change varies greatly by region.

241 Beyond updating open-water period projections with CMIP6 models, this study refines
242 our projections by assessing the sensitivity of open-water period (and sea ice retreat/advance)
243 to global temperature anomalies. This controls for bias models may have on warming rates^{40,41}.
244 Moreover, warming rates dictate the rate of change for open-water period. For example, the
245 timing of divergence in open-water period in the emissions scenarios (Figure 2) aligns with the
246 timing of divergence in global temperature (Supplementary Figure 1). On average for the study
247 area, an increase of 2°C from 1850-1900 increases the open-water period by 2 months (Figure 3).
248 At 1.5°C of warming, the increase is about 1.5 months (**Supplementary Figure 10**). Regional
249 assessments also refine our understanding. For example, the lengthening open-water period with

250 2°C warming is greater for the Beaufort, Chukchi, East Siberian, and Kara Seas (3.0-3.5 months)
251 and greatest for the Barents Sea (4 months).

252 The opening of the Transpolar Sea Route (SIC < 15%) for over 90 days with 3.5°C of
253 warming and over 180 days with 5.0°C (Figure 4) will benefit commercial shipping^{20,42}. Similar
254 benefits to shipping will also occur in Hudson Bay and Hudson Strait^{15,20}, with over 180 days of
255 open water with 1.5°C of warming and over 270 days with 5.0°C. However, benefits of a longer
256 open water period will be countered by costs related to issues such as coastal erosion¹⁸ and
257 disruption of hunting and fishing practices^{13,19}. For example, loss of winter sea ice in the Gulf of
258 St. Lawrence will force northward migration of harp seals and hooded seals, which require pack
259 ice for pupping^{43,44}. Most CMIP6 models project open water year-round in the Gulf of St.
260 Lawrence with even 1.5°C of warming. The dramatic increase of the open-water period in the
261 Chukchi and Beaufort Seas will likewise lead to major disruptions of ecosystems and social
262 systems, including for subsistence whaling^{45,46} and hunting of walrus⁴⁷. Many of the changes
263 reported here will occur even if warming is limited to 2°C. However, the most dramatic changes
264 (e.g., opening of Transpolar Sea Route for 90 or 180 days) will only occur with greater levels of
265 warming (e.g., 3.5°C or 5.0°C). If and when these larger changes occur depends on the future of
266 global emissions.

267

268 **Methods**

269 **Datasets.** Sea ice concentration (SIC) and temperature data were downloaded^{48,49} from four
270 CMIP6 experiments: historical, SSP126, SSP245, and SSP585. Monthly surface air temperature
271 ('tas') was downloaded for all models. For SIC, the 'siconc' variable (on the ocean grid) was used

272 when possible; ‘siconca’ (on the atmospheric grid) was used for UKESM1-0-LL. Most of the
273 analyses in this study involve spatial averaging, so regridding is unnecessary except for figures
274 involving maps of the multi-model mean (e.g., Figure 4). In those cases, bilinear interpolation to
275 a Lambert Azimuthal Equal-Area grid is employed.

276 One model (CMCC-CM2-SR5) was removed from consideration because of excessively
277 long open-water periods for the historical experiment (**Supplementary Figure 11**). Detection of
278 sea ice retreat and advance dates requires daily observations, so only models with daily output
279 as of May 2020 were included. Additionally, only model simulations that had daily SIC for the
280 period 1950-2014 (historical) and 2015-2100 (emissions scenarios) were included. In total, 21
281 models were used, ranging from 69 to 192 simulations, depending on the experiment
282 (**Supplementary Table 1**). Six additional models (**Supplementary Table 2**) include daily SIC only
283 for the historical experiment. Using all 27 models to assess bias (**Supplementary Figure 12**) yields
284 only minor differences compared to Figure 1. Many CMIP6 model are submitted with multiple
285 simulations, but the number of simulations differs. To provide equal weight to all models, the
286 multi-model means are always calculated from the first simulation of each model (usually
287 denoted as ‘realization 1’ or ‘r1’).

288 To test for bias in CMIP6 models, results are compared to three observational sea ice data
289 sets and four observational temperature records. Multiple observational datasets are used
290 because of significant differences between products⁵⁰. Daily SIC for the period of overlap
291 between the modern satellite record and historical CMIP6 simulations (1979-2014) was acquired
292 from the Bootstrap^{51,52}, NASA-Team^{53,54}, and OSI SAF^{55,56} datasets. Linear interpolation through
293 time is used to fill in missing days at the beginning of the record (1979-1987). The pole hole for

294 NASA-Team and Bootstrap algorithms is filled using the average SIC in the ring of grid cells within
295 1° latitude of the pole hole edge. The OSI SAF product already has a filled pole hole. Monthly
296 temperature observations for the historical period were obtained from Berkeley Earth (1850-
297 2014)⁵⁷, GISTemp v4 (1880-2014)^{58,59}, HadCRUT4.6.0.0 (1850-2014)⁶⁰ and NOAAGlobalTemp v5
298 (1880-2014)^{61,62}.

299

300 **Open-Water Period Calculation.** As in several past studies^{24,25,34} the open-water period for a
301 given SIC threshold is defined as the continuous period between the last SIC observation above
302 that threshold prior to the day of annual minimum SIC (hereafter “retreat day”) and the first SIC
303 observation above that threshold after the annual minimum (hereafter “advance day”). The
304 annual minimum day is defined as the median of all days August-October that equal the minimum
305 SIC for the year. Having multiple days equal to the SIC minimum is most common for grid cells
306 that have a long period of 0% SIC in summer. Following Stroeve et al.²⁴, a 5-day moving average
307 is applied to the daily SIC time series at each grid cell prior to detection of the open-water period
308 to reduce the impact of short-term SIC fluctuations.

309 The only modification from the Stroeve et al.²⁴ method is our definition of the sea ice
310 year. Since Arctic sea ice reaches its maximum extent every March, most studies^{24,25,34} of sea ice
311 retreat and advance in the Arctic identify sea ice retreat for a given year (e.g., 2001) as occurring
312 sometime after March 1 (e.g., after 1 March 2001) and sea ice advance as occurring before March
313 1 of the following year (e.g., before 1 March 2002). In this study, we define the sea ice year as
314 starting on the median of all days January-April for which SIC equals the maximum SIC for that
315 period. A dynamic start day is employed because a common start and end day for each year (e.g.,

316 March 1) can lead to underestimation of open-water periods for grid cells at the edge of the
317 winter sea ice pack²⁷. The retreat day always occurs between the maximum day and minimum
318 day of the same year, and the advance day always occurs between the minimum day and the
319 subsequent year's maximum day. It is possible for individual years to have open-water periods in
320 excess of 365 (or 366) days in grid cells at the fringes of the sea ice pack in winter; however, the
321 average open-water period will approach a number less than or equal to 365 (or 365.25) days as
322 the averaging period increases since each day can only be assigned to one open-water period.

323 The concept of “open-water period” can range from predominantly ice-covered with
324 some open water (e.g., SIC = 80%) to nearly ice-free conditions (e.g., SIC = 15%). For example,
325 Peng et al.⁶³ used the 15% and 80% SIC thresholds to define an “inner” and “outer” ice-free
326 period, respectively. Smith et al.³⁴ also used 80% as the “outer ice-free period” but called 15%
327 the “open period”. We highlight 15% here because of its frequent use^{30,31,64} and suitability for
328 transit by open-water vessels⁶⁵. Results for 80% show longer open-water periods but similar
329 biases, trends, and sensitivity to temperature (Supplementary Figures 3-5).

330

331 **Bias Assessment.** Comparison of historical simulations in CMIP6 to observations is based on the
332 SIMIP Community¹¹ methodology. All multi-model means are calculated from the first simulation
333 of each model. Uncertainty arising from internal variability (σ_{cmip6}) is calculated by taking the
334 average standard deviation (σ_m ; Equation 1) for all models with an ensemble of at least three
335 simulations for the historical experiment. For each model m with n simulations, σ_m is calculated
336 as the standard deviation (s ; Equation 2) across all simulations adjusted by the scale mean of the
337 chi distribution with $n - 1$ degrees of freedom ($c_4(n)$; Equation 3), where x_i is the value for each

338 simulation of that model, \bar{x}_m is the mean for that model's ensemble, and Γ represents the gamma
339 function.

340
$$\sigma_m = \frac{s}{c_4(n)} \quad (1)$$

341
$$s = \sqrt{\frac{\sum(x_i - \bar{x}_m)^2}{n-1}} \quad (2)$$

342
$$c_4(n) = \sqrt{\frac{2}{n-1}} \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})} \quad (3)$$

343

344 An adjusted standard deviation is used because of the small sample size ($n \geq 3$). Observational
345 uncertainty (σ_{obs}) is calculated as the range of all observational datasets. Plausible simulations
346 are those within the range

347
$$\bar{x}_{obs} \pm 2\sqrt{\sigma_{cmip6}^2 + \sigma_{obs}^2} \quad (4)$$

348 where \bar{x}_{obs} and σ_{obs} are the mean and standard deviation of the observational datasets.
349 Averages, trends and temperature sensitivity are compared for the overlap period of 1979-2013.
350 Because annual retreat and advance of sea ice requires several months from the subsequent
351 year, a full open-water period cannot be computed for 2014 in the historical simulations or for
352 2100 in the emissions scenarios.

353

354 **Comparing Sea Ice to Temperature.** Following the Intergovernmental Panel on Climate Change⁶⁶,
355 the baseline period for calculating temperature anomalies is 1850-1900. All CMIP6 models have
356 temperature data for this period; however, two of the observational temperature records
357 (NOAAGlobalTemp and GISTemp) only go back to 1880. The linear relationship between the

358 average of these two records and the average of the Berkeley Earth and HadCRUT records for the
359 period 1880-2014 is used to extrapolate back to 1850. This decreases the 1850-1900
360 observational mean by 0.018°C compared to using the Berkeley and HadCRUT records alone. Sea
361 ice variables are computed for global temperature anomalies (e.g., 0°C and 2°C) using the
362 sensitivity of each variable to temperature ($\Delta X / \Delta T$) for the given model and experiment.

363 Creating a time series of area-weighted spatial averages of the open-water period for
364 fifteen regions (defined in **Supplementary Figure 13**) is straightforward. However, retreat day
365 and advance day are invalid for years when SIC is always above or always below the SIC threshold.
366 Past studies have variably assigned a default value to such cases⁶⁷, excluded grid cells that lack a
367 clear retreat/advance cycle for a sufficient percentage of years^{23,30}, worked with grid-cell-specific
368 anomalies instead⁶³, or examined histograms for each region rather than a regional average³⁴.
369 For examining a long period of strong external forcing like 1850-2100, these methods may
370 produce results that are biased by the changing spatial domain of seasonal sea ice. For example,
371 if a grid cell has 300 days of open water in 1850, but by 2100 it is permanently open water, that
372 grid cell will have no valid retreat or advance day in 2100. If such grid cells are included in spatial
373 averaging only when valid, or if non-valid years are filled with a constant value, trends may be
374 biased as a result. If such grid cells are omitted from analysis, the study area shrinks to only grid
375 cells that have a maximum SIC above 15% and a minimum SIC 15% in every year 1850-2100,
376 which makes the study area vanishingly small for SSP585.

377 Therefore, we aggregate for retreat day by calculating the percentage of area in a region
378 for which sea ice is either always below 15% or falls below 15% by a certain date. For advance,
379 this is the percentage of area in a region for which sea ice is either never above 15% or rises

380 above 15% after a certain date. This method is better for long-term analysis because the
381 averaging domain never changes. For each region, benchmark dates were chosen as the closest
382 first and last day of a month to the median retreat and advance day, respectively, for a SIC
383 threshold of 50% during 1979-2013. This method minimizes cases with 0% or 100% of grid cells
384 meeting the retreat or advance criteria for any region and any SIC threshold ranging from 15% to
385 80%.

386

387 **Acknowledgements**

388 J. Stroeve and A. Crawford acknowledge funding support from the Canada Research Chairs
389 Program (Canada 150) and NSERC RGPIN-2020-05689. A. Smith acknowledges support from the
390 Future Investigators in NASA Earth and Space Science and Technology Grant 80NSSC19K1324 and
391 the NSF Graduate Research Fellowship (grant no. DGE 1144083). A. Jahn acknowledges support
392 from NSF-award 1847398. This research supports the Climate and Cryosphere (CliC) endorsed
393 CMIP6 diagnostic sea ice model intercomparison project (SIMIP: [http://www.climate-
394 cryosphere.org/mips/simip](http://www.climate-cryosphere.org/mips/simip)).

395

396 **Author Contributions**

397 A.C. acquired and processed data, created figures, and led manuscript writing. J.S. led
398 conceptualization of research questions. A.C., J.S., A.S., and A.J. contributed to forming the
399 research plan, interpreting results, and writing the manuscript.

400

401 **Competing Interests**

402 The authors declare no competing interests.

403

404 **Data Availability**

405 CMIP6 data were downloaded from <https://esgf-node.llnl.gov/search/cmip6/>. Bootstrap, NASA-

406 Team, and OSI SAF sea ice data were downloaded from [https://nsidc.org/data/NSIDC-](https://nsidc.org/data/NSIDC-0079/versions/3)

407 [0079/versions/3](https://nsidc.org/data/NSIDC-0051/versions/1), <https://nsidc.org/data/NSIDC-0051/versions/1>, and [http://www.osi-](http://www.osi-saf.org/?q=content/global-sea-ice-concentration-climate-data-record-smmrssmissmis)

408 [saf.org/?q=content/global-sea-ice-concentration-climate-data-record-smmrssmissmis](http://www.osi-saf.org/?q=content/global-sea-ice-concentration-climate-data-record-smmrssmissmis),

409 respectively. Berkley Earth, GISTemp v4, HadCRUT4.6.0.0, and NOAAGlobalTemp v5.0.0

410 temperature data were downloaded from <http://berkeleyearth.org/data-new/>,

411 <https://data.giss.nasa.gov/gistemp/>, <https://www.metoffice.gov.uk/hadobs/hadcrut4/>,

412 <https://www.ncei.noaa.gov/thredds/catalog/noaa-global-temp-v5/catalog.html>, respectively.

413 Results derived from these data sources are available at

414 <https://doi.org/10.6084/m9.figshare.14484816.v1> and

415 <https://doi.org/10.6084/m9.figshare.14484762>.

416

417 **Code Availability**

418 Python and R scripts used to process these datasets are available at [https://doi.org/](https://doi.org/10.5281/zenodo.4730450)

419 [10.5281/zenodo.4730450](https://doi.org/10.5281/zenodo.4730450). CMIP6 data were downloaded using version 1.2.0 of Thiago

420 Loureiro's CMIP6 downloader (<http://doi.org/10.5281/zenodo.3966556>).

421

422 **References**

423 1. IPCC. *Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third*
424 *Assessment Report of the Intergovernmental Panel on Climate Change*. In (eds. Houghton, et al.)
425 1–881 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001).

426 2. Meier, W. N., Stroeve, J. & Fetterer, F. Whither Arctic sea ice? A clear signal of decline
427 regionally, seasonally and extending beyond the satellite record. *Annals of Glaciology* **46**, 428–
428 434 (2007).

429 3. Stroeve, J. C. *et al.* The Arctic's rapidly shrinking sea ice cover: a research synthesis. *Climatic*
430 *Change* **110**, 1005–1027 (2012).

431 4. Onarheim, I. H., Eldevik, T., Smedsrød, L. H. & Stroeve, J. C. Seasonal and Regional
432 Manifestation of Arctic Sea Ice Loss. *Journal of Climate* **31**, 4917–4932 (2018).

433 5. Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled
434 variability (1958–2018). *Environmental Research Letters* **13**, 105005 (2018).

435 6. Notz, D. & Stroeve, J. The Trajectory Towards a Seasonally Ice-Free Arctic Ocean. *Current*
436 *Climate Change Reports* **4**, 407–416 (2018).

437 7. Jahn, A. Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. *Nat*
438 *Clim Change* **8**, 409–413 (2018).

439 8. Sigmond, M., Fyfe, J. C. & Swart, N. C. Ice-free Arctic projections under the *Paris Agreement*.
440 *Nat Clim Change* **8**, 404–408 (2018).

441 9. Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years? *Geophysical*
442 *Research Letters* **36**, L07502 (2009).

443 10. Årthun, M., Onarheim, I. H., Dörr, J. & Eldevik, T. The Seasonal and Regional Transition to an
444 Ice-Free Arctic. *Geophys Res Lett* **48**, e2020GL090825 (2021).

445 11. Community, S. Arctic Sea Ice in CMIP6. *Geophysical Research Letters* **47**, (2020).

446 12. Landrum, L. & Holland, M. M. Extremes become routine in an emerging new Arctic. *Nat Clim
447 Change* **10**, 1108-1115 (2020).

448 13. Laidler, G. J. et al. Travelling and hunting in a changing Arctic: assessing Inuit vulnerability to
449 sea ice change in Igloolik, Nunavut. *Climatic Change* **94**, 363–397 (2008).

450 14. Shibata, H., Izumiyyama, K., Tateyama, K., Enomoto, H. & Takahashi, S. Sea-ice coverage
451 variability on the Northern Sea Routes, 1980–2011. *Annals of Glaciology* **54**, 139–148 (2013).

452 15. Andrews, J., Babb, D. & Barber, D. G. Climate change and sea ice: Shipping in Hudson Bay,
453 Hudson Strait, and Foxe Basin (1980–2016). *Elem Sci Anth*, **6**, 19 (2018).

454 16. Kahru, M., Manzano-Sarabina, M. & Mitchell, B. G. Are phytoplankton blooms occurring
455 earlier in the Arctic. *Global Change Biology* **17**, 1733–1739 (2011).

456 17. Arrigo, K. R. & Dijken, G. L. van. Continued increases in Arctic Ocean primary production.
457 *Progress in Oceanography* **136**, 60–70 (2015).

458 18. Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. *Geophys Res Lett* **38**,
459 L17503 (2011).

460 19. Galappaththi, E. K., Ford, J. D., Bennett, E. M. & Berkes, F. Climate change and community
461 fisheries in the arctic: A case study from Pangnirtung, Canada. *Journal of Environmental
462 Management* **250**, 109534 (2019).

463 20. Wagner, P. M. et al. Sea-ice information and forecast needs for industry maritime
464 stakeholders. *Polar Geography* **43**, 160–187 (2020).

465 21. Simmonds, I. & Rudeva, I. A comparison of tracking methods for extreme cyclones in the
466 Arctic basin. *Tellus A* **66**, 25252 (2014).

467 22. Stammerjohn, S., Massom, R., Rind, D. & Martinson, D. Regions of rapid sea ice change: An
468 inter-hemispheric seasonal comparison. *Geophysical Research Letters* **39**, L06501 (2012).

469 23. Collow, T. W., Wang, W., Kumar, A. & Zhang, J. How well can the observed Arctic sea ice
470 summer retreat and winter advance be represented in the NCEP Climate Forecast System
471 version 2? *Climate Dynamics* **49**, 1651–1663 (2016).

472 24. Stroeve, J. C., Crawford, A. D. & Stammerjohn, S. Using timing of ice retreat to predict timing
473 of fall freeze-up in the Arctic. *Geophysical Research Letters* **43**, 6332–6340 (2016).

474 25. Bliss, A. C., Steele, M., Peng, G., Meier, W. N. & Dickinson, S. Regional variability of Arctic
475 sea ice seasonal change climate indicators from a passive microwave climate data record.
476 *Environmental Research Letters* **14**, 045003 (2019).

477 26. Serreze, M. C., Crawford, A. D., Stroeve, J. C., Barrett, A. P. & Woodgate, R. A. Variability,
478 trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. *Journal of*
479 *Geophysical Research: Oceans* **127**, 7308–7325 (2016).

480 27. Wang, M., Yang, Q., Overland, J. E. & Stabeno, P. Sea-ice cover timing in the Pacific Arctic:
481 The present and projections to mid-century by selected CMIP5 models. *Deep Sea Research Part*
482 *II: Topical Studies in Oceanography* **152**, 22–34 (2018).

483 28. Timmermans, M. L. The impact of stored solar heat on Arctic sea ice growth. *Geophysical*
484 *Research Letters* **42**, 6399–6406 (2015).

485 29. Steele, M. & Dickinson, S. The phenology of Arctic Ocean surface warming. *J Geophys Res*
486 *Oceans* **121**, 6847–6861 (2016).

487 30. Lebrun, M., Vancoppenolle, M., Madec, G. & Massonnet, F. Arctic sea-ice-free season
488 projected to extend into autumn. *The Cryosphere* **13**, 79–96 (2019).

489 31. Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic
490 open water. *Nature Climate Change* **6**, 280–285 (2015).

491 32. Collins, M. et al. Long-term Climate Change: Projections, Commitments and Irreversibility. in
492 (eds. Stocker, T. F. et al.) 1–108 (Cambridge University Press, Cambridge, United Kingdom
493 2013).

494 33. Conference of the Parties, Adoption of the Paris Agreement, Dec. 12, 2015
495 United Nations Doc. FCCC/CP/2015/L.9/Rev/1 (Dec. 12, 2015).

496 34. Smith, A., Jahn, A. & Wang, M. Seasonal transition dates can reveal biases in Arctic sea ice
497 simulations. *The Cryosphere* **14**, 2977–2997 (2020)

498 35. Winton, M. Do Climate Models Underestimate the Sensitivity of Northern Hemisphere Sea
499 Ice Cover? *Journal of Climate* **24**, 3924–3934 (2011).

500 36. Rosenblum, E. & Eisenman, I. Sea Ice Trends in Climate Models Only Accurate in Runs with
501 Biased Global Warming. *Journal of Climate* **30**, 6265–6278 (2017).

502 37. Perovich, D. K. et al. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–
503 2005: Attribution and role in the ice-albedo feedback. *Geophys Res Lett* **34**, L19505 (2007)

504 38. Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: A
505 community resource for studying climate change in the presence of internal climate variability.
506 *Bulletin of the American Meteorological Society* **96**, 1333–1349 (2015).

507 39. England, M., Jahn, A. & Polvani, L. Nonuniform Contribution of Internal Variability to Recent
508 Arctic Sea Ice Loss. *Journal of Climate* **32**, 4039–4053 (2019).

509 40. Mahlstein, I. & Knutti, R. September Arctic sea ice predicted to disappear near 2°C global
510 warming above present. *Journal of Geophysical Research* **117**, D06104 (2012).

511 41. Niederdrenk, A. L. & Notz, D. Arctic Sea Ice in a 1.5°C Warmer World. *Geophysical Research*
512 *Letters* **45**, 1963–1971 (2018).

513 42. Laliberté, F., Howell, S. E. L. & Kushner, P. J. Regional variability of a projected sea ice-free
514 Arctic during the summer months. *Geophys Res Lett* **43**, 256–263 (2016).

515 43. Johnston, D., Friedlaender, A., Torres, L. & Lavigne, D. Variation in sea ice cover on the east
516 coast of Canada from 1969 to 2002: climate variability and implications for harp and hooded
517 seals. *Climate Res* **29**, 209–222 (2005).

518 44. Stenson, G. B. & Hammill, M. O. Can ice breeding seals adapt to habitat loss in a time of
519 climate change? *Ices J Mar Sci* **71**, 1977–1986 (2014).

520 45. Ashjian, C. J. et al. Climate Variability, Oceanography, Bowhead Whale Distribution, and
521 Iñupiat Subsistence Whaling near Barrow, Alaska. *Arctic* **63**, (2010).

522 46. Clarke, J. T., Kennedy, A. S. & Ferguson, M. C. Bowhead and Gray Whale Distributions,
523 Sighting Rates, and Habitat Associations in the Eastern Chukchi Sea, Summer and Fall 2009–15,
524 with a Retrospective Comparison to 1982–91. *Arctic* **69**, 359–377 (2016).

525 47. Jay, C., Fischbach, A. & Kochnev, A. Walrus areas of use in the Chukchi Sea during sparse sea
526 ice cover. *Mar Ecol Prog Ser* **468**, 1–13 (2012).

527 48. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
528 experimental design and organisation. *Geoscientific Model Development Discussions* **8**, 10539–
529 10583 (2015).

530 49. ESGF. The Earth System Grid Federation: An open infrastructure for access to distributed
531 geospatial data. *Future Generation Computer Systems*, **36**, 400-417 (2014)
532 doi:10.1016/j.future.2013.07.002.

533 50. Meier, W. N. & Stewart, J. S. Assessing uncertainties in sea ice extent climate indicators.

534 *Environmental Research Letters* **14**, 035005 (2019).

535 51. Comiso, J. C., Cavalieri, D. J., Parkinson, C. L. & Gloersen, P. Passive microwave algorithms

536 for sea ice concentration: A comparison of two techniques. *Remote Sensing of Environment* **60**,

537 357–384 (1997).

538 52. Comiso, J. C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-

539 SSMIS, Version 3. NASA National Snow and Ice Data Center

540 <https://doi.org/10.5067/7Q8HCCWS4IOR> (2017).

541 53. Cavalieri, D. J., Parkinson, C. L., Gloersen, P. & Zwally, H. Sea Ice Concentrations from

542 Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National

543 Snow and Ice Data Center <https://doi.org/10.5067/8GQ8LZQVL0VL> (1996).

544 54. Markus, T. & Cavalieri, D. J. An enhancement of the NASA Team sea ice algorithm. *IEEE*

545 *Transactions on Geoscience and Remote Sensing* **38**, 1387–1398 (2000).

546 55. OSI SAF. Global Sea Ice Concentration Climate Data Record v2.0 - Multimission, EUMETSAT

547 SAF on Ocean and Sea Ice. EUMETSAT Data Center,

548 http://dx.doi.org/10.15770/EUM_SAFAOI_0008 (2017).

549 56. Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration

550 climate data records. *The Cryosphere* **13**, 49–78 (2019).

551 57. Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S. & Mosher, S. Berkeley Earth Temperature

552 Averaging Process. *Geoinformatics & Geostatistics: An Overview* **1**, doi:10.4172/2327-

553 4581.1000103 (2013).

554 58. Lenssen, N. J. L. et al. Improvements in the GISTEMP Uncertainty Model. *Journal of*

555 *Geophysical Research: Atmospheres* **124**, 6307–6326 (2019).

556 59. GISTEMP Team. GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard

557 Institute for Space Studies <https://data.giss.nasa.gov/gistemp/> (2020).

558 60. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global

559 and regional temperature change using an ensemble of observational estimates: The HadCRUT4

560 data set. *Journal of Geophysical Research* **117**, D08101 (2012).

561 61. Vose, R. S. et al. NOAA’s Merged Land–Ocean Surface Temperature Analysis. *Bulletin of the*

562 *American Meteorological Society* **93**, 1677–1685 (2012).

563 62. Zhang, H.-M., Huang, J., Lawrimore, J. H., Menne, M. J. & Smith, T. M. NOAA Global Surface

564 Temperature Dataset (NOAAGlobalTemp), Version 5.0. NOAA National Centers for

565 Environmental Information <https://doi.org/10.7289/V5FN144H> (2019).

566 63. Peng, G., Steele, M., Bliss, A., Meier, W. & Dickinson, S. Temporal means and variability of

567 Arctic sea ice melt and freeze season climate indicators using a satellite climate data record.

568 *Remote Sensing* **10**, 1328–21 (2018).

569 64. Frey, K. E., Moore, G. W. K., Cooper, L. W. & Grebmeier, J. M. Divergent patterns of recent

570 sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. *Progress*

571 *in Oceanography* **136**, 32–49 (2015).

572 65. Lei, R. et al. Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to

573 2012. *Cold Reg Sci Technol* **119**, 132–144 (2015).

574 66. IPCC. Summary for Policymakers. In (eds. Masson-Delmotte, V., P. et al.) *Global Warming at*

575 *1.5°C* (World Meteorological Organization, Geneva, Switzerland 2018).

576 67. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, D. Trends in Antarctic

577 annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and
578 Southern Annular Mode variability. *Journal of Geophysical Research: Atmospheres* **113**, C03S90
579 (2008).
580

581 **Figure Captions**

582 **Figure 1: Regional comparison of CMIP6 models and observations.** Averages, trends, and
583 sensitivity to pan-Arctic temperature (latitude $\geq 60^{\circ}\text{N}$) are calculated for (a-c) open-water period
584 (d,f,h) the percent of regional area with permanent open water or sea ice retreat before the 1st
585 of the given month, and (e,g,i) the percent of the regional area with permanent open water or
586 sea ice advance after the last day of the given month (more details in Methods section). All
587 calculations are for the overlap period between the historical CMIP6 experiments and the
588 satellite record (1979-2013). The multi-model mean (red dot) is the average of the first simulation
589 for each of 21 models. The gray shading around each observational mean (μ_{obs} ; white dots) is
590 produced by plotting $\mu_{obs} \pm \sigma_m$, where σ_m is the standard deviation of the model's ensemble for
591 each of 19 models with an ensemble of at least 3 simulations. The opacity is set to 1/19, so the
592 darker the shading at a given value, the more models agree that this value is within the range of
593 internal variability. CAO = Central Arctic Ocean and CAA = Canadian Arctic Archipelago.

594

595 **Figure 2: Timeseries of regional open-water period** for fifteen Arctic sea ice regions (a-o) and
596 the pan-Arctic (p). Timeseries include mean satellite observations (black xs) and CMIP6
597 experiments: historical (gray; $n = 27$), SSP585 (red; $n = 20$), SSP245 (orange; $n = 20$), and SSP126
598 (blue; $n = 19$). CMIP6 data is depicted as the multi-model means (solid lines) ± 1 standard
599 deviation (shading). Only the first simulation from each model is used. CAO = Central Arctic Ocean
600 and CAA = Canadian Arctic Archipelago.

601

602

603 **Figure 3: Open-water period at 2°C global warming.** Difference in regional open-water period
604 (a), sea-ice retreat (b), and sea ice advance (c), for global temperature anomalies of 0°C (historical
605 experiments) and 2°C (SSP585) relative to average global temperature for 1850-1900. Units for
606 retreat are the percent of regional area with permanent open water or sea ice retreat before the
607 1st of the given month. Units for advance are the percent of the regional area with permanent
608 open water or sea ice advance after the last day of the given month (more details in Methods
609 section). Boxes represent the interquartile range of the first simulation for each of the 19 models
610 with data for both historical and SSP585 simulations. Central lines indicate the median. Whiskers
611 extend to the lowest and highest points that are within 1.5 times the interquartile range, and
612 dots denote outliers. Each pair of medians is significantly different ($p < 0.05$) using a Wilcoxon
613 signed-rank test.

614

615 **Figure 4: Time and temperature when open-water period exceeds several thresholds.** The year
616 (a-i) and global temperature anomaly (j-l) at which the open-water period exceeds 90 days (left),
617 180 days (center), or 270 days (right) in the CMIP6 multi-model mean. Exceedance year is the
618 first year for which the open-water period exceeds the threshold for the next five years.
619 Temperature anomalies are with respect to 1850-1900 and use the SSP585 experiment.

620