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Large-Scale Multi-Quadcopter System (MQS)
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Abstract—This paper studies the problem of affine transfor-
mation-based guidance of a multi-quadcopter system (MQS)
in an obstacle-laden environment. Such MQSs can perform a
variety of cooperative tasks including information collection,
inspection mapping, disinfection, and firefighting. The MQS
affine transformation is an approach to a decentralized leader-
follower coordination guided by =+1 leaders, where leaders are
located at vertices of an =-D simplex, called leading simplex,
at any time C. The remaining agents are followers acquiring the
desired affine transformation via local communication. Followers
are contained in a rigid-size ball at any time C but they can be
distributed either inside or outside the leading simplex. By eigen-
decomposition of the affine transformation coordination, safety in
a large-scale MQS coordination can be ensured by constraining
eigenvalues of the affine transformation. Given the initial and
final configurations of the MQS, A* search is applied to optimally
plan safe coordination of a large-scale MQS minimizing the
travel distance between the the initial and final configuration. The
paper also proposes a proximity-based communication topology
for followers to assign communication weights with their in-
neighbors and acquire the desired coordination with minimal
computation cost.

Index Terms—Large-Scale Coordination, Affine Transforma-
tion, Safety, Stability, Decentralized Control, and Local Commu-
nication.

I. INTRODUCTION

Multi-agent coordination has been an active research area
in the past few decades and found various applications such
as surveillance [1], search and rescue missions [2], agriculture
[3], structural health monitoring [4], and air traffic manage-
ment [5]. Consensus and containment control are common
multi-agent coordination approaches that have been exten-
sively studied in the past.

Consensus control is the most well-known decentralized
multi-agent coordination approach. Leaderless multi-agent
consensus [6], [7] and leader-follower consensus [8] have
been previously proposed for multi-agent coordination ap-
plications. Multi-agent consensus under fixed communication
topology and switching inter-agent communication have been
investigated in [9] and [10], respectively. Refs. [11], [12]
study stability of the consensus control in the presence of
communication delays. Consensus control of a system of
nonlinear agents has been investigated in Refs. [13], [14].

Containment control is a leader-follower method in which
the group coordination is guided by a finite number of leaders
and acquired by followers through local communication. Refs.
[15], [16] provide necessary and sufficient conditions for sta-
bility and convergence in the multi-agent containment coordi-
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nation problem. Containment under fixed and switching inter-
agent communications are investigated in Refs. [15], [17], [18]
Also, multi-agent containment control in the presence of time-
varying delays are analyzed in [19], [20]. Refs. [21], [22]
have studied finite-time containment control of a multi-agent
system.

Continuum deformation is another muti-agent coordination
approach that treats agents as particles of a continuum, de-
forming in a 3-D motion space. An =-D continuum deforma-
tion coordination is guided by =+ 1 leaders in a 3-D motion
space where leaders are located at vertices of an =-D simplex
at any time C, and = ∈ {1,2,3}. In a continuum deformation
coordination, desired trajectories are planned by leaders and
acquired by followers through local communication [23].
Therefore, the continuum deformation and containment control
are both decentralized leader-follower methods. However, the
continuum deformation formally specifies and verifies safety
in a large-scale agent coordination by ensuring inter-agent
collision avoidance, obstacle collision avoidance, and agent
containment [24], [25]. As the result, a large-scale multi-
agent system can participate in a continuum deformation
coordination mission and the agent team can aggressively
deform to pass through the narrow passages in an obstacle-
laden environments.

The existing continuum deformation approach [23], [24]
requires that the leaders form an =-D simplex at any time
C. This requirement can be quite restrictive when agents are
not uniformly distributed at the initial configuration. The main
contribution of this paper is to advance the continuum defor-
mation towards affine transformation in which = + 1 leaders
defining the affine transformation coordination form an <-
D polytope at any time C, where < ≤ = ≤ 3. In other words,
=+1 leaders, guiding the agent coordination, are not required
to form an =-D simplex at all times C. This advancement
can significantly improves maneuverability of a large-scale
swarm coordination. In particular, our affine transformation-
based coordination approach allows to plan more efficient
motions than the existing continuum deformation approaches
that it extends.

This paper studies the problem of safe and scalable affine
transformation of a multi-quadcopter system (MQS) in an
obstacle-laden environment (see Fig. 1). Compared to the
existing literature and the authors’ previous work, this paper
offers the following novel contributions:

1) We decompose the affine transformation coordination
problem into spatial and temporal planning problems.
For the spatial planning, we use the A* search method
to assign the optimal path of quadcopters such that the
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travel distance between their initial and final positions
are minimized, and collision avoidance is guaranteed.
For the temporal planning, the MQS travel time is
determined such that deviation of every quadcopter
from its global desired trajectory, defined by the affine
transformation, remains bounded at any time.

2) This paper provides conditions guaranteeing safety in a
large-scale affine transformation coordination. By eigen-
decomposition of the affine transformation and con-
straining the deformation eigenvalues of the affine trans-
formation coordination, inter-agent collision avoidance
and quadcopter containment are ensured.

3) This paper offers a new proximity-based communication
topology for followers to acquire a desired affine trans-
formation through local communication. Our approach
is therefore of decentralized type.

The proposed affine transformation approach is particu-
larly appealing for application to smart indoor or outdoor
fire-fighting performed by a team of autonomous quad-
copters exploiting the proposed approach. In particular, a fire-
fighter quadcopter team can effectively coordinate itself in
a geometrically-constrained and hazardous environment with
minimal human interventions. The fire-fighter quadcopters can
deform to pass through narrow channels and quicky react to
a rapid growth of fire.

This paper is organized as follows: Preliminaries of the
graph theory and motion space discretization are presented in
Section II. The problem of affine transformation coordination
for a large-scale MQS is stated in Section III. Section VI
describes steps to determine (”tune”) [26] algorithm param-
eters that we used in our case study. More specifically, affine
transformation is defined in section IV and inferred via local
communication in Section V. Simulation results are presented
in Section VI and followed by concluding remarks in Section
VII. The proofs are relegated to the Appendix A. Quadcopter
modeling details are summarized in Appendices B amd C.

II. PRELIMINARIES

A. Graph Theory Notions

We consider an MQS consisting of # quadcopters moving
collectively in a 3-D space where every quadcopter is uniquely
identified by an index number 8 ∈ V = {1, · · · , #} (see Fig.
1). By classifying quadcopters as leaders and followers, V
can be expressed as V =V!

⋃V� , where V! = {1, · · · , =+1}
and V� = V \V! define the leaders’ and followers’ index
numbers, respectively, in an =-D affine transformation, i.e.
= = 1,2,3. While leaders move independently, followers ac-
quire the desired coordination through local communication.
Inter-agent communication is defined by digraph G (V,E)
with node set V and edge set E ⊂ V ×V. Set V can
be expressed as V =V�

⋃V� where V� = {1, · · · , #�} and
V� {#� +1, · · · , #} define the index numbers of boundary and
interior quadcopters, and #� ≥ = + 1. Given edge set E, the
set of in-neighbor quadcopters of quadcopter 8 ∈ V is defined
by N8 = { 9 ∈ V

��( 9 , 8) ∈ E}.

Fig. 1: Example MQS affine transformation coordination in an
obstacle-laden motion space.

B. Position Notations

This paper studies collective motion of # quadcopters where
the position of every quadcopter is expressed with respect to
an inertial coordinate system with base vectors ê1 = [1 0 0]) ,
ê2 = [0 1 0]) , and ê3 = [0 0 1]) . Throughout this paper, r8,0 =
[G8,0 H8,0 I8,0]) and r8, 5 = [G8, 5 H8, 5 I8, 5 ]) denote the initial
and final positions of quadcopter 8 ∈ V at the initial time C0
and at the final time C 5 , respectively. Also, the vector r8 (C) =
[G8 (C) H8 (C) I8 (C)]) denotes the actual position of quadcopter
8 at the time instant C ∈ [C0, C 5 ]. The global desired position
of quadcopter 8 ∈ V is defined by an affine transformation as
follows:

C ∈ [C0, C 5 ], r8,0 (C) = Q(C)
(
r8,0−d0

)
+d (C) , (1)

where Q(C) ∈ R3×3 is the Jacobian matrix, d(C) ∈ R3×3 is the
rigid-body displacement vector at time C ∈ [C0, C 5 ], and we let
d0 = d (C0). Furthermore,

r8,3 (C) =
{

r8,0 (C) 8 ∈ V!∑
9∈N8 F8, 9r 9 (C) 8 ∈ V�

. (2)

is called local desired position of quadcopter 8 ∈ V where
F8, 9 > 0 is the communication weight between follower 8
and in-neighbor 9 ∈ N8 and r 9 (C) is the actual position of
quadcopter 9 . Note that local and global desired positions of
every leader 8 ∈ V! are the same.
Remark 1. Elements of Q(C) ∈ R3×3 and
d(C) =

[
31 (C) 32 (C) 33 (C)

]) ∈ R3×1 can be uniquely
related to the global desired positions of = + 1 leader
quadcopters where leader agents form an =-D simplex at
initial time C0 so that:

rank
( [

r2,0− r1,0 · · · r=+1,0− r1,0
] )

= =. (3)

Assumption 1. This paper assumes that quadcopters are
initially distributed in an =-D hyper-plane defined based on
initial positions of leaders 1 through = + 1 guiding an =-D
affine transformation.

Proposition 1. If Assumption 1 is satisfied and leaders’ initial
positions satisfy rank condition (3) at the initial time C0, initial
position of every quadcopter 8 ∈ V can be uniquely expressed
as a linear combination of leaders’ initial positions so that

∀8 ∈ V, r8,0 =
=+1∑
9=1
U8, 9r 9 ,0, (4)
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where

∀8 ∈ V,
=+1∑
9=1
U8, 9 = 1. (5)

C. Rank Operator and Containment Function

Let p1, p2, · · · , p=+1 denote =+1 position vectors in a 3-D
motion space. We define the rank function as

r= (p1, · · · ,p=+1) = rank
( [

p2−p1 · · · p=+1−p1
] )
. (6)

Vectors p1, p2, · · · , p=+1 define vertices of an =-D simplex, if
r= (p1, · · · ,p=+1) = =. We also define the containment function
as

p= (p1, · · · ,p=,c) =
=+1∑
8=1

sign (D8) , (7)

where

D8 =
[
p1 · · · p8−1 c p8+1 · · · p=+1
1 · · · 1 1 1 · · · 1

]
(8)

and c ∈ R3×1 is the position of an arbitrary point in a 3-D
motion space, |D8 | is the determinant of matrix D8 , and sign :
R→ {−1,0,1} is the sign function.

A point c is inside an =-D simplex defined by p1, p2,· · · ,
p=+1, if |p= (p1, · · · ,p=,c) | = =+1 (See Ref. [24]). Therefore, if
p= (p1, · · · ,p=,c) = = + 1 or p= (p1, · · · ,p=,c) = − (=+1), then,
the point c is inside the =-D simplex defined by p1 through
p=+1. The rank function r= and the containment function p=
are used in Section V-A to determine followers’ in-neighbors
and communication weights based on local proximity in the
MQS initial configuration.

D. Matrix Decomposition

This paper uses the standard 3−2−1 Euler angles to define
a rotation matrix by

R (-,., /) =


�.�/ �. (/ −(.
(-(.�/ −�-(/ (-(. (/ +�-�/ (-�.
�-(.�/ + (-(/ �-(. (/ − (-�/ �-�.

 ,
(9)

where �( ·) and ( ( ·) abbreviate cos (·) and sin (·), respectively.
Also, - , . , and / are the first, second, and third Euler angles
where

R (-,., /) = R (-,0,0)R (0,. ,0)R (0,0, /) . (10)

Now, the Jacobian matrix Q(C), introduced in Eq. (1), can be
represented as follows:

Q(C) =� (�(C)) , (11)

where

�(C) =
[
_1 (C) · · · _3 (C) V1 (C) · · · V6 (C)

]) (12)

is called the deformation feature vector, and � can be decom-
posed as follows:

� = RAU� , (13)

where the matrix RA (V1, V2, V3) is orthonormal, and the de-
formation matrix U� (V4, V5, V6,_1,_2,_3) is symmetric. The

deformation features V1 (C), V2 (C), and V3 (C) are the first,
second, and third Euler angles, and

RA = R (V1 (C), V2 (C), V3 (C)) . (14)

The deformation matrix can be represented as

U� = RD�R)D , (15)

where
RD = R (V4, V5, V6) (16)

is a rotation matrix, and V4, V5, and V6 are the first, second,
and third Euler angles. The matrix

� =


_1 0 0
0 _2 0
0 0 _3

 (17)

is diagonal and real.
Remark 2. The matrix U� (C) can be expressed as

U� (C) =
3∑
8=1
_8 (C)û8 (V4 (C), V5 (C), V6 (C)) û)8 (V4 (C), V5 (C), V6 (C)) ,

(18)
where

8 = 1,2,3, û8 (V4 (C), V5 (C), V6 (C)) =R) (V4 (C), V5 (C), V6 (C)) ê8
(19)

is the 8-th eigenvector of the deformation matrix U� (C).

Proposition 2. If _1 (C) = _2 (C) = _3 (C) = _(C) at time C, then
the matrix U� (C) simplifies to

U� (C) = _(C)I3 (20)

independent of the values of V4 (C), V5 (C), and V6 (C) at C.

III. PROBLEM STATEMENT AND SOLUTION APPROACH

This paper considers collective motion of a quadcopter team
consisting of # vehicles defined by V = {1, · · · , #}, where
quadcopter 8 ∈ V is modeled by{

¤x8 = f8 (x8) +g8 (x8)u8
r8 = C8x8

. (21)

In (21), x8 =
[
r)
8
¤r)
8

q8 \8 k8 l)
8

]) is the state, u8 =[
?8 gq,8 g\,8 gk,8

]) is the input, C8 =
[
I3 03×9

]
,

f8 (x8) =


¤r8

1
<8
?8k̂1,8 −6ê3

�−1
8
(q8 , \8 ,k8)l8

J−1
8
l8 × (J8l8)

 , and g8 (x8) =


03×1 03×3
1
<8

k̂1,8 03×3
03×1 03×1
03×1 J−1

8

 ,
where <8 and J8 are the mass and mass moment of iner-
tia of quadcopter 8 ∈ V, respectively, 03×1 ∈ R3×1, 03×3 ∈
R3×3, and 03×9 ∈ R3×9 are the zero-entry matrices, I3 ∈ R3×3

is the identity matrix, 6 = 9.81</B2 is the gravity, u8 =[
?8 gq,8 g\,8 gk,8

]) , and �8 (q8 , \8 ,k8) is defined in Eq.
(83) in Appendix B.

The quadcopter team is positioned in an =-D hyper plane
(= = 1,2,3) at initial time C0 and the MQS initial formation is
defined by set 
0 = {r1,0, · · ·r# ,0} at time C0. It is desired that
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the MQS ultimately forms the desired configuration specified
by 
 5 = {r1, 5 , · · ·r# , 5 }. where

∀8 ∈ V, r8, 5 = Q̄ 5 r8,0 + d̄ 5 , (22)

and where the matrix Q̄ 5 ∈ R3×3 and vector d̄ 5 ∈ R3×1 are
known at time C 5 , and the global desired trajectory of agent
8 ∈ V is defined by Eq. (1) for C ∈ [C0, C 5 ]. To ensure safety,
we require that the MQS remains inside the rigid containment
ball

S̄(C) =
{
r ∈ R3��‖r− (d(C)) ‖ ≤ Amax

}
(23)

at any time C ∈ [C0, C 5 ].
Given the above problem setup, this paper offers a solution

shown in Fig. 2 to safely plan affine transformation of a
large-scale quadcopter team by addressing the following two
problems:

Problem 1: Affine Transformation Determination: We
determine a safe MQS affine transformation by specifying the
Jacobian matrix Q(C) and the rigid-body displacement vector
d(C) such that the travel distance between the initial and final
configurations of the MQS is minimized in a geometrically-
constrained motion space (see Fig. 1). We assume that every
quadcopter can be enclosed by a ball of radius n , and define
the matrix Q(C) over the time interval [C0, C 5 ] such that no
quadcopter collides with obstacles, or with other quadcopters,
and followers do not leave the containment ball S̄(C) defined
by (23) at any time C ∈ [C0, C 5 ]. Furthermore, we seek to
determine the rigid-body displacement vector d minimizing
the travel distance between the specified initial and final
conditions: Q̄0 = Q(C0), d̄0 = d(C0), Q̄ 5 = Q(C 5 ), d̄ 5 = d(C 5 ).

Problem 2: Affine Transformation Acquisition: We seek
to develop a decentralized method for acquiring the desired
affine transformation with local communication. In particular,
inter-agent communication and communication weights are
assigned based on local proximity. Furthermore, we pro-
vide a condition guaranteeing stability of the decentralized
affine transformation coordination. We also seek to ensure the
boundedness of the deviation of the quadcopter team from
a desired affine tranformation coordination by choosing a
sufficiently large travel time between in the initial and final
MQS configurations.

IV. PROBLEM 1: AFFINE TRANSFORMATION DEFINITION

An =-D affine transformation is defined by planning the
trajectory of the rigid-body displacement vector d(C) and
deformation vector �(C) over the time-interval C ∈ [C0, C 5 ] as
described in Sections IV-A and IV-B

A. Planning of Rigid-Body Displacement Vector d
Given the initial and final displacement vectors d̄0 and d̄ 5 ,

we use the the A* search to determine =g − 1 intermediate
waypoints d̄1, · · · , d̄=g−1. The objective of the A* planner
is to minimize the travel distance of the containment ball
in an obstacle-laden motion space while ensuring collision
avoidance.

Given the optimal waypoints d̄0, · · · , d̄=g (d̄=g = d̄ 5 ), we
define

`; =
‖d̄;+1− d̄; ‖∑=g−1

;=0 ‖d̄;+1− d̄; ‖
. (24)

for ; = 0,1, · · · , =g −1. In this paper,

); = `;
(
C=g − C0

)
(25)

is considered as the travel time between two consecutive
waypoints d̄; and d̄;+1, where C=g = C 5 is free. The rigid body
displacement vector d(C) is defined by

d(C) =
{

d̄; (1−W (C,);)) +W (C,);) d̄;+1 C; ≤ C < C;+1, ; < =g
d̄=g C = =g = C 5

(26)
where ); = C;+1 − C; is the travel time between d̄; and d̄;+1,
d̄=g = d 5 , and W(C,);) is defined as follows:

C ∈ [C; , C;+1], W(C,);) =
5∑
9=0
Z 9

(
C − C;
);

) 9
(27)

for ; = 0, · · · , =g−1. Here Z0 through Z5 are constant coefficients,
and ); = C;+1 − C; . Therefore, the containment ball moves on a
straight path at every time C ∈ [C; , C;+1] where W(C; ,);) = 0 and
W(C;+1,);) = 1 for every ); > 0 and ; = 0, · · · , =g −1.

B. Planning of Deformation Feature Vector Trajectory �(t)
By using Eq. (11), Q(C) can be expressed as Q(C) =

� (�(C)), and assigned by planning of the deformation vector
�(C) over the time-interval [C0, C 5 ]. The deformation feature
vector � :

[
C0, C 5

]
→ R6×1 is defined as follows:

�(C) =
{
�̄; (1−W (C,);)) +W (C,);) �̄;+1 C; ≤ C < C;+1, ; < =g
�̄=g C = =g = C 5

,

(28)
where initial and final conditions

�̄0 =� (C0) =
[
_1,0 _2,0 _3,0 V1,0 · · · V6,0

])
, (29a)

�̄ 5 =�
(
C 5

)
=

[
_1, 5 _2, 5 _3, 5 V1, 5 · · · V6, 5

])
(29b)

are known, and

�̄; = �̄0 + `;
(
�̄ 5 − �̄0

)
. (30)

Note that function W(C,);) is defined in Eq. (27).
1) Deformation Angles V4, V5 and V6
There is no constraint on selecting V4,0, V5,0, V6,0, and they

can be arbitrarily because _1,0 = _2,0 = _3,0 = 1. In this paper,
we let shear deformation angles V5 (C) and V6 (C) be constant
over time, and assign them based on the initial positions of the
quadcopters by solving the following max-min optimization
problem:(
V5,0, V6,0

)
= argmax

V5 ,V6

{
min

8, 9∈V , 8≠ 9

{(
r8,0− r 9 ,0

)
· û1 (0, V5, V6)

}}
.

(31)
Note that û1,0 is independent of V4,0 and hence we choose
V4,0 = 0 without loss of generality. Therefore,

û1,0 =
[
cos V5,0 cos V6,0 cos V5,0 sin V6,0 −sin V5,0

])
,

(32a)
û2,0 =

[
sin V6,0 cos V6,0 0

])
, (32b)

û3,0 =
[
sin V5,0 cos V6,0 sin V5,0 sin V6,0 cos V5,0

]) (32c)
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Fig. 2: Block diagram of the MQS collective dynamics with the proposed approach.

are the eigenvectors of deformation matrix U� (C) at any time
C ∈ [C0, C 5 ].
Remark 3. Deformation angles V5,0 and V6,0 are assigned such
that the unit vector û1,0 is along the line connecting the two
quadcopters identified by solving (31).

2) Eigenvalues _1, _2, and _3
Theorem 1 is provided in this section to ensure inter-agent

collision avoidance and quadcopter containment by assigning
lower and upper bounds on eigenvalues _1, _3, and _3.

Definition 1. The minimum global separation distance in an
affine transformation is defined by

3min = min
8, 9∈V , 8≠ 9

{(
r8,0− r 9 ,0

)
· û1 (0, V5, V6)

}
. (33)

Definition 2. The maximum global separation distance in an
affine transformation is defined as

3max = max
8∈V

= ‖r8,0− d̄0‖2. (34)

Theorem 1. Assume every quadcopter is enclosed by a ball
of radius n , and the control input u8 is designed such that

‖r8 (C) − r8,0 (C)‖ ≤ X (35)

at any time C ∈ [C0, C 5 ] where X > 0 is constant. Inter-agent
collision avoidance and quadcopter containment conditions,
specified by

∀C ∈
[
C0, C 5

]
,

#−1∧
8=1

#∧
9=8+1

(
‖r8 (C) − r 9 (C)‖ > 2n

)
, (36a)

∀C ∈
[
C0, C 5

]
,

#∧
8=1

(
r8 (C) ∈ S̄(C)

)
(36b)

are guaranteed, if

∀C ∈ [C0, C 5 ], _1 (C) > _min, (37a)

∀C ∈ [C0, C 5 ], 8 = 1,2,3, |_8 (C) | ≤ _max, (37b)

where

_min =
2 (X+ n)
3min

, (38a)

_max =
Amax− X− n

3max
. (38b)

Note that inter-agent collision avoidance is guaranteed only
by imposing constraint (37a) on eigenvalue _1. However, all
eigenvalues of matrix U� (C) must satisfy safety condition
(37b) to ensure no quadcopter leaves the containment ball S̄(C)
at any time C ∈ [C0, C 5 ].
Remark 4. While _1,0 = _2,0 = _3,0 = 1, _1, 5 , _2, 5 , and _3, 5
need to be selected such that Eq. (22) is satisfied, and

8 = 1,2,3,
��_8, 5 �� ≤ _max. (39)

3) Rotation angles V1, V2, and V3
The initial values of rotation angles V1, V2, and V3, denoted

by V1,0, V2,0, V3,0, can be arbitrarily selected. However, V1, 5 ,
V2, 5 , V3, 5 need to be selected such that Eq. (22) is satisfied.

V. PROBLEM 2: AFFINE TRANSFORMATION ACQUISITION

In this paper, a desired affine transformation is acquired in a
decentralized fashion via local communication. A proximity-
based communication topology is developed in Section V-A to
(i) classify quadcopters into followers and leaders and (ii) de-
termine in-neighbor quadcopters of every follower quadcopter
8 ∈V� . MQS collective dynamics are then obtained in Section
V-B and followed by analysis of stability and boundedness
of the MQS collective dynamics in Sections V-B2 and V-C,
respectively.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on June 03,2021 at 20:16:04 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3084038, IEEE
Transactions on Control of Network Systems

6

A. Proximity-Based Inter-Agent Communication

In a decentralized affine transformation coordination, lead-
ers move independently therefore N8 = ∅ if 8 ∈V! . Non-leader
boundary quadcopters, defined by V�, directly communicate
with leaders. Therefore,

8 ∈ V� \V! , N8 =V! . (40)

In-neighbors of the interior quadcopters, defined by V� , are
assigned based on local proximity. For every quadcopter 8 ∈
V� , we define ;8-proximity set

W8,= (;8) =
{
(81, · · · , 8=+1) ∈ V=+1�� (=+1∧

:=1
‖r8: ,0− r8,0‖ ≤ ;8

)
∧

(��p= (
r81 ,0, · · · ,r8=+1 ,0,r8,0

) �� = =+1
) }

(41)

as the set of all =-D simplexes that are inside the ball of
radius ;8 with the center positioned at r8,0. Then, the minimum
proximity distance ;∗

8
is assigned by solving the following

optimization problem:
min ;8 (42)

such that
W8 (;8) ≠ ∅. (43)

Remark 5. If
��W8

(
;∗
8

) �� = 1, then, W8 = {N8}.

Assumption 2. If
��W8

(
;∗
8

) �� > 1, any collection of = + 1
quadcopters belonging to set W8

(
;∗
8

)
can be selected as in-

neighbors of interior agent 8 ∈ V� .

Let the communication weight of follower quadcopter 8 ∈
V� with in-neighbor quadcopter 9 ∈ N8 is denoted by F8, 9 .
Let #8 = {81, · · · , 8=+1} define in-neighbors of follower 8 ∈ V� ,
then, the local desired trajectory of quadcopter 8 ∈V� is given
by

∀C ∈ [C0, C 5 ], 8 ∈ V� , r8,3 (C) =
=+1∑
:=1

F8,:r8: (C), (44)

where r8: (C) denotes the actual position of in-neighbor 8: ∈ N8
(: = 1, · · · , =+1). Communication weights of follower 8 ∈ V�
are defined as [23], [24]

F8,82
...

F8,8=+1

 =
[
r82 ,0− r81 ,0 · · · r8=+1 ,0− r81 ,0

]−1 r8,0, (45a)

F8,81 = 1−
=+1∑
:=2

F8,8: . (45b)

Given followers’ communication weights, weight matrix
W = [,8 9 ] ∈ R#×# is defined as follows:

,8 9 =

{
F8, 9 8 ∈ V� , 9 ∈ N8
0 otherwise

. (46)

The matrix W can be partitioned as follows:

W =

[
0 0
F G

]
∈ R#×# , (47)

where F ∈ R(#−=−1)×(=+1) ; matrix G ∈ R(#−=−1)×(#−=−1) is
non-negative.

Theorem 2. Assume inter-agent communication is defined by
graph G (V,E) with node set V and edge set E ⊂ V ×V,
where V = V�

⋃V� ; V� = {1, · · · , #�} and V� = {#� +
1, · · · , #} define index numbers of boundary and interior
agents, respectively. If leaders defined by set V! = {1, · · · , =+
1} ⊂V� moves independently, non-leader boundary agents de-
fined by V� \V! all communicate with leaders, followers’ in-
neighbors are determined by solving the optimization problem
given in (42) and (43), and followers communication weights
are defined based on agents’ initial positions using relation
(45), then, the matrix

L = −I+W (48)

is Hurwitz.

Let

Y0 (C) = vec
( [

r1,0 (C) · · · r# ,0 (C)
]) )

(49)

aggregate global desired positions of all quadcopters at time C
and

R! (C) = vec
( [

r1,0 (C) · · · r=+1,0 (C)
]) )

(50)

aggregate global desired positions of all leaders at time C,
where vec (·) is the matrix vectorization operator. Vectors
Y0 (C) and R! (C) are related by [24]

Y0 (C) = (I3 ⊗H)R! (C) (51)

at time C, where

H =


U1,1 · · · U=+1
...

. . .
...

U# ,1 · · · U#+1

 ∈ R
#×(=+1) . (52)

Theorem 3. If initial positions of leaders satisfy rank condi-
tion (3), followers’ in-neighbors are obtained by (42) and (43),
and followers’ communication weights are assigned using
relation (45), then, the following properties hold:

H = −L−1L0 = −
[

−I=+1
(−I=+1 +G)−1 F

]
, (53a)

C ∈ [C0, C 5 ], Y3 (C) −Y(C) = (I3 ⊗L) (Y(C) −Y0 (C)) ,
(53b)

where “⊗” is the Kronecker product symbol, and where

Y(C) = vec
( [

r1 (C) · · · r# (C)
]) )

, (54a)

Y3 (C) = vec
( [

r1,3 (C) · · · r# ,3 (C)
]) )

, (54b)

aggregate actual, local desired, and global desired positions
of all agents at time C, and

L0 =

[
I=+1

0

]
∈ R3#×3(=+1) . (55)
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B. MQS Collective Dynamics and Coordination Control

A feedback controller needs to be designed, for each indi-
vidual quacopter 8 ∈ V, to stably track the reference trajectory
r8,3 (C) at any time C ∈ [C0, C 5 ].

Definition 3. Let H : R? → R and f : R? → R? be smooth
functions. The Lie derivative H with respect to f is defined as
follows:

!fH = 5Hf.

Let g8 (x8) =
[
g1,8 (x8) · · · g4,8 (x8)

]
and

u8 =
[
D1,8 · · · D4,8

]) where g1,8 through g4,8 are the
columns of matrix g8 , and D1,8 = ?8 , D2,8 = gq,8 , D3,8 = g\,8 ,
and D4,8 = gk,8 . By considering Definition 3 and defining
r8 =

[
G8 H8 I8

]) as the output of quadcopter 8 ∈ V, we can
write

@ ∈ {G, H, I}, 8 ∈ V, ¥@8 = !2
f8@8 +

4∑
ℎ=1

!g
ℎ,8
!f8@8Dℎ,8 . (56)

where !g2,8 !f8@8 = !g3,8 !f8@8 = !g4,8 !f8@8 = 0. Thus, D2,8 , D3,8 ,
and D4,8 do not appear on the right-hand side of Eq. (56).

To overcome this issue, we extend the quadcopter dynamics
(21) to {

x̃8 = f̃8 (x̃8) + g̃8 (x̃8) ũ8
r8 = C̃x̃8

, (57)

where x̃8 =
[
x)
8

?8 ¤?8
]) , ũ8 =

[
D?,8 gq,8 g\,8 gk,8

]) ,
C̃8 =

[
I3 03×11

]
,

f̃8 (x̃8) =

f8 (x8)
¤?8
0

 +


03×1
?8
<8

k̂1,8
08×1

 , and g̃8 (x̃8) =


09×1 09×3
03×1 J−1

8

0 01×3
1 01×3



D?,8
gq,8
g\,8
gk,8

 .
Define g̃8 (x8) =

[
g̃1,8 (x̃8) · · · g̃4,8 (x̃8)

]
and

ũ8 =
[
D̃1,8 · · · D̃4,8

]) where g̃1,8 through g̃4,8 are the
columns of matrix g̃8 , and D̃1,8 = D?,8 , D̃2,8 = gq,8 , D̃3,8 = g\,8 ,
and D̃4,8 = gk,8 . Here, we can write

@ ∈ {G, H, I}, 8 ∈ V, Æ@8 = !4
f̃8
@8 +

4∑
ℎ=1

!g̃
ℎ,8
!3

f̃8
@8 D̃ℎ,8 , (58)

where !g̃
ℎ,8
!3

f̃8
@8 ≠ 0 for ℎ = 1, · · · ,4 and @ ∈ {G, H, I}. There-

fore, the extended dynamics (57) is input-output linearizable.
By defining the state transformation x̃8→ (z8 , Zi), the extended
dynamics (57) is converted to the following internal and
external dynamics:

¤k8 =
[
0 1
0 0

]
k8 +

[
0
1

]
Dk,8 , (59a)

¤z8 = A8z8 +B8s8 , (59b)

where z8 =
[
r)
8
¤r)
8
¥r8) r̈)

8

]) and Zi =
[
k8 ¤k8

]T are the
state vectors of the internal and external dynamics, respec-

tively, A8 =
[
09×3 I9
03×9 03×9

]
, and B8 =

[
09×3
I3

]
.

1) Feedback-Linearization Control Design
Define v8 =

[
s)
8

Dk,8
]) as the vector aggregating the con-

trol inputs of the external and internal dynamics, respectively.
If quadcopter 8 ∈ V is modeled by dynamics (57), then v8 and
u8 are related by

v8 = M8u8 +N8 , (60)

where

M8 =


!g̃1,8

!3
f̃8
G8 !g̃2,8

!3
f̃8
G8 !g̃3,8

!3
f̃8
G8 !g̃4,8

!3
f̃8
G8

!g̃1,8
!3

f̃8
H8 !g̃2,8

!3
f̃8
H8 !g̃3,8

!3
f̃8
H8 !g̃4,8

!3
f̃8
H8

!g̃1,8
!3

f̃8
I8 !g̃2,8

!3
f̃8
I8 !g̃3,8

!3
f̃8
I8 !g̃4,8

!3
f̃8
I8

1 0 0 0


=

[ 1
<8

O1,8O3,8
1 01×3

]
,

(61a)

N8 =
[
!4

f̃8
G8 !4

f̃8
H8 !4

f̃8
I8 0

])
=

[ 1
<8

(
O1,8O4,8 +O2,8

)
0

]
(61b)

and O1,8 through O4,8 are defined in Appendix C.
We choose

Dk8 = −:1,k,8 ¤k8 − :2,k,8k8 ,

:1,k,8 > 0 and :2,k,8 > 0. Therefore, k8 (C) asymptotically
converges to 0. We also choose

∀8 ∈ V s8 = −:1,8 r̈8 − :2,8 ¥r8 − :3,8 ¤r8 + :4,8
(
r3,8 − r8

)
, (62)

where :1,8 through :4,8 are selected for every quadcopter 8 ∈V
such the stability of the MQS collective dynamics is ensured.
A condition for stability of the MQS collective coordination
is provided in Section V-B2.

2) MQS External Dynamics and Stability Analysis
The external dynamics of the MQS is given by{

¤Z = ASYSZ+BSYSS
Y = CSYSZ

, (63)

where Y = vec
( [

r1 · · · r#
]) )

, Z =
[
z)1 · · · z)

#

]) ,

S =
[
s)1 · · · s)

#

]) , CSYS ∈ R3#×12# , ASYS =

diag (A1, · · · ,A# ) ∈ R12#×12# , and BSYS =

diag (B1, · · · ,B# ) ∈ R12#×3# . Given the local desired
trajectory definition in (2),

Y3 (C)
¤Y3 (C)
¥Y3 (C)
Ÿ3 (C)

 = (I12 ⊗W)


Y(C)
¤Y(C)
¥Y(C)
Ÿ(C)

 + (I12 ⊗L0)


R! (C)
¤R! (C)
¥R! (C)
R̈! (C)

 (64)

where I12 ∈ R12×12 is the identity matrix; W, R! , and L0 were
previously defined in (47), (50), and (55), respectively. the
external dynamics of the MQS can be expressed as follows:

3

3C

©­­­«

Y
¤Y
¥Y
Ÿ


ª®®®¬ = AMQS


Y
¤Y
¥Y
Ÿ

 +BMQS


R!

¤R!

¥R!

R̈!

 , (65)

where

AMQS =


0 I3# 0 0
0 0 I3# 0
0 0 0 I3#

I3 ⊗ (K4L) I3 ⊗ (K3L) I3 ⊗ (K2L) I3 ⊗ (K1L)

 ,
(66a)
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BMQS =


0 0 0 0
0 0 0 0
0 0 0 0

I3 ⊗ (K4L0) I3 ⊗ (K3L0) I3 ⊗ (K2L0) I3 ⊗ (K1L0)

 ,
(66b)

9 = 1,2,3,4, K 9 = diag
(
: 9 ,1, · · · , : 9 ,#

)
, (66c)

and I3# ∈ R3#×3# is the identity matrix. Note that control
gains : 9 ,8 (8 ∈ V and 9 = 1,2,3,4) are selected such that roots
of the characteristic equation��B4I+ B3K1 + B2K2 + BK3 +K4

�� = 0 (67)

are all located in the open left half of complex plane. The
block diagram of the MQS control system is shown in Fig. 2.

C. Inter-Agent Collision Avoidance and Quadcopter Contain-
ment

To ensure inter-agent collision avoidance and quadcopter
containement, safety conditions (35), (37a), and (37b) must
be satisfied. Conditions (37a) and (37b) can be guaranteed by
defining admissible affine transformation features as discussed
in Section IV. To ensure (35), we assume that : 9 ,1, : 9 ,2, · · · ,
and : 9 ,2 (∀ 9 ∈ {1, · · · ,4}) are selected such that the roots of the
Characteristic Eq. (67) are all placed in the open left half of
complex plane. Then, we guarantee the safety condition (35)
by choosing a sufficiently-large maneuver duration, i.e., ) .

Define E = Y(C) −Y0 (C) as the error vector. Per Theorem 3,
Y3 (C) −Y(C) = (I3 ⊗L)E; thus, the error dynamics becomes
3

3C

( [
E) ¤E) ¥E) Ë)

]) )
= AMQS

[
E) ¤E) ¥E) Ë)

]) +VMQS,

(68)
where

VMQS (C) =
[
0 0 0 I3 ⊗H)

]) ÆR! (C). (69)

Therefore,
E(C)
¤E(C)
¥E(C)
Ë(C)

 = eAMQS (C−C0)


E(C0)
¤E(C0)
¥E(C0)
Ë(C0)

 +
∫ C

C0

eASYS (C−g)VMQS (g)dg. (70)

Note that

C ∈ [C0, C 5 ], ‖r8 (C) − r8,0 (C)‖22 = E) (C)C)8 C8E(C), (71)

where C8 = [C8 ;ℎ ] ∈ R3×12# is a matrix with the (;, ℎ) element
of which is given by

C8 ;ℎ =

{
1 (; = 1∧ ℎ = 8) ∨ (; = 2∧ ℎ = 8 +4#) ∨ (; = 3∧ ℎ = 8 +8#)
0 otherwise

.

Theorem 4. Assume the initial condition E(C0), ¤E(C0), ¥E(C0),
and Ë(C0) are given such that the the trajectory of (68) satisfies

∀C ∈ [C0, C 5 ], ∀8 ∈ V, ‖r8 (C) − r8,0 (C)‖ < rX,

where 0 < r < 1. Then, there exists a C̃ 5 > 0 such that (35)
holds, if C 5 ≥ C̃ 5 .

The inter-agent collision avoidance can be ensured by
choosing ) ≥ )∗ where )∗

:
= C∗

5
− C0 is assigned as the solution

of the following constrained optimization problem:

C∗5 = argmin
(
C 5 − C0

)
(72)

(a) (b)

Fig. 3: (a,b) MQS initial and final formations.

subject to

C ∈ [C0, C 5 ],
∧
8∈V

E) (C)C)8 C8E(C) ≤ X2, (73)

where C0 is known.
Remark 6. By satisfaction of constraint (35), deviation of
every quadcopter from its global desired trajectory remains
bounded at any time C, and thus, safety of the MQS affine
transformation can be ascertained only by constraining eigen-
values of the deformation matrix U� , by conditions (37a) and
(37b). We can guarantee the satisfaction of the safety require-
ments (35), (37a), and (37b) without constraining the total
number of quadcopters participating in an affine transforma-
tion coordination. Thus, our proposed multi-agent coordination
approach is scalable to large values of # .

VI. SIMULATION RESULTS

Consider an MQS consisting of 33 quadcopters with the
initial formation distributed in the I−G plane as shown in Fig.
3 (a). For the initial configuration, _1,0 = _2,0 = _3,0 = 1, V1,0 =

V2,0 = 0, V3,0 = V4,0 = 0 A03, and d̄0 =
[
1935 215 43

]) .
It is desired that the MQS ultimately achieves the final
configuration distributed in the G− H plane as shown in Fig. 3
(b) by moving in an obstacle-laden environment shown in Fig.
4 (a). The final configuration is an affine transformation of the
initial formation and characterized by the following features:
_1, 5 = _3, 5 = 1, _2, 5 =−0.8 V1, 5 = V2, 5 = V3, 5 = V4, 5 = 0 A03,
and d̄ 5 =

[
731 1935 43

]) . The shear deformation angles
V5 (C) = V5,0 = V5, 5 and V6 (C) = V6,0 = V6, 5 are constant at
any time C, where V5,0 = 0 A03 and V6,0 = 2.0735 A03 are
obtained by solving Eq. (31). Given quadcopters’ initial po-
sitions, followers’ in-neighbors and communication weights
are computed using the approach presented in Section IV.
Note that V = {1, · · · ,33} can be expressed as V =V�

⋃V� ,
where V� = {1, · · · ,11} and V� = {12, · · · ,33}. Also, the set
V! = {1,2,3} and V� = {4, · · · ,33} define index numbers of
leaders and followers’, respectively.

A. Safety Conditions

Assignment of X: Because _1,0 = _1, 5 = 1, and _1 (C) is
defined by Eq. (28) at any time C ∈ [C0, C 5 ], _1 (C) = 1 at every
time C ∈

[
0, C 5

]
(C0 = 0B). Therefore, _min = 1 is considered as

the lower limit of eigenvalue _1: _1 (C) ≥ 1, ∀C ∈
[
C0, C 5

]
. Given

quadcopters’ initial positions, 3min = 2 (X+ n) = 0.4387 < is
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computed using (33). It is assumed that every quadcopter is
enclosed by a ball of radius n = 0.10<, therefore, X = 0.115 <.

Assignment of _max: Given quadcopters’ initial positions,
3max = 38.0555< is obtained by Eq. (34). Given n = 0.1<
and X = 0.115 <, _max = 1.1243 is obtained by Eq. (38b).
Therefore, collision avoidance and quadcopter containment are
guaranteed, if the following inequalities are satisfied at any
time C ∈ [C0, C 5 ]: ‖r8 (C) − r8,0 (C)‖ ≤ 0.1 for every quadcopter
8 ∈ V and _1 (C),_2 (C),_3 (C) ≤ 1.1234.

Assignment of Travel Time ): We choose C0 = 0B, thus,
a C 5 = ) ≥ )∗ needs to be selected to ensure safety, where
)∗ = 776 is obtained by solving Eq. (72)-(73). For simulation,
we choose ) = 780B.

B. Plots

In Fig. 4(a), the optimal path of the containment ball S
is shown by green. Furthermore, MQS formations are shown
at sample times 0B, 250B, 350B, 450B, 650B, and 770B in
Figs. 4 (a-d). Note that Fig. 4 (b-d) plots the projections of
the MQS formations on the G − H plane at different sample
times. Additionally, G, H, and I components of positions of all
quadcopters are plotted versus time C in Fig. 5. Fig. 6 plots
‖r8 − r8,0‖ versus time for every agent 8 ∈ V. It is seen that
deviation of every quadcopter is less than X = 0.115 < from
its global desired position at any time C ∈ [0,780]. Figs. 7 plot
the thrust force magnitude ?8 , roll angle q8 , and pitch angle
\8 for every quadcopter 8 ∈ V versus time.

VII. CONCLUSION

This paper studied the problem of large-scale affine trans-
formation of an MQS in an obstacle-laden environment. By
eigen-decomposition of the affine transformation, it was shown
how a large-scale collective motion of an MQS can be safely
planned such that inter-agent collision avoidance is avoided,
quadcopter containment is guaranteed, and no quacopter hits
an obstacle in an obstacle-laden environment. Similar to the
previously proposed continuum deformation-based coordina-
tion approaches our method is scalable to coordination of
a large numbers of vehicles, however, it allows to plan
more efficient motions due to a more flexible form of the
transformation being employed. A comprehensive comparison
with other multi-agent coordination approaches proposed in
the literature and the development of further calibration/ tuning
guidelines is beyond the scope of this paper and is left to
future work. Furthermore, the proposed affine transformation-
based approach paradigm improves the maneuverability of the
swarm coordination by relaxing thee restrictions in the existing
continuum deformation coordination approach.
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(a) MQS affine transformation (b) C = 0, 120, 250B (c) C = 350, 450B (d) C = 650, 770B
Fig. 4: Affine transformation of the MQS in an obstacle-laden environment is illustrated in (a). Top view of MQS formations
at sample times (b) C = 0,250,350B, (c) C = 350,450B, and (d) C = 650,770B.

(a)

(b)

(c)

Fig. 5: (a,b,c) G, H, and I components of positions of all agents
versus time C.

Fig. 6: Deviation of agents from global desired trajectories
defined by an affine transformation.

APPENDIX A
PROOFS

Proof of Proposition 1: If Assumption 1 and rank condition
(3) are satisfied, initial position of quadcopter 8 ∈ V can be

(a)

(b)

(c)

Fig. 7: (a,b,c) Thrust force magnitude ?8 , roll angle q8 , and
pitch angle \8 for every quadcopter 8 versus time.

expressed by the following linear combination,

8 ∈ V, r8,0− r1,0 =

=+1∑
9=2
U8, 9

(
r 9 ,0− r1,0

)
, (74)

where U8,2, · · · , U8,=+1 are uniquely obtained by


U8,2
...

U8,=+1

 =
[
r2,0− r1,0 · · · r=+1,0− r1,0

]−1 r8,0. (75)

Now, Eq. (74) can be written in the form of Eq. (4), where
U8,1 = 1−∑=+1

9=2 U8, 9 which in turn implies Eq. (5).
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Proof of Proposition 2: Elements of matrix U� =
[
*8 9

]
∈

R3×3, defined by (18), are expressed as follows:

*11 =_1

(
�2
V5
�2
V6

)
+_2

(
(2
V4
(2
V5
�2
V6
+�2

V4
(2
V6
−2(V4(V5�V6�V4(V6

)
+_3

(
�2
V4
(2
V5
�2
V6
+ (2

V4
(2
V6
−2(V6(V4�V4(V5�V6

)
,

*12 =_1�V6�
2
V5
(V6 −_3 (�V6(

2
V4
(V6 −�2

V4
�V6(V6(

2
V5
) −_2 (�2

V4
�V6(V6

−�V6(
2
V4
(V6(

2
V5
),

*13 =_3 (�V6�V5(V5�
2
V4
+�V5(V4(V6�V4 ) +_2 (�V6�V5(

2
V4
(V5 −�V4�V5(V4(V6 )

−_1�V6�V5(V5 ,

*22 =_2 (�2
V4
�2
V6
+ (2

V4
(2
V6
(2
V5
+2�V4�V6(V4(V6(V5 ) +_3 (�2

V6
(2
V4

+�2
V4
(2
V6
(2
V5
−2�V4�V6(V4(V6(V5 ) +_1�

2
V5
(2
V6
,

*33 = _3�
2
V4
�2
V5
+_2�

2
V5
(2
V4
+_1(

2
V5
,

*21 =*12, *32 =*23, and *31 =*13. If _1 = _2 = _3 = _, then,

*8 9 =

{
_ 8 = 9

0 8 ≠ 9
.

Proof of Theorem 1: Inter-agent collision between every two
quadcopters is avoided, if

∀8, 9 ∈ V, 8 ≠ 9 , ‖r8 (C) − r 9 (C)‖ > 2n . (76)

We can write(
r8 − r 9

)
=

(
r8,0 − r 9 ,0

)
−

(
r8,0 − r8

)
−

(
r 9 − r 9 ,0

)
.

Therefore,

‖r8 − r 9 ‖ ≥ ‖r8,0 − r 9 ,0‖ − ‖r8,0 − r8 ‖ − ‖r 9 − r 9 ,0‖. (77)

Eq. (77) implies that ‖r8 − r 9 ‖ ≤ 2n , if ‖r8,0 − r8 ‖ ≤ X,
‖r 9 ,0 − r 9 ‖ ≤ X, and ‖r8,0 − r 9 ,0‖ ≥ 2 (n + X). Furthermore,
‖r8,0 −r 9 ,0‖ ≥ 2 (n + X), if ‖

(
r8,0 − r 9 ,0

)
· û1‖ ≥ 2 (X+ n). Con-

sequently, inter-agent collision avoidance between every two
different quadcopters 8 and 9 is avoided, if

‖
(
r8,0 − r 9 ,0

)
· û1‖ ≥ 2 (X+ n) .

Note that

∀8, 9 ∈ V, 8 ≠ 9 , _1 (C) =
|
(
r8,0 (C) − r 9 ,0 (C)

)
· û1 (C) |

|
(
r8,0 (C0) − r 9 ,0 (C0)

)
· û1 (C0) |

It is ensured that no quadcopter leaver ball S̄(C) at any time
C ∈ [C0, C 5 ], if

∀C ∈ [C0, C 5 ], max
8∈V
‖r8,0 (C) −d (C) ‖2 ≤ Amax− X− n .

This implies that Eq. (38b) assigns the upper-limit for
eigenvalue _1 (C) at any time C ∈ [C0, C 5 ]. Additionally, It is
ensured that no two quadcopters collide, if

∀C ∈ [C0, C 5 ], min
8, 9∈V , 8≠ 9

�� (r8,0 (C) − r 9 ,0 (C)
)
· û1 (C)

�� ≥ 2 (X+ n) .

Consequently, Eq. (38a) assigns the lower limit for _1 (C) at
any time C ∈ [C0, C 5 ].

Because 
0 ⊂ S(C0) and 
0 ⊂ S(C 5 ). Therefore, _2,0 ≤
_max, _2, 5 ≤ _max, _3,0 ≤ _max, _3, 5 ≤ _max, and _ 9 (C) =
_ 9 ,0 (1−W(C,))) +W(C,))_ 9 , 5 remains bounded:

9 = 2,3, _ 9 (C) ≤ _max

at any time C ∈ [C0, C 5 ].
Proof of Theorem 2: If assumptions of Theorem 2 are all

satisfied, matrix G ∈R(#−=−1)×(#−=−1) is non-negative a there
exists a directed path between every leader and every follower.
By provoking Perron-Frobenius Theorem, it is concluded that
the spectral radius of matrix G, denoted by d (G), is less than
1 and eigenvalues of matrix −I+G are all placed on the left-
hand of the B-plane inside a disk of radius d (G) centered at
−1+0j. Therefore, matrices −I+G and L=−I+W are Hurwitz.

Proof of Theorem 3: Let R!,0 =

vec
( [

r1,0 · · · r=+1,0
]) )

∈ R3(=+1)×1 and R�,0 =

vec
( [

r=+2,0 · · · r# ,0
]) )

∈ R3(#−=−1)×1, define initial
position components of leaders and followers, respectively,
where vec (·) is the matrix vectorization operator. If
assumptions of Lemma 3 are satisfied, quadcopters’ initial
positions satisfy the following relation:

L
[
R!,0
R�,0

]
=

[
−I 0
F (−I+G)

] [
R!,0
R�,0

]
=

[
−R!,0

0

]
.

Thus, [
R!,0
R�,0

]
=

[
I

− (−I+G)−1 F

]
R!,0.

Because leaders form an =-D simplex at initial time C0,
positions of every quadcopter 8 can be uniquely expressed as
a linear combination of leaders’ initial positions using relation
(4). Therfore, [

R!,0
R�,0

]
= HR!,0

which in turn implies correctness of Eq. (53a).
Now, we can write

Y3 −Y = (I3 ⊗L)Y+ (I3 ⊗L0)R! (C) (78)

On the other hand,

(I3 ⊗L) (Y−Y0) = Y3 −Y. (79)

Therefore, Eq. (53b) is proven.
Proof of Theorem 4: Given definition of W (C,);) in (27),
¤W (C,);), ¥W (C,);), and Ẅ (C,);) are decreasing with respect to ); .
For a given initial time C0, ); , defined by (25), is increased if C 5
is increased. Also, ¤W (C,);) , ¥W (C,);) , Ẅ (C,);) → 0, and VMQS→
0, if ) 5 →∞. Therefore, there exists a sufficiently-large final
time C̃ 5 = C0 + )̃1 + · · · + )̃=g−1 such that the response of zero-
initial-state dynamics, given by


E(C)
¤E(C)
¥E(C)
Ë(C)

 = eAMQS (C−C0)

�
�
�
�
��7

0
E(C0)
¤E(C0)
¥E(C0)
Ë(C0)

 +
∫ C

C0

eASYS (C−g)VMQS (g)dg,

ensures that ‖r8 (C) − r8,0 (C)‖ < (1− r)X for every quadcopter
8 ∈ V. This also ensures that safety condition (35) is satisfied,
if the zero dynamics of the error dynamics (68) ensures that
‖r8 (C) − r8,0 (C)‖ < rX at any time C ∈ [C0, C 5 ].
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APPENDIX B
ROTATIONAL KINEMATICS AND DYNAMICS OF A

QUACOPTER

We use 3-2-1 standard to determine orientation of quad-
copter 8 at discrete time : . Given roll angle q8 (C), pitch
angle \8 , and yaw angle k8 and the base vectors of the
inertial coordinate system (ê1, ê2, and ê3), angular velocity
of quadcopter 8 ∈ V is given by

l8 = ¤k8k̂1,8 + ¤\8 ĵ2,8 + ¤q8 î1,8 , (80)

where
î1,8
ĵ1,8
k̂1,8

 = R (0,0,k8)

ê1
ê2
ê3

 =


cosk8 sink8 0
−sink8 cosk8 0

0 0 1



ê1
ê2
ê3

 , (81a)


î2,8
ĵ2,8
k̂2,8

 = R (0, \8 ,0)

î1,8
ĵ1,8
k̂1,8

 =

cos\8 0 −sin\8

0 1 0
sin\8 0 cos\8



î1,8
ĵ1,8
k̂1,8

 ,
(81b)

î1,8
ĵ1,8
k̂1,8

 = R (q8 ,0,0)

î2,8
ĵ2,8
k̂2,8

 =

1 0 0
0 cosq8 sinq8
0 −sinq8 cosq8



î2,8
ĵ2,8
k̂2,8

 .
(81c)

Substituting ê1 = [1 0 0]) , ê2 = [0 1 0]) , ê3 = [0 0 1]) , î1,8 ,
k̂1,8 , ĵ2,8 , and î1,8 into Eq. (80), l8 =

[
lG,8 lH,8 lI,8

]) is
related by ¤q8 , ¤\8 , and ¤k8 by[

lG,8 lH,8 lI,8
])

= �8 (q8 , \8 ,k8)
[ ¤q8 ¤\8 ¤k8

])
, (82)

where

�8 (q8 , \8 ,k8) =

1 0 −sin\8
0 cosq8 cos\8 sinq8
0 −sinq8 cosq8 cos\8

 . (83)

Angular acceleration of quadcopter 8 ∈ V is obtained by
taking the time derivative of the angular velocity vector l8:

¤l8 = B̃1,8
[ ¥q8 ¥\8 ¥k8

]) + B̃2,8 . (84)

where
B̃1,8 =

[
î1,8 ĵ2,8 k̂1,8

]
(85a)

B̃2,8 = ¤\8 ¤k8
(
k̂1,8 × ĵ1,8

)
+ ¤q8

(
¤k8k̂1,8 + ¤\8 ĵ2,8

)
× î2,8 (85b)

Note that “×” is the cross product symbol. On the other hand,
the rotational dynamics of quadcopter 8 is given by

¤l8 = J−1
8

(
li× (Jili) +

[
D̃2,8 D̃3,8 D̃4,8

]T
)

(86)

where D̃2,8 = gq,8 , D̃3,8 = g\,8 , D̃4,8gk,8 (See Eq. (57)). By
equating the right-hand sides of Eqs. (84) and (86), we can
write[

D̃2,8 D̃3,8 D̃4,8
])

= B1,8
[ ¥q8 ¥\8 ¥k8

]) +B2,8 , (87)

where
B1,8 = J8B̃1,8 , (88a)

B2,8 = J8B̃2,8 −li× (Jili) . (88b)

APPENDIX C
TIME DERIVATIVES OF THE QUADCOPTER THRUST FORCE

Let
P8 = ?8k̂1,8 −<86ê1 (89)

be the external force executed on quadcopter 8. Taking time
derivatives from P8 , we obtain the following relations:

¤P8 = ¤?8k̂1,8 + ?8l8 × k̂1,8 , (90a)

¥P8 = O1,8�8 +O2,8 , (90b)

where �8 =
[
¥?8 ¥q8 ¥\8 ¥k8

]) ,

O1,8 =
[

k̂1,8 −?8 ĵ1,8 ?8

(
ĵ2,8 × k̂1,8

)
?8k̂1,8 × k̂1,8

]
∈R3×4,

(91a)
O2,8 =?8

[
− ¤q8 ¤\8

(
k̂2,8 × k̂1,8

)
+l8 ×

(
l8 × k̂1,8

)]
+2 ¤?8l8 × k̂1,8 .

(91b)

Per Eq. (87), we can write

�8 = O3,8ũ8 +O4,8 , (92)

where ũ8 =
[
D̃1,8 · · · D̃4,8

])
=

[
¥?8 gq,8 g\,8 gk,8

]) ,

O3,8 =

[
1 01×3

03×1 B−1
1,8

]
,

O4,8 =

[
0

−B−1
1,8B2,8

]
.

By substituting (92), Eq. (90b) is converted to

¥P8 = O1,8O3,8ũ8 +O1,8O4,8 +O2,8 . (93)

Note that s8 = 1
<8
¥P8 where s8 is the input vector of the external

dynamics of quadcopter 8 (see Section V-B).
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