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Abstract—This paper studies the problem of affine transfor-
mation-based guidance of a multi-quadcopter system (MQS)
in an obstacle-laden environment. Such MQSs can perform a
variety of cooperative tasks including information collection,
inspection mapping, disinfection, and firefighting. The MQS
affine transformation is an approach to a decentralized leader-
follower coordination guided by n+ 1 leaders, where leaders are
located at vertices of an n-D simplex, called leading simplex,
at any time 7. The remaining agents are followers acquiring the
desired affine transformation via local communication. Followers
are contained in a rigid-size ball at any time ¢ but they can be
distributed either inside or outside the leading simplex. By eigen-
decomposition of the affine transformation coordination, safety in
a large-scale MQS coordination can be ensured by constraining
eigenvalues of the affine transformation. Given the initial and
final configurations of the MQS, A* search is applied to optimally
plan safe coordination of a large-scale MQS minimizing the
travel distance between the the initial and final configuration. The
paper also proposes a proximity-based communication topology
for followers to assign communication weights with their in-
neighbors and acquire the desired coordination with minimal
computation cost.

Index Terms—Large-Scale Coordination, Affine Transforma-
tion, Safety, Stability, Decentralized Control, and Local Commu-
nication.

I. INTRODUCTION

Multi-agent coordination has been an active research area
in the past few decades and found various applications such
as surveillance [1], search and rescue missions [2], agriculture
[3], structural health monitoring [4], and air traffic manage-
ment [5]. Consensus and containment control are common
multi-agent coordination approaches that have been exten-
sively studied in the past.

Consensus control is the most well-known decentralized
multi-agent coordination approach. Leaderless multi-agent
consensus [6], [7] and leader-follower consensus [8] have
been previously proposed for multi-agent coordination ap-
plications. Multi-agent consensus under fixed communication
topology and switching inter-agent communication have been
investigated in [9] and [10], respectively. Refs. [11], [12]
study stability of the consensus control in the presence of
communication delays. Consensus control of a system of
nonlinear agents has been investigated in Refs. [13], [14].

Containment control is a leader-follower method in which
the group coordination is guided by a finite number of leaders
and acquired by followers through local communication. Refs.
[15], [16] provide necessary and sufficient conditions for sta-
bility and convergence in the multi-agent containment coordi-
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nation problem. Containment under fixed and switching inter-
agent communications are investigated in Refs. [15], [17], [18]
Also, multi-agent containment control in the presence of time-
varying delays are analyzed in [19], [20]. Refs. [21], [22]
have studied finite-time containment control of a multi-agent
system.

Continuum deformation is another muti-agent coordination
approach that treats agents as particles of a continuum, de-
forming in a 3-D motion space. An n-D continuum deforma-
tion coordination is guided by n+ 1 leaders in a 3-D motion
space where leaders are located at vertices of an n-D simplex
at any time ¢, and n € {1,2,3}. In a continuum deformation
coordination, desired trajectories are planned by leaders and
acquired by followers through local communication [23].
Therefore, the continuum deformation and containment control
are both decentralized leader-follower methods. However, the
continuum deformation formally specifies and verifies safety
in a large-scale agent coordination by ensuring inter-agent
collision avoidance, obstacle collision avoidance, and agent
containment [24], [25]. As the result, a large-scale multi-
agent system can participate in a continuum deformation
coordination mission and the agent team can aggressively
deform to pass through the narrow passages in an obstacle-
laden environments.

The existing continuum deformation approach [23], [24]
requires that the leaders form an n-D simplex at any time
t. This requirement can be quite restrictive when agents are
not uniformly distributed at the initial configuration. The main
contribution of this paper is to advance the continuum defor-
mation towards affine transformation in which n+1 leaders
defining the affine transformation coordination form an m-
D polytope at any time ¢, where m < n < 3. In other words,
n+ 1 leaders, guiding the agent coordination, are not required
to form an n-D simplex at all times ¢. This advancement
can significantly improves maneuverability of a large-scale
swarm coordination. In particular, our affine transformation-
based coordination approach allows to plan more efficient
motions than the existing continuum deformation approaches
that it extends.

This paper studies the problem of safe and scalable affine
transformation of a multi-quadcopter system (MQS) in an
obstacle-laden environment (see Fig. 1). Compared to the
existing literature and the authors’ previous work, this paper
offers the following novel contributions:

1) We decompose the affine transformation coordination

problem into spatial and temporal planning problems.
For the spatial planning, we use the A* search method
to assign the optimal path of quadcopters such that the
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travel distance between their initial and final positions
are minimized, and collision avoidance is guaranteed.
For the temporal planning, the MQS travel time is
determined such that deviation of every quadcopter
from its global desired trajectory, defined by the affine
transformation, remains bounded at any time.

2) This paper provides conditions guaranteeing safety in a
large-scale affine transformation coordination. By eigen-
decomposition of the affine transformation and con-
straining the deformation eigenvalues of the affine trans-
formation coordination, inter-agent collision avoidance
and quadcopter containment are ensured.

3) This paper offers a new proximity-based communication
topology for followers to acquire a desired affine trans-
formation through local communication. Our approach
is therefore of decentralized type.

The proposed affine transformation approach is particu-
larly appealing for application to smart indoor or outdoor
fire-fighting performed by a team of autonomous quad-
copters exploiting the proposed approach. In particular, a fire-
fighter quadcopter team can effectively coordinate itself in
a geometrically-constrained and hazardous environment with
minimal human interventions. The fire-fighter quadcopters can
deform to pass through narrow channels and quicky react to
a rapid growth of fire.

This paper is organized as follows: Preliminaries of the
graph theory and motion space discretization are presented in
Section II. The problem of affine transformation coordination
for a large-scale MQS is stated in Section III. Section VI
describes steps to determine (“tune”) [26] algorithm param-
eters that we used in our case study. More specifically, affine
transformation is defined in section IV and inferred via local
communication in Section V. Simulation results are presented
in Section VI and followed by concluding remarks in Section
VII. The proofs are relegated to the Appendix A. Quadcopter
modeling details are summarized in Appendices B amd C.

II. PRELIMINARIES

A. Graph Theory Notions

We consider an MQS consisting of N quadcopters moving
collectively in a 3-D space where every quadcopter is uniquely
identified by an index number i € V = {1,---,N} (see Fig.
1). By classifying quadcopters as leaders and followers, V
can be expressed as V =V |V, where Vp ={1,--- ,n+1}
and Vi =V \ YV, define the leaders’ and followers’ index
numbers, respectively, in an n-D affine transformation, i.e.
n =1,2,3. While leaders move independently, followers ac-
quire the desired coordination through local communication.
Inter-agent communication is defined by digraph G (V,E)
with node set V and edge set & ¢ V x V. Set V can
be expressed as V = Vg |JV; where Vg ={1,---,Np} and
Vi {Ng+1,---,N} define the index numbers of boundary and
interior quadcopters, and Np > n+1. Given edge set &, the
set of in-neighbor quadcopters of quadcopter i € V is defined
by N;={j € V|(j.i) € E}.

n individual quadcopter
att =350s

£ 1000
N

"1 MQs Formation at

X (m) 2500 e,
Fig. 1: Example MQS affine transformation coor
obstacle-laden motion space.

dination in an

B. Position Notations

This paper studies collective motion of N quadcopters where
the position of every quadcopter is expressed with respect to
an inertial coordinate system with base vectors & = [1 0 0]7,
& =[010]7, and & =[0 0 1]7. Throughout this paper, r; o =
[xi0 yio ziol” and r; ¢ =[x;r yi.r zi,r]" denote the initial
and final positions of quadcopter i € V at the initial time #
and at the final time 7, respectively. Also, the vector r;(t) =
[x;(t) yi(t) z;(t)]T denotes the actual position of quadcopter
i at the time instant ¢ € [#o,f7]. The global desired position
of quadcopter i € V is defined by an affine transformation as
follows:

t€to.trl,  ria(®)=Q@)(rio—do)+d(r), (1)

where Q(r) € R¥3 is the Jacobian matrix, d(r) € R¥3 is the
rigid-body displacement vector at time ¢ € [#9,#f ], and we let
dp =d(z9). Furthermore,

rialt) = {r"“(” e @)

ZjeMWi,jrj(t) iG(VF

is called local desired position of quadcopter i € V where
w; ; > 0 is the communication weight between follower i
and in-neighbor j € A; and r;(z) is the actual position of
quadcopter j. Note that local and global desired positions of
every leader i € Vp are the same.

Remark 1.  Elements of Q(r) € R¥ and
d(t):[dl(t) d>(1) d3(t)]T e R™! can be uniquely
related to the global desired positions of n+ 1 leader
quadcopters where leader agents form an n-D simplex at
initial time ¢ so that:

rank ([r2,0 - 10 nel0—T10]) =n. 3)

Assumption 1. This paper assumes that quadcopters are
initially distributed in an n-D hyper-plane defined based on
initial positions of leaders 1 through n+1 guiding an n-D
affine transformation.

Proposition 1. [f Assumption 1 is satisfied and leaders’ initial
positions satisfy rank condition (3) at the initial time ty, initial
position of every quadcopter i €V can be uniquely expressed
as a linear combination of leaders’ initial positions so that

n+l

VieV, rio= Za’i,jrj,o, 4)
=
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where

D=1 5)

C. Rank Operator and Containment Function
Let p1, p2, -, Pn+1 denote n+ 1 position vectors in a 3-D
motion space. We define the rank function as

Pusi —P1]).  (6)

Vectors pi, P2, -+ -» Pn+1 define vertices of an n-D simplex, if
O0n (P1,*** s Pn+1) =n. We also define the containment function
as

Oon (Pt Pus1) =rank([p2—p1

n+l
% (D1, P €) = ) sign (D)), (M
i=1
where
P Pier € Pt Panl
O L S BT

and ¢ € R¥*! is the position of an arbitrary point in a 3-D
motion space, |D;| is the determinant of matrix D;, and sign :
R — {-1,0,1} is the sign function.

A point ¢ is inside an n-D simplex defined by p1, p2.---,
Pr+t, if %, (P1,-+ -, Pn,¢)| =n+1 (See Ref. [24]). Therefore, if
%n (p19"' ’pnsc) =n+1 or An (pl"" ’pnsc) = _(n+ 1)’ then,
the point ¢ is inside the n-D simplex defined by p; through
Pn+1- The rank function o, and the containment function x,,
are used in Section V-A to determine followers’ in-neighbors
and communication weights based on local proximity in the
MQS initial configuration.

D. Matrix Decomposition

This paper uses the standard 3 —2— 1 Euler angles to define
a rotation matrix by

CyCy CySz —Sy
R(X,Y,Z)=|SxSyCz—-CxSz SxSySz+CxCz SxCy|,
CXSyCZ+SXSZ CXSySZ —SXCZ CxCy
)
where C(.) and S .) abbreviate cos(-) and sin (-), respectively.
Also, X, Y, and Z are the first, second, and third Euler angles

where
R(X,Y,Z2)=R(X,0,0)0R(0,Y,00R(0,0,Z). (10)

Now, the Jacobian matrix Q(z), introduced in Eq. (1), can be
represented as follows:

Q1) =@ (0(1)), (1

where
o) = [ (1) () BiD) Bs(n)]"

is called the deformation feature vector, and ® can be decom-
posed as follows:

12)

®=R,Up, (13)

where the matrix R, (81,82,83) is orthonormal, and the de-
formation matrix Up (B4, Bs,Be,A1,42,43) is symmetric. The

3

deformation features fB(t), B2(t), and B3(¢) are the first,
second, and third Euler angles, and

R, =R (B1(1), B2(1). B3(1)) - (14)
The deformation matrix can be represented as
Up =R,AR!, (15)
where
R, =R (B4.Ps.B6) (16)

is a rotation matrix, and B4, 85, and B¢ are the first, second,
and third Euler angles. The matrix

A4 0 0
A=|0 1 0 A7)
0 0 43

is diagonal and real.

Remark 2. The matrix Up(t) can be expressed as

3
Up (1) = Z/li(t)ﬁi (Ba(1).B5 (1), B6 (1) ] (Ba(1),Bs (1) (1)),

i=1
(18)
where

i=1,2,3, 4 (Ba(1).B5(1),B6(1)) =R (Ba(1), B5 (1), Bs(1)) &
(19)

is the i-th eigenvector of the deformation matrix Up (7).

Proposition 2. If 1,(¢) = A(t) = A3(z) = A(¢) at time t, then
the matrix Up (t) simplifies to

Up (1) =A()]Is (20)

independent of the values of B4(t), Bs(t), and Be(t) at t.

III. PROBLEM STATEMENT AND SOLUTION APPROACH

This paper considers collective motion of a quadcopter team
consisting of N vehicles defined by V = {1,---,N}, where
quadcopter i € V is modeled by

{Xi =1 (x;) +g (x) w;

21
r,= CiX,' ( )

T .
. ¢ O Wi a)lT] is the state, u; =

In 1), x; = [r] i
[pi Tei T, T,’[,,i]T is the input, C; = [13 03X9],

1 R l03}1 0353

—pikp,i — g3 —Kpi 03x3
fi (x;) =, X ,and g; (x;) =" ,
(%) ri_f(¢i,95,lﬁi)wi 8 (%:) 031 035

J i x (Jiw;) 050 J;!

where m; and J; are the mass and mass moment of iner-
tia of quadcopter i € V, respectively, 035 € R¥>!, 03,3 €
R¥3, and 0359 € R> are the zero-entry matrices, I3 € R3*3
is the identity matrix, g = 9.81m/s? is the gravity, u; =
[pi 74 To.i TW]T, and T (¢;,0;,;) is defined in Eq.
(83) in Appendix B.

The quadcopter team is positioned in an n-D hyper plane
(n=1,2,3) at initial time 7 and the MQS initial formation is
defined by set Qp={ri0,---Tn o} at time . It is desired that
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the MQS ultimately forms the desired configuration specified
by Qf ={ri s, -ty s} where

VieV, r5=Qsrio+dy, (22)

and where the matrix Q7 € R¥ and vector dy € R¥! are
known at time ¢, and the global desired trajectory of agent
i €V is defined by Eq. (1) for f € [fo,17]. To ensure safety,
we require that the MQS remains inside the rigid containment
ball

S() = {r e R’[|lr = (d(0)) || < rmax} (23)

at any time ¢ € [to,t7].

Given the above problem setup, this paper offers a solution
shown in Fig. 2 to safely plan affine transformation of a
large-scale quadcopter team by addressing the following two
problems:

Problem 1: Affine Transformation Determination: We
determine a safe MQS affine transformation by specifying the
Jacobian matrix Q(#) and the rigid-body displacement vector
d(?) such that the travel distance between the initial and final
configurations of the MQS is minimized in a geometrically-
constrained motion space (see Fig. 1). We assume that every
quadcopter can be enclosed by a ball of radius €, and define
the matrix Q(z) over the time interval [fo,f7] such that no
quadcopter collides with obstacles, or with other quadcopters,
and followers do not leave the containment ball S(r) defined
by (23) at any time ¢ € [to,¢y]. Furthermore, we seek to
determine the rigid-body displacement vector d minimizing
the travel distance between the specified initial and final
conditions: Qg = Q(ty), do =d(tp), Qf = Q(l‘f), df = d(tf).

Problem 2: Affine Transformation Acquisition: We seek
to develop a decentralized method for acquiring the desired
affine transformation with local communication. In particular,
inter-agent communication and communication weights are
assigned based on local proximity. Furthermore, we pro-
vide a condition guaranteeing stability of the decentralized
affine transformation coordination. We also seek to ensure the
boundedness of the deviation of the quadcopter team from
a desired affine tranformation coordination by choosing a
sufficiently large travel time between in the initial and final
MQS configurations.

IV. PROBLEM 1: AFFINE TRANSFORMATION DEFINITION

An n-D affine transformation is defined by planning the
trajectory of the rigid-body displacement vector d(¢) and
deformation vector @(¢) over the time-interval ¢ € [t,77] as
described in Sections IV-A and IV-B

A. Planning of Rigid-Body Displacement Vector d

Given the initial and final displacement vectors dy and d 7
we use the the A* search to determine n, — 1 intermediate
waypoints d;, ---, d,,._;. The objective of the A* planner
is to minimize the travel distance of the containment ball
in an obstacle-laden motion space while ensuring collision
avoidance.

Given the optimal waypoints do, --

define

) anT (anT = &)‘), we
lldp1 —dyl

ﬁ-
o dier —dy|

= (24)

4

for [=0,1,---,n, — 1. In this paper,

T = (tnT —to) (25)

is considered as the travel time between two consecutive
waypoints d; and d;.1, where t,,_ =ty is free. The rigid body
displacement vector d(¢) is defined by

d(r) = {az(l—Y(I,D))+7(l,Tl)al+1 t<t<tyr, l<ng

d,, t=n;=ty

(26)
where T; = f;,1 —#; is the travel time between d; and dji,

d,, =dy, and y(¢,T;) is defined as follows:

5 J
t—1
te [t,t], Y(LTI)ZZ{]' (T) (27)
- l
j=0
for[=0,--- ,n,_1. Here {y through {5 are constant coefficients,

and T; = t;,1 — t;. Therefore, the containment ball moves on a
straight path at every time ¢ € [#;,#;,1] where y(#;,77) =0 and
v(ti41,T;) =1 forevery T; >0 and [ =0,--- ,n — 1.

B. Planning of Deformation Feature Vector Trajectory O(t)

By using Eq. (11), Q(#) can be expressed as Q(r) =
® (0O(t)), and assigned by planning of the deformation vector
O(r) over the time-interval [fo,7r]. The deformation feature
vector O : [tg,17 | — R*! is defined as follows:

o) = {(:)1(1 -yt T))+y(t,T))Ouy 1y <t <tp, [ <ng

0,, t=n; =ty
(28)

where initial and final conditions

Oy=0(t) =110 A0 30 Buro ,36,0]T, (29a)

A T
Or=0(if) =Ly Aoy Ay Pis Be.r |
(29b)
are known, and
(:)12(:)0+,u1 (@f —(:)0). 30)

Note that function y(¢,7;) is defined in Eq. (27).

1) Deformation Angles B4, B5 and fg

There is no constraint on selecting 4.0, 55,0, 6,0, and they
can be arbitrarily because 1,0 =42, =43,0= 1. In this paper,
we let shear deformation angles SBs(¢) and Bs(f) be constant
over time, and assign them based on the initial positions of the
quadcopters by solving the following max-min optimization
problem:
t.,jgn,vi’n#j {(rio-rj0) 0 (07ﬁ57ﬁ6)}} :

(3D

Note that @ o is independent of S4 and hence we choose
B0 =0 without loss of generality. Therefore,

(Bs.,0.B6,0) = argmax {
Bs.Bs

. . : T
1= [cosBscosBso  cosBsosinBeo —sinfsol |
(32a)
. . T
0= [sinBso cosBso O] , (32b)

. . . . T
30 = [sinfBscosBeo sinPsgsinBso cosPso|  (32¢)
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Fig. 2: Block diagram of the MQS collective dynamics with the proposed approach.

are the eigenvectors of deformation matrix Up (¢) at any time
te [l(),tf].

Remark 3. Deformation angles 85 ¢ and S¢ o are assigned such
that the unit vector @ o is along the line connecting the two
quadcopters identified by solving (31).

2) FEigenvalues A1, A3, and A3

Theorem 1 is provided in this section to ensure inter-agent
collision avoidance and quadcopter containment by assigning
lower and upper bounds on eigenvalues 41, 13, and A3.

Definition 1. The minimum global separation distance in an
affine transformation is defined by

{(rio-rj0) 8:(0,85.8s)}.  (33)

min

dinin =
i,jeV, it

Definition 2. The maximum global separation distance in an
affine transformation is defined as

dmax =max = ”ri,O_aO”2~ (34)
ieV

Theorem 1. Assume every quadcopter is enclosed by a ball
of radius €, and the control input w; is designed such that
i (1) —ria()| <6 (35)

at any time t € [to,ty] where 6 > 0 is constant. Inter-agent
collision avoidance and quadcopter containment conditions,
specified by

N-1 N
vielotr], N\ N (In@-r;@l>2€), (36a)

i=1 j=i+l
N -
Vi € [to.15], /\ (r;i(1) € S(1)) (36b)
i=1
are guaranteed, if
YVt e [t(),[f], A1 ([) > Amin, (37a)

vt € [to,tr], i=1,2,3, [2; ()] < Amaxs (37b)

where
2(6+¢€)

> 38a)
dmin (

Amin =

_ Tmax—0—€

max —

(38b)

dmax

Note that inter-agent collision avoidance is guaranteed only
by imposing constraint (37a) on eigenvalue A;. However, all
eigenvalues of matrix Up(f) must satisfy safety condition
(37b) to ensure no quadcopter leaves the containment ball S(r)
at any time t € [to,¢r].

Remark 4. While /11,0 = /12’0 = /13’0 = 1, /ll,f, /lz,f, and /13,f
need to be selected such that Eq. (22) is satisfied, and

i=1,23, |, £ ] < Amax- (39)
3) Rotation angles By, B2, and 33
The initial values of rotation angles B1, B2, and 33, denoted
by 81,0, 82,0, 53,0, can be arbitrarily selected. However, gy 7,

B, s, B3,r need to be selected such that Eq. (22) is satisfied.

V. PROBLEM 2: AFFINE TRANSFORMATION ACQUISITION

In this paper, a desired affine transformation is acquired in a
decentralized fashion via local communication. A proximity-
based communication topology is developed in Section V-A to
(1) classify quadcopters into followers and leaders and (ii) de-
termine in-neighbor quadcopters of every follower quadcopter
i € V. MQS collective dynamics are then obtained in Section
V-B and followed by analysis of stability and boundedness
of the MQS collective dynamics in Sections V-B2 and V-C,
respectively.
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A. Proximity-Based Inter-Agent Communication

In a decentralized affine transformation coordination, lead-
ers move independently therefore N; =0 if i € V.. Non-leader
boundary quadcopters, defined by Vg, directly communicate
with leaders. Therefore,

ieVp\vVy, N;i =V (40)

In-neighbors of the interior quadcopters, defined by Vj, are
assigned based on local proximity. For every quadcopter i €
Vi, we define /;-proximity set

n+l
Win (i) ={ (i1, sins1) € V™ (/\ [Iri,.0 —rioll < li) A
k=1
(l"‘n (ri1,09 o 9rin+|,0ari,0)| =n+ 1)

(41)

as the set of all n-D simplexes that are inside the ball of
radius /; with the center positioned at r; o. Then, the minimum
proximity distance [; is assigned by solving the following
optimization problem:

min/; (42)

such that
W; (i) #0.
Remark 5. If |'W; (I)| = 1, then, W; = {N;}.

Assumption 2. If |W;(I7)| > 1, any collection of n+1
quadcopters belonging to set ‘W; (ll*) can be selected as in-
neighbors of interior agent i € Vy.

(43)

Let the communication weight of follower quadcopter i €
‘Vr with in-neighbor quadcopter j € N; is denoted by w; ;.
Let N; ={i1,- -+ ,ins+1} define in-neighbors of follower i € Vp,
then, the local desired trajectory of quadcopter i € Vr is given
by

n+l

Vt e [to,tr],i € Vr, rq(t) = Zwi,krik (1), (44)
=l

where r;, (7) denotes the actual position of in-neighbor iy € NV;
(k=1,---,n+1). Communication weights of follower i € Vg
are defined as [23], [24]

Wiiy

-1
= [ry0-Ti0 ri,..0-Tio| T (45a)
wiainﬂ

n+l
Wi,il = 1 - Z Wl',ik .
k=2

Given followers’ communication weights, weight matrix
W = [W;;] e RN*N s defined as follows:

(45b)

i.j 1€VFr, JEN;
W= e T TR (46)
0 otherwise
The matrix W can be partitioned as follows:
_[0]0 NxN
w= [%W] eRT @7

6

where F € RIV-n=Dx(n+1). matrix G € RIV-n=Dx(N-n-1) 44
non-negative.

Theorem 2. Assume inter-agent communication is defined by
graph G (V,E) with node set V and edge set & C VXV,
where V = (VB U(V],' (VB = {1, ,NB} and (VI = {NB +
1,---,N} define index numbers of boundary and interior
agents, respectively. If leaders defined by set Vi ={1,---,n+
1} € Vg moves independently, non-leader boundary agents de-
fined by Vg \Vy, all communicate with leaders, followers’ in-
neighbors are determined by solving the optimization problem
given in (42) and (43), and followers communication weights
are defined based on agents’ initial positions using relation
(45), then, the matrix

L=-1+W (48)

is Hurwitz.
Let

Yo =vee([ra( - rwa®]")  @9)
aggregate global desired positions of all quadcopters at time ¢

and

T
RL(f)=VeC([I'1,a(f) Fnieta(D)] ) (50)
aggregate global desired positions of all leaders at time f,
where vec(:) is the matrix vectorization operator. Vectors

Y, (#) and Ry (¢) are related by [24]

Yu(t) = (I H)RL(7) (51)
at time ¢, where
a1,1 Ap+1
H-= e RV*(n+D) (52)
an,1 AN +1

Theorem 3. If initial positions of leaders satisfy rank condi-
tion (3), followers’ in-neighbors are obtained by (42) and (43),
and followers’ communication weights are assigned using
relation (45), then, the following properties hold:

_In+l ]

e
H=-L"Lo [(—I,,+1+G>'F

(53a)

Ya()-Y() =I3oL) (Y(1)-Ya(1)),
(53b)
where “®” is the Kronecker product symbol, and where

t € [to,tr],

Y (7) = vec ([rl(t) ry (t)]T) , (54a)

Ya) =vee([ra® - rva®]"),  (54b)

aggregate actual, local desired, and global desired positions
of all agents at time t, and

Lo = (55)

0

In+1] c RIN(nt1).
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B. MQS Collective Dynamics and Coordination Control

A feedback controller needs to be designed, for each indi-
vidual quacopter i € V, to stably track the reference trajectory
r; 4(1) at any time ¢ € [fo,7].

Definition 3. Let y : R» —» R and f : R” — R” be smooth
functions. The Lie derivative y with respect to f is defined as
follows:

Ley = Vyf.
Let g(x) = [gLi(x) g4, (x7)] and
u, = [ul,l- u4,,-] where g;; through g4; are the

columns of matrix g;, and ui; = p;, u2; = T i, U3, = Tg,i,

and u4; = 74 ,. By considering Definition 3 and defining
T .

ri = [x; Vi zi] as the output of quadcopter i € V, we can

write

4

Gi=Liqi+ ) L&, Liqittn,i- (56)
h=1

qge{x,y,z}, i€V,

where Lg, Lt,q; = Lg,  Lt,q; = Lg, Lg,q; =0. Thus, us ;, u3 ;,
and u4; do not appear on the right-hand side of Eq. (56).

To overcome this issue, we extend the quadcopter dynamics
(21) to

{i,:fj (%) + ()0 57
l'iZCXi
- T - T
where %; = x| pi pil L W= [upi Tei Teq Tyl s
Ci=[ 03],
0 0 i
) f; (x;) 0351 09X1 Jg—xl3 L;p’f
fik)=| pi |+|oikei|, and & (%) = 30Xl o .,WA :
0 Os,. 1x3| | Ta.i
L 0pa) |7y,
Define g (xi) = [8ui(X) 84,0 (%0)] and
i = [ﬁ],i 124,,-] where g;; through g4; are the

columns of matrix &;, and @y; =up;, fho; = Tp,i, U3, = Tg,i»
and @4 ; = 7 ;. Here, we can write

4
gefryzh i€V, Gi=Liqi+) Ly, L} qiini, (58)
h_

=1

where Lg, | L%q,- #0 for h=1,---,4 and q € {x,y,z}. There-
fore, the extended dynamics (57) is input-output linearizable.
By defining the state transformation X; — (z;, {;), the extended
dynamics (57) is converted to the following internal and
external dynamics:

. 0 1 0
lﬂi = |:0 0 % + 1 ul,b,i? (598-)
ii = AiZi +BiSi, (59b)

T 71T ST
where z; = [r] k] &7 ¥ | and §i=[y: Y| are the
state vectors of the internal and external dynamics, respec-
. 0 I 0
tively, A; = | % |, and B; = | %|.

03x9  03x9 I;

7

1) Feedback-Linearization Control Design

Define v; = [S.T

S Mlp,i]T as the vector aggregating the con-
trol inputs of the external and internal dynamics, respectively.
If quadcopter i € V is modeled by dynamics (57), then v; and

u; are related by

Vi = Milli +Ni, (60)
where
LglviL?,ix,- ng'l_L?[x,f Lgll_Lgtxi Lg“L?}xi
3 3 3 3
M; = Lgl"_L%y,‘ ng.iLf»yi Lgs.il‘f»yi Lgul‘iyi = mL.-Ol’iOli ]
Ly Lizi Lg, Lizi Lg iz Lg Liz I 0
1 0 0 0
| (61a)
T — (01.;04.; + 0> ;
4 4. 4 . X 1,iV4,i 2,i
No=[Lix Liv Lia 0] z[ i ( > )
(61b)

and Oy ; through Oy ; are defined in Appendix C.
We choose

Uy, = —k1,¢,i',bi — ko g iti,

ki,yi >0 and kyy; > 0. Therefore, y;(¢) asymptotically
converges to 0. We also choose

VieV si = —ki ;¥ — ko ¥ — k3 ¥+ ka i (ra;—1i), (62)

where k| ; through k4 ; are selected for every quadcopter i € V
such the stability of the MQS collective dynamics is ensured.
A condition for stability of the MQS collective coordination
is provided in Section V-B2.

2) MQS External Dynamics and Stability Analysis

The external dynamics of the MQS is given by

7 = AsysZ +BgysS
SYS svsS 63)
where Y = vec([rl rN]T), Z =z - zITV]T,
S = [s] - SIT\,]T, Csys € RIWVXIN - Agyg =
diag (A, -, Ay) € RIZVXI2N, and Bsys =

diag(By,---,By) € RI?M3N _ Given the local desired
trajectory definition in (2),

Ya(1) Y (1) Ry (7)
Ya(t)| _ Y(2) Ry (1)
Yd([) - (112®W) Y(t) +(112 ®LO) RL(I) (64)
Ya(r) Y(1) R, (1)
where Ij5 € R'?¥12 is the identity matrix; W, Ry, and L were

previously defined in (47), (50), and (55), respectively. the
external dynamics of the MQS can be expressed as follows:

Y Y R,
d||Y Y R,
mitils Amos v | +Bmos R, |’ (65)
Y Y R,
where
0 Iin 0 0
Ao = 0 0 iy 0
MQS = 0 0 0 Ly
Le(KsL) Le(K;L) Iio(KL) Le(KL)
(66a)
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0 0 0 0
Buos=| g 0 0 .t
L®(Kilo) Le(KsLo) L®(KoLy) Lo (K1L(06)
j=123.4 K;=diag(k;1..kjn).  (660)
and I3y € R33N s the identity matrix. Note that control

gains k;; i€V and j=1,2,3,4) are selected such that roots
of the characteristic equation

|s*T+5°K; + 57K +5K3 +Ky| = 0 (67)

are all located in the open left half of complex plane. The
block diagram of the MQS control system is shown in Fig. 2.

C. Inter-Agent Collision Avoidance and Quadcopter Contain-
ment

To ensure inter-agent collision avoidance and quadcopter
containement, safety conditions (35), (37a), and (37b) must
be satisfied. Conditions (37a) and (37b) can be guaranteed by
defining admissible affine transformation features as discussed
in Section IV. To ensure (35), we assume that k; 1, k2, -+,
and ko (Vje{l,---,4}) are selected such that the roots of the
Characteristic Eq. (67) are all placed in the open left half of
complex plane. Then, we guarantee the safety condition (35)
by choosing a sufficiently-large maneuver duration, i.e., 7.

Define E=Y(f) - Y, (¢) as the error vector. Per Theorem 3,
Y (1) -Y(t) = (I3 ® L) E; thus, the error dynamics becomes

(B BT BT E))=Aves[ET BT BT KT 4 Vs,
(68)
where
Vmos()=[0 0 0 LeH'| R, (). (69)
Therefore,
E(1) E(z0)
E(t) — eAwmos (1=1) ],?(m) +‘/IeASYS(t_T)VMQS (7)dr. (70)
E(r) E(to)| " Jy,
E(7) E(1)
Note that
tefotr]l, N -1 oI5 =E" ()C] CGE®, (1)
where C; = [C;,, ] € R3*12N is a matrix with the (I, ) element

of which is given by

C = 1 (I=1Ah=0))V(I=2Ah=i+4N)V(I=3Ah=i+8N)
"7 10 otherwise ’

Theorem 4. Assume the initial condition E(ty), E(to), E(to),
and K(to) are given such that the the trajectory of (68) satisfies

Vielto, 1], VieV,  ri(1)—riq ()] < 06,

where 0 < o < 1. Then, there exists a Ty >0 such that (35)
holds, if ty > iy.

The inter-agent collision avoidance can be ensured by
choosing T > T* where T, = t;} —tp 1s assigned as the solution
of the following constrained optimization problem:

r; = argmin (tr —10) (72)

8

:::::::

VVVVVVV

1920

1900 1
1800 [T 5 1890
Initial Formation
&0 700 710 720
0 10 2 % 4 s & 10 80 %

X(m)
() (b)

Fig. 3: (a,b) MQS initial and final formations.

subject to

t € [to.15], /\ E” (1)CT CE(1) < 62, (73)
ieV

where f( is known.

Remark 6. By satisfaction of constraint (35), deviation of
every quadcopter from its global desired trajectory remains
bounded at any time ¢, and thus, safety of the MQS affine
transformation can be ascertained only by constraining eigen-
values of the deformation matrix Up, by conditions (37a) and
(37b). We can guarantee the satisfaction of the safety require-
ments (35), (37a), and (37b) without constraining the total
number of quadcopters participating in an affine transforma-
tion coordination. Thus, our proposed multi-agent coordination
approach is scalable to large values of N.

VI. SIMULATION RESULTS

Consider an MQS consisting of 33 quadcopters with the
initial formation distributed in the z —x plane as shown in Fig.
3 (a). For the initial configuration, 1; g =A20=A430=1, B1,0=
B20=0, B =Pao=0rad, and do = [1935 215 43]".
It is desired that the MQS ultimately achieves the final
configuration distributed in the x —y plane as shown in Fig. 3
(b) by moving in an obstacle-laden environment shown in Fig.
4 (a). The final configuration is an affine transformation of the
initial formation and characterized by the following features:
ALy =35 =1, =-0.8 B1,y =B2,7= 3,5 =Pa,y =0 rad,
and dy = [731 1935 43]T. The shear deformation angles
Bs(t) = Bs,o = Bs,r and Be(1) = Beo = Po,y are constant at
any time f, where Bs9 =0 rad and Beo =2.0735 rad are
obtained by solving Eq. (31). Given quadcopters’ initial po-
sitions, followers’ in-neighbors and communication weights
are computed using the approach presented in Section IV.
Note that V ={1,---,33} can be expressed as V =V JYV],
where Vg ={1,---,11} and V; ={12,---,33}. Also, the set
Vr ={1,2,3} and Vg = {4,---,33} define index numbers of
leaders and followers’, respectively.

A. Safety Conditions

Assignment of 6: Because A1 9=A;y =1, and A;(¢) is
defined by Eq. (28) at any time ¢ € [to,7f], A1(¢) =1 at every
time ¢ € [0, tf] (to = 0s). Therefore, A, =1 is considered as
the lower limit of eigenvalue A;: 1,(¢t) > 1, Vr € [to,tf]. Given
quadcopters’ initial positions, duyin =2 (6+¢€) = 0.4387 m is
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computed using (33). It is assumed that every quadcopter is
enclosed by a ball of radius € = 0.10m, therefore, 6 =0.115 m.

Assignment of A,c: Given quadcopters’ initial positions,
dmax = 38.0555m is obtained by Eq. (34). Given € = 0.1m
and 6 = 0.115 m, Amax = 1.1243 is obtained by Eq. (38b).
Therefore, collision avoidance and quadcopter containment are
guaranteed, if the following inequalities are satisfied at any
time ¢ € [to,tf]: [Iri(t) — 1 o(t)|| < 0.1 for every quadcopter
i€V and A;(t),A2(1),A3(r) < 1.1234,

Assignment of Travel Time 7: We choose 7y = Os, thus,
aty=T2>T" needs to be selected to ensure safety, where
T* =776 is obtained by solving Eq. (72)-(73). For simulation,
we choose T =780s.

B. Plots

In Fig. 4(a), the optimal path of the containment ball S
is shown by green. Furthermore, MQS formations are shown
at sample times Os, 250s, 350s, 450s, 650s, and 770s in
Figs. 4 (a-d). Note that Fig. 4 (b-d) plots the projections of
the MQS formations on the x —y plane at different sample
times. Additionally, x, y, and z components of positions of all
quadcopters are plotted versus time ¢ in Fig. 5. Fig. 6 plots
[r; —r; 4|l versus time for every agent i € V. It is seen that
deviation of every quadcopter is less than 6 =0.115 m from
its global desired position at any time ¢ € [0,780]. Figs. 7 plot
the thrust force magnitude p;, roll angle ¢;, and pitch angle
0; for every quadcopter i € V versus time.

VII. CONCLUSION

This paper studied the problem of large-scale affine trans-
formation of an MQS in an obstacle-laden environment. By
eigen-decomposition of the affine transformation, it was shown
how a large-scale collective motion of an MQS can be safely
planned such that inter-agent collision avoidance is avoided,
quadcopter containment is guaranteed, and no quacopter hits
an obstacle in an obstacle-laden environment. Similar to the
previously proposed continuum deformation-based coordina-
tion approaches our method is scalable to coordination of
a large numbers of vehicles, however, it allows to plan
more efficient motions due to a more flexible form of the
transformation being employed. A comprehensive comparison
with other multi-agent coordination approaches proposed in
the literature and the development of further calibration/ tuning
guidelines is beyond the scope of this paper and is left to
future work. Furthermore, the proposed affine transformation-
based approach paradigm improves the maneuverability of the
swarm coordination by relaxing thee restrictions in the existing
continuum deformation coordination approach.
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Fig. 4: Affine transformation of the MQS in an obstacle-laden environment is illustrated in (a). Top view of MQS formations
at sample times (b) ¢ =0,250,350s, (c) t =350,450s, and (d) ¢ = 650,770s.
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APPENDIX A
PROOFS

700

trajectories

Proof of Proposition 1: If Assumption 1 and rank condition

(3) are satisfied,
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initial position of quadcopter i € V can be
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Fig. 7: (a,b,c) Thrust force magnitude p;, roll angle ¢;, and
pitch angle 6; for every quadcopter i versus time.

expressed by the following linear combination,

n+l
ievV, rio—ri0 =Zai,j (rjo-rio), (74)
=
where «; 2, -+, @; n+1 are uniquely obtained by
= [1'2,0 —Tro0 o Tuel0 —1‘1,0] r (75)
i n+l

Now, Eq. (74) can be written in the form of Eq. (4), where

ai1=1- ;’3 «@;,; which in turn implies Eq. (5).
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Proof of Proposition 2: Elements of matrix Up = [U;;] €
R33, defined by (18), are expressed as follows:

Un =21 (C3,C3, )+ 0 (55,53, C3, +C3,S3, = 255,55 CpCp.Spi )
+5 (C3,53,C3, + 53,53, = 253,55,C,Sp:Cpi )

U2 =41Cp,Cp, Sps — A3(Cp, S5, Sp — C3, CeSpeS ) — A2(Cp,Cpe Sy
~Crs S Sgs)-

Uiz =/13(Cﬁ6 CpsSps C/Zi, +CpsSp.Sps Cﬁ4) +/12(Cﬁ6 Cs Sfﬁ Sps = Cp, CpsSp, Sﬁﬁ)
—A1Cp CpsSps»
Uz =Aa(Cp, C, + S, S, Sps
2 2 Q2 2 Q2
+C34Sﬂ6sﬂ5 - 2C/34C'[3()S'34S/3()S/35) +/11CBSSB6,

_ 2 2 2 Q2 2
Uss _/13C,B4C,85 +/12C,85S,B4 +A18 -

+ 2Cﬁ4 Cﬁs Sﬁ4 Sﬁs Sﬁs )+ A3 (Cée S/23’4

Uy =Uyp, Usp =U»yz, and Uz =Uy3. If 11 =1, =43 = A, then,

A
Uij:{o

Proof of Theorem 1: Inter-agent collision between every two
quadcopters is avoided, if

i=j
i#j

VijeV,izj, () -r;0]>2.  (76)
We can write
(ri—rj) = (ria=Tj.a) = (ria =1:) = (r; = rja) .
Therefore,
lle: —xjll > lIria —xjall = lIvia =il = llv; —x;all. (77

Eq. (77) implies that |[r; — x| < 2¢, if |r;q -1 <6,
Irja—rjll <6, and |[r; 4 —rj4ll = 2(e+6). Furthermore,
”ri,u _rj,u“ > 2(€+5), if || (ri,a —I']"a) 'ﬁl || > 2(6+E) Con-
sequently, inter-agent collision avoidance between every two
different quadcopters i and j is avoided, if

I (ria—rjq) @l =2(5+€).
Note that
| (ri,a(0) =1j,a(0) -1 (1)
| (ri0(t0) —x;,0(t0)) - @1 (10)|

It is ensured that no quadcopter leaver ball S(¢) at any time
te[to,tr], if

Vi,jeV,i#], (1) =

VIG[IOatf], r%%(||ri,a(t)_d(t)||2Srmax_fs_e
1

This implies that Eq. (38b) assigns the upper-limit for
eigenvalue A;(7) at any time ¢ € [to,?]. Additionally, It is
ensured that no two quadcopters collide, if
min

Ve e [to,tr], . omin

Consequently, Eq. (38a) assigns the lower limit for A;(z) at
any time ¢ € [fo,t5].

Because €y C S(fp) and £y C S(ty). Therefore, 159 <
Amax, /12,f < Amaxs /13,0 < Amaxs /lS,f < Amax, and /lj(t) =
Ajo(1=y(,T))+y(t,T)A; s remains bounded:

Jj=23, A (1) < Amax

|(ria(t) —1.a(2)) 01 ()] 22 (5 +€).
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at any time ¢ € [fo,7r].

Proof of Theorem 2: If assumptions of Theorem 2 are all
satisfied, matrix G € RIV-n=Dx(N-n-1) i¢ non-negative a there
exists a directed path between every leader and every follower.
By provoking Perron-Frobenius Theorem, it is concluded that
the spectral radius of matrix G, denoted by p (G), is less than
1 and eigenvalues of matrix —I+G are all placed on the left-
hand of the s-plane inside a disk of radius p (G) centered at
—1+0;j. Therefore, matrices —I+G and L = —I+W are Hurwitz.

Proof of Theorem 3: Let Rro =
Vec([rl,o rn+1,0]T) e R3m+DxI and Rpo =
vec ( [I’n+2,0 I'N,O]T) e R3W-n=Dx1" define initial

position components of leaders and followers, respectively,
where vec(-) is the matrix vectorization operator. If
assumptions of Lemma 3 are satisfied, quadcopters’ initial
positions satisfy the following relation:

L Rro| | -1 0 Rro| _|-Rrpo
Rro| | F (-1+G) [|Rro| | 0 |
Thus,
Rrol| I R
Rro| |- (-1+G)~'F| &0

Because leaders form an n-D simplex at initial time #,
positions of every quadcopter i can be uniquely expressed as
a linear combination of leaders’ initial positions using relation
(4). Therfore,

[ =HR
RF,()] Lo

which in turn implies correctness of Eq. (53a).
Now, we can write

Y, -Y=(LoL)Y+(I3®Ly) Ry (1) (78)
On the other hand,
ILeL)(Y-Y,)=Y;-Y. (79)

Therefore, Eq. (53b) is proven.

Proof of Theorem 4: Given definition of vy (¢,7;) in (27),
v (t,T7), ¥ (¢,T7), and ¥ (¢,T;) are decreasing with respect to 7;.
For a given initial time 9, 7}, defined by (25), is increased if 7 ¢
is increased. Also, y (¢,T7),7 (¢,T;) ,¥ (¢t,7;) — 0, and Vmgs —
0, if Ty — oo. Therefore, there exists a sufficiently-large final
time 7y = to+T) + --~+Tn7_1 such that the response of zero-
initial-state dynamics, given by

0
E(1)
EE;; =e +./z0 s =Dy o (1)dr,
EQ@)

ensures that ||r;(f) —r; 4(¢)|| < (1 - )6 for every quadcopter
i € V. This also ensures that safety condition (35) is satisfied,
if the zero dynamics of the error dynamics (68) ensures that
llr; (£) —=r; o (2)|| < 00 at any time ¢ € [to,7f].
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APPENDIX B
ROTATIONAL KINEMATICS AND DYNAMICS OF A
QUACOPTER

We use 3-2-1 standard to determine orientation of quad-
copter i at discrete time k. Given roll angle ¢;(¢), pitch
angle 6;, and yaw angle ; and the base vectors of the
inertial coordinate system (&;, €, and &€3), angular velocity
of quadcopter i € V is given by

wi = diki; + 00+ dilp i, (80)
where
il,,’ € cosy; siny;  Of (€
jri| =R(0,0,4;) [&2| = |-siny; cosy; Of [&], (81a)
ki é3 0 0 1f|&
i, (1] [cos6; 0 —sing;] [l
sz,i =R(0,6;,0) .il,i = 0 1 0 .il,i ,
ko Kk sing; 0 cos6; ||k ;
S (81b)
ib,i -iz,i ] [1 0 0 ,1:2,1'
ivi | =R(¢:,0,0) [jo,; [ =]0 cosg; sing;||jo;
Ky, i ko] [0 —sing; cos¢i| |ky;
(81c¢)
Substituting & =[1 0 0], & =[010]", &=[00 1]T,Til,i,

Kii, Jo.is and ib,i into Eq. (80), w; = [wx,i wyi wzi]" s
related by ¢;, 0;, and y; by

[wxi @y wz,i]T=ri(¢i,9i,l//i)[<I5i 6; lf’i]T, (82)

where

1 0 —siné;
Li(¢:i,0i.4:) = cos¢;  cosf;sing; (83)
0 -—sing; cos¢;cos6;

Angular acceleration of quadcopter i € V' is obtained by
taking the time derivative of the angular velocity vector w;:

@ =By [d 6 lZ}i]T +Bs;. (84)

where
=[ipi Joi kil (85a)
Bai =6 (kl i, ,)+¢l (dik1i+6:.i) xi (85b)

Note that “X” is the cross product symbol. On the other hand,
the rotational dynamics of quadcopter i is given by

. - _ _ _ 4T
U)iZJil(wiX(Ji(l)i)+[u2,i M3, 4] ) (36)
where iir; = T4, 3; = Te,i, H4,Ty,; (See Eq. (57)). By
equating the right-hand sides of Eqgs. (84) and (86), we can
write

[d2, i3, ﬁ4,i]T =B, [é 6 ',bi]T +Ba, (87)
where

B ;=J:B1,, (88a)

i =JiBai —wi x (Jiwi). (83b)
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APPENDIX C
TIME DERIVATIVES OF THE QUADCOPTER THRUST FORCE

Let

P; = pikp,i —migé (89)

be the external force executed on quadcopter i. Taking time
derivatives from P;, we obtain the following relations:

(90a)
(90b)

P,- = pl-f(b,,- +piw; X lA(b,i,
P;=0,,E+0,,,
- . . .. w 1T
where E; = [pi & 6 Ui,

01,i=[ Kpi —pibi Di (jz,in(b,i) piki i xkp, ]€R3X4,

(91a)
02, =p; [—(ISiéi (fiz,i Xﬁb,i) +w; X (wi Xfib,i)] +2piw; Xﬁb,b
(91b)

Per Eq. (87), we can write
E = O3,iﬁi +04,, (92)

~ ~ T
where u; = [ul,i I/t4, = To,i To,i T:(/,i] .

01><3
03><1

O = [ -B; By ]

By substituting (92), Eq. (90b) is converted to

P; =0,05,1;+0;,;04,+0,;. (93)

Note that s; = P where s; is the input vector of the external
dynamics of quadcopter i (see Section V-B).
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