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Highlights:

e We propose a framework, NORDIC, for denoising complex valued dMRI data using
Gaussian statistics

e The effectiveness of the proposed denoising method is distinguished by the ability to
remove only signal which cannot be distinguished from thermal noise

e The proposed method outperforms a state-of-art method for denoising dMRI in terms of
fiber orientation dispersion

¢ (Quantitative evaluation of NORDIC across different resolutions and SNR using human
connectome type acquisitions and analysis shows up to 6 fold improvement in apparent
SNR for 0.9mm whole brain dMRI at 3T.

Abstract:

Diffusion-weighted magnetic resonance imaging (dAMRI) has found great utility for a wide range
of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for
improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-
noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted
images of the same anatomy, it is well-suited for denoising methods that utilize correlations across

the image series to improve the apparent SNR and the subsequent data analysis. In this work, we



introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with
DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank
modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix
distributions to remove signal components which cannot be distinguished from thermal noise. The
utility of the proposed framework for denoising dMRI is demonstrated on both simulations and
experimental data obtained at 3 Tesla with different resolutions using human connectome project
style acquisitions. The proposed framework leads to substantially enhanced quantitative
performance for estimating diffusion tractography related measures and for resolving crossing

fibers as compared to a conventional/state-of-the-art dMRI denoising method.
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Introduction

Magnetic Resonance Imaging (MRI) provides a collection of different approaches that
currently occupy an indispensable role in the armamentarium of methods employed for
studying the human brain. Diffusion-weighted MRI (dMRI) (review (Moeller et al., 2020),
and references therein), is one of these critically important techniques; it is currently the
only non-invasive imaging method available to map short and long-range anatomical
connections in the brain and to extract information on the white matter microstructure
(Alexander et al., 2019). Complementing dMRI, there exists other MRI techniques such
as resting state functional magnetic resonance imaging (rfMRI) employed for inferring
functional connectivity from correlations in spontaneous temporal fluctuations (Smith et
al., 2013), task based fMRI (tfMRI) that depicts regional responses to specific cognitive
processes and stimuli (Barch et al., 2013), and arterial spin labeling (ASL), which is a
method that provides quantitative measurements of cerebral blood flow (CBF) without the

use exogenous contrast agents (Alsaedi et al., 2018). All of these methods are challenged



by the inherently low signal-to-noise ratio (SNR) of the MR images themselves especially
when ambitious improvements on spatial and/or temporal resolutions are sought, as
foreseen, for example in the BRAIN Initiative in order to meet the enormous challenges

faced in the effort to understand human brain function (Jorgenson et al., 2015).

Therefore, in all applications of MRI, particularly in the aforementioned approaches for
the study of the human brain, efforts to effectively increase SNR plays a central role.
Although the ultimate goal is to do so without compromising any information, attempts to
do so generally trade off some other information or feature of the data, such as true
spatiotemporal resolution, or specificity to the biological process of interest. This is
especially evident for denoising techniques (Alkinani and EI-Sakka, 2017; Fan et al.,
2019; Kaur et al., 2018; Shao et al., 2014), where combinations of removing signal is
balanced with corresponding feature enhancement to maintain the desired information.
This is moreover challenged by most methods having to adapt to the spatially varying and
non-Gaussian nature of the noise in magnitude MRI data, and the need to provide
application-specific validations (Aja-Fernandez et al., 2011; Foi, 2011; Ma et al., 2020;
Manjon et al., 2013).

dMRI has an inherent assumption of redundancy, since the models of the underlying
biological environment has lower complexity than the amount of data acquired. The
redundancy can be explicit in repetitive acquisitions, which lengthens scan time, or implicit
in using a probabilistic model-fit with a lower-dimensional continuous model to a higher
dimensional discrete sampling, in order to reduce the outlier sensitivity and goodness-of-
fit error (Andersson and Sotiropoulos, 2015). On the other hand, denoising utilizing the
well-known non-local means (A. Buades et al., 2005) was early on applied to dMRI image
series (Wiest-Daessle et al., 2007), and the redundancy for local patches was first
demonstrated for routine dMRI by Manjon et al. (Manjon et al., 2013) using an empirical
threshold of the eigenvalues of a Principle Component Analysis (PCA) decomposition.
For routine dMRI, the most advanced framework for denoising involves the Non Local
Spatial and Angular Matching (NSLMA) (St-Jean et al., 2016), which incorporates Rician
noise modelling, dictionary training and subspace processing. Recent work on processing
complex data and adaptive to half Fourier acquisition with temporal heteroscedastic

sampling, involves a low-rank spectral D-transformation using Frobenius norms, and a



generalized singular value shrinkage (Cordero-Grande et al., 2019), and was shown to

match the performance of NSLMA on magnitude data.

Currently, the most widespread method for suppression of noise in dMRI is the
Marchenko-Pastur Principle Component Analysis (MPPCA) approach (Veraart et al.,
2016), which simultaneously estimates the amount of noise and signal components in
magnitude MR data adapted by using a local patch based PCA approach to essentially
remove components that have little contribution to the variance. MPPCA uses PCA with
hard thresholding on singular values, with a threshold based on asymptotic mathematical
properties of random matrices (MPPCA threshold). In this approach, however, the
components that have been removed is challenging to describe for a finite series with

unknown low-rank.

In this work, we tackle these challenges and propose NOise Reduction with Dlstribution
Corrected (NORDIC) PCA method for reducing the influence of noise. NORDIC uses a
dedicated processing approach to ensure that the noise component is additive with
independent, identically distributed, zero-mean Gaussian entries. Using this
characterization, results from random matrix theory can be efficiently used to devise a
parameter-free objective threshold. For NORDIC, this threshold value is both numerically
quantifiable and descriptive as the removal of all components which cannot be
distinguished from Gaussian noise. NORDIC is similar to other PCA or low-rank based
approaches, but unlike these methods, it uses known information from the acquisition to
transform the data to fit the algorithm instead of either estimating the necessary
information or adapting the algorithm to fit the data. This approach for denoising is unique
from previous methods as it has negligible, if any, impact on real MR signals and can be
more generally applied to different types of MRI data without re-calibration or optimization.
This would in turn allow for much higher resolutions and/or reduced scan times of
otherwise SNR-starved MR protocols. The cost of the method is no more than having a
clean sampling of the noise and the subsequent computational requirements, both of

which could be built into an online acquisition protocol and reconstruction pipeline.



In this paper, we present an extensive and quantitative evaluation of NORDIC on dMRI
data acquired on multiple subjects with different resolutions and SNR levels. The
detectability of crossing fibers in Human Connectome Project (HCP) type dMRI data
(Sotiropoulos et al., 2013a) was used as the metric for assessing the performance of
NORDIC on dMRI acquisition, since the model complexity for using this type of dMRI data
is advanced and well understood. Furthermore, the increase in the ability to estimate
fibers from low SNR acquisitions processed with NORDIC was validated by comparing it
with multiple repetitions of the diffusion acquisitions that were averaged to increase the
SNR.

Part of this work was presented at the International Society for Magnetic Resonance
Imaging, 2017 (Moeller et al., 2017).

Methods
Locally Low-Rank Model
We consider the reconstructed complex-valued volumetric dMRI image series following

an accelerated parallel imaging acquisition, m(r,t) € C'*12xIs*N with r specifying the
location in 3D space, and t € {1,-:-,N}. For dMRI, N is the number of g-space samples
collected with different diffusion weighting. In locally low rank (LLR) approaches, for a
voxel located at ro, a k; X k, X ks patch is selected whose top left corner is located at the
given voxel. For ease of notation we will not explicitly write the dependence on ro, and
consider arbitrary patches. For a given diffusion weighting, 7 € {1, -, N} this volume is
vectorized to y,. These vectors are then used to generate a Casorati matrix Y =
[V, Ve -, Yn] € CM*N where M = k,k, k5. This represents the noisy data for that patch
across the image series with different diffusion weighting (i.e. g space points). The
denoising problem is to recover the corresponding underlying data Casorati matrix X,
based on the following model

Y=X+N (eq.1)

where N € CM*N is additive Gaussian noise.
The underlying assumption for LLR models is that for any patch across the image, the

data Casorati matrix X for that patch can be represented with a low-rank representation.
Thus, LLR methods perform singular value thresholding, typically using hard or soft

thresholding. Letting the singular value decomposition of Y be U - S - V¥ where U and V



are unitary matrices, and S is a diagonal matrix whose diagonals are the spectrum of
ordered singular values, A(j), j € {1,-:-, N} . For LLR the singular values below a threshold
A() < A;y, are replaced by A(j)=0 and the other singular values are either unaffected, as
in hard thresholding, or reduced by A, as in soft thresholding. Letting S, , be the new
diagonal matrix generated as a result of thresholding, the low-rank estimate of Y is given
asY, =U-S§,, - VH_ These locally low-rank estimates are then combined to generate

the denoised image series m!R(r, 1) either by averaging the corresponding patches

together or using non-overlapping patches.

Data-driven estimation of the threshold - MPPCA
The threshold for Y; can be selected empirically based on which components exhibit

spatio-temporal features (Salimi-Khorshidi et al., 2014) or it can be selected based on
where the noise properties mixes with the signal (Veraart et al., 2016). This latter
approach is the basis for the MPPCA method, often used in dMRI and applied to
magnitude dicom images, and referred to as dwidenoise (part of MRTrix,

http://www.mrtrix.org) in the community. The Marchenko—Pastur law, which forms the

basis for MPPCA, describes the asymptotic properties of singular values in random

matrices with independent identically distributed (i.i.d.) zero-mean entries. For such a
random matrix Z of dimension M x N with M> N and let W = %Z” - Z. The spectrum of
W is band-limited as a function of the variance of the entries and the matrix dimensions

in the asymptotic limit. Specifically, for a matrix Z with i.i.d. entries having mean 0 and

variance o2, the singular values of W are asymptotically band limited to values between
A_and A,, where A7 = ¢2(1 ++/y)? withy = % i.e. the spectrum has a bandwidth 1, —
A_ = 4\/yo?.

The MPPCA leverages this distribution to select the threshold for denoising, where the
Casorati matrix has both signal and random noise contributions. In this case, the tail of
the spectrum of S is used to simultaneously estimate the noise level, and the value of

Ay For a fixed value of signal components, the width of the tail, assuming zero-mean

i.i.d. noise, satisfies with high probability the asymptotic limit

(2(P+1) —2*(N)) = 4/ypo? (eq.2)


http://www.mrtrix.org)/

where yp = (N — P)/M while also satisfying the inequality
Yipi1 A2 = (N = P)a? (eq.3)

The band limiting of the spectrum, allows for calculating the largest value of P for which
the equality (eq.3) holds, while simultaneously providing a value for the variance ¢2. The
use of the Marchenko-Pastur assumes i.i.d. zero-mean noise, which is typically not
satisfied in reconstructed MRI data, where the noise is spatially varying from the use of
undersampled k-space acquisitions. Furthermore, the equality assumes zero-mean
entries, whereas the noise in magnitude images in MRI is either Rician or non-central
Chi”2 distributed.

Proposed LLR Denoising
In NORDIC, the data matrix Y is constructed so that the noise matrix component matches

the random matrix theory model. This is achieved by: 1) retaining the images as complex
valued with zero-mean Gaussian noise following image reconstruction, 2) mapping the
spatially varying noise in the reconstructed images to spatially identical noise using the
g-factor of the parallel imaging method, and 3) selecting the threshold explicitly based on

the noise spectrum.

For the first step, we utilize slice-GRAPPA reconstruction for the slice accelerated

dataset, obtained with the simultaneous multislice (SMS)/Multiband (MB) approach
(Moeller et al., 2020). A single kernel G]?" is constructed for SMS/MB with phase-encoding
undersampling such that for each slice, j, and channel, ch,

G"(Sup) = SB{" Vj,ch (eq.4)
and the kernels G]?" are calculated similarly as in slice-GRAPPA from the measured
individual slices SB; with S,z = X5 SB; . For the combination of reconstructed individual
channels, the SENSE-1 reconstruction (Sotiropoulos et al., 2013b) is used to maintain
Gaussian noise (Aja-Fernandez and Vegas-Sanchez-Ferrero, 2016) in the complex

valued reconstructions and the ESPIRIT algorithm (implemented from the Berkeley

Advanced Reconstruction Toolbox (BART) https://mrirecon.github.io/bart/) is used for

sensitivity estimation.


https://mrirecon.github.io/bart/

For the second step, g-factors are calculated building on the approach outlined in (Breuer
et al., 2009) for g-factor quantification in GRAPPA reconstructions and detailed in (Moeller
et al., 2020) and the same ESPIRIT sensitivity profiles used for image reconstructions are
also used for the determination of the quantitative g-factor. The g-factor is subsequently
used to normalize the signal scaling in m(r, t), as m(r, t)/g(r). We note that this ensures
zero-mean and spatially identical noise in a given patch. The remaining independence
requirement is satisfied by choosing the patch size small enough to ensure that no two
voxels within the patch are unaliased from the same acquired data, which can be done
by selecting k; < I3/MB and k, < I,/R, where MB is the acceleration rate (i.e. the number
of simultaneously excited slices) along the slice direction using RF pulses with MB
number of bands, and, R, the in-plane phase-encoding undersampling rate. When
blipped-CAIPI (Setsompop et al., 2012) encoding is added, then the patches in the MB
unaliased slices do not overlap directly and k; > I;/MB can be used, but is dependent
on the FOV shift and the R factor.

Following these steps, the noise component of Y has zero-mean i.i.d. entries, and the
threshold in the ideal setting is given as the first singular value specified by the
Marchenko-Pastur law for such M x N noise matrices. This choice ensures that all
components that are indistinguishable from Gaussian noise are removed. While this
threshold can be calculated from the analytical formula, this is an asymptotic expression,
and deviations may occur for the practical finite matrix case. Thus, for a finite-sized
random matrix, an alternative is needed in the absence of an analytical expression and
we calculated this threshold by using noise images (where no RF excitation is applied),
which were still reconstructed identically to the acquired data, and also corrected with the
g-factor. We use a Monte-Carlo simulation with matrices of size M x N extracted from the
noise image to generate the sample average for the largest singular value of an M x N
random matrix with i.i.d. zero-mean elements and variance o2 identical to the noise

images, and use this as the threshold 1,

Since the g-factor normalization changes the signal scaling, after NORDIC processing,

the volumes with noise reduction applied mVYoRPIC(y 1) are further processed as



mNORDIC(r 1) . g(r) such that the signal magnitude is corrected back to the original form.

A schematic of the steps in the proposed NORDIC algorithm is shown in Figure 1.

Image recon Normalization Denoised
Divide
g-factor

Multiply
g-factor

Casorati
Matrix

........................... FIGURE laroundhere ...........oovvviiiiiiii.

Figure 1. Flowchart of the NORDIC algorithm for a series m(r, ). Firstly the series is
normalized with the calculated g-factor kernels as m(r, t)/g(r). From the normalized series
the Cassorati matrix Y = [yy, -+, y;, -, Yn] is established and the low-rank representation of
Y is calculatedas Y, = U - S;,, - V7, where A(i) = 0 for A(i) < Ay, After reforming the
series mLLR(r,t) the normalization with the calculated g-factor is reversed as
mNORDIC(r, ‘If) — mLLR (I', T) . g(l‘)

Patch averaging
The transformation from patches to a Casorati matrix removes an explicit spatial

connection between rows, which is re-established when the processed Casorati matrix is
reordered to a patch. The selection of patches can be anywhere between non-overlapping
and maximally overlapping, directly proportional to an increase in computation time. With
non-overlapping patches remaining block-artifacts are commonly observed. For patch
averaging, the patches are used independently of the x,y,z orientations, i.e. independent
of how they are acquired in terms of readout, phase-encoding and slice-encoding
direction (Katkovnik Vladimir et al., 2010). For the over-lapping patches, the combination
of these can be weighted equally, as used here, or weighted as the number of retained
components, which was introduced for earlier PCA methods (Ma et al.,, 2020) with

negligible differences when a uniform threshold is used.

(x + t) phase-stabilization
The use of complex valued information is in itself nothing ominous for LLR techniques.

For dMRI, the phase induced in the process of diffusion weighting, the diffusion phase, is



caused by the temporal fluctuations of the Bo field over the head during diffusion encoding
primarily due to respiration (Anderson and Gore, 1994), and is immaterial in the dMRI
modelling, which only considers the changes in signal magnitude subsequent to diffusion
encoding for accessing underlying tissue properties. However, keeping the diffusion
phase increases the number of components necessary to describe the signal. The
appearance of the diffusion phase can be reduced, based on the fact that the phase is
independent of tissue properties and is spatially smooth, while also noting that it can have
21 phase-wraps. For a dMRI series with different g-samples, the volume and slice specific
smooth phase is removed in a two-step process where first the common phase per slice
is removed (using an average over all volumes), and then the volume specific smooth
phase is removed as follows. Each volume is Fourier transformed and multiplied with a
2D weighted Tukey filter (the outer product of two weighted Tukey filters of length N1 and
N2 respectively, where N,, N, are the image dimensions) which is equivalent to a broader
blurring function in image space, and then subsequently transformed into image space
with an inverse Fourier transform. The resulting phase, per slice and volume, is used as
a low-pass filtered estimate and multiplied with the original data with the common phase
removed. The effect of the 2-step phase-correction is illustrated in Supplemental Figure
S1.

Numerical Evaluation of Threshold Choice
Existing low-rank denoising methods, such as MPPCA, and the NORDIC approach are

denoising methods that work directly on the spectrum of the Casorati matrix. Even without
the considerations of the i.i.d. zero-mean entries for the noise component of the Casorati
matrix, there are differences between the existing, previously published (Veraart et al.,
2016), data-driven choices for the threshold and our proposed fixed threshold. To
highlight these differences, a numerical simulation was performed, where the noisy data
was generated according to (eq.1). The underlying noise matrix N was generated as i.i.d.
Gaussian noise, whereas the underlying data matrix X was generated using two random
unitary matrices Ux and Vx, and a low-rank spectrum Sx. We use Ay to denote the
spectrum of the noise matrix N, and 1z, to denote the spectrum extracted from a 1.5mm
isotropic resolution Lifespan dMRI acquisition (Harms et al., 2018) with 99 g-space

samples, described further below. These are scaled individually relative to the spectra Ay
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of the noise, and computed for 99 volumes with 72 and 113 voxels respectively. Four

different spectra Ay odeis ALk Moderr Aamrr @Nd Ar amurr Were considered for Sy with
Aoder() = e7%02%T - An(1)/e7?5,j = 1,...,99, (eq.5)
g ModetJ) = Amoder (), J = 1,...,99, @and Ay yoger () = 0 for A,z moaer ) < An(1) (€9.6)

N_ 5 . An(1 .
Aamri ) =Aamri () ), 05,j=1,..99 (eq.7)

Aamri(99)

AR amri (D= Aamri () - 1.4, j = 1,...,99 and Az gyri () = 0 for Apg amri () < An(1) (e9.8)

The constants in (eq. 5) — (eq. 8) do not correspond to a specific acquisition bio-physical
model, and Apoders ALk Modetr Aamrr @Nd Ag amrr  @re considered in terms of their effect

for a numerical simulation of the techniques.

Subsequently, the singular value spectra of N,X and Y were calculated, and the two
different threshold selection strategies were compared.

In-vivo imaging

Data were acquired at the Center for Magnetic Resonance Research (CMRR), University
of Minnesota (UMN). All participants provided written informed consent and the study was
approved by the UMN’s Institutional Review Board. Eight participants were scanned on a
Siemens Magnetom Prisma (Siemens Healthcare, Erlangen, Germany) 3 Tesla (3T)
scanner equipped with a 32 channel head coil and a 80 mT/m gradient system with a
slew rate of 200 T/m/s. An additional participant was scanned on a 7 Tesla (7T) MR
scanner (Siemens, Erlangen, Germany) equipped with 32 receive channels and the
Siemens SC72 body gradient that achieves 70 mT/m maximum strength and 200 T/m/s
maximum slew rate with the current gradient drivers; maximum slew rate usable for
diffusion encoding gradients was, however, limited to ~125 T/m/s due to peripheral nerve
stimulation (Vu et al., 2015). The vendor supplied Nova single-channel transmit and 32-
channel receive head coil was employed for RF transmission and signal reception. The
data acquisition and image reconstruction was performed with the CMRR distributed C2P

multiband diffusion sequence (https://www.cmrr.umn.edu/multiband/) on both systems.
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Data were acquired at 3T where three different nominal isotropic imaging resolutions of
1.5mm, 1.17mm and 0.9mm were used, leading to effective voxel volume ratios of
1:0.5:0.2. A two-shell diffusion sampling scheme was employed with b=1500, 3000 s/mm?
with 99 g-space directions (46 for b=1500 s/mm?, 46 for b=3000 s/mm? and 7 for b=0
s/mm?, as an interleaved combined set following Caruyer (Caruyer et al., 2013)); these
data were acquired twice, running the phase encode direction either in the AP or PA
directions, as in the HCP (Sotiropoulos et al., 2013a; Ugurbil et al., 2013). We followed
the HCP Lifespan protocol (Harms et al., 2018) for each AP or PA acquisition; this 1.5mm
resolution dMRI protocol deviated from the HCP Lifespan protocol in one aspect, namely
the HCP acquired such data twice (Harms et al., 2018) whereas in our case this was done
only once, collecting as a result half the data compared to the HCP Lifespan protocol. For
the higher resolution acquisitions, by necessity, we deviated somewhat more from the
HCP Lifespan protocol; in this case, for each resolution, the g-space sampling was the
same as that employed for the 1.5mm acquisition but the acceleration factors changed in
order to keep the TR approximately in the same range. In all cases, the slice-orientation
was chosen similarly to the HCP as oblique coronal-axial along the AC-PC line to reduce
the necessary number of slices to cover the whole brain. Each resolution was acquired
with 6/8 partial Fourier (similar to the Lifespan and the HCP-young adult (Sotiropoulos et
al., 2013a; Ugurbil et al., 2013)) and was acquired with the following parameters:

1.5mm isotropic: TE/TR=89.2/3230ms, MBxR=4x1, echo-spacing 690us; 92 slices

1.17mm isotropic: TE/TR=77.8/2780ms, MBxR =5%2, echo-spacing 770us; 120 slices
0.9mm isotropic: TE/TR=95.4/5850ms, MBxR =4x2, echo-spacing 940us; 152 slices.

The highest and lowest spatial resolutions were chosen in accordance with the
restrictions imposed by gradient resonance frequencies. For 5 subjects, all three
resolutions were obtained. For the remaining 3 subjects 60min of data were collected at
one of the three resolutions. The 60-min data acquisition time allowed 6, 5, and 3 repeated

acquisitions, respectively for the 1.5mm, 1.17mm and the 0.9mm data.

As single whole brain dMRI data set acquired at a nominal 0.7mm isotropic resolution
was also evaluated for denoising. This data set was obtained at 7T, with MBxR=2x3,
TR/TE=13.4s/91ms and partial Fourier of 6/8. The FOV was 208x208x126mm and 180

12



oblique axial slices was used to cover the whole brain. A two-shell diffusion sampling
scheme was employed with b=1000, 2000 s/mm? having total 96 interleaved g-space
directions and an additional 11 for b=0 s/mm?. These data were acquired twice, running
the phase encode direction either in the AP or PA directions, and obtained as 4
independent acquisitions of ~15min duration, including the auto-calibration and single
band reference scans. All data were processed as magnitude data and corrected for
motion, geometric and eddy currents induced distortions and outliers with FSL TOPUP
(Andersson et al., 2003) and EDDY (Andersson et al., 2016; Andersson and Sotiropoulos,
2016). For repeated acquisitions, each individual series was processed independently,
and all were subsequently motion corrected and averaged. DTl and multi-shell crossing
fibers models were fitted to the corrected data, using DTIFIT and BEDPOSTX with a multi-
exponential decay assumption (Jbabdi et al., 2012), respectively, and results were

visualized with FSLEyes.

In-Vivo Imaging Evaluation of NORDIC

Qualitative Evaluation

A real-valued simulation was performed to evaluate the proposed NORDIC method using
a high SNR reference volume with spatial matrix size 140x140x92, and with 99 volumes
(g-space samples). The reference was the EDDY corrected (Andersson et al., 2016;
Andersson and Sotiropoulos, 2016) standard reconstruction data from 6 averages for the
1.5 mm resolution listed in the “In-vivo imaging” section. This high SNR reference was
degraded by adding real-valued noise. The images were evaluated in two different ways;
1) using the simulated “ground truth” real-valued images and 2) using the magnitude
images to include the Rician noise properties. The noise level was selected such that for
the volumes with the lowest signal intensity, the mean signal over the whole brain was 1
(with a 10:1 maximum to mean ratio), and the noise was independently and identically
distributed (i.i.d.) Gaussian with variance 1. Subsequently, the proposed NORDIC

approach was compared to MPPCA denoising.

For the afore described simulation using a high SNR dMRI data degraded by addition of
noise, the impact on apparent image SNR was evaluated for NORDIC using different

patch-sizes M, and compared with MPPCA using both Gaussian and Rician noise. In
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addition a diffusion contrast image defined as the difference between two images with

different g-vectors directions and the same b-value,
ACI1‘121n = Im(l‘, Q1)| - |m(r, qz)l,

was used to evaluate blurring between different g-space acquisitions from the low-rank
processing. The two g-vectors have the same b-value, and are selected as sequential in
the g-space set defined following Caruyer (Caruyer et al., 2013), and as such nearly

orthogonal.

In order to demonstrate the whole brain effect of improved detection of crossing fibers in
the NORDIC processed data, the connectivity of the posterior corona radiata (PCR, both
left and right) with the rest of the brain was investigated qualitatively using probabilistic

tractography (‘probtrackx’)(Behrens et al., 2007).

Quantitative evaluation

Detection of second and third fiber orientations, necessary for resolving white matter
crossing fibers, is widely used as a measure of information content in the data. As such,
two VOIs, each covering the superior longitudinal fasciculus (SLF) and posterior corona
radiata (PCR), which contain various crossing fibers configurations, were selected for
quantifying the effect on information content in the denoised data. These VOIs were
defined using the JHU-ICBM 1mm atlas (https://identifiers.org/neurovault.image:1401)
and were linearly transformed into the 1.5mm data space first, and then from there into
the 1.17mm and 0.9mm data spaces using linear transformations for each subject. The
SLF and PCR VOls from the left and right hemispheres were combined into a single VOI
for the SLF and PCR respectively. In BedpostX, automatic relevance determination (ARD)
was used to accurately recover fiber orientations supported by the data during the data-
driven parameter estimation process. The parameters (e.g. fiber volume fractions) that
are not supported by the data will have a value around zero with very low variance in the

posterior distribution.

fiber detection rate: The number of voxels with two- and three-way fiber crossings

(referred to as second and third fibers) were normalized by the total number of atlas-

based voxels in the VOI for each dataset, and reported as a percentage as a proxy for
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sensitivity. The normalization by the total number of voxels in the VOI compensates for

the variations in the size of the VOI between different datasets and resolutions.

fiber orientation dispersion: The fiber orientation dispersion is a measure of the

consistency in the ball and stick model based predictions of the fiber orientations and a
proxy for consistency and indirectly specificity. Through estimates from Markov Chain
Monte Carlo (MCMC) sampling of the posterior distribution of fiber orientation in the
Bayesian estimation process in bedpostx an uncertainty can be calculated. The
uncertainty in the fiber orientation estimation represents the variance in the MCMC
sample orientation vectors around the distribution mean and is the fiber orientation
dispersion. The reported fiber orientation dispersion is calculated as (1-s), where s is the
largest eigenvalue of the average tensor constructed from these MCMC samples
(Behrens et al.,, 2007). This calculation is done separately for each fiber
populations. Higher information content in the data can result in more consistent

predictions of the orientations, representing higher accuracy of estimated fiber orientation.

gain_in fiber orientation accuracy: The gain in accuracy is the improvement (i.e. a

decrease) in uncertainty calculated as the ratio of the dispersion of the reference

acquisition Y divided by the dispersion for the target Y, as a proxy for gain in SNR.

Several experiments were performed to evaluate the various steps in the proposed
NORDIC algorithm. Apart from the simulations described earlier, the necessary and
additional steps of (x + t) phase-stabilization and patch averaging were evaluated for the

lowest SNR data for the in-vivo acquisition.

Subsequently, the efficacy of NORDIC was qualitatively and quantitatively evaluated
using diffusion metrics for multiple subjects at 3 different resolutions (and thus SNR
levels), including FA maps, crossing fiber detection rate, fiber orientation dispersion and
gain in accuracy. The impact on apparent SNR was evaluated by comparing the
NORDIC-processed dMRI acquisitions, with high SNR data obtained by averaging
repeated acquisitions. The performance of MPPCA and NORDIC were quantitatively
compared, for multiple subjects and resolutions, in the superior longitudinal fasciculus
(SLF) and posterior corona radiata (PCR) which are regions with known crossing fibers.

Finally, implications for whole brain tractography across the different resolutions were
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qualitatively investigated using the connection strength, defined as the number of
streamlines passing through each voxel connecting the seed VOlIs to the rest of the brain
(Behrens et al., 2007).

Results
Numerical Evaluation of Threshold Choice
For an ideal observation model X, the spectra for Ay,401, Aamrr @Nd A,z amr; are illustrated

in each column in Figure 2, respectively, along with the spectra for the observation Y. The
top row shows the spectra for M=73 and the bottom row show it for M=113, both with
N=99. For each model, the corresponding spectra for N, X and Y, along with the threshold
estimated from the observation Y based on the MPPCA method, as well as the maximal
singular value of the noise which is the threshold choice in NORDIC, are shown with

dotted horizontal yellow and green lines respectively.

au  AModel ALR Model /1dMRI ALR dMRI

3 ’ ’ ’ ‘ MPPCA
7w —s—NORDIC
100 _/—l
Patch X
. . — Ay

—y

0 20 a0 60 80

FIGURE2 —
................................... FIGURE 2 ...,

Figure 2: The interaction between the spectra of the underlying model, additive noise and
the observed noise perturbed measurements, and the threshold estimated with asymptotic
properties and hard thresholding based on the maximal singular value. The four spectra
shown in each of the four columns are generated by eq.5, €q.6, eq.7, and eq.8, respectively,
given in section titled Numerical Evaluation of Threshold Choice; they represent an
asymptotic model (Apoq4¢1), an asymptotic model with low-rank (A; g poder)> @ sSpectra from
dMRI which is full rank and falls below the maximal singular value of the noise (A4y,z;) and
a low-rank signal which does not fall below the maximal singular value of the noise

(Argr amrr)- The MPPCA technique uses the asymptotic properties of the noise spectra to infer
a threshold, and the NORDIC uses the prior knowledge of the noise-level for this.

For Ayoaer Shown in the first column in Figure 2, the top row shows that the spectrum for

the observation Y is close to A,,,4.;, @nd for the larger patch shown in the bottom row a
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difference in the spectra of Y and 1,,,4.; can be noted. For both patch-sizes the MPPCA
estimated transition between signal and noise components, removes more components
that what is retained with NORDIC. For 4z y04e: ShOwn in the second column in Figure
2, the top row shows that the spectrum for the observation Y is close to A,z 1046 for all
values larger than the largest value in the spectrum of the noise indicated with the
horizontal green line. For the larger patch shown in the bottom row there is a larger
difference between the spectra of Y and A, y0q4e1- FOr the values below the green line,
the spectrum for Y for both patch sizes has a steeper slope compared with Ay for the
noise, and the MPPCA identifies the discontinuity in the spectrum. In this idealized low-
rank scenario MPPCA and NORDIC behave similarly.

The third column shows results for A,;,,z; Which is not inherently low-rank. In the top row
the spectrum for the observation Y is close to A,ygz;, and the MPPCA determines a
threshold for A,4,,z; which has fever singular values as compared with the threshold for
NORDIC. Both thresholds reduces the number of components relative to the true A;yx;,
while MPPCA removes more components than when the threshold is applied to A4, for
NORDIC more components are kept in the spectrum of Y than when the threshold is
applied directly to A,y In the right column, for A, sur;» the threshold for MPPCA in the
top row finds fewer significant components as compared with the components in A,z amri»
whereas NORDIC determines the correct number. For the larger patch shown in the
bottom row the number of retained components with both MPPCA and NORDIC match

to the content in A,z gmr;-

Figure 2 shows a numerical example of low rank thresholding for a fixed noise-level. For
models with an underlying low-rank spectrum, as in column 2, Figure 2, both MPPCA and
NORDIC may estimate a similar threshold whereas for the A,z 4mr; Spectrum (right most
column, Figure 2), MPPCA estimates a similar threshold to the spectrum for A,z (third
column from left, Figure 2). An increase in the patch-size can increase the spread of the
singular-values between Ay and Ay. For a model with Gaussian noise, and for spectra
with the chosen decay-rates, the MPPCA may perform similar to NORDIC with a 113
patch for signal that are low-rank, whereas NORDIC may retain more signal components

than MPPCA for the spectrum that are not low-rank. We note these observations are for
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numerical purposes only, and their applicability do not necessarily extend to the in vivo
dMRI data, for which the patch size was optimized to 5% for MPPCA in (Veraart et al.,
2016). Accordingly, the MPPCA processed images presented in this paper were all

processed with a patch size of 53.

In-vivo Simulation

Qualitative comparison
Figure 3 illustrates evaluations from simulations performed using dMRI data with 99 g-

space samples obtained in the human brain and subsequently degraded by adding noise
to it. Results from this simulations are shown for a single slice, processing it with NORDIC
using patch sizes of 53, 73, and 113 (Fig.3A.iii, 3A.iv, and 3A.v, respectively) and with
MPPCA (Fig.3A.vi, and 3A.vii); the latter was applied both on the Gaussian noise data,
and on data with Rician noise obtained by using the magnitude of the in-vivo data with
added simulated noise. The slice used for these illustrations generated with the standard
reconstruction is shown before and after the addition of noise in Fig.3A.i and Fig.3A.ii,
respectively. Similar analysis are displayed in Figure 3B for the g-space contrast,

A, ,,m, the difference between two images with two different g-vectors and same b-

q192

value. In supplemental Figure S2, the residual between the denoised and the noise

degraded reference is shown.

The reconstructed images with both NORDIC and MPPCA shown in Figure 3A (middle
and lower row), all appear qualitatively similar to the reference image (Fig.3A.i) , with the
MPPCA applied on data with Rician noise showing evidence of the Rician noise-floor.
The g-space contrast images (Figure 3B) show that for the patch sizes 53 with NORDIC
and for both MPPCA Gaussian and MPPCA Rician, there is significant deviation from the
reference image (FIG.3B.i), especially in the cerebellum area. For NORDIC-processing
with patch sizes of 53, 73, 113, 153, and 193 the structural similarity index (SSIM) (Wang
et al., 2004) over all slices and diffusion direction is shown in Figure 3C. The SSIM is
highest for a patch size of 112 and for the subsequent application of NORDIC a patch size

of 113 is used unless specified otherwise.
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Figure 3. Real valued simulation of the quality of the “optimal® signal recovery with NORDIC.
Figure A shows for a single slice the quality of the images reconstructed with denoising using
NORDIC and MPPCA subsequent to SNR degradation with the addition of noise, and Figure B shows
analogous images for g-space contrast, A, 4. M, as the difference between volumes with different g-
vectors and same b-value. The reference images are shown in Fig. 3A.i, and 3B.i before addition of
noise and in Fig.3A.ii, and 3B.ii after addition of noise. The NORDIC methods are compared for patch-
sizes of 5°, 7°, and 11° (middle row), and the MPPCA method (bottom row) are compared using the
Gaussian noise and Rician noise. Panel C shows the structural similarity index (SSIM) restricted to the
brain between m without noise, and NORDIC with patch sizes 5°, 7°, 11°, 15°, and 19°. Panel D shows
the structural similarity index (SSIM) restricted to the brain between A, , m without added noise,
and NORDIC processing with patch sizes 5°, 7°, 11°, 15°, and 19°. The SSIM for Panels C and D are
averaged over all slices and diffusion direction for the different patch sizes. The SSIM from D is 0.54
for NORDIC using a patch size of 11°, 0.49 for MPPCA with Gaussian noise, and 0.50 for MPPCA
with Rician noise.

In-vivo Imaging
Impact of phase-stabilization and patch averaging
For LLR techniques applied on complex-valued data, the necessity and impact of phase-

stabilization is shown along with the gains from patch averaging in Figure 4 for a diffusion
weighted image with b=3000 s/mm? from the 0.9mm acquisition and processed with

NORDIC using an 113 patch. The images shown are reformatted oblique coronal slices
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extracted from the 3D volume, acquired as oblique axial, so that the vertical axis now
corresponds to the slice direction. Without phase-stabilization, the diffusion phase has a
high frequency fluctuation along the slice direction. This limits the efficacy of the LLR
representation model, not allowing for an effectively low-rank representation. In the
reconstruction without patch averaging or phase-stabilization, the underlying anatomy is
not recovered efficiently, and horizontal stripe-like intensity variations are observed.
These stripe-like intensity variations are more easily observed in the reconstruction (2"
from left) obtained without phase-stabilization and with patch averaging. With patch
averaging and phase-stabilization, the underlying anatomy is clearly observed both
peripheral and medial in the coronal view. Note that with averaging, for a patch size of
113, each voxel is averaged from 113 reconstructions, further improving final image

quality. Unless otherwise noted complete patch averaging is used along with phase-

stabilization.
Without phase-stabilization With phase-stabilization
"Without patch With patch " Without Patch With patch

Averaging

Averaging Averaging Averaging
N 3 ] ol

....................... Figure 4 around here ....................ccoociiiin. ..

Figure 4. Effect of phase-stabilization and patch averaging for the NORDIC processing of
complex data using an 112 patch. Reformatting to oblique coronal slices of the 0.9mm isotropic
data, acquired with oblique axial acquisition, are shown. The left figures are without phase-
removal of the slice-specific smooth diffusion phase, and the right figures are with removal of
the diffusion phase. For both approaches, the impact of patch-averaging with all 113 patches are
shown.

Performance of NORDIC at Different Resolutions
Figure 5 illustrates an axial slice of the FA map obtained after dMRI processing (top row),

and the image of the corresponding slice from the volume with b=3000 s/mm? weighting
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(lower row), for the three different resolutions and a single subject. The FA maps and the
corresponding slice image with b=3000 s/mm? are presented for the standard- and the
NORDIC-processed data, for the different resolutions. The signal scaling for the bottom

row is adjusted for each resolution, since SNR varies with resolution.

The spatial tissue contrast is similar in the NORDIC-processed images of the slice
illustrated in the lower row in Figure 5 for the 1.5mm or 1.17mm resolutions. In the 0.9mm
resolution image, the noise over the lateral ventricles is not suppressed as much as it is
in the 1.5mm or 1.17mm resolutions. Some differences in the overall anatomical features
between the different resolutions can be noted and are due to slight differences in slice
position and thickness. The standard and NORDIC-constructed FA maps for the 1.5mm
resolution are visually identical, which also illustrates the high SNR quality of the HCP
lifespan protocol. For the 1.17mm and 0.9mm resolutions, the FA maps are noisier
compared to the 1.5 mm data, but have similar features with the lower resolution FA map.
The FA in this context is also an adequate visual measure for the resolution that is
maintained with NORDIC, as there is no evident blurring, consistent with the analysis from
(Veraart et al.,, 2016), which compared MPPCA with adaptive non-local means and
second order total generalized variation. Corresponding results for MPPCA are shown in

Supplemental Figure S3.

Standard NORDIC Standard NORDIC Standard NORDIC

o
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Figure 5: Top row shows the effect of NORDIC across different resolutions on FA maps for a
single slice. Bottom row presents corresponding diffusion weighted image (b=3000 s/mm?) for
the same slice. The FA maps are obtained after EDDY processing, and the images in the bottom
row are before EDDY processing. From left to right, in groupings of 4, the three resolutions of
1.5mm, 1.17mm and 0.9 mm are shown. For each grouping, the images with the standard
processing are shown adjacent to the images with the NORDIC processing. Supplemental
Figure S3, illustrates the same slices and also includes reconstruction by MPPCA for
comparison.

SNR Advantage of NORDIC: Comparison with Data Averaging
For the 3 subjects with repeated acquisitions, the effect of NORDIC after EDDY correction

is shown in Figure 6 for an axial slice in each subject. In this case, each single “repetition”
refers to the pair of separate acquisitions with reversed phase encoding which is used for

EPI corrections. TOPUP/EDDY, combines data with opposite phase-encoding directions,

improving the SNR by approximately v2 compared to a true single acquisition.

For the 1.5 mm resolution data, the NORDIC-processed single repetition data visually
shows reduced noise in comparison with the standard reconstruction, and is similar to the
standard reconstruction obtained by the averaging of 6 repetitions. For the 1.17mm
resolution, the single repetition processed with NORDIC (2" column) displays improved
SNR on visual inspection compared to the average of the 5 standard reconstructions (3™
column), especially for the deeper brain regions which have intrinsically lower SNR. We
note that the single repetition also has similar anatomical features to the 5 repetitions
averaged after processing both with NORDIC, and that in this case, the average of the 5
repetitions processed with NORDIC has a higher visual SNR, as would be expected,
compared with the single repetition data reconstructed with NORDIC. For the 0.9mm
resolution, the NORDIC-processed single repetition and 3 repetition data has clearly
defined anatomical features, which are barely perceptible in the standard reconstruction
images, even when 3 acquisitions are averaged to improve SNR. Corresponding results
for MPPCA are shown in Supplemental Figure S3, which shows that the effect of the

Rician noise reduces the contrast of the individual denoised images.
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Figure 6. Comparison of NORDIC processing with averaging of repetitive acquisitions to
increase SNR. The left two columns are for a single acquisition across 3 different resolutions and
the right two columns are for the averaging of the repetitive acquisitions. In each case, EDDY
processing was applied. Supplemental Figure S4 illustrates the same data and also includes
reconstruction by MPPCA for comparison.

Quantitative evaluation of patch size for NORDIC
Figure 7 illustrates quantitatively an dMRI data from a single subject, the performance of

denoising with NORDIC applied with different patch sizes; the metrics shown are the 2
and 3" fiber detection rate (percentage of voxels within a VOI with two- and three-way
fiber crossings) and gain in fiber orientation accuracy (i.e. the decrease in the angular
dispersion (uncertainty) in determining the fiber orientations) in the two brain regions
well-known to have second and third fiber crossings, the PCR and SLF. The rightmost

column in Figure 7 shows the atlas-based definition of the SLF and PCR used for
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quantification of crossing fibers; all voxels within the regions shown by the green and red

colors were used for the analysis.

In the top row, the fiber detection rate shows that for the 1.5mm resolution data, a high
percentage of voxels in these VOIs supports both a second and third fiber; for the 1.5mm
data set, there is minimal impact of the patch size either on the detection rate (top row,
Fig. 7) or the gain in fiber orientation accuracy (bottom row, Fig. 7) as the ratio between
the dispersion determined for the standard and NORDIC processing. The impact of the
patch size is much more pronounced for the higher resolution data, which have
intrinsically lower SNR. For 1.17mm resolution, the detection rate of voxels supporting a
second and third fiber increases with the patch size and plateaus at the 113; the gain in
fiber orientation accuracy increases correspondingly and is largest for the 112 patch size
and then degrades for increasing patch sizes without a corresponding increase in the
number of fibers being detected. Similarly, for the 0.9mm resolution data, the gain in fiber
orientation accuracy is highest for the 112 patch size; in this case , however, the detection
rate of voxels supporting a second and third fiber increases monotonically with increasing
patch size, albeit, the reliability of those added fibers is low. This further suggests that,
for a dMRI series with 99 g-space samples a patch size of 113 achieves the best trade-

off across resolutions.

2" fiber 3rd fiber
Fiber detection rate Fiber detection rate
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Figure 7, Effect of patch size in NORDIC processed dMRI data on fiber detection rate and
accuracy for the three different resolutions. The 5 different patch sizes compared are with
n3 forn = {3,7,11,15,19}. The top row, shows the detection rate of voxels which supports
a second and third fiber, and the bottom row shows the gain in fiber orientation accuracy
after NORDIC relative to the standard processing as a ratio between the dispersion
determined for the standard and NORDIC processing. For MPPCA, the fiber detection rates
were [94%, 77% and 38%] for the 2" fiber, and [73%, 31% and 8%] for the 3™ fiber, with
gains in Fiber orientation accuracy of [2.2, 3.4, and 3.0] for the 2™ fiber and [2.2, 3.3 and
1.9] for the third fiber.

Fiber Quantification Performance of NORDIC
The trends of fiber orientation dispersion reflecting the uncertainty in the fiber orientation

estimation and the reduction in this dispersion as a gain in fiber orientation accuracy with
NORDIC are shown in Figure 8, for all dMRI data acquired (i.e. for the 5 subjects with a
single acquisition at the three resolutions, and for the 3 subjects with repeated
acquisitions at a single resolution). For the 5-subject data, the height of the bars in each
plot represents the mean uncertainty and the mean gain in fiber orientation accuracy,
calculated for the single (i.e. 1 repetition) acquisitions obtained from the 5 individuals; in
this case, the error bars represent the standard deviation across subjects. These are
plotted adjacent to single subject data (a different subject for each resolution), but
acquired multiple times, with the height of the bars representing the mean of the repeated
single acquisitions and the error bars representing the deviation among the different

single acquisitions acquired in different sessions.

NORDIC processing leads to major improvements in these diffusion metrics, as shown in
Figure 8 both for the single and multiple acquisition(s) data obtained at each spatial
resolution. For the single resolution and multiple acquisitions, the variability in gain in fiber
orientation accuracy is more consistent than the variability in gain across subjects.
Moreover, the absolute gain in accuracy (lower row Fig.8) between the two groups is
similar for the 1.5mm and 0.9mm resolution. For the 1.17mm the subject with repeated
acquisitions had a lower uncertainty in the fiber dispersion before NORDIC processing,
and the gain in fiber orientation accuracy in this case was not as large as for the group

with multiple resolutions and single repetition. This is consistent with results shown in
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Figure 6: After NORDIC processing, the uncertainty in the single acquisition and the

multiple acquisition groups became similar.
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Figure 8. Quantitative metric in brain regions SLF and PCR for standard and NORDIC
processed data for the 5 subjects scanned at different resolutions and the 3 subjects each scanned
at a single resolution with multiple repetitions. The top row illustrates fiber orientation
dispersion (reflecting the uncertainty in the fiber orientation estimation) for voxels within a VOI
supporting a second fiber (left), and supporting a third fiber (right); for this metric, lower height
of the bar indicates better performance (lower uncertainty). The gain in fiber orientation
accuracy (i.e. a decrease in dispersion reported as the ratio of the dispersions calculated with
standard to that calculated with NORDIC processing) is shown in the lower row for the voxels
supporting second (left) a third fiber (right); for this metric, the higher bar indicates better
performance for NORDIC. The rightmost column in Figure 7 shows the segmentation of the
SLF and PCR used for quantification of crossing fibers. The error bars for the multi-resolution
single repetition data represents the variability between subjects, and the error bars for the
single-resolution multiple repetitions shows the variability within subjects but over different
acquisitions. In case of MPPCA for the single-resolution multiple repetitions, gains in Fiber
orientation accuracy were [2.2, 3.4 and 3.0] for the 2™ fiber for the 1.5, 1.17 and 0.9 mm
resolution data, respectively; the corresponding numbers were [2.2, 3.3 and 1.9] for the third
fiber with MPPCA processing.

In Figure 9, the fiber detection rate within a VOI in the brain regions SLF and PCR is

plotted against the fiber orientation dispersion from the multi-resolution single repetition
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data and from the single resolution multiple repetitions data. The plots shown in the top
row are for voxels supporting second fibers, and those in the bottom row are for voxels

supporting a third fibers.

Multi-resolution single repetition data: In each plot, the green diamonds with black outline
designate the values for the standard reconstruction, the red triangles with black outline
designate the values for NORDIC processed data and the black stars designate the
values for MPPCA. With the application of NORDIC, the change in dispersion of the
second fiber for the 1.5mm, 1.17mm and 0.9mm data, reflect a gain in fiber orientation
accuracy (a decrease in dispersion) of a factor 2.6, 8.9 and 10.1, respectively, for the
second fiber, and 2.5, 7.6 and 5.4 for the third fiber (green bars in Figure 8). For the
1.5mm, 1.17mm and 0.9mm with NORDIC the detection rate of voxels with second fibers
was about the same at 96%, 95% and 87% of the atlas based VOI, while the detection
rate of voxels with third fibers was 82%, 73% and 45%. This is not surprising, as detection

of third fibers is more sensitive to higher noise levels in the higher resolution data.

Using NORDIC processing, resulted in gains in the metrics plotted in Figure 9, fiber
detection and orientation accuracy, compared to the MPPCA technique; in this two-
dimensional plot, the NORDIC points appear higher in detection rate axis and lower
(towards the left) on the fiber orientation dispersion axes compared to the MPPCA
processed data, particularly for the lower SNR 1.17 and 0.9 mm data. Looking at the fiber
orientation dispersion metric alone, with NORDIC denoising relative to MPPCA, the gain
in orientation dispersion for the average of 2" and 3" fiber is higher with NORDIC by a

factor of 1.15, 2.45 and 3.3 for the 1.5mm, 1.17mm and 0.9mm data, respectively.

Single-resolution multiple repetition data: In each plot, the green diamonds and red
triangles without a black outline are the standard and NORDIC processing of the single
repetition data, respectively from the pool of data where a single individual was scanned
multiple times for a given resolution. With the application of NORDIC, the change in
dispersion of the second fiber for the 1.5mm, 1.17mm and 0.9mm data, reflect a gain in

fiber orientation accuracy (a decrease in dispersion) of a factor 2.0, 4.6 and 6.6,
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respectively, for the second fiber, and 2.4, 4.8 and 4.9 for the third fiber (blue bars in
Figure 8).

The blue diamonds and triangles are the average of the repeated acquisitions processed
with standard and NORDIC processing, respectively, where after reconstruction each
acquisition is independently corrected with EDDY, then jointly motion corrected and

averaged before processing with bedpostX.

For the 3 subjects with multiple repetitions, the dispersion of the second fiber for the SLF
and the PCR were calculated for each individual series separately and after averaging
the multiple repetitions of the dMRI data. For the standard data without NORDIC, the
average gain in uncertainty was 3.2, 3.1 and 2.8 for the 1.5mm (with 6 averages), 1.17mm

(with 5 averages) and 0.9mm (with 3 averages), respectively. The gains are slightly higher

than the direct gains in image SNR of V6, V5, and /3 respectively, and supports using

the gain in fiber orientation accuracy as a proxy of SNR.

After processing each series with NORDIC, the fiber orientation dispersion of the second
fiber of the averaged series for the 1.5mm resolution changed by factor 1.28 relative to
each individual series. For the 1.17mm resolution, the fiber orientation dispersion
changed by 1.94 relative to each individual series, and for the 0.9mm resolution, the fiber

orientation dispersion changed by 1.97 relative to each individual series.

The smaller change noted for the 1.5mm indicate that for a single series, after NORDIC,
the dMRI model is not able to better describe the underlying properties, since the standard
data already has good SNR, whereas the SNR of the 1.17mm and 0.9mm individual scans

is more substantially improved by NORDIC.
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Figure 9 Scatter plot of the detection rate of voxels with second (top row) and third (bottom
row) fibers against the fiber orientation dispersion, reflecting the uncertainty in the fiber
orientation estimate for the fibers in the brain regions PCR and SLF after bedpost processing.
The VOI is determined from the subject independent JHU-ICBM atlas, and resampled to the
data-space for each subject. The vertical axis (detection rate) is expressed as % of voxels in the
VOI that contain two or three fiber crossings (second and third fibers, respectively).

For multi-resolution single repetition the standard Single, NORDIC Single and MPPCA
Single processing are shown, and for single-resolution multiple repetition the standard Rep
and NORDIC Rep processing are shown. The Standard Avg and NORDIC Avg are extracted
from dMRI data after averaging of multiple repetitions obtained at a single resolution, where
each acquisition is independently corrected with EDDY, then jointly motion corrected and
averaged before processing with bedpostX.

Impact of NORDIC for Whole Brain Tractography
In order to demonstrate the whole brain effect of improved detection of crossing fibers in

the NORDIC processed data, the connectivity of the entire subject specific PCR from
Figure 7 (both left and right hemisphere) with the rest of the brain was investigated
qualitatively using probabilistic tractography (‘probtrackx’)(Behrens et al., 2007). The
connection strength, defined as the number of streamlines (extracted by the tractography
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algorithm) passing through each brain voxel, and connecting the PCR to the rest of the
brain, is used to represent the connectivity (Behrens et al., 2007). Figure 10a shows
sagittal, coronal, and axial views of the connectivity distribution for the 0.9mm data from
the probabilistic tractography for standard processing of a single acquisition (left), the
average of the repeated acquisitions (right), and the NORDIC processed single

acquisition (middle).

The regions covering the main white matter tracts near the seeds, in both left and right
PCRs, show high connection strength in the standard data, and with the NORDIC-
processed data. These connectivity distributions are expanded along the tracts with
increased symmetry, for example along the corticopontine and corticospinal tracts. The
improved probabilistic tractography of the fiber bundles passing through the PCR
connecting it better to the rest of the brain, which is a result of the improved detection of
second and third crossing fibers along with reduced orientation uncertainty, is evident in
the single acquisition NORDIC data, compared to the standard data. In addition, the figure
also shows improved connectivity in single acquisition NORDIC data compared to the
standard average data, especially around the brainstem. Figure 10b shows sample
sagittal views of the connectivity distribution from the probabilistic tractography results for
1.17mm (upper panel) and 1.5mm (lower panel) data, for single acquisition (left), single
acquisition NORDIC (middle), and average of multiple acquisitions (right). For the 1.7mm
and 1.5mm acquisitions, the improved connectivity profile from the cortex through the
PCR to the pons can be seen, and the NORDIC-processed 1.17mm data exhibits similar
sensitivity for the connectivity as in the standard 1.5mm data. These observations can be
partly explained by the improved sensitivity to crossing fibers, and performance of the
NORDIC-processed data, as demonstrated in the quantitative comparisons in Figure 9.
In these experiments, we showed that the orientation dispersion (the proxy for SNR) of
the second and third fiber, after the use of NORDIC, is less than 0.1 across all resolutions,
the detection rate of voxels with a second fiber is in excess of 80% of the atlas based
voxels, and the detection rate of voxels with a third fiber after NORDIC for the higher
resolutions is higher than the standard processing for the lowest resolution.

Corresponding results for MPPCA are shown in Supplemental Figure S5, from which

improved connection strength with NORDIC compared to MPPCA processing, is evident
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in the corpus callosum area for high resolution acquisitions. At 1.5mm, the difference
between MPPCA and NORDIC processed data is less compared to that at higher
resolutions, mainly because the number of second fibers estimated at 1.5mm is
somewhat similar between these methods, but the improvement in connection strength
(the width of the connections shown in yellow) is visible which is due to the lower
orientation dispersion and higher number of third fibers resolved in the NORDIC

processing.

0.9 - standard 0.9 —NORDIC 0.9 Avg

1.17-NORDIC 1.17—-avg

1.17 —standard

1.5 - standard 1.5— NORDIC 1.5-avg

Figure 10, Comparison of connectivity distributions from the probabilistic tractography
results for 0.9mm data (A), and 1.17mm ((B) upper panel) and 1.5mm ((B) lower panel) data
representing connectivity of the entire subject specific PCR.

The effect of NORDIC is demonstrated on tractography streamlines with two high
resolution data in Figure 11. Figure 11A, B show the streamlines constructed before and
after NORDIC denoising, from the same 0.9mm data which was used for all the previous
analysis presented in Figures 1 through 10. The relatively poor SNR of this acquisition
results in tractography streamlines that are clearly problematic on visual inspection, most

obviously evidenced by the discontinuities in the normally prominent corticospinal tracts
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and the almost randomly oriented appearance of the streamlines near the cortical surface.
The use of NORDIC fixes these problems. This improvement in the tractography
streamlines are fully consistent with the probabilistic tractography results given in Figure
10. A more dramatic improvement is shown in Fig.11C and D, using a 0.7mm isotropic
whole brain dMRI data. In this 0.7mm data, without denoising the tractography completely
fails except in the corpus callosum. After denoising the commonly seen tracks are now

clearly detectable.

Standard

e

NORDIC

0.9mm

0.7mm

FIGURE 11
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Figure 11, Comparison of tractography streamlines without and with NORDIC processing.
The top row shows a comparison for the 0.9mm isotropic resolution data analyzed in Figure 5
to Figure 10 using a single repetition with standard processing (A), and with NORDIC
processing (B). The bottom row, likewise shows a comparison for the 0.7mm isotropic
resolution data with standard processing (C) and with NORDIC processing (D). This
improvement in the tractography streamlines are fully consistent with the probabilistic
tractography results given in Figure 10. The 0.7 mm data set has different acquisition
parameters and as such cannot be directly compared to the 0.9 mm data per se; it is included
here only to show a more dramatic improvement possible with lower SNR data.

Discussion
In this study on the impact of locally low rank constrained processing for dMRI, we have

proposed a pre-processing pipeline and a parameter-free thresholding technique based
on the known properties of Gaussian thermal noise by selecting the largest singular value
of i.i.d. noise. We jointly refer to this thresholding technique and pre-processing pipeline
as the NOise Reduction with Dlstribution Corrected (NORDIC) PCA. While the use of the
spectrum of random noise is reminiscent of the MPPCA method, there are several key
differences. MPPCA is typically implemented to work on DICOM images, which do not
generally fit the assumptions in the Marchenko—Pastur law and its theoretical bounds. In
our approach, this issue of not having i.i.d. zero-mean noise components was resolved
by using complex-valued processing and spatial noise correction to match with the
Marchenko—Pastur law. The g-factor for the k-space reconstruction method is determined
from the reconstruction parameters and captures precisely regions with rapid changes in
thermal noise. The g-factor based spatial noise correction enables a consistent use of
thresholding across regions with otherwise rapidly changing spatially non-uniform thermal
noise levels. In dealing with complex data, we further proposed a phase-stabilization
approach to promote the low rank nature of patches by explicitly reducing the fluctuations
in the phase of the MR signal subsequent to diffusion encoding during g-space sampling;
this phase is not used for dMRI analysis, and removal of its variations does not impact
the information inferred from the diffusion encoding. Additionally, in MPPCA, the
threshold for denoising is determined from the data itself by estimating the number of
components from a singular value decomposition that can be summed while still being

within the limits of the asymptotic spectral bounds of random matrices. This favors looking

33



for sharp transitions in the spectra, reflecting an underlying low-rank signal; even though
visually evident, this is not a guaranteed criteria and when missed removes too many
signal components as well as noise. In contrast, in our approach, the largest singular
value of the known thermal noise is selected, which is equivalent to removing all

components that cannot be distinguished from random Gaussian noise.

MPPCA as a default implementation in (Veraart et al., 2016) and in dwidenoise in
MRTricks for the application of the Marchenko-Pastur based technique for DICOM
(magnitude) images, uses a 53 patch for the Casorati matrix, with a fast mode where the
patches are not overlapping and a full mode where they overlap. The implementations
can also be applied to complex images, but without additional modifications that ensure
a spatially uniform noise distribution; consequently, the performance is inferior to the
magnitude implementation. The determination of significant signal components for
MPPCA is elegant in that, for local patches, it calculates a threshold based on the tail of
the spectrum from the analytic decay properties of random noise, but it is conceptually
challenging to know what threshold was determined and if the data has properties that

could be better exploited.

For NORDIC we demonstrate that a patch size of 112 is better for a series with 99 volumes
in maintaining the correct contrast across g-space acquisitions, corresponding to a ratio
of approximately 11:1 of the MxN patch sizes used for NORDIC processing. While larger
patch sizes are also beneficial for reaching the asymptotic conditions for the Marchenko-
Pastur, larger patch sizes are not good for LLR techniques since the large patches
become highly heterogeneous with respect to tissues of different kinds and, as such will
deviate from being low-rank and will make the determination of the threshold more
difficult. The spread in the square of the spectra of the noise increases only as VM, and
for MPPCA the trade-off in patch size was found to be 5° such that the spectrum has a
large slope, which more quickly provides a contrast when the joint singular value
spectrum has both a signal and noise contribution. For larger patches, small benefits
relative to the computational challenge was also found (Ma et al., 2020). Although it
should be noted that for large kernels such as 113 using patch overlap of just %2 the FOV

creates virtually identical reconstructions to the maximal overlapping reconstruction, while
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also reducing the computation 50 fold and making it comparable with 53 kernels in terms
of computation time. With this, a simple matlab implementation of 113 patches is faster
than the 5° for both NORDIC and MPPCA.

For NORDIC, the absolute noise-level in image space is assumed to be known which is
not normally tracked since most MRI images are not reconstructed in absolute SNR units
as proposed in (Kellman and McVeigh, 2005), but are typically coarsely scaled to
maximize the precisions in the data-type used. The system calibrations performed prior
to each acquisition has the information about the k-space noise-level. In our
implementation, a synthetic signal based on the i.i.d. noise estimate initially was used to
artificially create an extra volume in the series. The noise-level in image space after
removal of the g-factor noise can also be estimated from a region without signal, or
alternatively an acquisition without RF excitation can be added. All of these approaches
provide the same information needed for selecting the NORDIC threshold. Likewise one
can hypothesize that an absolute shift-invariant noise-level can be obtained with the
MPPCA as a mean estimate of each locally estimated noise-level with (eq.2), or as

proposed for MRI by Foi et al (Foi, 2011) using the variance stabilizing transform.

The denoising with either MPPCA on magnitude images or NORDIC on complex images
recovers the underlying image when the SNR is high enough (Figure 5 and Supplemental
Figure S3); however, as the SNR decreases the impact of the non-zero iid thermal noise
becomes more apparent for the MPCPA processed data as revealed in a loss of g-space
contrast and residual high-spatial frequency modulations. This is reflected less in an
average measure such as the FA map, but quantitatively shown for the fiber orientation
dispersion (Figure 9 and Supplemental Figure S5). The recently proposed VST algorithm
(Ma et al., 2020) confronts the difficulty of working with magnitude data using a two-step
approach to resolve the Rician and the spatially varying noise and then uses MPPCA for
denoising. Although this approach provides improvements over simply working with
magnitude data with Rician noise distribution, it also introduces spatial smoothing which
the NORDIC approach does not. One such example is shown in Supplemental Figure S6
for both 1.177mm and 0.9mm isotropic resolution with b=3000s/mm?2. Using AFNI
tools(Cox, 1996) for Gaussian blurring through estimation of auto-correlation function

among voxels, for VST an increased blurring of 50-100% for the 1.17mm and 0.9mm
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isotropic resolutions was measured. Such blurring is in general undesirable especially
when high resolutions are intentionally targeted for improved tractography Nevertheless,
for data that exists only in DICOM format, as they do for example in many large databases
generated to date and still being collected in many laboratories, VST is a better option
then applying MPPCA directly as exhaustively demonstrated by Ma et al (Ma et al., 2020).
However, if complex valued data can be saved, as we are sure will be going forward,

NORDIC is the preferred image reconstruction method.

The application of LLR assumes a low-rank signal, and sporadic or random motion
increases the underlying rank of the image series, since the low-rank model needs to
encode both the bio-physical signal properties and the motion model. As such, motion
corrected data can be better corrected for thermal noise fluctuations. For dMRI, eddy-
currents specific to the diffusion encoding direction and magnitude introduces volume
specific distortions, which increases the volume-to-volume variability. While correcting for
these fluctuations with post processing algorithms like EDDY before noise-removal
increases the volume-to-volume anatomical consistency, it also changes the noise-
properties. Furthermore, since EDDY is known to correct for higher order effects, such as
slice-dependent signal dropout from motion and volume specific susceptibility distortion
correction it warrants further investigation what effects are obtainable if the LLR and

EDDY corrections are switched or integrated jointly.

The known image reconstruction parameters of sensitivity profiles, determined with
ESPIRIT, for the SENSE-1 reconstruction, and the slice-GRAPPA convolutional kernels,
determined jointly for MBxR acceleration, are used through the pipeline to provide the
desired noise-properties of i.i.d. Gaussian without introducing additional estimations. This
furthermore provides as a fast and mathematically exact calculation of the known
parameters as auxiliary information that should be beneficial for general quantification of
parameter mapping since it facilitate exact quantification of spatial SNR for MBxR
acquisitions. The use of NORDIC preserves subtle consistent features in the images,

which may include Nyquist ghosting and residual slice-aliasing.
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Under controlled conditions, and using metrics from the HCP for dMRI information content
evaluation, acquisitions with 1.5mm, 1.17mm and 0.9mm were used. The 1.5mm protocol
was aligned with the lifespan protocol and the sequence parameters for the 1.17 and
0.9mm protocols where selected such that they weighted towards shorter TR, versus
higher image SNR. This required aggressive use of combined slice and phase-encoding

undersampling. The 1.17mm had about 5-fold less SNR than the 1.5mm (2-fold reduced

volume, V2 for phase-encoding undersampling, g-factor with acceleration of MBxR=5x2
versus MBxR=4x1, and 20% higher signal from shortened TE from phase-encoding
undersampling); this SNR difference also corresponded to mean fiber orientation
dispersion in the PCR region of the brain of 0.2 versus 0.04 for the 1.17 mm vs the 1.5mm
data, respectively, reflecting the greater uncertainty in determining the fiber orientations
in the lower SNR, 1.17mm data; the 0.9mm had about half the SNR of the 1.17mm (35%

higher from the longer TE, and less efficient from the longer TR).

For the 1.5mm resolution data with NORDIC processing, approximate gains in fiber
orientation dispersion of factor 2 were achievable; for the lower SNR 1.17mm and 0.9mm
resolution data, NORDIC yielded larger gains, approximately 5-fold, in fiber dispersion.
The single-resolution multiple repetition data also demonstrated that gains in fiber
orientation dispersion achieved with NORDIC processing correlated with gains in image
SNR achieved with averaging multiple acquisitions. Ultimately, the gains realizable in fiber
dispersion are probably more limited by the dMRI model fitting, which plateaus at high
SNR, as seen with averaging of repetitive scans. This implies that the higher resolution
the low SNR is well-suited for locally low rank processing to improve the apparent SNR

attained with model-fitting.

The effect of NORDIC is demonstrated on tractography streamlines with two high
resolution data in Figure 11. Such streamlines of course do not provide a quantitative
demonstration of the effects of NORDIC denoising, but they do provide a qualitative and
impactful visual demonstration of the improvements achieved with NORDIC denoising. It
would not be possible to fully appreciate the extent and the nature of what denoising has
done to the dMRI data just by looking at the tractography results, although clearly

anatomically well-known tracts are incomplete or absent in the original data and are
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clearly seen in the denoised data. However, with the detailed and quantitative evaluation
presented in Figures 1 through 9, the improvements documented with probabilistic
tractography in Figure 10, and tractography streamlines in Figure 11 can a priori be

expected.

While the presented denoising technique can be applied broadly to other types of image
series, the interaction of NORDIC with the model used for assessing the underlying
information should be scrutinized. Here, whole brain tractography was used to
qualitatively asses the effect of LLR processing, while region-specific analysis was used
for quantitative comparison. The conceptual basis of removal of image content which
cannot be distinguished from Gaussian noise in the LLR model, has broad applications
and implications to signal modelling in applications such as ASL, and fMRI and general
parameter mapping. In addition to dMRI, ASL and fMRI can also be SNR-starved either
due to higher resolution applications and/or the amount of scan time that is available to
acquire data — suggesting that such applications could benefit enormously, without cost,

from NORDIC, and warrants further application specific investigations.

Conclusion.
We propose and validate a noise reduction technique for dMRI using a data processing

pipeline that leads to a zero-mean i.i.d. noise component for locally low-rank processing,
which enables the use of a parameter-free threshold selection based on random matrix
theory. With the removal of image content which cannot be distinguished from Gaussian
noise, this method was shown to improve model-fitting and structural connectivity
mapping. Using NORDIC, the improvements in extractable information content has an
increased impact especially for low SNR data, but it would also benefit routine protocols

such as the HCP Lifespan.
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Supplemental Information

For NORDIC processing of dMRI data a two-step (x+t) phase-stabilization is used. The

motivation and impact each step is illustrated in supplementary figure S1.

A Coronal

C Step 1 slice-specific
estimated phase

Slice N+1

SIie N

Step 1

Step 2

Figure S1: The change in phase with the (x+t) phase-correction. Panel A: a coronal
cut through the 3D volume is shown, the raw data (step O, Panel A) exhibit a slice-
dependent absolute phase from the estimated sensitivity profiles. This is significantly
reduced in Step1 (Panel A), and further suppressed in Step 2 (Panel A). Panel B: top
row, the absolute phase in step 1, for 4 different g-vectors is show for an axial slice,
and the bottom row show the remaining phase after the correction with step 2. Panel
C: the estimated average phase in step 1 is shown for two adjacent slices, reflecting
the change necessary.

A real-valued simulation was performed to evaluate the proposed NORDIC method using
a high SNR reference volume with spatial matrix size 140x140x92, and with 99 volumes
(g-space samples). Supplemental figure S2 shows the reconstructions and the residuals

from the reconstruction.
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Figure S2. Real valued simulation of the quality of the “optimal“ signal recovery with NORDIC.
Panel A shows for a single slice the quality of the images reconstructed with denoising using
NORDIC and MPPCA subsequent to SNR degradation with the addition of noise, and Panel
B shows the difference between the noisy image and the recovered image. The reference
images are shown in Fig. S2A.i, before addition of noise and in Fig.S2A.ii, after addition of
noise. The NORDIC methods are compared for patch-sizes of 53, 73, and 112 (middle row),
and the MPPCA method (bottom row) are compared using the Gaussian noise and Rician
noise.




Figure S3 illustrates an axial slice of the FA map obtained after dMRI processing (right
three columns), and the image of the corresponding slice from the volume with b=3000
s/mm? weighting (left three columns), for the three different resolutions and a single
subject. The FA maps and the corresponding slice image with b=3000 s/mm? are
presented for the standard-, MPPPCA and the NORDIC-processed data, for the different
resolutions. The signal scaling for the bottom row is adjusted for each resolution, since

SNR varies with resolution.

Standard MPPCA NORDIC Standard MPPCA NORDIC

1.17mm3

0.9mm3

Figure S3 The effect of NORDIC and MPPCA are shown on a single slice from a
diffusion weighted volume (b=3000 s/mm?) across different resolutions (left three
columns) and on FA maps (right three columns) for the same slice extracted for the
different reconstructions. The FA maps are obtained after EDDY processing, and the
reconstructed images are before EDDY processing.




For the 3 subjects with repeated acquisitions, the effect of NORDIC and MPPCA after
EDDY correction is shown in Figure S4 for an axial slice in each subject. In this case,
each single “repetition” refers to the pair of separate acquisitions with reversed phase
encoding which is used for EPI corrections. TOPUP/EDDY, combines data with opposite
phase-encoding directions, improving the SNR by approximately v2 compared to a true

single acquisition.

b=3000 s/mm2 Single acquisition Average dMRI,
Standard NORDIC ~ MPPCA Standard NORDIC  MPPCA

~ 0N

1.5mm3

1.17mm?3

0.9mm?

Figure S4. Comparison of NORDIC and MPPCA processing with averaging of
repetitive acquisitions to increase SNR. The left three columns are for a single
acquisition across 3 different resolutions and the right three columns are after
averaging 6, 5 and 3 of the repetitive acquisitions respectively. In each case, EDDY
processing was applied.




From Figure S5, Panel A, NORDIC processing shows improved connection strength
compared to MPPCA processing, which is evident in the corpus callosum area.

At 1.5mm, the difference between MPPCA and NORDIC processed data is less
compared to that at higher resolutions, mainly because the number of second fibers
estimated at 1.5mm is somewhat similar between these methods, but the improvement
in connection strength (the width of the connections shown in yellow) is visible which is
due to the lower orientation dispersion and higher number of third fibers resolved in the

NORDIC processing.

A 0.9 mm isotropic B 1.17 mm isotropic

Standard

i,

NORDIC Avg-Standard MPPCA Standard NORDIC Avg-standard

C 1.5 mm isotropic

MPPCA

Standard NORDIC Avg-standard

Figure S5. Comparison of connectivity distributions from the probabilistic tractography results
for 0.9mm (A), 1.17mm (B), and 1.5mm (C) data, representing connectivity of the entire
subject-specific posterior corona radiata [PCR]. For each, the figures illustrate the standard
reconstruction on a single dMRI data set of the given resolution (labeled as “standard”),
standard reconstruction performed on dMRI data obtained with averaging of multiple runs to
increase SNR (labeled as Avg-standard), and NORDIC and MPPCA reconstructions of the
data without any averaging.

In Supplemental Figure S6 a comparison of denoising with the VST, NORDIC and
MPPCA approaches is shown. As the SNR decreases the impact of the non-zero iid
thermal noise becomes more apparent for the MPCPA processed data as revealed in a
loss of g-space contrast and residual high-spatial frequency modulations in Panel B. The
VST algorithm (Ma et al., 2020) confronts the difficulty of working with magnitude data

using a two-step approach to resolve the Rician and the spatially varying noise and then



uses MPPCA for denoising. Although this approach provides improvements over simply
working with magnitude data with Rician noise distribution, it also introduces spatial

smoothing which the NORDIC approach does not.

b=3000 s/mm? Image Image Difference
A m B A‘Il‘lzm
1.17mm 0.9mm
VST
NORDIC
MPPCA

Figure S6. Comparison of the denoised images using VST, NORDIC and MPPCA
reconstruction. In Panel A, for b=3000 s/mm?, the images are shown for 1.17mm and 0.9mm
isotropic resolution. For both VST and MPPCA in Panel A, different residual imaging artifacts
are observed, while these are not present in NORDIC. In Panel B, the image difference
between two g-space samples with the same b-value are correspondingly shown for VST,
NORDIC and MPPCA. For the image difference in Panel B, VST exhibit spatially smoother
patches whereas with MPPCA the image difference has more noise relative to both VST and
NORDIC. Both VST and MPPCA has lost contrast and features that are preserved with
NORDIC. VST in general outperforms MPPCA but not NORDIC.
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