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This paper studies the problem of continuum deformation of a multi-quadcopter system (MQS) under 
time-varying communication weights. Quadcopters are treated as particles of a deformable body 
with time-varying parameters, where a desired n-D continuum deformation is planned based on the 
trajectories of n + 1 leaders placed at the vertices of n-D simplex. The followers distributed inside 
the simplex acquire the desired continuum deformation by local communication with time varying 
communication weights, where stability and convergence of the MQS continuum deformation can be 
proven. This paper formally characterizes safety of the MQS continuum deformation by ensuring inter 
agent collision avoidance and followers containment. Therefore, a large-scale MQS can safely deform in 
an obstacle-laden environment with modest computational cost.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Multi-agent coordination has been an active research area and 
has found many applications such as surveillance [1,2], formation 
flight [3,4], traffic coordination and control [5], rescue missions [6], 
and cooperative payload transport [7,8]. Cooperative control and 
group coordination offer robustness and resilience to failure and 
reduces mission cost.

1.1. Related work

So far researchers have proposed a variety of centralized and 
decentralized multi-agent coordination approaches such as Vir-
tual Structure [9], Consensus [10–16], and Containment Control 
[17–22]. Virtual Structure is a centralized coordination approach 
treating agents as particles of a virtual rigid body. Consensus is the 
most common decentralized coordination approach that has been 
extensively studied by the researchers in the past two decades. 
Leader-less [11,23] and leader-follower consensus [10,24], retarded 
consensus coordination [14,16], and consensus under fixed and 
switching communication topologies [15] have been intensively 
studied in the past. Containment control is a leader-follower ap-
proach in which leaders guide the bulk motion and followers ac-

* Corresponding author.
E-mail addresses: hrastgoftar@arizona.edu (H. Rastgoftar), 

sergey.nersesov@villanova.edu (S. Nersesov).
https://doi.org/10.1016/j.ast.2021.106843
1270-9638/© 2021 Elsevier Masson SAS. All rights reserved.
quire the desired coordination in a decentralized fashion through 
local communication. Stability and convergence of containment 
control coordination have been studied in [17,18]. Also, contain-
ment control in the presence of communication delay was pre-
sented in [20,21,25]. Leader-follower containment under switching 
communication topology is shown in [22]. Finite-time containment 
is investigated in [26,27].

Continuum deformation of multi-agent systems is a recent ap-
proach that treats agents/vehicles and particles of a deformable 
body. Similar to containment control, continuum deformation is a 
leader-follower approach; the bulk motion is guided by leaders and 
followers acquire the desired coordination through local communi-
cation in real time. However, continuum deformation characterizes 
safety and provides characteristic equations for the followers com-
munication weights. In particular, collision avoidance and follower 
containment are guaranteed in a large-scale continuum deforma-
tion coordination while the multi agent system can aggressively 
deform in an obstacle-laden environment.

1.2. Contribution

Although existing continuum deformation allows aggressive de-
formation for group coordination in a cluttered environment, fol-
lowers’ communication weights are restricted to be fixed and are 
determined based on the initial formation of the agents [7,28]. 
This will result in a so-called “deformable rigidity” limitation and 
limit maneuverability of the group coordination. This paper deals 
with the “deformable rigidity” problem by advancing the existing 
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continuum deformation coordination approach towards continuum 
deformation of multi-vehicle system under a time-varying com-
munication protocol. In particular, we treat a quadcopter team as 
particles of a deformable body with time-varying material proper-
ties. By classifying quadcopters as leaders and followers, leaders’ 
coordination is defined by an affine transformation while follow-
ers acquire the desired coordination through local communication. 
As the first contribution of the paper, we will prove stability and 
convergence of the quadcopter coordination defined by an affine 
transformation with time-varying communication weights. Specif-
ically, we prove that the transient error characterizing deviation 
form the global desired trajectory is bounded for every quadcopter 
i. The second contribution of this paper is to specify and verify 
safety in a decentralized continuum deformation coordination with 
time-varying communication. Therefore, a large number of agents 
can significantly deform in a geometrically constrained environ-
ment while guaranteeing collision avoidance.

The proposed decentralized time-varying MQS continuum de-
formation can be potentially used for cooperative aerial payload 
transport applications in which a quadcopter team robustly carry 
a heavy payload in a geometrically-constrained environment. The 
interest in using multi-copters for aerial payload transport and 
package delivery applications [7] has been grown over the past 
few years. Big companies such as Amazon, Google, and UPS have 
already tested and commercialized safe package delivery missions 
using drones. In spite of the huge interest for aerial payload trans-
port, delivery drone operations are limited to carrying light pay-
loads. By relaxing the so-called “deformable rigidity” of the ex-
isting continuum deformation coordination, the MQS can aggres-
sively deform to pass through narrow channels while the proposed 
time-varying communication topology enables them to effectively 
provide proper stability forces through optimizing the spatial dis-
tribution of the follower quadcopters.

This paper is organized as follows. Preliminary notions provided 
in Section 2 are followed by Problem Formulation in Section 3. De-
centralized coordination of the quadcopter team as well as multi-
quadcopter system (MQS) dynamics and control are presented in 
Sections 4 and 5, respectively. Safety of the MQS coordination is 
mathematically characterized in Section 7. Simulation results pre-
sented in Section 8 are followed by Conclusion in Section 9.

2. Preliminaries

2.1. Graph theory notions

Consider a multi-quadcopter system (MQS) consisting of N
agents where every agent is identified by a unique index number 
defined by set V . Inter-agent communication is defined by con-
nected graph G (V,E) with node set V and edge set E ⊂ V × V . 
Agents are treated as particles of an n-D deformable body (n =
2, 3), where the desired coordination is defined by n + 1 leaders 
identified by set VL = {1, · · · , n + 1}. The remaining agents are 
identified by set VF = V \ VL representing followers. In-neighbor 
set Ni of vehicle i ∈ V is defined by set { j

∣∣( j, i) ∈ E}; follower 
i ∈ V has access to the position information of in-neighbor j ∈ Ni
at any time t . Because leaders move independently, they do not 
rely on followers’ position information, thus, Ni = ∅, if i ∈ VL .

Assumption 1. In this paper, graph G is defined such that the fol-
lowing properties hold:

1. Follower-follower communication is bidirectional which im-
plies that, for i, j ∈ VF , if ( j, i) ∈ E , then (i, j) ∈ E .

2. Leader-follower communication is unidirectional which im-
plies that, for j ∈ VL and i ∈ VF , if ( j, i) ∈ E , then (i, j) /∈ E .
2

3. Position information of leader j ∈ VL is communicated to only 
one follower agent i ∈ VF .

2.2. Motion space discretization

Let p1 ∈ Rn , p2 ∈ Rn , · · · , pn+1 ∈ Rn and c ∈ Rn define n + 2
points in Rn . We define rank operator

ρ (p1, · · · ,pn+1) = rank
([

p2 − p1 · · · pn+1 − p1
])

. (1)

Note that 0 ≤ ρ (p1, · · · ,pn+1) ≤ n. If ρ (p1, · · · ,pn+1) = n, p1, p2, 
· · · , pn+1 determine positions of vertices of an n-D simplex and we 
can define operator � (p1, · · · ,pn+1, c) as follows:

� (p1, · · · ,pn+1, c) =
[

p1 · · · pn+1
1 · · · 1

]−1 [ c
1

]
∈R(n+1)×1 (2)

It was shown in [28] that if each element of the vector �(p1, · · · ,

pn+1, c) is nonnegative, then c is inside the simplex formed by 
vectors p1, p2, · · · , pn+1. Otherwise c is outside the simplex. It was 
also shown in [28] that the sum of elements of � (p1, · · · ,pn+1, c)
is 1.

2.3. Position notations

Without loss of generality, in this paper we consider teams 
of quadcopters coordinating in a 3-D motion space where quad-
copters are treated as particles of an n-D continuum, where n ∈
{1, 2, 3}. Throughout this paper, we use the following notation.

Actual Position: Actual position of vehicle i ∈ V is denoted by 
ri[k] = [xi[k] yi[k] zi[k]]T and is considered as the output of the 
control system of each vehicle.

Global Desired Position: Global desired position of vehicle i ∈ V
is given by

ri,H T [k] =
{

Q [k] ri,0 + d [k] i ∈ VL∑n+1
j∈VL

αi, j[k]r j [k] i ∈ VF
, k = 0,1, · · · , (3)

where Q[k] ∈R3×3 is the Jacobian nonsingular matrix for each k ≥
0 characterizing the deformation of the singleton formed by the 
leader vehicles i ∈ VL . Also, d[k] is the rigid-body displacement 
vector characterizing the displacement of the above singleton and 
ri,0 = [xi,0 yi,0 zi,0

]T
is the material coordinate of follower vehicle 

i ∈ VF . Note that the material coordinate is constant. Furthermore,⎡
⎢⎣

αi,1[k]
...

αi,n+1[k]

⎤
⎥⎦= �

(
r1,H T , · · · , rn+1,H T , ri,H T

)
, ∀i ∈ VF , (4)

where parameters αi,1[k] · · · αi,n+1[k] sum up to 1 at every in-
stant of time k, that is,∑
j∈VL

αi, j[k] = 1 k = 0,1, · · ·. (5)

Local Desired Position: Local desired position is given by{
ri,d [k] = ri,H T [k] i ∈ VL

ri,d [k] =∑ j∈Ni
wi, j[k]r j[k] i ∈ VF

, k = 0,1, · · · . (6)

Note that local desired position of follower i ∈ VF is defined as 
the convex combination of the positions of its in-neighbors, where 
wi, j[k] is the communication weight of agent j ∈ Ni with agent 
i ∈ V at discrete time k.
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3. Problem formulation

Consider a MQS consisting of N quadcopters, where dynamics 
of quadcopter i ∈ V are given by{

xi[k + 1] = fi [xi[k]] + gi [xi[k]] ui[k]
ri[k] = [xi[k] yi[k] zi[k]]T , (7)

fi and gi are smooth functions, and xi , ui , and ri denote state, 
input, and output vectors, respectively, i.e. actual position of quad-
copter i ∈ V is considered as the output vector. Every quadcopter 
i applies a feedback linearization control to track the local de-
sired trajectory defined by (6). This ensures that the global desired 
trajectory, defined by affine transformation (3), is acquired in a de-
centralized fashion via local communication.

The first objective of the paper is to guarantee the stability and 
convergence of decentralized continuum deformation coordination 
of the quadcopter team, that is, to guarantee the convergence 
of the actual position ri to the global desired position for each 
quadcopter in the network, where inter-agent communications are 
time-varying and weighted. Defining safety box

∀k, Bi[k] ={(x y z)
∣∣ ∣∣x[k] − xi,H T [k]∣∣≤ δ,∣∣y[k] − yi,H T [k]∣∣≤ δ,

∣∣z[k] − zi,H T [k]∣∣≤ δ}. (8)

Each quadcopter i ∈ V must be inside the safety box at every dis-
crete time k:

∀k, ri[k] ∈ Bi (9)

where the vertices of the safety box Bi are defined by the set of 
points

I
(
ri,H T

)=
{⎡⎣ xi,H T + δ

yi,H T + δ

zi,H T + δ

⎤
⎦

︸ ︷︷ ︸
bi,1

,

⎡
⎣ xi,H T + δ

yi,H T + δ

zi,H T − δ

⎤
⎦

︸ ︷︷ ︸
bi,2

,

⎡
⎣ xi,H T + δ

yi,H T − δ

zi,H T + δ

⎤
⎦

︸ ︷︷ ︸
bi,3

,

⎡
⎣ xi,H T + δ

yi,H T − δ

zi,H T − δ

⎤
⎦

︸ ︷︷ ︸
bi,4

,

⎡
⎣ xi,H T − δ

yi,H T + δ

zi,H T + δ

⎤
⎦

︸ ︷︷ ︸
bi,5

,

⎡
⎣ xi,H T − δ

yi,H T + δ

zi,H T − δ

⎤
⎦

︸ ︷︷ ︸
bi,6

,

⎡
⎣ xi,H T − δ

yi,H T − δ

zi,H T + δ

⎤
⎦

︸ ︷︷ ︸
bi,7

,

⎡
⎣ xi,H T − δ

yi,H T − δ

zi,H T − δ

⎤
⎦

︸ ︷︷ ︸
bi,8

}
(10)

Note that I
(
ri,H T

) = {bi,1, · · · ,bi,8
}

where i ∈ VL and bi, j is the 
j-th member of I

(
ri,H T

)
, i.e. j = 1, · · · , 8.

The second objective of the paper is to formally specify and 
verify inter-agent collision avoidance at every discrete time k. As-
suming every quadcopter is enclosed by a ball of radius ε ≥ 0, 
inter-agent collision avoidance is guaranteed, if

‖ri[k] − r j[k]‖ ≥ 2ε, k ≥ 0, i, j ∈ V, i 
= j. (11)

The third objective of the paper is to ensure that no fol-
lower quadcopter leaves the leading simplex defined by leaders 1
through n + 1. To this end, we define

S[k] = I
(
r1,H T [k])× · · · × I

(
rn+1,H T [k]) , k ≥ 0,

as the set of all n-D simplexes made by vertices of n + 1 safety 
boxes surrounding leaders 1 through n + 1 at discrete time k, 
where × is the Cartesian product symbol. Expressing S by
3

S[k] =
8∧

j1=1

· · ·
8∧

jn+1=1︸ ︷︷ ︸
n+1 times

(
b1, j1 , · · · ,bn+1, jn+1

)
, k ≥ 0, (12)

follower containment condition is specified as follows:

∧
i∈VF

8∧
j1=1

· · ·
8∧

jn+1=1︸ ︷︷ ︸
n+1 times

×
∧

(
b1, j [k],··· ,bn+1, j [k])∈S

�
(
b1, j1 [k], · · · ,bn+1, jn+1 [k], ri[k])≥ 0,

(13)

at every discrete time k where bl, jl ∈ I
(
rl,H T

)
is the desired po-

sition of vertex jl ∈ {1, · · · , 8} of the safety box enclosing rl,H T
(l ∈ VL ), and ri[k] denote the actual position of follower i ∈ VF at 
discrete time k.

4. Communication topology

In this paper, the inter-agent communications among quad-
copters are weighted, and defined by a time-varying set

W[k] =
⎧⎨
⎩wi, j[k] ∈ [0,1] : ( j, i) ∈ E,

∑
j∈Ni

wi, j[k] = 1, k ∈N

⎫⎬
⎭ .

(14)

Assumption 2. It is assumed that in-neighbor set Ni is fixed al-
though communication weight wi, j[k] is time-varying.

Given set W , we can define matrix W[k] = [W ij[k]] ∈ RN×N

with the i j entry

W ij[k] =
{

wi, j[k] j ∈ Ni ∧ i ∈ VF

0 otherwise
. (15)

Note that matrix W is one-sum row, i.e. sum of every row of ma-
trix W is 1. Matrix W can be partitioned as

W[k] =
[

0 0
B[k] A[k]

]
, (16)

where B ∈ R(N−n−1)×(n+1) and A ∈ R(N−n−1)×(N−n−1) . It was 
shown in [28] that A and B are nonnegative matrices (in a sense 
that each entry is nonnegative) with A having zero diagonal ele-
ments.

Remark 1. Per the third property of Assumption 1, every column 
of matrix B ∈R(N−n−1)×(n+1) has only one positive element.

Theorem 1. Assume graph G (V,E) is defined such that Assumption 1
is satisfied and communication weights are defined by W . Then, matrix 
A[k] is irreducible [29] at every discrete time k and eigenvalues of ma-
trix A[k] are contained inside an open unit disk centered at the origin. 
Furthermore, matrix

WL[k] = D−1B[k] (17)

is non-negative and one-sum row at every discrete time k, where

D[k] = −I + A[k]. (18)
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Proof. Because graph G satisfies Assumption 1, matrix A is irre-
ducible. It follows from Assumption 1 and Remark 1 that N −2(n +
1) rows of matrix A sum up to 1, and the remaining rows all sum 
to a positive number less than 1. It follows from Perron-Frobenius 
theorem [29] that the spectral radius of matrix A, denoted by rA , 
is less than 1 which in turn implies that eigenvalues of A are all 
placed inside a disk of radius rA < 1. This also implies that the 
eigenvalues of D = −I + A are contained inside an open unit disk 
centered at −1 + 0j. Therefore, D is invertible. Let L = [B D] and 
let L̃ = D−1L = [D−1B I]. Note that since [B A] is a one-sum row 
matrix, it follows that L is zero-sum row matrix. Furthermore, it 
can be seen from the definition of L̃ = D−1L and the fact that L is 
zero-sum-row that L̃ is also a zero-sum row matrix. Consequently, 
sum of the row entries of matrix WL = −D−1B is 1. Furthermore, 
matrix WL is non-negative. Indeed, it follows from the definition 
of D in (18) that its inverse can be written as

D−1 = −
∞∑

i=0

Ai . (19)

Hence,

WL = −D−1B =
∞∑

i=0

AiB. (20)

Since all elements of A and B are non-negative, it follows that the 
elements of WL are also non-negative. �

Stability and convergence of the network dynamics under time-
varying communication weights was shown in [30]. The main fo-
cus of the current paper is to formally analyze safety of MQS 
continuum deformation coordination in an obstacle-laden environ-
ment.

Theorem 2. Suppose graph G is defined such that Assumption 1 is sat-
isfied and component of q ∈ {x, y, z} of the global desired positions of 
followers can be related to the component q ∈ {x, y, z} of the global de-
sired positions of the leaders by

zq,F ,H T = WLzq,L,H T , q ∈ {x, y, z}, (21)

where

WL[k] =
⎡
⎢⎣

�T
(
r1,H T , · · · , rn+1,H T , rn+2,H T

)
...

�T
(
r1,H T , · · · , rn+1,H T , rN,H T

)
⎤
⎥⎦∈R(N−n−1)×(n+1)

(22)

and

zq,L,H T [k] = [q1,H T [k] · · · qn+1,H T [k]]T ∈R(n+1)×1,

q ∈ {x, y, z}, (23a)

zq,F ,H T [k] = [qn+2,H T [k] · · · qN,H T [k]]T ∈R(N−n−1)×1,

q ∈ {x, y, z}, (23b)

define position components of the leaders and followers, respectively.

Proof. If δ = 0, then, actual, local desired, and global desired posi-
tions of every quadcopter i ∈ V are the same, and we can write{∧

i∈VL

(
ri,H T [k] − ri,d[k] = 0

)
∧

i∈VF

(
ri,H T [k] −∑ j∈Ni

wi, j[k]r j,H T [k] = 0
) (24)

at every discrete time k. If Eq. (24) is satisfied, then, we can write
4

zq,F ,H T [k] = Azq,F ,H T [k] + Bzq,L,H T [k] (25)

at every discrete time k, which in turn implies that

zq,F ,H T = − (−I + A)−1 Bzq,L,H T = −D−1Bzq,L,H T = WLzq,L,H T ,

where A and B are defined in (16), WL is non-negative and one-
sum-row per Theorem 1. Therefore, row i of Eq. (21) gives the 
component q ∈ {x, y, z} of the global desired position of follower 
(i + n + 1) ∈ VF expressed with respect to the leaders, where row 
i of matrix WL is the same as Eq. (4). �
5. Quadcopter dynamics

We say that

ri[k] = [xi[k] yi[k] zi[k]]T ,

vi[k] = [vx,i[k] v y,i[k] vz,i[k]]T ,

ai[k] = [ax,i[k] ay,i[k] az,i[k]]T ,

Ji[k] = [ J x,i[k] J y,i[k] J z,i[k]]T
denote position, velocity, acceleration, and jerk of quadcopter i ∈ V
at discrete time k. Quadcopter i’s body axes are denoted by îb,i , 
ĵb,i , and k̂b,i , and êx = [1 0 0]T , êy = [0 1 0]T , and êz = [0 0 1]T

are the base vectors of the inertial (Cartesian) coordinate system. 
Body axes of quadcopter i ∈ VF are related to the base vectors of 
the inertial coordinate system via Euler angles as follows⎡
⎢⎣ îb,i

ĵb,i

k̂b,i

⎤
⎥⎦= R (φi, θi,ψi)

⎡
⎣ êx

êy

êz

⎤
⎦ , (26)

where

R (φi, θi,ψi)

=
⎡
⎣ Cθi Cψi Cθi Sψi −Sθi

Sφi Sθi Cψi − Cφi Sψi Sφi Sθi Sψi + Cφi Cψi Sφi Cθi

Cφi Sθi Cψi + Sφi Sψi Cφi Sθi Sψi − Sφi Cψi Cφi Cθi

⎤
⎦ (27)

φi , θi , and ψi are the roll, pitch, and yaw angles of quadcopter i ∈
V relative to the inertial reference frame, C(·) and S(·) abbreviate 
“cos (·)” and “sin (·)”, respectively.

Assumption 3. It is assumed that ψi is updated by the following 
dynamics:{

ψi[k + 1] = ψi[k] + 	T ψ̇i[k]
ψ̇i[k + 1] = ψ̇i[k], (28)

subject to the initial conditions ψi[0] = 0 and ψ̇i[0] = 0 where 
time increment 	T is constant at every discrete time k. Therefore, 
ψi[k] = 0 at every discrete time k.

The outer- and inner-loop dynamics of quadcopter i ∈ V are 
given by⎡
⎢⎢⎣

ri[k + 1]
vi[k + 1]
ai[k + 1]
Ji[k + 1]

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

ri[k] + 	T vi[k]
vi[k] + 	T ai[k]
ai[k] + 	T Ji[k]

Ji[k]

⎤
⎥⎥⎦+ 	T

[
09×3

I3

]
Ui[k] (29a)

⎡
⎣�i[k + 1]

�i[k + 1]
�i[k + 1]

⎤
⎦=

⎡
⎣ �i[k] + 	T �i[k]

�i[k] + 	T �i[k]
�i[k] − 	T M−1

i Hi

⎤
⎦+ 	T

[
06×3

miM
−1
i

]
Ui[k]

(29b)
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where 	T is time increment, 09×3 ∈ R9×3 and 06×3 ∈ R6×3 is 
the zero-entry matrices, I3 ∈ R3×3 is the identity matrix, �i[k] =
[ f i[k] φi[k] θi[k]]T , �i[k] =

[
ḟ i[k] φ̇i[k] θ̇i[k]

]T
, and �i[k] =[

f̈ i[k] φ̈i[k] θ̈i[k]
]T

. Matrices Mi = Mi

(
f i, φi,ψi, ḟ i, φ̇i, ψ̇i

)
and 

Hi = Hi

(
f i, φi,ψi, ḟ i, φ̇i, ψ̇i

)
are obtained in Appendix B. Note that 

Fi = f i k̂b,i is the thrust force generated by quadcopter i and f i is 
the force magnitude.

Relation between inner-loop and outer-loop states: Using the 
Newton’s Second law, acceleration of quadcopter i is obtained as 
follows:

ai[k] = −gêz + f i

mi
k̂b,i[k], (30)

g = 9.81m/s2 is the gravity. By taking derivatives from the accel-
eration of quadcopter i, the jerk and time derivative of the jerk are 
obtained as follows:

Ji[k] = ḟ i

mi
k̂b,i + f i

mi

(−→ω i × k̂b,i

)
, (31a)

Ui[k] = 1

mi
F̈i = 1

mi
(Mi�i + Hi) , (31b)

where �ωi is discussed in Appendix A and is the angular velocity of 
the quadcopter i with respect to the inertial reference frame and 
relationship (31b) is derived in Appendix B.

6. Quadcopter control

We choose control input

Ui[k] = −β1Ji[k] − β2ai[k] − β3vi[k] + β4
(
ri,d[k] − ri[k]) (32)

where ri,d is the local desired position of the vehicle i ∈ V and was 
previously defined in (6) and β1, . . . , β4 are constant control gains. 
The MQS coordination dynamics becomes

zMQS[k + 1] = ASYS[k]zMQS[k] + BSYS[k]UMQS[k], (33)

where

ASYS =

I3 ⊗

⎛
⎜⎜⎝I4N + 	T

⎡
⎢⎢⎣

0N IN 0N 0N

0N 0N IN 0N

0N 0N 0N IN

β4 (−IN + W) −β3IN −β2IN −β1IN

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ,

BSYS =(
I3 ⊗ [0(n+1)×N 0(n+1)×N 0(n+1)×N �T In+1 0(n+1)×(N−n+1)

])T
,

“⊗” denotes the Kronecker product symbol, 0n+1×N ∈Rn+1×N and 
0n+1×(N−n−1) ∈ Rn+1×(N−n−1) are zero-entry matrices and I3 ∈
R3×3, In+1 ∈Rn+1×n+1, IN ∈RN×N are identity matrices,

zMQS = [zT
x · · · ...

z T
x zT

y · · · ...
z T

y zT
z · · · ...

z T
z

]T ∈R12N×1

is the quadcopter team state vector given by:

zx = [zT
x,L zT

x,F ]T , zx,L = [x1 · · · xn+1]T , zx,F = [xn+2 · · · xN ]T ,

zy = [zT
y,L zT

y,F ]T , zy,L = [y1 · · · yn+1]T , zy,F = [yn+2 · · · yN ]T ,

zz = [zT
z,L zT

z,F ]T , zz,L = [z1 · · · zn+1]T , zz,F = [zn+2 · · · zN ]T .

Define a combined state for global positions of all vehicles in the 
network as

q ∈
whe

zq,H

zq,H

Con

UM

Co
trix
The
(see

The
isfie
mat
traffi

Pro
sum
−IN

at −

zMQ

whe

�k

�h

for 
is b
bou
suc

zMQ

|BSY

whe
(37
of x
mat
can

zT
MQ

≤

≤

This
cret
pro

1

5

{x, y, z} , zq,H T [k] =
[

zq,H T ,L[k]
zq,H T ,F [k]

]
,

re

T ,L = [q1,H T · · · qn+1,H T ]T ,

T ,F = [qn+2,H T · · · qN,H T ]T .

trol input UMQS can be expressed as follows:

QS[k] = β4

⎡
⎣ zx,H T ,L[k]

zy,H T ,L[k]
zz,H T ,L[k]

⎤
⎦ (34)

ntrol gains β1, . . . , β4 are selected such that eigenvalues of ma-
 ASYS are all placed inside a unit disk centered at the origin. 
refore, the BIBO1 stability of the outerloop dynamics is ensured 
 [31] for details).

orem 3. Suppose graph G is defined such that Assumption 1 is sat-
d and positive gains β1, . . . , β4 are selected such that eigenvalues of 
rix ASYS are inside an open unit disk centered at the origin. Then, the 
c network dynamics (33) is BIBO stable.

of. It follows from Theorem 1 that if G is defined such that As-
ption 1 is satisfied at every discrete time instant, then matrix 
+ W[k] has its eigenvalues inside the open unit ball centered 
1 + 0 j. Given MQS collective dynamics (33), we can write

S[k + 1] =�k

⎡
⎢⎢⎢⎣

zMQS[1]
BSYS[1]UMQS[1]

...

BSYS[k]UMQS[k]

⎤
⎥⎥⎥⎦ , (35)

re

= [�k · · · �1 �0
]

(36a)

=
k∏

j=k−h+1

ASYS[ j] (36b)

h = 1, · · · , k, and �0 = I12N is an identity matrix. Since zMQS[1]
ounded as the network system’s initial condition and UMQS[k] is 
nded at every discrete time k, there exists a constant zmax > 0
h that

S[1] ≤ zmax112N×1, (37a)

S[k]uMQS[k]| ≤ zmax112N×1, (37b)

re 112N×1 ∈ R12N is the vector ones and the notation |x| in 
b) denotes a vector composed of absolute values of the entries 
. If assumptions of Theorem 3 are satisfied, spectral radius of 
rix �k is less than r < 1 at every discrete time k. Therefore, we 
 write

S [k + 1] zMQS [k + 1]

zmax1T
12N×1

(
k∑

l=0

k∑
h=0

�T
l �h

)
zmax112N×1

12Nz2
max

( ∞∑
l=0

rl

)
≤ 12Nz2

max

(1 − r)
.

(38)

 implies that zT
MQS [k + 1] zMQS [k + 1] is bounded at every dis-

e time k, and thus the BIBO stability of traffic dynamics (33) is 
ven. �
BIBO stands for Bounded Input Bounded Output.
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Remark 2. It follows from the proof of Theorem 3 that the conver-
gence of the state zMQS[k] to its desired value as k → ∞ can be 
ensured under the condition that uMQS[k] → 0 as k → ∞ which 
means that the convergent input implies convergent state.

Assumption 4. It is assumed that every quadcopter i ∈ V is able 
to choose an admissible control input Ui[k] at discrete time k such 
that

∀i ∈ V,∀k, q ∈ {x, y, z}, ∣∣qi[k] − qi,H T [k]∣∣≤ δ − ε. (39)

Then, safety constraint (9) is satisfied at every discrete time k
which in turn implies that quadcopter i never leaves the safety 
box Bi centered at ri,H T [k] at discrete time k.

Remark 3. Let

yq,H T [k] =
[

zT
q,L,H T [k] zT

q,F ,H T [k]
]T ∈RN×1, q ∈ {x, y, z},

(40a)

yq,d[k] = [q1,d[k] · · · qN,d[k]]T ∈RN×1, q ∈ {x, y, z},
(40b)

yq[k] = [q1[k] · · · qN [k]]T ∈ RN×1, q ∈ {x, y, z} (40c)

be an aggregate component q ∈ {x, y, z} of the quadcopters’ global 
desired positions, local desired positions, and actual positions, re-
spectively. Then, it was shown in [32] that yq,H T [k], yq,d[k], and 
yq[k] are related as

Yq,d[k] − Yq[k] = D
(
Yq,H T [k] − Yd[k]) . (41)

Therefore, there exists a ζi > 0 such that∣∣qi[k] − qi,d[k]∣∣< ζi =⇒ ∣∣qi[k] − qi,H T [k]∣∣≤ δ − ε,

∀i ∈ V, q ∈ {x, y, z}, ∀k.

Hence, safety condition (39) is satisfied, if the leaders’ desired tra-
jectories are planned such that each quadcopter i ∈ V can track 
the local desired trajectory ri,d and 

∣∣qi[k] − qi,d[k]∣∣ < ζi at every 
discrete time k.

7. Safety specification

The MQS continuum deformation is labeled “safe” if constraints 
(9), (11) and (13) are all satisfied for every quadcopter i ∈ V . Per 
Assumption 4, every quadcopter i ∈ V is able to ensure that the 
safety constraint (9) is satisfied at every discrete time k. The fol-
lowing theorem ensures the satisfaction of the safety requirements 
(11) and (13) by imposing constraints on the time-varying com-
munication weights of followers as well as the global desired tra-
jectories of the leaders.

Theorem 4. Assume quadcopter i chooses the control input Ui such that 
safety constraint (9) is satisfied at every discrete time k. Let graph G be 
connected and planar and in-neighbors of follower i ∈ VF are defined 
by set Ni = {i1, · · · , in+1}. Inter-agent collision avoidance (safety con-
dition (11)) and follower containment condition (safety condition (13)) 
are guaranteed, if followers’ communication weights satisfy the follow-
ing inequality and equality constraints:

∀k, ∀i j ∈ Ni, ∀i ∈ VF , wi,i j [k] ≥ 0, (42a)

∀k,∀i ∈ VF ,

n+1∑
wi,i j [k] = 1, (42b)
j=1

6

Fig. 1. MQS initial formation and the communication graph used by followers to 
acquire the desired affine transformation.

∀k,
∧

q∈{x,y,z}

∧
∀i∈VF

∧
∀ j∈Ni

(∣∣∣∣∣
n+1∑
l=1

(
αi,L − α j,L

)
qL,H T [k]

∣∣∣∣∣≥ 2ε

)
,

(42c)

∀k,
∧

i∈VF

8∧
j1=1

· · ·
8∧

jn+1=1︸ ︷︷ ︸
n+1 times

×
∧

(bi1, j [k],··· ,bin+1, j [k])∈S
ρ
(
bi1, j1 [k], · · · ,bin+1, jn+1 [k])= n,

(42d)

∀k,
∧

i∈VF

8∧
j1=1

· · ·
8∧

jn+1=1︸ ︷︷ ︸
n+1 times

∧
(

bi1, j [k],··· ,bin+1, j [k]
)
∈S

× �
(
bi1, j1 [k], · · · ,bin+1, jn+1 [k], ri[k])≥ 0

,

(42e)

Proof. If communication graph G is connected and planar and 
communication weights are chosen such that (42a) and (42b) are 
satisfied, then global desired position of follower i ∈ VF is in-
side the simplex made by the global desired positions of the 
in-neighbors of i ∈ VF . If condition (42c) is satisfied, quadcopter 
i ∈ VF does not collide with its in-neighbors. The polytope made 
by actual positions of in-neighbors of follower i ∈ VF in an n-D 
simplex, if safety condition (42d) is satisfied. Furthermore, follower 
i does not leave the simplex made by actual positions of the in-
neighbors of follower i ∈ VF , if (42e) is satisfied. Therefore, no two 
quadcopters collide and no quadcopter leaves the leading simplex 
defined by leaders if follower communication weights satisfy the 
safety condition (42a) through (42e) at every discrete time k. �
8. Simulation results

We consider an MQS consisting of 18 quadcopters with the ini-
tial formation shown in Fig. 1. Quadcopters are classified as lead-
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Fig. 2. Followers’ communication weight versus discrete time k.

Fig. 3. MQS formations at (a) k = 5000, (b) k = 10000, (c) k = 20000, (d) k = 25000 and (e) k = 30000.
ers and followers where leaders and followers are defined by sets 
VL = {1, 2, 3} and VF = {4, · · · , 18}, respectively. The MQS applies 
the communication graph shown in Fig. 1 to acquire the desired 
continuum deformation through local communication. For every 
follower quadcopter i, the in-neighbor set is unchanged and is 
listed in Table below. In Fig. 2, followers’ communication weights 
are plotted versus time. Given communication weights, leaders 
move independently and followers acquire the desired continuum 
deformation via local communication. In Figs. 3 (a) and (b), x and y
components of actual positions of all quadcopters are plotted ver-
sus time. Furthermore, MQS formation at discrete times k = 5000, 
k = 10000, k = 15000, k = 25000, and k = 30000 are illustrated in 
Figs. 4 (a-e).

9. Conclusion

This paper studied the problem of continuum deformation of 
a MQS under time-varying communication weights. We showed 
7

i ∈ VF Ni

i1 i2 i3

4 1 7 8
5 2 9 10
6 3 11 12
7 4 12 13
8 4 9 14
9 5 8 15
10 5 11 16
11 6 10 17
12 6 7 18
13 7 14 18
14 8 13 15
15 9 14 16
16 10 15 17
17 11 16 18
18 12 13 17

how quadcopters can be treated as particles of a continuum (de-
formable body) with time-varying properties while stability, con-
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Fig. 4. MQS formations at (a) k = 5000, (b) k = 10000, (c) k = 20000, (d) k = 25000 and (e) k = 30000.
vergence, and containment of the group coordination, defined by a 
continuum deformation, can be guaranteed. By formal specification 
of the safety requirements, the scalability of collective motion can 
be significantly improved while the MQS can aggressively deform 
in a geometrically-constrained environment. Furthermore, this pa-
per advances maneuverability of the collective motion via choosing 
time-varying communication weights. As a future work, we plan to 
advance the proposed MQS continuum deformation coordination 
under time-varying communication weights towards MQS contin-
uum deformation under time-varying communication protocol in 
8

which communication weights and links can vary with time. In 
particular, we plan to formally specify and verify safety of the MQS 
coordination in an obstacle-laden motion space.
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Appendix A. Quadcopter angular velocity and acceleration

We use 3-2-1 standard Euler angle rotations to determine ori-
entation of quadcopter i at discrete time k. Given roll angle φi[k], 
pitch angle θi , and yaw angle ψi and the base vectors of the in-
ertial coordinate system (êx , êy , and êz), angular velocity of quad-
copter i ∈ V is given by

−→ω i = ψ̇ik̂1,i + θ̇i ĵ2,i + φ̇i îb,i, (A.1)

where⎡
⎢⎣ î1,i

ĵ1,i

k̂1,i

⎤
⎥⎦= R (0,0,ψi)

⎡
⎣ êx

êy

êz

⎤
⎦=

⎡
⎣ cosψi sinψi 0

− sinψi cosψi 0
0 0 1

⎤
⎦
⎡
⎣ êx

êy

êz

⎤
⎦ ,

(A.2a)⎡
⎢⎣ î2,i

ĵ2,i

k̂2,i

⎤
⎥⎦= R (0, θi,0)

⎡
⎢⎣ î1,i

ĵ1,i

k̂1,i

⎤
⎥⎦=

⎡
⎣cos θi 0 − sin θi

0 1 0
sin θi 0 cos θi

⎤
⎦
⎡
⎢⎣ î1,i

ĵ1,i

k̂1,i

⎤
⎥⎦ ,

(A.2b)⎡
⎢⎣ îb,i

ĵb,i

k̂b,i

⎤
⎥⎦= R (φi,0,0)

⎡
⎢⎣ î2,i

ĵ2,i

k̂2,i

⎤
⎥⎦=

⎡
⎣1 0 0

0 cosφi sinφi
0 − sin φi cosφi

⎤
⎦
⎡
⎢⎣ î2,i

ĵ2,i

k̂2,i

⎤
⎥⎦ .

(A.2c)

Fig. A.5 shows the schematic of the inertial coordinate system with 
base vectors êx , êy , and êz and the body frame of quadcopter i ∈
V with base vectors îb,i , ĵb,i , and k̂b,i . Substituting êx = [1 0 0]T , 
êy = [0 1 0]T , êz = [0 0 1]T , î1,i , k̂1,i , ĵ2,i , and îb,i into Eq. (A.1), 
−→ω i = [ωx,i ωy,i ωz,i

]T
resolved in the body frame is related to φ̇i , 

θ̇i , and ψ̇i by⎡
⎣ωx,i

ωy,i
ωz,i

⎤
⎦=

⎡
⎣1 0 − sin θi

0 cosφi cos θi sinφi
0 − sinφi cosφi cos θi

⎤
⎦
⎡
⎣ φ̇i

θ̇i

ψ̇i

⎤
⎦ . (A.3)

Angular acceleration of quadcopter i ∈ V is obtained by taking 
time derivative of the angular velocity vector −→ω i with respect to 
the inertial reference frame:

−̇→ω =ψ̈ik̂1,i + θ̈i ĵ2,i + φ̈i îb,i + θ̇iψ̇i

(
k̂1,i × ĵ1,i

)
+φ̇i

(
ψ̇ik̂1,i + θ̇i ĵ2,i

)
× î2,i

(A.4)

Remark 4. Per Assumption 3, ψi[k] = 0 at every discrete time k ∈
Z. Therefore, î1,i = êx = [1 0 0]T , ĵ1,i = êy = [0 1 0]T , k̂1,i = êz =
[0 0 1]T , and −→ω i and −̇→ω i simplify to

−→ω i = θ̇i ĵ2,i + φ̇i îb,i, (A.5a)
−̇→ω = θ̈i ĵ2,i + φ̈i îb,i − φ̇i θ̇ik̂2,i . (A.5b)
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Fig. A.5. Schematic of the inertial coordinate system fixed on the ground and the 
body frame of quadcopter i ∈V .

Appendix B. Time derivatives of the quadcopter thrust force

Taking time derivatives from the quadcopter thrust force Fi =
miai = f i k̂b,i , we obtain the following relations:

Ḟi = ḟ ik̂b,i + f i
−→ω i × k̂b,i (B.1a)

F̈i = f̈ ik̂b,i + f i

[−̇→ω i × k̂b,i + −→ω i ×
(−→ω i × k̂b,i

)]
+ 2 ḟ i

−→ω i × k̂b,i

(B.1b)

By rearranging Eq. (B.1b), F̈i is expressed as follows:

F̈i = Mi�i + Hi, (B.2)

where �i = [ f̈ i φ̈i θ̈i
]T

,

Mi =
[

k̂b,i − f i ĵb,i f i

(
ĵ2,i × k̂b,i

) ]
∈R3×3, (B.3a)

Hi = f i

[
−φ̇i θ̇i

(
k̂2,i × k̂b,i

)
+ −→ω i ×

(−→ω i × k̂b,i

)]
+2 ḟ i

−→ω i ×k̂b,i .

(B.3b)

Remark 5. In equations of Appendix B, k̂b,i , ĵb,i , ĵ2,i , and k̂2,i are 3
by 1 unit vectors expressed with respect to the initial coordinate 
system with base vectors êx , êy , êz .
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