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This paper studies the problem of continuum defor
time-varying communication weights. Quadcopters

agent collision avoidance and follg;
an obstacle-laden environment

®i-quadcopter system (MQS) under
as particles of a deformable body

¢ @ bf n-® simplex. The followers distributed inside
ation by local communication with time varying
ence of the MQS continuum deformation can be
of the MQS continuum deformation by ensuring inter
ent. Therefore, a large-scale MQS can safely deform in
putational cost.
© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

Multi-agent coordination has been an active rgaregfand
has found many applications such as surveilla ation
flight [3,4], traffic coordination and control e m®sions [6],
and cooperative payload transport [7,8], control and
group coordination offer robustness anQ g to failure and
reduces mission cost.

Trad

1.1. Related work

So far researchers hgye
decentralized multi-agen
tual Structure [9],
[17-22]. Virtual
treating agen

a variety of centralized and
tion approaches such as Vir-
[10-16], and Containment Control
e is a centralized coordination approach
of a virtual rigid body. Consensus is the
most common Ygcentilized coordination approach that has been
extensively studi the researchers in the past two decades.
Leader-less [11,23] and leader-follower consensus [10,24], retarded
consensus coordination [14,16], and consensus under fixed and
switching communication topologies [15] have been intensively
studied in the past. Containment control is a leader-follower ap-
proach in which leaders guide the bulk motion and followers ac-
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quire the desired coordination in a decentralized fashion through
local communication. Stability and convergence of containment
control coordination have been studied in [17,18]. Also, contain-
ment control in the presence of communication delay was pre-
sented in [20,21,25]. Leader-follower containment under switching
communication topology is shown in [22]. Finite-time containment
is investigated in [26,27].

Continuum deformation of multi-agent systems is a recent ap-
proach that treats agents/vehicles and particles of a deformable
body. Similar to containment control, continuum deformation is a
leader-follower approach; the bulk motion is guided by leaders and
followers acquire the desired coordination through local communi-
cation in real time. However, continuum deformation characterizes
safety and provides characteristic equations for the followers com-
munication weights. In particular, collision avoidance and follower
containment are guaranteed in a large-scale continuum deforma-
tion coordination while the multi agent system can aggressively
deform in an obstacle-laden environment.

1.2. Contribution

Although existing continuum deformation allows aggressive de-
formation for group coordination in a cluttered environment, fol-
lowers’ communication weights are restricted to be fixed and are
determined based on the initial formation of the agents [7,28].
This will result in a so-called “deformable rigidity” limitation and
limit maneuverability of the group coordination. This paper deals
with the “deformable rigidity” problem by advancing the existing

Science and Technology, https://doi.org/10.1016/j.ast.2021.106843
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continuum deformation coordination approach towards continuum
deformation of multi-vehicle system under a time-varying com-
munication protocol. In particular, we treat a quadcopter team as
particles of a deformable body with time-varying material proper-
ties. By classifying quadcopters as leaders and followers, leaders’
coordination is defined by an affine transformation while follow-
ers acquire the desired coordination through local communication.
As the first contribution of the paper, we will prove stability and
convergence of the quadcopter coordination defined by an affine
transformation with time-varying communication weights. Specif-
ically, we prove that the transient error characterizing deviation
form the global desired trajectory is bounded for every quadcopter
i. The second contribution of this paper is to specify and verify
safety in a decentralized continuum deformation coordination with
time-varying communication. Therefore, a large number of agents
can significantly deform in a geometrically constrained environ-
ment while guaranteeing collision avoidance.

The proposed decentralized time-varying MQS continuum de-
formation can be potentially used for cooperative aerial payload
transport applications in which a quadcopter team robustly carry
a heavy payload in a geometrically-constrained environment. The
interest in using multi-copters for aerial payload transport and
package delivery applications [7] has been grown over the past
few years. Big companies such as Amazon, Google, and UPS have
already tested and commercialized safe package delivery missions
using drones. In spite of the huge interest for aerial payload trans-
port, delivery drone operations are limited to carrying light pay-
loads. By relaxing the so-called “deformable rigidity” of the ex-
isting continuum deformation coordination, the MQS can aggres-
sively deform to pass through narrow channels while the proposed
time-varying communication topology enables them to effectively
provide proper stability forces through optimizing the spatial disg
tribution of the follower quadcopters.

This paper is organized as follows. Preliminary notions pr
in Section 2 are followed by Problem Formulation in Section!

quadcopter system (MQS) dynamics and control ar
Sections 4 and 5, respectively. Safety of the MQ3mggQ

Q
sented in Section 8 are followed by Conclusj 1 ecti

2. Preliminaries

2.1. Graph theory notions

tem (MQS) consisting of N
d by a unique index number
munication is defined by con-
e set V and edge set £ CV x V.
ticles of an n-D deformable body (n =
oordination is defined by n + 1 leaders
identified by s {1,---,n 4+ 1}. The remaining agents are
identified by set Vg =V \ V; representing followers. In-neighbor
set N of vehicle i € V is defined by set {j!(j,i) e &}, follower
i €V has access to the position information of in-neighbor j e N;
at any time t. Because leaders move independently, they do not
rely on followers’ position information, thus, N; =, if i € V;.

Consider a multi-quaddlipter
agents where every aged§ iNgdenti
defined by set V. I
nected graph G (
Agents are treate
2,3), where

Assumption 1. In this paper, graph G is defined such that the fol-
lowing properties hold:

1. Follower-follower communication is bidirectional which im-
plies that, for i, j € VE, if (j,i) € &€, then (i, j) € £.

2. Leader-follower communication is unidirectional which im-
plies that, for j € V; and i € Vf, if (j,i) € &, then (i, j) ¢ £.
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3. Position information of leader j € V| is communicated to only
one follower agent i € V.

2.2. Motion space discretization

Let p1 e R™, pp e R", ..., ppt1 € R™ and ¢ € R" define n + 2
points in R". We define rank operator
PP,

. Pny1) =rank ([ p2 — p1 Pnt1—P1]). (1)

Note that 0 < p (P1, -+, Pnt1) <0 If p(P1,- -+, Pnt1) =0, P1, P2,
-+, Pn4+1 determine positions of vertices of an n-D simplex and we
can define operator € (p1,-- -, Pn+1,€) as follows:

@1, Prt1,€) = [p]] e RMHDXT (9

the vector (pq,---,
e simplex formed by
is outside the simplex. It was
dgements of 2 (p1, -+, Pnt1,C)

It was shown in [28] that if each elg
Pn+1,€) is nonnegative, then gmy
vectors p1, P2, - -+, Pnt+1. Ot
also shown in [28] that the
is 1.

2.3. Position not

Without loss
of quadg®B

enerality, in this paper we consider teams
coordinating in a 3-D motion space where quad-
hted as particles of an n-D continuum, where n €
hrogfhout this paper, we use the following notation.
Psition: Actual position of vehicle i € V is denoted by
k] yilk] zi[k]]T and is considered as the output of the
system of each vehicle.

Global Desired Position: Global desired position of vehicle i €
is given by

Q[k]ri o +d[k]
S, i jlKIr [K]

ieV

, k=0,1,---, 3
ieVr 3)

iy [k] = {
where Q[k] € R3*3 is the Jacobian nonsingular matrix for each k >
0 characterizing the deformation of the singleton formed by the
leader vehicles i € V. Also, d[k] is the rigid-body displacement
vector characterizin% the displacement of the above singleton and

ri0 = [Xi0 Yi0 Zio] is the material coordinate of follower vehicle
i € Vr. Note that the material coordinate is constant. Furthermore,

a;1[k]
: =Q(riyr. - TnpLHT. TinT), Vi€V, (4)
& nt1lk]

where parameters «; 1[k] ---
stant of time k, that is,

Z aj j[k] =1

jeVL

oipn+1[k] sum up to 1 at every in-

k=0,1,---. (5)

Local Desired Position: Local desired position is given by

rj g [k] =i prlk] ieV

. , k=0,1,---. (6)
Tid [k] = Z]-EM Wi,j[k]l‘j[k] 1e VF

Note that local desired position of follower i € Vf is defined as
the convex combination of the positions of its in-neighbors, where
w; j[k] is the communication weight of agent j € A; with agent
i €V at discrete time k.
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3. Problem formulation

Consider a MQS consisting of N quadcopters, where dynamics
of quadcopter i € V are given by
{xi[k + 11 =i [%i[K]] + g [xi[k]] i k] )

ri[k] = [xi[k] yilk] zi[k]]"

f; and g; are smooth functions, and Xx;, u;, and r; denote state,
input, and output vectors, respectively, i.e. actual position of quad-
copter i € V is considered as the output vector. Every quadcopter
i applies a feedback linearization control to track the local de-
sired trajectory defined by (6). This ensures that the global desired
trajectory, defined by affine transformation (3), is acquired in a de-
centralized fashion via local communication.

The first objective of the paper is to guarantee the stability and
convergence of decentralized continuum deformation coordination
of the quadcopter team, that is, to guarantee the convergence
of the actual position r; to the global desired position for each
quadcopter in the network, where inter-agent communications are
time-varying and weighted. Defining safety box

vk, Bilkl={(xy 2) | |x[k] — x; ur[k]| <8,
|yIkl1 = yiurlkl| <8, |z[k] — zi yr (k]| < 8}.

Each quadcopter i € ¥V must be inside the safety box at every dis-
crete time k:

(8)

vk, ri[k] € B; (9)

where the vertices of the safety box ; are defined by the set of
points

Xi HT + 8 Xi HT + 6
Z(rinr) =1 | Yiur +38 |. | Yinr +6 |,
Zi HT + 9 Zi yT — 6
b; 1 b; >
[ xiur +8 7| [ Xinr — 8]
YiHT =98 |, | YiHT + 0
_Zi,HT_S_ _Zi,HT+8_ (10)
b; 4
[ Xinr — 8]
Yi,HT — 9 |,
| Zi.HT + 0 |

suming every quadcopter is enclosed by a ball of radius € > 0,
inter-agent collision avoidance is guaranteed, if
Iri[k] — rj[k]ll > 2€,

k>0, i,jeV,i#j. (11)

The third objective of the paper is to ensure that no fol-
lower quadcopter leaves the leading simplex defined by leaders 1
through n + 1. To this end, we define

Skl =Z (r1,ur[k]) x -+ x I (tnq1,n7lk]) . k=0,

as the set of all n-D simplexes made by vertices of n 4+ 1 safety
boxes surrounding leaders 1 through n + 1 at discrete time k,
where x is the Cartesian product symbol. Expressing S by
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8 8
Stki= N\ -+ N (d1j.bagrj,). k=0, (12)

j1=1 jan=1
N—————
n+1 times

follower containment condition is specified as follows:

ieVr j1=1  jnp1=1
n+1 times

x A

(bq,j[K], . bpy, jK]) €S

Q (by j, [k], -+, bug, j,,, [K], wi[K]) > O,

(13)

is the desired po-
ox enclosing 1y
of follower i € Vf at

at every discrete time k where by ; g8
sition of vertex j; € {1,---,8} of @
(I e Vy), and ri[k] denote the actua
discrete time k.

4. Communication to

In this paper,

copters are weg 4@
WIk] “ kle[0,1]: (j,h €& > wijlkl=1,keN

er-agent communications among quad-
andWefined by a time-varying set

jeN;
(14)

AssuMfption 2. It is assumed that in-neighbor set N; is fixed al-
ugh communication weight w; j[k] is time-varying.

Given set W, we can define matrix W[k] = [W;;[k]] € RN*N
with the ij entry

wijlkl jeNinieVr

. (15)
0 otherwise

Wiilk] = {
Note that matrix W is one-sum row, i.e. sum of every row of ma-
trix W is 1. Matrix W can be partitioned as

0 o0
W[k]:[s[k] A[k]]’

where B ¢ RIN-1=Dx(m+D) gpd A ¢ RIN-n=Dx(N=n=1) 1t ag
shown in [28] that A and B are nonnegative matrices (in a sense
that each entry is nonnegative) with A having zero diagonal ele-
ments.

(16)

Remark 1. Per the third property of Assumption 1, every column
of matrix B e RIN-"=Dx®+1) has only one positive element.

Theorem 1. Assume graph G (V, £) is defined such that Assumption 1
is satisfied and communication weights are defined by V. Then, matrix
A[k] is irreducible [29] at every discrete time k and eigenvalues of ma-
trix A[k] are contained inside an open unit disk centered at the origin.
Furthermore, matrix

W, [k] =D~ 'Bk] (17)
is non-negative and one-sum row at every discrete time k, where
D[k] = —I+ A[K]. (18)
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Proof. Because graph G satisfies Assumption 1, matrix A is irre-
ducible. It follows from Assumption 1 and Remark 1 that N —2(n+
1) rows of matrix A sum up to 1, and the remaining rows all sum
to a positive number less than 1. It follows from Perron-Frobenius
theorem [29] that the spectral radius of matrix A, denoted by r4,
is less than 1 which in turn implies that eigenvalues of A are all
placed inside a disk of radius r4 < 1. This also implies that the
eigenvalues of D = —I+ A are contained inside an open unit disk
centered at —1 + 0j. Therefore, D is invertible. Let L = [B D] and
let L=D"'L= [D1B I]. Note that since [B A] is a one-sum row
matrix, it follows that L is zero-sum row matrix. Furthermore, it
can be seen from the definition of L=D~'L and the fact that L is
zero-sum-row that L is also a zero-sum row matrix. Consequently,
sum of the row entries of matrix W, = —D~!B is 1. Furthermore,
matrix Wy is non-negative. Indeed, it follows from the definition
of D in (18) that its inverse can be written as

o0
D'=->Al (19)
i=0
Hence,
o0
W, =-D'B=) AB. (20)
i=0

Since all elements of A and B are non-negative, it follows that the
elements of W; are also non-negative. 0O

Stability and convergence of the network dynamics under time-
varying communication weights was shown in [30]. The main fo-
cus of the current paper is to formally analyze safety of MQS
continuum deformation coordination in an obstacle-laden enviro
ment.

isfied and component of q € {x, y, z} of the global desir,
followers can be related to the component q € {x, y, z
sired positions of the leaders by

zgr.ur =WiZg 1 HT, qeix,y,z}, (21)
where
QT (ripr, -+ Tnpin '
W, [k] = : e RIN-n—Dx(n+1)
Q" (riu7, - o1, nYramt)
(22)
and
Zg, 1. HTlK] = HT K CIn+1,HT[k]]T e RMHDx1
qge{xy, zh, (232)
2q,7, 17kl = [dns2,n7(K] an.urlk]]" e RN-=Dx1)
qefx,y,z}, (23b)

define position components of the leaders and followers, respectively.

Proof. If § =0, then, actual, local desired, and global desired posi-
tions of every quadcopter i € V are the same, and we can write

/\iev,_ (l'i,HT[k] —ri4[k]l = o)
Nievi (i lk) = e wi KIE 71K =0)

at every discrete time k. If Eq. (24) is satisfied, then, we can write

(24)

[M5G; v1.307] P4 (1-10)
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zq,F,H7[k] = AZg F HTIK] + Bzg 1 HT[K] (25)
at every discrete time k, which in turn implies that
Zgr,HT = — (—1+ A)~! Bz, |y =D 'Bzg 1 nr = Wiz 1 11,

where A and B are defined in (16), W, is non-negative and one-
sum-row per Theorem 1. Therefore, row i of Eq. (21) gives the
component g € {x, y, z} of the global desired position of follower
(i+n+1) € Vg expressed with respect to the leaders, where row
i of matrix W is the same as Eq. (4). O

5. Quadcopter dynamics

We say that

ri[k] = [xi[k] yilk] zi[k1]",

Vilk] = [vailk] vy iK1 vo k1]
ai[k] = [axilk] ay,i[k] az,i[k1]"
Bk = [Jxilk1 Jy iK1 ok

denote position, veloci , and jerk of quadcopter i € V
at discrete time k. i's body axes are denoted by ib,i,
jb.i» and ky ;, ang ,é,=[010]", and &, =[00 1]”
are the base v# @ € inertial (Cartesian) coordinate system.
Body axes of qualggpter i € V¢ are related to the base vectors of

the ine ordina® system via Euler angles as follows
ey
gy s (26)
e,
here
R(¢i, 0i, ¥i)
Co; Cy; Co; Sy, —Se;
= | SeiSa:Cyi = CoiSyi S¢iSo;Sui +CyCyy SgCo | (27)
CoiS6:Cyi + S¢Sy CoiSe;Syi — SgiCyy Cp o

¢i, 6;, and v; are the roll, pitch, and yaw angles of quadcopter i €
V relative to the inertial reference frame, C() and S, abbreviate
“cos (-)” and “sin ()", respectively.

Assumption 3. It is assumed that v; is updated by the following
dynamics:

1/.fi[k +1]= llfi[l<] + AT (k]
Yilk + 1] = ¥;[k],
subject to the initial conditions v;[0] = 0 and v¥;[0] = 0 where

time increment AT is constant at every discrete time k. Therefore,
¥ilk] =0 at every discrete time k.

(28)

The outer- and inner-loop dynamics of quadcopter i € V are
given by

ik + 1] ri[k] + ATv;[k]

vilk+1]1 | _ | vilk] + ATa;[k] 0953 |y

alk+1] | = | ailkl + ATJ[K] +M[ I ]Ul[k] (29a)
| Jilk+1] Jilk]

[ Ailk+1] Ailk] + ATT;[k] 0

Tilk+1] | = | Tilkl+ ATE[k] +AT[ _‘R;il]ui[k]

| Zilk+1] =i[k] — ATM; 'H; i

(29b)
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where AT is time increment, Ogy3 € R%%3 and 0gy3 € R®*3 is
the zero-entry matrices, Is € R3*3 is the identity matrix, A;[k] =

. . . T
ikl @itk 6117, Tilkl = [fitk] gulkl 6ilk] , and - =ilk] =
[Fitkt itk éitkr] . Matrices My = My (fi. ¢, i, Jiu i, ) and
H; =H; (f,-, i, Vi, fi, i Wt) are obtained in Appendix B. Note that
F = fil}b,i is the thrust force generated by quadcopter i and f; is
the force magnitude.

Relation between inner-loop and outer-loop states: Using the

Newton’s Second law, acceleration of quadcopter i is obtained as
follows:

ajlk] = —ge; + ﬁl}b,i[k]a (30)
m;

g =9.81m/s? is the gravity. By taking derivatives from the accel-

eration of quadcopter i, the jerk and time derivative of the jerk are

obtained as follows:

Jilkl = ﬁf(b,i + Ji (?U)i X lA(b,i) , (31a)
mi mi
1. 1
Uilk] = —F = — (M; E; + H)), (31b)
m; mj

where @; is discussed in Appendix A and is the angular velocity of
the quadcopter i with respect to the inertial reference frame and
relationship (31b) is derived in Appendix B.

6. Quadcopter control

We choose control input

Uikl = —B1Jilk] — Baailk] — B3vilk] + B4 (r; alk] — ri[k]) )
where r; 4 is the local desired position of the vehicle i € ) alfg was
previously defined in (6) and By, ..., B4 are constant ¢gftrol S%§
The MQS coordination dynamics becomes

Zymgs[k + 11 = Asys[klzmgs k] + Bsys[k1Uwmqs!.
where

(33)

Asys =
ON ON 0N
On Iy On
Ib® | un + AT On Oy Oy Iy ,
Ba (= B3Iy —B2In  —Biln
Bgys =

T
(13®[0(n+1) N 0 OniyxN ATy 0(n+1)><(N—n+l)]) ,

“®" denotes theQggonglker product symbol, 0y 15y € R™1*N and
On1x(N—n—1) € RTTTX(N=1=D" are zero-entry matrices and I3 €
R3%3 1,1 e RT+1xn+1 [y e RNXN are identity matrices,

T wT T =T T =TT 12Nx1
ZMQS:[ZX S Zy Zy zy z, - zz] cR

is the quadcopter team state vector given by:
T T 4T T T
Zx=[ZX,L zx,F] s Ly =[X1 -+ Xnt1] , ZxF = [Xn42 - XN],
T T 4T T T
zy=lzy, 2, Fl", ZyL=1[y1 - Yn+1]', Zy,F =[Yns2 -~ YNI',
T T 4T T T
ZZ=[ZZJ_ Zz.F] s 2Lz 0 =121 -+ Zny1]', ZzF =[Zny2 - ZN] .

Define a combined state for global positions of all vehicles in the
network as

[M5G; v1.307] P5(1-10)
Aerospace Science and Technology eee (eeee) seeeee

Zq,HT,L[k]]

qe{xy.z},  zgurlk]= [zq . FlK]

where

T
Zg.HT,L = q1,HT ** Qn41,HT]
T
Zg,HT.F = [qn+2,HT - qN.HT] -
Control input Uygs can be expressed as follows:
Zy fr,Llk]

Zy HT,LIK]
Z; 1, L1K]

Control gains By, ..., B4 are selected such that eigenvalues of ma-
trix Asys are all placed inside a unit disk cgntered at the origin.
Therefore, the BIBO! stability of the outerl dynamics is ensured

bat Assumption 1 is sat-

(see [31] for details).

isfied and positive gains B1, ..., [ . % such that eigenvalues of

matrix Asys are inside an openghit d erered at the origin. Then, the
BIBO s@ble.

traffic network dynamics (33)

1 that if G is defined such that As-
sumption 1 is s every discrete time instant, then matrix
—Iy + W[k] h senv®lues inside the open unit ball centered
at —1 4 0j. Give QS collective dynamics (33), we can write

Unigslk] = B4 (34)

Theorem 3. Suppose graph G is defi

Proof. It follows fro

Zygs[1]

Bsys[1]Umqs[1]
s[k k : , (35)

Bsys[k]Umqs[k]

here
O, =[Tk r; Io] (36a)
k
= 1_[ Asys[j] (36b)
Jj=k—h+1

forh=1,---,k, and Tg =1Iypy is an identity matrix. Since zyqs[1]

is bounded as the network system’s initial condition and Uwmgqs[k] is
bounded at every discrete time k, there exists a constant zgqx > 0
such that

Zmos[1] < Zmax112N %1, (37a)
[Bsys[klumas k]| < Zmax112nx1, (37b)

where 112nvx1 € RN is the vector ones and the notation |x| in
(37b) denotes a vector composed of absolute values of the entries
of x. If assumptions of Theorem 3 are satisfied, spectral radius of
matrix Iy is less than r < 1 at every discrete time k. Therefore, we
can write

05 [k + 1] zumgs [k + 1]
k k

= Zmax1-1r21\]><1 <Z Z r;rrh> Zmax112N x1

1=0 h=0

o0 2

12Nz
2 ) max
512szax<§ r) Si(l—r) .

=0

(38)

This implies that zTMQS [k + 1]zmqs [k + 1] is bounded at every dis-
crete time k, and thus the BIBO stability of traffic dynamics (33) is
proven. O

1 BIBO stands for Bounded Input Bounded Output.
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Remark 2. It follows from the proof of Theorem 3 that the conver-
gence of the state zyqs[k] to its desired value as k — oo can be
ensured under the condition that uyqs[k] — 0 as k — oo which
means that the convergent input implies convergent state.

Assumption 4. It is assumed that every quadcopter i € V is able
to choose an admissible control input U;[k] at discrete time k such
that

VieV,Vk, qe{x,y.z},  |qilkl —qinrlk]| <8 —e€. (39)

Then, safety constraint (9) is satisfied at every discrete time k
which in turn implies that quadcopter i never leaves the safety
box B; centered at r; yr[k] at discrete time k.

Remark 3. Let

T
Voutlkl =[ 2] urlll 20 pyrlkl] €RY1 qexy.z)
(40a)
Va.alkl = [q1.4lK] analkl]" e RN gefxy,2),
(40b)
Y[kl = [q1[k] gulkl]" eRM1 gefxy.z)  (400)

be an aggregate component q € {x, y, z} of the quadcopters’ global
desired positions, local desired positions, and actual positions, re-
spectively. Then, it was shown in [32] that yg nr[k], ¥q.q4[k], and
yq[k] are related as

Yg.a[k] — Yq[k] =D (Yq, ur[k] — Yq[K]) .

Therefore, there exists a ¢; > 0 such that

(41)

|qilk] — qi.alk]| < & = |qilk] — qiurlk]| <8 —€,
VieV, qe{x,y,z}, Vk.

Hence, safety condition (39) is satisfied, if the lea

jectories are planned such that each quadcop

the local desired trajectory r; 4 and |qi[k] —
discrete time k.

Iregglra-
track
at every

7. Safety specification

(9), (11) and (13) are all s3
Assumption 4, every quad

ing constraints on the time-varying com-
wers as well as the global desired tra-

Theorem 4. Assume quadcopter i chooses the control input U; such that
safety constraint (9) is satisfied at every discrete time k. Let graph G be
connected and planar and in-neighbors of follower i € Vr are defined
by set N = {i1, -+, int1}. Inter-agent collision avoidance (safety con-
dition (11)) and follower containment condition (safety condition (13))
are guaranteed, if followers’ communication weights satisfy the follow-
ing inequality and equality constraints:

vk, Vij e N, Vi€V,

n+1
Vk, Vi € Vr, ZWz‘,ij[k]zls
j=1

wi i;[k] >0, (42a)

(42b)

O
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160 T T T T

140

n+1

Z (aip — 1) qrurlk]

I=1

226>,

(42¢)

i A (
@ VieVE VjeN;

8 8
vk, A A

Jny1=1
—_—
n+1 times

x A

(byy k], by kDS

o (biy jy k], -+ biy g oy [K]) =1,

(42d)

8 8
o AN A A
ieVrj1=1  japp=1 (bil,j[k]"” sbin+1.j[k]) S

n+1 times

x (b, j, (K], -+ by, o, K] Ti[k]) > 0

(42e)

’

Proof. If communication graph G is connected and planar and
communication weights are chosen such that (42a) and (42b) are
satisfied, then global desired position of follower i € Vf is in-
side the simplex made by the global desired positions of the
in-neighbors of i € V. If condition (42c) is satisfied, quadcopter
i € Vr does not collide with its in-neighbors. The polytope made
by actual positions of in-neighbors of follower i € Vg in an n-D
simplex, if safety condition (42d) is satisfied. Furthermore, follower
i does not leave the simplex made by actual positions of the in-
neighbors of follower i € Vg, if (42e) is satisfied. Therefore, no two
quadcopters collide and no quadcopter leaves the leading simplex
defined by leaders if follower communication weights satisfy the
safety condition (42a) through (42e) at every discrete time k. O

8. Simulation results

We consider an MQS consisting of 18 quadcopters with the ini-
tial formation shown in Fig. 1. Quadcopters are classified as lead-
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wi_,il [k} + Wi gy [k} -+ Wi iy [k] =1

w; i, [k] = w, [K]

Wi [k} = Wj [k

Discrete time &

Fig. 2. Followers’ communication weight versus discrete time k.
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(b)
ig. 3. M@ formations at (a) k = 5000, (b) k = 10000, (c) k = 20000, (d) k = 25000 and (e) k = 30000.

ers and followers s and followers are defined by sets 1€ Vr f\/’ : l
Vi ={1,2,3} an , 18}, respectively. The MQS applies 7 %
the communigation shown in Fig. 1 to acquire the desired 5 2 9 10
continuum de through local communication. For every 6 3 1 12
follower quadcop , the in-neighbor set is unchanged and is 7 4 1213
listed in Table below. In Fig. 2, followers’ communication weights g ‘51 g 1‘51
are plotted versus time. Given communication weights, leaders 10 5 11 16
move independently and followers acquire the desired continuum 11 6 10 17
deformation via local communication. In Figs. 3 (a) and (b), x and y 12 6 7 18
components of actual positions of all quadcopters are plotted ver- 12 ; 1‘3‘ }g
sus time. Furthermore, MQS formation at discrete times k = 5000, 15 9 12 16
k =10000, k = 15000, k = 25000, and k = 30000 are illustrated in 16 0 15 17
Figs. 4 (a-e). 17 1 16 18
18 12 13 17

9. Conclusion

This paper studied the problem of continuum deformation of
a MQS under time-varying communication weights. We showed

how quadcopters can be treated as particles of a continuum (de-
formable body) with time-varying properties while stability, con-
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Fig. 4. MQS formations at (a) k = 5000, (b) k = 10000, (c) k =20000, (d) k =25000 and (e) k = 30000.

vergence, and containment of the group coordination, defined by a
continuum deformation, can be guaranteed. By formal specification
of the safety requirements, the scalability of collective motion can
be significantly improved while the MQS can aggressively deform
in a geometrically-constrained environment. Furthermore, this pa-
per advances maneuverability of the collective motion via choosing
time-varying communication weights. As a future work, we plan to
advance the proposed MQS continuum deformation coordination
under time-varying communication weights towards MQS contin-
uum deformation under time-varying communication protocol in

which communication weights and links can vary with time. In
particular, we plan to formally specify and verify safety of the MQS
coordination in an obstacle-laden motion space.
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Appendix A. Quadcopter angular velocity and acceleration

We use 3-2-1 standard Euler angle rotations to determine ori-
entation of quadcopter i at discrete time k. Given roll angle ¢;[k],
pitch angle 6;, and yaw angle v; and the base vectors of the in-
ertial coordinate system (&, &,, and €;), angular velocity of quad-
copter i € V is given by

b= Iﬁil}u +9ijz,i +¢3iib,i, (A1)
where
| i ] €y cosv; siny; O] [ &
Jii | =R(O0,0,¢) éAy = | —siny; cosy; O §y ,
Ky e, 0 0 1 e,
(A.2a)
[0 | i cosé; 0 —sing; ]| i
;]:271' :R(O, 01',0) !l,i == 0 1 0 jl,i 5
Ky i ki sinf; 0 cos6; K1 i
(A2
[ b ] i 1 0 0 i
Jbi | =R(@i,0,0)] jo; | =|0 cosgi singi |4 ]
kp i ka i 0 —sing; cosg¢

Fig. A.5 shows the schematic of the inertial coo em with
base vectors &, €, and éz and the body uadcopter i €
V with base vectors 1b i Jb i and l(b, ex=[100]",

ey_[0101 &, =[001], i,
T

Di= [a),” wy.i @] resolved in

6;, and ; by

Wy, i 1 ¢1
wyi|=1]0 6; |. (A3)
Wz, 0 Vi
Angular adgleratiOf ol quadcopter i € V is obtained by taking

time derivative ngular velocity vector @ with respect to
the inertial reference frame:

@ ZIZ}iﬁ],i + éijz,i + &iib.i + 6V (f(],i X jl,i)
AN . R (A4)
+¢i (V/ikl,i + 9iiz,i> Xl j

Remark 4. Per Assumptlon 3, 1//, [k =0 at every discrete time k

Z. Therefore, 11 i=é,=[100], _]1 i=&,=[01 0]”, 1(1 =€, =
[001]7, and @&; and &; simplify to

@i =62, + il 1, (A.5a)
@ = b, + Gily i — difika . (A5Db)
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of the inertial coordinate system fixed on the ground and the
gifadcopter i € V.

Taking time derivatives from the quadcopter thrust force F; =
mia; = f,kb i, we obtain the following relations:

Fi= fikoi + [i @i x Ky, (B.1a)
Ei= filyi + fi [a) x Ky + @B x (Z))i X ﬁb,i)] +2f @ x Ky

(B.1b)
By rearranging Eq. (B.1b), F; is expressed as follows:
Fi=M;E; +H;, (B.2)
where E;i=[f; ¢ Q,]T
M; = [f(b,i — fidb.i ‘ fi (jz,i x lA(b,i)] eR>, (B.3a)

Hi=f; [—éﬁiéi (f(z,i X lA(b,i) + @i x (70)1' X IA<b,i)]+2fi?5i Xﬁb,i-

(B.3b)

Remark 5. In equations of Appendix B, f(b_i, jb,i. jz,i, and lA(z,,- are 3
by 1 unit vectors expressed with respect to the initial coordinate
system with base vectors &, €, €,.
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