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Highlights: 
 

• We propose a framework, NORDIC, for denoising complex valued dMRI data using 
Gaussian statistics 

• The effectiveness of the proposed denoising method is distinguished by the ability to 
remove only signal which cannot be distinguished from thermal noise 

• The proposed method outperforms a state-of-art method for denoising dMRI in terms of 
fiber orientation dispersion 

• Quantitative evaluation of NORDIC across different resolutions and SNR using human 
connectome type acquisitions and analysis shows up to 6 fold improvement in apparent 
SNR for 0.9mm whole brain dMRI at 3T. 
 

Abstract: 
 
Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range 

of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for 

improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-

noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted 

images of the same anatomy, it is well-suited for denoising methods that utilize correlations across 

the image series to improve the apparent SNR and the subsequent data analysis. In this work, we 
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introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with 

DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank 

modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix 

distributions to remove signal components which cannot be distinguished from thermal noise. The 

utility of the proposed framework for denoising dMRI is demonstrated on both simulations and 

experimental data obtained at 3 Tesla with different resolutions using human connectome project 

style acquisitions. The proposed framework leads to substantially enhanced quantitative 

performance for estimating diffusion tractography related measures and for resolving crossing 

fibers as compared to a conventional/state-of-the-art dMRI denoising method.     
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Introduction 
 
Magnetic Resonance Imaging (MRI) provides a collection of different approaches that 

currently occupy an indispensable role in the armamentarium of methods employed for 

studying the human brain. Diffusion-weighted MRI (dMRI) (review (Moeller et al., 2020), 

and references therein), is one of these critically important techniques; it is currently the 

only non-invasive imaging method available to map short and long-range anatomical 

connections in the brain and to extract information on the white matter microstructure 

(Alexander et al., 2019). Complementing dMRI, there exists other MRI techniques such 

as resting state functional magnetic resonance imaging (rfMRI) employed for inferring 

functional connectivity from correlations in spontaneous temporal fluctuations (Smith et 

al., 2013), task based fMRI (tfMRI) that depicts regional responses to specific cognitive 

processes and stimuli (Barch et al., 2013), and arterial spin labeling (ASL), which is a 

method that provides quantitative measurements of cerebral blood flow (CBF) without the 

use exogenous contrast agents (Alsaedi et al., 2018). All of these methods are challenged 
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by the inherently low signal-to-noise ratio (SNR) of the MR images themselves especially 

when ambitious improvements on spatial and/or temporal resolutions are sought, as 

foreseen, for example in the BRAIN Initiative in order to meet the enormous challenges 

faced in the effort to understand human brain function (Jorgenson et al., 2015).  

Therefore, in all applications of MRI, particularly in the aforementioned approaches for 

the study of the human brain, efforts to effectively increase SNR plays a central role. 

Although the ultimate goal is to do so without compromising any information, attempts to 

do so generally trade off some other information or feature of the data, such as true 

spatiotemporal resolution, or specificity to the biological process of interest. This is 

especially evident for denoising techniques (Alkinani and El-Sakka, 2017; Fan et al., 

2019; Kaur et al., 2018; Shao et al., 2014), where combinations of removing signal is 

balanced with corresponding feature enhancement to maintain the desired information. 

This is moreover challenged by most methods having to adapt to the spatially varying and 

non-Gaussian nature of the noise in magnitude MRI data, and the need to provide 

application-specific validations (Aja-Fernandez et al., 2011; Foi, 2011; Ma et al., 2020; 

Manjon et al., 2013).  

dMRI has an inherent assumption of redundancy, since the models of the underlying 

biological environment has lower complexity than the amount of data acquired. The 

redundancy can be explicit in repetitive acquisitions, which lengthens scan time, or implicit 

in using a probabilistic model-fit with a lower-dimensional continuous model to a higher 

dimensional discrete sampling, in order to reduce the outlier sensitivity and goodness-of-

fit error (Andersson and Sotiropoulos, 2015). On the other hand, denoising utilizing the 

well-known non-local means (A. Buades et al., 2005) was early on applied to dMRI image 

series (Wiest-Daessle et al., 2007), and the redundancy for local patches was first 

demonstrated for routine dMRI by Manjon et al. (Manjon et al., 2013) using an empirical 

threshold of the eigenvalues of a Principle Component Analysis (PCA) decomposition. 

For routine dMRI, the most advanced framework for denoising involves the Non Local 

Spatial and Angular Matching (NSLMA) (St-Jean et al., 2016), which incorporates Rician 

noise modelling, dictionary training and subspace processing. Recent work on processing 

complex data and adaptive to half Fourier acquisition with temporal heteroscedastic 

sampling, involves a low-rank spectral D-transformation using Frobenius norms, and a 
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generalized singular value shrinkage (Cordero-Grande et al., 2019), and was shown to 

match the performance of NSLMA on magnitude data. 

Currently, the most widespread method for suppression of noise in dMRI is the 

Marchenko-Pastur Principle Component Analysis (MPPCA) approach (Veraart et al., 

2016), which simultaneously estimates the amount of noise and signal components in 

magnitude MR data adapted by using a local patch based PCA approach to essentially 

remove components that have little contribution to the variance. MPPCA uses PCA with 

hard thresholding on singular values, with a threshold based on asymptotic mathematical 

properties of random matrices (MPPCA threshold). In this approach, however, the 

components that have been removed is challenging to describe for a finite series with 

unknown low-rank. 

In this work, we tackle these challenges and propose NOise Reduction with DIstribution 

Corrected (NORDIC) PCA method for reducing the influence of noise. NORDIC uses a 

dedicated processing approach to ensure that the noise component is additive with 

independent, identically distributed, zero-mean Gaussian entries. Using this 

characterization, results from random matrix theory can be efficiently used to devise a 

parameter-free objective threshold. For NORDIC, this threshold value is both numerically 

quantifiable and descriptive as the removal of all components which cannot be 

distinguished from Gaussian noise. NORDIC is similar to other PCA or low-rank based 

approaches, but unlike these methods, it uses known information from the acquisition to 

transform the data to fit the algorithm instead of either estimating the necessary 

information or adapting the algorithm to fit the data. This approach for denoising is unique 

from previous methods as it has negligible, if any,  impact on real MR signals and can be 

more generally applied to different types of MRI data without re-calibration or optimization. 

This would in turn allow for much higher resolutions and/or reduced scan times of 

otherwise SNR-starved MR protocols. The cost of the method is no more than having a 

clean sampling of the noise and the subsequent computational requirements, both of 

which could be built into an online acquisition protocol and reconstruction pipeline.    
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In this paper, we present an extensive and quantitative evaluation of NORDIC on dMRI 

data acquired on multiple subjects with different resolutions and SNR levels. The 

detectability of crossing fibers in Human Connectome Project (HCP) type dMRI data 

(Sotiropoulos et al., 2013a) was used as the metric for assessing the performance of 

NORDIC on dMRI acquisition, since the model complexity for using this type of dMRI data 

is advanced and well understood. Furthermore, the increase in the ability to estimate 

fibers from low SNR acquisitions processed with NORDIC was validated by comparing it 

with multiple repetitions of the diffusion acquisitions that were averaged to increase the 

SNR.   

Part of this work was presented at the International Society for Magnetic Resonance 
Imaging, 2017 (Moeller et al., 2017). 

Methods 
Locally Low-Rank Model 
We consider the reconstructed complex-valued volumetric dMRI image series following 

an accelerated parallel imaging acquisition, 𝒎𝒎(𝐫𝐫, τ) ∈ ℂI1×I2×I3×𝐍𝐍 with r specifying the 

location in 3D space, and τ ∈ {1,⋯ ,𝑁𝑁}. For dMRI, N is the number of q-space samples 

collected with different diffusion weighting. In locally low rank (LLR) approaches, for a 

voxel located at r0, a 𝑘𝑘1 × 𝑘𝑘2 × 𝑘𝑘3 patch is selected whose top left corner is located at the 

given voxel. For ease of notation we will not explicitly write the dependence on r0, and 

consider arbitrary patches. For a given diffusion weighting, 𝜏𝜏 ∈ {1,⋯ ,𝑁𝑁} this volume is 

vectorized to 𝒚𝒚𝜏𝜏. These vectors are then used to generate a Casorati matrix 𝐘𝐘 =

[𝐲𝐲𝟏𝟏,⋯ , 𝐲𝐲𝝉𝝉,⋯ , 𝐲𝐲𝐍𝐍]  ∈ ℂM×𝐍𝐍, where 𝑀𝑀 = 𝑘𝑘1𝑘𝑘2𝑘𝑘3. This represents the noisy data for that patch 

across the image series with different diffusion weighting (i.e. q space points). The 

denoising problem is to recover the corresponding underlying data Casorati matrix 𝐗𝐗, 

based on the following model 

𝐘𝐘 = 𝐗𝐗 + 𝐍𝐍      (eq.1) 
where 𝐍𝐍 ∈ ℂM×𝐍𝐍 is additive Gaussian noise.  
The underlying assumption for LLR models is that for any patch across the image, the 

data Casorati matrix 𝐗𝐗 for that patch can be represented with a low-rank representation. 

Thus, LLR methods perform singular value thresholding, typically using hard or soft 

thresholding. Letting the singular value decomposition of 𝐘𝐘 be 𝐔𝐔 ⋅ 𝐒𝐒 ⋅ 𝐕𝐕𝐻𝐻, where 𝐔𝐔 and 𝐕𝐕 
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are unitary matrices, and 𝐒𝐒 is a diagonal matrix whose diagonals are the spectrum of 

ordered singular values, 𝜆𝜆(𝑗𝑗), 𝑗𝑗 ∈ {1,⋯ ,𝑁𝑁} . For LLR the singular values below a threshold 

𝜆𝜆(𝑗𝑗) < 𝜆𝜆𝑡𝑡ℎ𝑟𝑟 are replaced by 𝜆𝜆(𝑗𝑗)=0 and the other singular values are either unaffected, as 

in hard thresholding, or reduced by 𝜆𝜆𝑡𝑡ℎ𝑟𝑟, as in soft thresholding. Letting 𝐒𝐒𝜆𝜆𝑡𝑡ℎ𝑟𝑟 be the new 

diagonal matrix generated as a result of thresholding, the low-rank estimate of 𝐘𝐘 is given 

as 𝒀𝒀𝑳𝑳 = 𝐔𝐔 ⋅ 𝐒𝐒𝜆𝜆𝑡𝑡ℎ𝑟𝑟 ⋅ 𝐕𝐕
𝐻𝐻. These locally low-rank estimates are then combined to generate 

the denoised image series 𝒎𝒎𝐿𝐿𝐿𝐿𝐿𝐿(𝐫𝐫, τ) either by averaging the corresponding patches 

together or using non-overlapping patches. 

Data-driven estimation of the threshold - MPPCA  
The threshold for 𝒀𝒀𝑳𝑳 can be selected empirically based on which components exhibit 

spatio-temporal features (Salimi-Khorshidi et al., 2014) or it can be selected based on 

where the noise properties mixes with the signal (Veraart et al., 2016). This latter 

approach is the basis for the MPPCA method, often used in dMRI and applied to 

magnitude dicom images, and referred to as dwidenoise (part of MRTrix, 

http://www.mrtrix.org) in the community. The Marchenko–Pastur law, which forms the 

basis for MPPCA, describes the asymptotic properties of singular values in random 

matrices with independent identically distributed (i.i.d.) zero-mean entries. For such a 

random matrix 𝐙𝐙 of dimension 𝑀𝑀 × 𝑁𝑁 with M > N  and let 𝐖𝐖 = 1
𝑀𝑀
𝐙𝐙𝐻𝐻 ⋅ 𝐙𝐙.  The spectrum of 

𝐖𝐖 is band-limited as a function of the variance of the entries and the matrix dimensions 

in the asymptotic limit. Specifically, for a matrix 𝐙𝐙 with i.i.d. entries having mean 0 and 

variance 𝜎𝜎2, the singular values of 𝐖𝐖 are asymptotically band limited to values between 

𝜆𝜆− and  𝜆𝜆+, where  𝜆𝜆∓ = 𝜎𝜎2(1 ± √𝛾𝛾)2 with 𝛾𝛾 = 𝑁𝑁
𝑀𝑀

, i.e. the spectrum has a bandwidth 𝜆𝜆+ −

𝜆𝜆− = 4√𝛾𝛾𝜎𝜎2. 

The MPPCA leverages this distribution to select the threshold for denoising, where the 

Casorati matrix has both signal and random noise contributions. In this case, the tail of 

the spectrum of 𝐒𝐒 is used to simultaneously estimate the noise level, and the value of 

𝜆𝜆𝑡𝑡ℎ𝑟𝑟. For a fixed value of signal components, the width of the tail, assuming zero-mean 

i.i.d. noise, satisfies with high probability the asymptotic limit  

(𝜆𝜆2(𝑃𝑃 + 1) − 𝜆𝜆2(𝑁𝑁)) = 4√𝛾𝛾𝑃𝑃𝜎𝜎2       (eq.2) 

http://www.mrtrix.org)/
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where 𝛾𝛾𝑃𝑃 = (𝑁𝑁 − 𝑃𝑃)/𝑀𝑀 while also satisfying the inequality 

 ∑ 𝜆𝜆2(𝑖𝑖) ≥ (𝑁𝑁 − 𝑃𝑃)𝜎𝜎2𝑁𝑁
𝑖𝑖=𝑃𝑃+1        (eq.3) 

The band limiting of the spectrum, allows for calculating the largest value of P for which 

the equality (eq.3) holds, while simultaneously providing a value for the variance 𝜎𝜎2. The 

use of the Marchenko-Pastur assumes i.i.d. zero-mean noise, which is typically not 

satisfied in reconstructed MRI data, where the noise is spatially varying from the use of 

undersampled k-space acquisitions. Furthermore, the equality assumes zero-mean 

entries, whereas the noise in magnitude images in MRI is either Rician or non-central 

Chi^2 distributed. 

Proposed LLR Denoising 
In NORDIC, the data matrix 𝐘𝐘 is constructed so that the noise matrix component matches 

the random matrix theory model. This is achieved by: 1) retaining the images as complex 

valued with zero-mean Gaussian noise following image reconstruction, 2) mapping the 

spatially varying noise in the reconstructed images to spatially identical noise using the 

g-factor of the parallel imaging method, and 3) selecting the threshold explicitly based on 

the noise spectrum.  

For the first step, we utilize slice-GRAPPA reconstruction for the slice accelerated 

dataset, obtained with the simultaneous multislice (SMS)/Multiband (MB) approach 

(Moeller et al., 2020). A single kernel 𝑮𝑮𝒋𝒋𝒄𝒄𝒄𝒄 is constructed for SMS/MB with phase-encoding 

undersampling such that for each slice, j, and channel, ch,  

𝑮𝑮𝑗𝑗𝑐𝑐ℎ( 𝑆𝑆𝑀𝑀𝑀𝑀 ) = 𝑆𝑆𝑆𝑆𝑗𝑗𝑐𝑐ℎ                     ∀𝑗𝑗 , 𝑐𝑐ℎ  (eq.4) 
and the kernels 𝑮𝑮𝒋𝒋𝒄𝒄𝒄𝒄 are calculated similarly as in slice-GRAPPA from the measured 

individual slices 𝑆𝑆𝑆𝑆𝑖𝑖 with 𝑆𝑆𝑀𝑀𝑀𝑀 = ∑ 𝑆𝑆𝑆𝑆𝑖𝑖 𝑀𝑀𝑀𝑀
𝑖𝑖=1 . For the combination of reconstructed individual 

channels, the SENSE-1 reconstruction (Sotiropoulos et al., 2013b) is used to maintain 

Gaussian noise (Aja-Fernández and Vegas-Sánchez-Ferrero, 2016) in the complex 

valued reconstructions and the ESPIRIT algorithm (implemented from the Berkeley 

Advanced Reconstruction Toolbox (BART) https://mrirecon.github.io/bart/) is used for 

sensitivity estimation.  

https://mrirecon.github.io/bart/
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For the second step, g-factors are calculated building on the approach outlined in (Breuer 

et al., 2009) for g-factor quantification in GRAPPA reconstructions and detailed in (Moeller 

et al., 2020) and the same ESPIRIT sensitivity profiles used for image reconstructions are 

also used for the determination of the quantitative g-factor. The g-factor is subsequently 

used to normalize the signal scaling in 𝒎𝒎(𝐫𝐫, τ), as 𝒎𝒎(𝐫𝐫, τ)/𝑔𝑔(𝐫𝐫). We note that this ensures 

zero-mean and spatially identical noise in a given patch. The remaining independence 

requirement is satisfied by choosing the patch size small enough to ensure that no two 

voxels within the patch are unaliased from the same acquired data, which can be done 

by selecting 𝑘𝑘3 < I3/𝑀𝑀𝑀𝑀 and 𝑘𝑘2 < I2/𝑅𝑅, where MB is the acceleration rate (i.e. the number 

of simultaneously excited slices) along the slice direction using RF pulses with MB 

number of bands, and, R, the in-plane phase-encoding undersampling rate. When 

blipped-CAIPI (Setsompop et al., 2012) encoding is added, then the patches in the MB 

unaliased slices do not overlap directly and 𝑘𝑘3 > I3/𝑀𝑀𝑀𝑀 can be used, but is dependent 

on the FOV shift and the R factor. 

Following these steps, the noise component of 𝐘𝐘 has zero-mean i.i.d. entries, and the 

threshold in the ideal setting is given as the first singular value specified by the 

Marchenko-Pastur law for such 𝑀𝑀 × 𝑁𝑁 noise matrices. This choice ensures that all 

components that are indistinguishable from Gaussian noise are removed. While this 

threshold can be calculated from the analytical formula, this is an asymptotic expression, 

and deviations may occur for the practical finite matrix case. Thus, for a finite-sized 

random matrix, an alternative is needed in the absence of an analytical expression and 

we calculated this threshold by using noise images (where no RF excitation is applied), 

which were still reconstructed identically to the acquired data, and also corrected with the 

g-factor. We use a Monte-Carlo simulation with matrices of size 𝑀𝑀 × 𝑁𝑁 extracted from the 

noise image to generate the sample average for the largest singular value of an 𝑀𝑀 × 𝑁𝑁 

random matrix with i.i.d. zero-mean elements and variance 𝜎𝜎2 identical to the noise 

images, and use this as the threshold 𝜆𝜆𝑡𝑡ℎ𝑟𝑟. 

Since the g-factor normalization changes the signal scaling, after NORDIC processing, 

the volumes with noise reduction applied 𝒎𝒎𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵(𝐫𝐫, τ) are further processed as 



 9 

𝒎𝒎𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵(𝐫𝐫, τ) ⋅ 𝑔𝑔(𝐫𝐫) such that the signal magnitude is corrected back to the original form. 

A schematic of the steps in the proposed NORDIC algorithm is shown in Figure 1. 

 

………………………  FIGURE 1 around here ……………………………..

 
 
Patch averaging 
The transformation from patches to a Casorati matrix removes an explicit spatial 

connection between rows, which is re-established when the processed Casorati matrix is 

reordered to a patch. The selection of patches can be anywhere between non-overlapping 

and maximally overlapping, directly proportional to an increase in computation time. With 

non-overlapping patches remaining block-artifacts are commonly observed. For patch 

averaging, the patches are used independently of the x,y,z orientations, i.e. independent 

of how they are acquired in terms of readout, phase-encoding and slice-encoding 

direction (Katkovnik  Vladimir et al., 2010).  For the over-lapping patches, the combination 

of these can be weighted equally, as used here, or weighted as the number of retained 

components, which was introduced for earlier PCA methods (Ma et al., 2020) with  

negligible differences when a uniform threshold is used.   

(𝑥𝑥 + 𝑡𝑡) phase-stabilization 
The use of complex valued information is in itself nothing ominous for LLR techniques. 

For dMRI, the phase induced in the process of diffusion weighting, the diffusion phase, is 

Figure 1.  Flowchart of the NORDIC algorithm for a series 𝒎𝒎(𝐫𝐫, τ). Firstly the series is 
normalized with the calculated g-factor kernels as 𝒎𝒎(𝐫𝐫, τ)/𝑔𝑔(𝐫𝐫). From the normalized series 
the Cassorati matrix 𝐘𝐘 = [𝐲𝐲𝟏𝟏,⋯ , 𝐲𝐲𝒋𝒋,⋯ , 𝐲𝐲𝐍𝐍] is established and the low-rank representation of 
𝒀𝒀 is calculated as 𝒀𝒀𝑳𝑳 = 𝐔𝐔 ⋅ 𝐒𝐒𝜆𝜆𝑡𝑡ℎ𝑟𝑟 ⋅ 𝐕𝐕

𝐻𝐻, where  𝜆𝜆(𝑖𝑖) = 0 for 𝜆𝜆(𝑖𝑖)  < 𝜆𝜆𝑡𝑡ℎ𝑟𝑟.  After reforming the 
series 𝒎𝒎𝑳𝑳𝑳𝑳𝑳𝑳(𝐫𝐫, τ) the normalization with the calculated g-factor is reversed as 
𝒎𝒎𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵(𝐫𝐫, τ) = 𝒎𝒎𝑳𝑳𝑳𝑳𝑳𝑳(𝐫𝐫, τ) ⋅ 𝑔𝑔(𝐫𝐫).  
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caused by the temporal fluctuations of the B0 field over the head during diffusion encoding 

primarily due to respiration (Anderson and Gore, 1994), and is immaterial in the dMRI 

modelling, which only considers the changes in signal magnitude subsequent to diffusion 

encoding for accessing underlying tissue properties. However, keeping the diffusion 

phase increases the number of components necessary to describe the signal. The 

appearance of the diffusion phase can be reduced, based on the fact that the phase is 

independent of tissue properties and is spatially smooth, while also noting that it can have 

2π phase-wraps. For a dMRI series with different q-samples, the volume and slice specific 

smooth phase is removed in a two-step process where first the common phase per slice 

is removed (using an average over all volumes), and then the volume specific smooth 

phase is removed as follows. Each volume is Fourier transformed and multiplied with a 

2D weighted Tukey filter (the outer product of two weighted Tukey filters of length N1 and 

N2 respectively, where 𝑁𝑁1,𝑁𝑁2 are the image dimensions) which is equivalent to a broader 

blurring function in image space, and then subsequently transformed into image space 

with an inverse Fourier transform. The resulting phase, per slice and volume, is used as 

a low-pass filtered estimate and multiplied with the original data with the common phase 

removed. The effect of the 2-step phase-correction is illustrated in Supplemental Figure 

S1. 

Numerical Evaluation of Threshold Choice 
Existing low-rank denoising methods, such as MPPCA, and the NORDIC approach are 

denoising methods that work directly on the spectrum of the Casorati matrix. Even without 

the considerations of the i.i.d. zero-mean entries for the noise component of the Casorati 

matrix, there are differences between the existing, previously published (Veraart et al., 

2016), data-driven choices for the threshold and our proposed fixed threshold. To 

highlight these differences, a numerical simulation was performed, where the noisy data 

was generated according to (eq.1). The underlying noise matrix 𝐍𝐍 was generated as i.i.d. 

Gaussian noise, whereas the underlying data matrix 𝐗𝐗 was generated using two random 

unitary matrices UX and VX, and a low-rank spectrum SX. We use 𝜆𝜆𝐍𝐍 to denote the 

spectrum of the noise matrix N, and 𝜆̃𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to denote the spectrum extracted from a 1.5mm 

isotropic resolution Lifespan dMRI acquisition (Harms et al., 2018) with 99 q-space 

samples, described further below. These are scaled individually relative to the spectra  𝜆𝜆𝐍𝐍 
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of the noise, and computed for 99 volumes with 73 and 113 voxels respectively. Four 

different spectra 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  were considered for  𝐒𝐒X  with 

𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗) = 𝑒𝑒−0.025 𝑗𝑗 ⋅ 𝜆𝜆𝐍𝐍(1)/𝑒𝑒−2.5, 𝑗𝑗 = 1, … ,99, (eq.5) 
 
𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗) = 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗), 𝑗𝑗 = 1, … ,99, and 𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗) = 0 for 𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗) < 𝜆𝜆𝑵𝑵(1)  (eq.6) 
 
𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)=𝜆̃𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗) ⋅

𝜆𝜆𝑵𝑵(1)
𝜆𝜆�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(99)

⋅ 0.5, 𝑗𝑗 = 1, … ,99 (eq.7) 
 
𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)=𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗) ⋅ 1.4, 𝑗𝑗 = 1, … ,99 and 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗) = 0 for 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗) < 𝜆𝜆𝑵𝑵(1) (eq.8) 

 

The constants in (eq. 5) – (eq. 8) do not correspond to a specific acquisition bio-physical 

model, and  𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  are considered in terms of their effect 

for a numerical simulation of the techniques. 

Subsequently, the singular value spectra of 𝐍𝐍,𝐗𝐗 and 𝐘𝐘 were calculated, and the two 

different threshold selection strategies were compared. 

In-vivo imaging 
Data were acquired at the Center for Magnetic Resonance Research (CMRR), University 

of Minnesota (UMN). All participants provided written informed consent and the study was 

approved by the UMN’s Institutional Review Board. Eight participants were scanned on a 

Siemens Magnetom Prisma (Siemens Healthcare, Erlangen, Germany) 3 Tesla (3T) 

scanner equipped with a 32 channel head coil and a 80 mT/m gradient system with a 

slew rate of 200 T/m/s. An additional participant was scanned on a 7 Tesla (7T) MR 

scanner (Siemens, Erlangen, Germany) equipped with 32 receive channels and the 

Siemens SC72 body gradient that achieves 70 mT/m maximum strength and 200 T/m/s 

maximum slew rate with the current gradient drivers; maximum slew rate usable for 

diffusion encoding gradients was, however, limited to  ~125 T/m/s due to peripheral nerve 

stimulation (Vu et al., 2015). The vendor supplied Nova single-channel transmit and 32-

channel receive head coil was employed for RF transmission and signal reception. The 

data acquisition and image reconstruction was performed with the CMRR distributed C2P 

multiband diffusion sequence (https://www.cmrr.umn.edu/multiband/) on both systems.  

https://www.cmrr.umn.edu/multiband/
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Data were acquired at 3T where three different nominal isotropic imaging resolutions of 

1.5mm, 1.17mm and 0.9mm were used, leading to effective voxel volume ratios of 

1:0.5:0.2. A two-shell diffusion sampling scheme was employed with b=1500, 3000 s/mm2 

with 99 q-space directions (46 for b=1500 s/mm2, 46 for b=3000 s/mm2 and 7 for b=0 

s/mm2, as an interleaved combined set following Caruyer (Caruyer et al., 2013)); these 

data were acquired twice, running the phase encode direction either in the AP or PA 

directions, as in the HCP (Sotiropoulos et al., 2013a; Ugurbil et al., 2013). We followed 

the HCP Lifespan protocol (Harms et al., 2018) for each AP or PA acquisition; this 1.5mm 

resolution dMRI protocol deviated from the HCP Lifespan protocol in one aspect, namely 

the HCP acquired such data twice (Harms et al., 2018) whereas in our case this was done 

only once, collecting as a result half the data compared to the HCP Lifespan protocol. For 

the higher resolution acquisitions, by necessity, we deviated somewhat more from the 

HCP Lifespan protocol; in this case, for each resolution, the q-space sampling was the 

same as that employed for the 1.5mm acquisition but the acceleration factors changed in 

order to keep the TR approximately in the same range. In all cases, the slice-orientation 

was chosen similarly to the HCP as oblique coronal-axial along the AC-PC line to reduce 

the necessary number of slices to cover the whole brain. Each resolution was acquired 

with 6/8 partial Fourier (similar to the Lifespan and the HCP-young adult (Sotiropoulos et 

al., 2013a; Ugurbil et al., 2013)) and was acquired with the following parameters:  

1.5mm isotropic:   TE/TR=89.2/3230ms, MB×R=4×1, echo-spacing 690µs; 92 slices 
1.17mm isotropic: TE/TR=77.8/2780ms, MB×R =5×2, echo-spacing 770µs; 120 slices  
0.9mm isotropic:   TE/TR=95.4/5850ms, MB×R =4×2, echo-spacing 940µs; 152 slices. 
 

The highest and lowest spatial resolutions were chosen in accordance with the 

restrictions imposed by gradient resonance frequencies. For 5 subjects, all three 

resolutions were obtained. For the remaining 3 subjects 60min of data were collected at 

one of the three resolutions. The 60-min data acquisition time allowed 6, 5, and 3 repeated 

acquisitions, respectively for the 1.5mm, 1.17mm and the 0.9mm data.  

As single whole brain dMRI data set acquired at a nominal 0.7mm isotropic resolution 

was also evaluated for denoising. This data set was obtained at 7T, with MB×R=2×3, 

TR/TE=13.4s/91ms and partial Fourier of 6/8. The FOV was 208×208×126mm and 180 
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oblique axial slices was used to cover the whole brain. A two-shell diffusion sampling 

scheme was employed with b=1000, 2000 s/mm2 having total 96 interleaved q-space 

directions and an additional 11 for b=0 s/mm2. These data were acquired twice, running 

the phase encode direction either in the AP or PA directions, and obtained as 4 

independent acquisitions of ~15min duration, including the auto-calibration and single 

band reference scans. All data were processed as magnitude data and corrected for 

motion, geometric and eddy currents induced distortions and outliers with FSL TOPUP 

(Andersson et al., 2003) and EDDY (Andersson et al., 2016; Andersson and Sotiropoulos, 

2016). For repeated acquisitions, each individual series was processed independently, 

and all were subsequently motion corrected and averaged. DTI and multi-shell crossing 

fibers models were fitted to the corrected data, using DTIFIT and BEDPOSTX with a multi-

exponential decay assumption (Jbabdi et al., 2012), respectively, and results were 

visualized with FSLEyes.  

In-Vivo Imaging Evaluation of NORDIC 
Qualitative Evaluation 
A real-valued simulation was performed to evaluate the proposed NORDIC method using 

a high SNR reference volume with spatial matrix size 140x140x92, and with 99 volumes 

(q-space samples). The reference was the EDDY corrected (Andersson et al., 2016; 

Andersson and Sotiropoulos, 2016) standard reconstruction data from 6 averages for the 

1.5 mm resolution listed in the “In-vivo imaging” section. This high SNR reference was 

degraded by adding real-valued noise. The images were evaluated in two different ways; 

1) using the simulated “ground truth” real-valued images and 2) using the magnitude 

images to include the Rician noise properties. The noise level was selected such that for 

the volumes with the lowest signal intensity, the mean signal over the whole brain was 1 

(with a 10:1 maximum to mean ratio), and the noise was independently and identically 

distributed (i.i.d.) Gaussian with variance 1. Subsequently, the proposed NORDIC 

approach was compared to MPPCA denoising. 

For the  afore described simulation using a high SNR dMRI data degraded by addition of 

noise, the impact on apparent image SNR was evaluated for NORDIC using different 

patch-sizes M, and compared with MPPCA using both Gaussian and Rician noise. In 
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addition a diffusion contrast image defined as the difference between two images with 

different q-vectors directions and the same b-value, 

 Δ𝑞𝑞1𝑞𝑞2𝒎𝒎 = |𝒎𝒎(𝐫𝐫, 𝑞𝑞1)| − |𝒎𝒎(𝐫𝐫, 𝑞𝑞2)|, 

was used to evaluate blurring between different q-space acquisitions from the low-rank 

processing. The two q-vectors have the same b-value, and are selected as sequential in 

the q-space set defined following Caruyer (Caruyer et al., 2013), and as such nearly 

orthogonal. 

In order to demonstrate the whole brain effect of improved detection of crossing fibers in 

the NORDIC processed data, the connectivity of the posterior corona radiata (PCR, both 

left and right) with the rest of the brain was investigated qualitatively using probabilistic 

tractography (‘probtrackx’)(Behrens et al., 2007).  

Quantitative evaluation 
Detection of second and third fiber orientations, necessary for resolving white matter 

crossing fibers, is widely used as a measure of information content in the data. As such, 

two VOIs, each covering the superior longitudinal fasciculus (SLF) and posterior corona 

radiata (PCR), which contain various crossing fibers configurations, were selected for 

quantifying the effect on information content in the denoised data. These VOIs were 

defined using the JHU-ICBM 1mm atlas (https://identifiers.org/neurovault.image:1401) 

and were linearly transformed into the 1.5mm data space first, and then from there into 

the 1.17mm and 0.9mm data spaces using linear transformations for each subject. The 

SLF and PCR VOIs from the left and right hemispheres were combined into a single VOI 

for the SLF and PCR respectively. In BedpostX, automatic relevance determination (ARD) 

was used to accurately recover fiber orientations supported by the data during the data-

driven parameter estimation process. The parameters (e.g. fiber volume fractions) that 

are not supported by the data will have a value around zero with very low variance in the 

posterior distribution. 

fiber detection rate: The number of voxels with two- and three-way fiber crossings 

(referred to as second and third fibers) were normalized by the total number of atlas-

based voxels in the VOI for each dataset, and reported as a percentage as a proxy for 
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sensitivity. The normalization by the total number of voxels in the VOI compensates for 

the variations in the size of the VOI between different datasets and resolutions.  

fiber orientation dispersion: The fiber orientation dispersion is a measure of the 

consistency in the ball and stick model based predictions of the fiber orientations and a 

proxy for consistency and indirectly specificity. Through estimates from Markov Chain 

Monte Carlo (MCMC) sampling of the posterior distribution of fiber orientation in the 

Bayesian estimation process in bedpostx an uncertainty can be calculated. The 

uncertainty in the fiber orientation estimation represents the variance in the MCMC 

sample orientation vectors around the distribution mean and is the fiber orientation 

dispersion. The reported fiber orientation dispersion is calculated as (1-s), where s is the 

largest eigenvalue of the average tensor constructed from these MCMC samples 

(Behrens et al., 2007). This calculation is done separately for each fiber 

populations. Higher information content in the data can result in more consistent 

predictions of the orientations, representing higher accuracy of estimated fiber orientation. 

gain in fiber orientation accuracy: The gain in accuracy is the improvement (i.e. a 

decrease) in uncertainty calculated as the ratio of the dispersion of the reference 

acquisition 𝒀𝒀 divided by the dispersion for the target 𝒀𝒀𝑳𝑳, as a proxy for gain in SNR.  

Several experiments were performed to evaluate the various steps in the proposed 

NORDIC algorithm. Apart from the simulations described earlier, the necessary and 

additional steps of (𝑥𝑥 + 𝑡𝑡) phase-stabilization and patch averaging were evaluated for the 

lowest SNR data for the in-vivo acquisition.  

Subsequently, the efficacy of NORDIC was qualitatively and quantitatively evaluated 

using diffusion metrics for multiple subjects at 3 different resolutions (and thus SNR 

levels), including FA maps, crossing fiber detection rate, fiber orientation dispersion and 

gain in accuracy. The impact on apparent SNR was evaluated by comparing the 

NORDIC-processed dMRI acquisitions, with high SNR data obtained by averaging 

repeated acquisitions. The performance of MPPCA and NORDIC were quantitatively 

compared, for multiple subjects and resolutions, in the superior longitudinal fasciculus 

(SLF) and posterior corona radiata (PCR) which are regions with known crossing fibers. 

Finally, implications for whole brain tractography across the different resolutions were 
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qualitatively investigated using the connection strength, defined as the number of 

streamlines passing through each voxel connecting the seed VOIs to the rest of the brain 

(Behrens et al., 2007). 

Results 
Numerical Evaluation of Threshold Choice 
For an ideal observation model 𝐗𝐗, the spectra for 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  are illustrated 

in each column in Figure 2, respectively, along with the spectra for the observation 𝐘𝐘. The 

top row shows the spectra for M=73 and the bottom row show it for M=113, both with 

N=99. For each model, the corresponding spectra for 𝐍𝐍,𝐗𝐗 and 𝐘𝐘, along with the threshold 

estimated from the observation 𝐘𝐘 based on the MPPCA method, as well as the maximal 

singular value of the noise which is the threshold choice in NORDIC, are shown with 

dotted horizontal yellow and green lines respectively.  

 
……………………………..FIGURE 2  ………………………….. 

 
For 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 shown in the first column in Figure 2, the top row shows that the spectrum for 

the observation 𝒀𝒀 is close to  𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and for the larger patch shown in the bottom row a 

Figure 2: The interaction between the spectra of the underlying model, additive noise and 
the observed noise perturbed measurements, and the threshold estimated with asymptotic 
properties and hard thresholding based on the maximal singular value. The four spectra 
shown in each of the four columns are generated by eq.5, eq.6, eq.7, and eq.8, respectively, 
given in section titled Numerical Evaluation of Threshold Choice; they represent an 
asymptotic model (𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), an asymptotic model with low-rank (𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), a spectra from 
dMRI which is full rank and falls below the maximal singular value of the noise (𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and 
a low-rank signal which does not fall below the maximal singular value of the noise 
(𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). The MPPCA technique uses the asymptotic properties of the noise spectra to infer 
a threshold, and the NORDIC uses the prior knowledge of the noise-level for this. 
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difference in the spectra of 𝒀𝒀 and 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 can be noted. For both patch-sizes the MPPCA 

estimated transition between signal and noise components, removes more components 

that what is retained with NORDIC. For 𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 shown in the second column in Figure 
2, the top row shows that the spectrum for the observation 𝒀𝒀 is close to  𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 for all 

values larger than the largest value in the spectrum of the noise indicated with the 

horizontal green line. For the larger patch shown in the bottom row there is a larger 

difference between the spectra of 𝒀𝒀 and 𝜆𝜆𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. For the values below the green line, 

the spectrum for 𝒀𝒀 for both patch sizes has a steeper slope compared with 𝜆𝜆𝑵𝑵 for the 

noise, and the MPPCA identifies the discontinuity in the spectrum. In this idealized low-

rank scenario MPPCA and NORDIC behave similarly. 

The third column shows results for 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 which is not inherently low-rank. In the top row 

the spectrum for the observation 𝐘𝐘 is close to 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, and the MPPCA determines a 

threshold for 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 which has fever singular values as compared with the threshold for 

NORDIC. Both thresholds reduces the number of components relative to the true 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

while MPPCA removes more components than when the threshold is applied to 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, for 

NORDIC more components are kept in the spectrum of Y than when the threshold is 

applied directly to 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. In the right column, for 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, the threshold for MPPCA in the 

top row finds fewer significant components as compared with the components in 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

whereas NORDIC determines the correct number. For the larger patch shown in the 

bottom row the number of retained components with both MPPCA and NORDIC match 

to the content in 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  

Figure 2 shows a numerical example of low rank thresholding for a fixed noise-level. For 

models with an underlying low-rank spectrum, as in column 2, Figure 2, both MPPCA and 

NORDIC may estimate a similar threshold whereas for the 𝜆𝜆𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 spectrum (right most 

column, Figure 2), MPPCA estimates a similar threshold to the spectrum for 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (third 

column from left, Figure 2). An increase in the patch-size can increase the spread of the 

singular-values between 𝜆𝜆𝑋𝑋 and 𝜆𝜆𝑌𝑌. For a model with Gaussian noise, and for spectra 

with the chosen decay-rates, the MPPCA may perform similar to NORDIC with a 113 

patch for signal that are low-rank, whereas NORDIC may retain more signal components 

than MPPCA for the spectrum that are not low-rank. We note these observations are for 



 18 

numerical purposes only, and their applicability do not necessarily extend to the in vivo 

dMRI data, for which the patch size was optimized to 53 for MPPCA in (Veraart et al., 

2016). Accordingly, the MPPCA processed images presented in this paper were all 

processed with a patch size of 53. 

In-vivo Simulation 
Qualitative comparison 
Figure 3 illustrates evaluations from simulations performed using dMRI data with 99 q-

space samples obtained in the human brain and subsequently degraded by adding noise 

to it. Results from this simulations are shown for a single slice, processing it with NORDIC 

using patch sizes of 53, 73, and 113 (Fig.3A.iii, 3A.iv, and 3A.v, respectively) and with 

MPPCA (Fig.3A.vi, and 3A.vii); the latter was applied both on the Gaussian noise data, 

and on data with Rician noise obtained by using the magnitude of the in-vivo data with 

added simulated noise. The slice used for these illustrations generated with the standard 

reconstruction is shown before and after the addition of noise in Fig.3A.i and Fig.3A.ii, 

respectively. Similar analysis are displayed in Figure 3B for the q-space contrast, 

 Δ𝑞𝑞1𝑞𝑞2𝒎𝒎, the difference between two images with two different q-vectors and same b-

value. In supplemental Figure S2, the residual between the denoised and the noise 

degraded reference is shown. 

The reconstructed images with both NORDIC and MPPCA shown in Figure 3A (middle 

and lower row), all appear qualitatively similar to the reference image (Fig.3A.i) , with the 

MPPCA applied on data with Rician noise showing evidence of the Rician noise-floor. 

The q-space contrast images (Figure 3B) show that for the patch sizes 53 with NORDIC 

and for both MPPCA Gaussian and MPPCA Rician, there is significant deviation from the 

reference image (FIG.3B.i), especially in the cerebellum area. For NORDIC-processing 

with patch sizes of 53, 73, 113, 153, and 193 the structural similarity index (SSIM) (Wang 

et al., 2004) over all slices and diffusion direction is shown in Figure 3C. The SSIM is 

highest for a patch size of 113 and for the subsequent application of NORDIC a patch size 

of 113 is used unless specified otherwise. 
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…………………..  Figure 3 around here  ………………………………… 

 
 
In-vivo Imaging 
Impact of phase-stabilization and patch averaging 
For LLR techniques applied on complex-valued data, the necessity and impact of phase-

stabilization is shown along with the gains from patch averaging in Figure 4 for a diffusion 

weighted image with b=3000 s/mm2 from the 0.9mm acquisition and processed with 

NORDIC using an 113 patch. The images shown are reformatted oblique coronal slices 

Figure 3. Real valued simulation of the quality of the “optimal“ signal recovery with NORDIC. 
Figure A shows for a single slice the quality of the images reconstructed with denoising using 
NORDIC and MPPCA subsequent to SNR degradation with the addition of noise, and Figure B shows 
analogous images for q-space contrast,  Δ𝑞𝑞1𝑞𝑞2𝒎𝒎,  as the difference between volumes with different q-
vectors and same b-value. The reference images are shown in Fig. 3A.i, and 3B.i before addition of 
noise and in Fig.3A.ii, and 3B.ii after addition of noise. The NORDIC methods are compared for patch-
sizes of 53, 73, and 113 (middle row), and the MPPCA method (bottom row) are compared using the 
Gaussian noise and Rician noise. Panel C shows the structural similarity index (SSIM) restricted to the 
brain between 𝒎𝒎 without noise, and NORDIC with patch sizes 53, 73, 113, 153, and 193. Panel D shows 
the structural similarity index (SSIM) restricted to the brain between  Δ𝑞𝑞1𝑞𝑞2𝒎𝒎 without added noise, 
and NORDIC processing with patch sizes 53, 73, 113, 153, and 193. The SSIM for Panels C and D are 
averaged over all slices and diffusion direction for the different patch sizes. The SSIM from D is 0.54 
for NORDIC using a patch size of 113, 0.49 for MPPCA with Gaussian noise, and 0.50 for MPPCA 
with Rician noise. 
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extracted from the 3D volume, acquired as oblique axial, so that the vertical axis now 

corresponds to the slice direction.  Without phase-stabilization, the diffusion phase has a 

high frequency fluctuation along the slice direction. This limits the efficacy of the LLR 

representation model, not allowing for an effectively low-rank representation. In the 

reconstruction without patch averaging or phase-stabilization, the underlying anatomy is 

not recovered efficiently, and horizontal stripe-like intensity variations are observed. 

These stripe-like intensity variations are more easily observed in the reconstruction (2nd 

from left) obtained without phase-stabilization and with patch averaging. With patch 

averaging and phase-stabilization, the underlying anatomy is clearly observed both 

peripheral and medial in the coronal view. Note that with averaging, for a patch size of 

113, each voxel is averaged from 113 reconstructions, further improving final image 

quality. Unless otherwise noted complete patch averaging is used along with phase-

stabilization. 

 

…………………..  Figure 4 around here ………………………………… 

 
 
Performance of NORDIC at Different Resolutions 
Figure 5 illustrates an axial slice of the FA map obtained after dMRI processing (top row), 

and the image of the corresponding slice from the volume with b=3000 s/mm2 weighting 

Figure 4. Effect of phase-stabilization and patch averaging for the NORDIC processing of 
complex data using an 113 patch. Reformatting to oblique coronal slices of the 0.9mm isotropic 
data, acquired with oblique axial acquisition, are shown. The left figures are without phase-
removal of the slice-specific smooth diffusion phase, and the right figures are with removal of 
the diffusion phase. For both approaches, the impact of patch-averaging with all 113 patches are 
shown.  
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(lower row), for the three different resolutions and a single subject. The FA maps and the 

corresponding slice image with b=3000 s/mm2 are presented for the standard- and the 

NORDIC-processed data, for the different resolutions. The signal scaling for the bottom 

row is adjusted for each resolution, since SNR varies with resolution.  

The spatial tissue contrast is similar in the NORDIC-processed images of the slice 

illustrated in the lower row in Figure 5 for the 1.5mm or 1.17mm resolutions. In the 0.9mm 

resolution image, the noise over the lateral ventricles is not suppressed as much as it is 

in the 1.5mm or 1.17mm resolutions. Some differences in the overall anatomical features 

between the different resolutions can be noted and are due to slight differences in slice 

position and thickness. The standard and NORDIC-constructed FA maps for the 1.5mm 

resolution are visually identical, which also illustrates the high SNR quality of the HCP 

lifespan protocol. For the 1.17mm and 0.9mm resolutions, the FA maps are noisier 

compared to the 1.5 mm data, but have similar features with the lower resolution FA map. 

The FA in this context is also an adequate visual measure for the resolution that is 

maintained with NORDIC, as there is no evident blurring, consistent with the analysis from 

(Veraart et al., 2016), which compared MPPCA with adaptive non-local means and 

second order total generalized variation. Corresponding results for MPPCA are shown in 

Supplemental Figure S3. 

 

…………………..  Figure 5  around here  ………………………………… 
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SNR Advantage of NORDIC: Comparison with Data Averaging 
For the 3 subjects with repeated acquisitions, the effect of NORDIC after EDDY correction 

is shown in Figure 6 for an axial slice in each subject.  In this case, each single “repetition” 

refers to the pair of separate acquisitions with reversed phase encoding which is used for 

EPI corrections. TOPUP/EDDY, combines data with opposite phase-encoding directions, 

improving the SNR by approximately √2 compared to a true single acquisition.  

For the 1.5 mm resolution data, the NORDIC-processed single repetition data visually 

shows reduced noise in comparison with the standard reconstruction, and is similar to the 

standard reconstruction obtained by the averaging of 6 repetitions. For the 1.17mm 

resolution, the single repetition processed with NORDIC (2nd column) displays improved 

SNR on visual inspection compared to the average of the 5 standard reconstructions (3rd 

column), especially for the deeper brain regions which have intrinsically lower SNR.  We 

note that the single repetition also has similar anatomical features to the 5 repetitions 

averaged after processing both with NORDIC, and that in this case, the average of the 5 

repetitions processed with NORDIC has a higher visual SNR, as would be  expected, 

compared with the single repetition data reconstructed with NORDIC. For the 0.9mm 

resolution, the NORDIC-processed single repetition and 3 repetition data has clearly 

defined anatomical features, which are barely perceptible in the standard reconstruction 

images, even when 3 acquisitions are averaged to improve SNR. Corresponding results 

for MPPCA are shown in Supplemental Figure S3, which shows that the effect of the 

Rician noise reduces the contrast of the individual denoised images. 

 

Figure 5:  Top row shows the effect of NORDIC across different resolutions on FA maps for a 
single slice. Bottom row presents corresponding diffusion weighted image (b=3000 s/mm2) for 
the same slice. The FA maps are obtained after EDDY processing, and the images in the bottom 
row are before EDDY processing. From left to right, in groupings of 4, the three resolutions of 
1.5mm, 1.17mm and 0.9 mm are shown. For each grouping, the images with the standard 
processing are shown adjacent to the images with the NORDIC processing. Supplemental 
Figure S3, illustrates the same slices and also includes reconstruction by MPPCA for 
comparison. 
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…………………..  Figure 6 around here  ………………………………… 

 
Quantitative evaluation of patch size for NORDIC 
Figure 7 illustrates quantitatively an dMRI data from a single subject, the performance of 

denoising with NORDIC applied with different patch sizes; the metrics shown are the 2nd 

and 3rd fiber detection rate (percentage of voxels within a VOI with two- and three-way 

fiber crossings) and gain in fiber orientation accuracy (i.e. the decrease in the angular 

dispersion (uncertainty) in determining the fiber orientations)  in the two brain regions 

well-known to have second and third fiber crossings, the PCR and SLF. The rightmost 

column in Figure 7 shows the atlas-based definition of the SLF and PCR used for 

Figure 6.  Comparison of NORDIC processing with averaging of repetitive acquisitions to 
increase SNR. The left two columns are for a single acquisition across 3 different resolutions and 
the right two columns are for the averaging of the repetitive acquisitions. In each case, EDDY 
processing was applied. Supplemental Figure S4 illustrates the same data and also includes 
reconstruction by MPPCA for comparison. 
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quantification of crossing fibers; all voxels within the regions shown by the green and red 

colors were used for the analysis. 

In the top row, the fiber detection rate shows that for the 1.5mm resolution data, a high 

percentage of voxels in these VOIs supports both a second and third fiber; for the 1.5mm 

data set, there is minimal impact of the patch size either on the detection rate (top row, 

Fig. 7) or the gain in fiber orientation accuracy (bottom row, Fig. 7) as the ratio between 

the dispersion determined for the standard and NORDIC processing. The impact of the 

patch size is much more pronounced for the higher resolution data, which have 

intrinsically lower SNR.  For 1.17mm resolution, the detection rate of voxels supporting a 

second and third fiber increases with the patch size and plateaus at the 113; the gain in 

fiber orientation accuracy increases correspondingly and is largest for the 113 patch size 

and then degrades for increasing patch sizes without a corresponding increase in the 

number of fibers being detected. Similarly, for the 0.9mm resolution data, the gain in fiber 

orientation accuracy is highest for the 113 patch size; in this case , however, the detection 

rate of voxels supporting a second and third fiber increases monotonically with increasing 

patch size, albeit, the reliability of those added fibers is low. This further suggests that, 

for a dMRI series with 99 q-space samples a patch size of 113 achieves the best trade-

off across resolutions.  
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…………………..  Figure 7 around here  ………………………………… 

 
 
Fiber Quantification Performance of NORDIC 
The trends of fiber orientation dispersion reflecting the uncertainty in the fiber orientation 

estimation and the reduction in this dispersion as a gain in fiber orientation accuracy with 

NORDIC are shown in Figure 8, for all dMRI data acquired (i.e. for the 5 subjects with a 

single acquisition at the three resolutions, and for the 3 subjects with repeated 

acquisitions at a single resolution). For the 5-subject data, the height of the bars in each 

plot represents the mean uncertainty and the mean gain in fiber orientation accuracy, 

calculated for the single (i.e. 1 repetition) acquisitions obtained from the 5 individuals; in 

this case, the error bars represent the standard deviation across subjects. These are 

plotted adjacent to single subject data (a different subject for each resolution), but 

acquired multiple times, with the height of the bars representing the mean of the repeated 

single acquisitions and the error bars representing the deviation among the different 

single acquisitions acquired in different sessions.  

NORDIC processing leads to major improvements in these diffusion metrics, as shown in 

Figure 8 both for the single and multiple acquisition(s) data obtained at each spatial 

resolution. For the single resolution and multiple acquisitions, the variability in gain in fiber 

orientation accuracy is more consistent than the variability in gain across subjects. 

Moreover, the absolute gain in accuracy (lower row Fig.8) between the two groups is 

similar for the 1.5mm and 0.9mm resolution.  For the 1.17mm the subject with repeated 

acquisitions had a lower uncertainty in the fiber dispersion before NORDIC processing, 

and the gain in fiber orientation accuracy in this case was not as large as for the group 

with multiple resolutions and single repetition. This is consistent with results shown in 

Figure 7, Effect of patch size in NORDIC processed dMRI data on fiber detection rate and 
accuracy for the three different resolutions. The 5 different patch sizes compared are with 
𝑛𝑛3 for 𝑛𝑛 = {3,7,11,15,19}. The top row, shows the detection rate of voxels which supports 
a second and third fiber, and the bottom row shows the gain in fiber orientation accuracy 
after NORDIC relative to the standard processing as a ratio between the dispersion 
determined for the standard and NORDIC processing. For MPPCA, the fiber detection rates 
were [94%, 77% and 38%] for the 2nd fiber, and [73%, 31% and  8%] for the 3rd fiber, with 
gains in Fiber orientation accuracy of [2.2, 3.4, and 3.0] for the 2nd fiber and [2.2, 3.3 and 
1.9] for the third fiber. 
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Figure 6: After NORDIC processing, the uncertainty in the single acquisition and the 

multiple acquisition groups became similar.   

 

 

…………………..  Figure 8 around here  ………………………………… 

 
 
In Figure 9, the fiber detection rate within a VOI in the brain regions SLF and PCR is 

plotted against the fiber orientation dispersion from the multi-resolution single repetition 

Figure 8. Quantitative metric in brain regions SLF and PCR for standard and NORDIC 
processed data for the 5 subjects scanned at different resolutions and the 3 subjects each scanned 
at a single resolution with multiple repetitions. The top row illustrates fiber orientation 
dispersion (reflecting the uncertainty in the fiber orientation estimation) for voxels within a VOI 
supporting a second fiber (left), and supporting a third fiber (right); for this metric, lower height 
of the bar indicates better performance (lower uncertainty). The gain in fiber orientation 
accuracy (i.e. a decrease in dispersion reported as the ratio of the dispersions calculated with 
standard to that calculated with NORDIC processing) is shown in the lower row for the voxels 
supporting second (left) a third fiber (right); for this metric, the higher bar indicates better 
performance for NORDIC. The rightmost column in Figure 7 shows the segmentation of the 
SLF and PCR used for quantification of crossing fibers. The error bars for the multi-resolution 
single repetition data represents the variability between subjects, and the error bars for the 
single-resolution multiple repetitions shows the variability within subjects but over different 
acquisitions. In case of MPPCA for the single-resolution multiple repetitions, gains in Fiber 
orientation accuracy were [2.2, 3.4 and 3.0] for the 2nd fiber for the 1.5, 1.17 and 0.9 mm 
resolution data, respectively; the corresponding numbers were [2.2, 3.3 and 1.9] for the third 
fiber with MPPCA processing. 
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data and from the single resolution multiple repetitions data.  The plots shown in the top 

row are for voxels supporting second fibers, and those in the bottom row are for voxels 

supporting a third fibers.  

Multi-resolution single repetition data: In each plot, the green diamonds with black outline 

designate the values for the standard reconstruction, the red triangles with black outline 

designate the values for NORDIC processed data and the black stars designate the 

values for MPPCA. With the application of NORDIC, the change in dispersion of the 

second fiber for the 1.5mm, 1.17mm and 0.9mm data, reflect a gain in fiber orientation 

accuracy (a decrease in dispersion) of a factor  2.6, 8.9 and 10.1, respectively, for the 

second fiber, and 2.5, 7.6 and 5.4 for the third fiber (green bars in Figure 8). For the 

1.5mm, 1.17mm and 0.9mm with NORDIC the detection rate of voxels with second fibers 

was about the same at 96%, 95% and 87% of the atlas based VOI, while the detection 

rate of voxels with third fibers was 82%, 73% and 45%. This is not surprising, as detection 

of third fibers is more sensitive to higher noise levels in the higher resolution data. 

 

Using NORDIC processing, resulted in gains in the metrics plotted in Figure 9, fiber 

detection and orientation accuracy, compared to the MPPCA technique; in this two-

dimensional plot, the NORDIC points appear higher in detection rate axis and lower 

(towards the left) on the fiber orientation dispersion axes compared to the MPPCA 

processed data, particularly for the lower SNR 1.17 and 0.9 mm data. Looking at the fiber 

orientation dispersion metric alone, with NORDIC denoising relative to MPPCA, the gain 

in orientation dispersion for the average of 2nd and 3rd fiber is higher with NORDIC by a 

factor of 1.15, 2.45 and 3.3 for the 1.5mm, 1.17mm and 0.9mm data, respectively. 

Single-resolution multiple repetition data:  In each plot, the green diamonds and red 

triangles without a black outline are the standard and NORDIC processing of the single 

repetition data,  respectively from the pool of data where a single individual was scanned 

multiple times for a given resolution. With the application of NORDIC, the change in 

dispersion of the second fiber for the 1.5mm, 1.17mm and 0.9mm data, reflect a gain in 

fiber orientation accuracy (a decrease in dispersion) of a factor  2.0, 4.6 and 6.6, 
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respectively, for the second fiber, and 2.4, 4.8 and 4.9 for the third fiber (blue bars in 

Figure 8). 

The blue diamonds and triangles are the average of the repeated acquisitions processed 

with standard and NORDIC processing, respectively, where after reconstruction each 

acquisition is independently corrected with EDDY, then jointly motion corrected and 

averaged before processing with bedpostX.  

For the 3 subjects with multiple repetitions, the dispersion of the second fiber for the SLF 

and the PCR were calculated for each individual series separately and after averaging 

the multiple repetitions of the dMRI data. For the standard data without NORDIC, the 

average gain in uncertainty was 3.2, 3.1 and 2.8 for the 1.5mm (with 6 averages), 1.17mm 

(with 5 averages) and 0.9mm (with 3 averages), respectively. The gains are slightly higher 

than the direct gains in image SNR of √6, √5, and √3 respectively, and supports using 

the gain in fiber orientation accuracy as a proxy of SNR.   

 

After processing each series with NORDIC, the fiber orientation dispersion of the second 

fiber of the averaged series for the 1.5mm resolution changed by factor 1.28 relative to 

each individual series. For the 1.17mm resolution, the fiber orientation dispersion 

changed by 1.94 relative to each individual series, and for the 0.9mm resolution, the fiber 

orientation dispersion changed by 1.97 relative to each individual series.  

The smaller change noted for the 1.5mm indicate that for a single series, after NORDIC, 

the dMRI model is not able to better describe the underlying properties, since the standard 

data already has good SNR, whereas the SNR of the 1.17mm and 0.9mm individual scans 

is more substantially improved by NORDIC.  
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…………………..  Figure 9 around here  ………………………………… 
 

 
 
Impact of NORDIC for Whole Brain Tractography 
In order to demonstrate the whole brain effect of improved detection of crossing fibers in 

the NORDIC processed data,  the connectivity of the entire subject specific PCR from 

Figure 7 (both left and right hemisphere) with the rest of the brain was investigated 

qualitatively using probabilistic tractography (‘probtrackx’)(Behrens et al., 2007). The 

connection strength, defined as the number of streamlines (extracted by the tractography 

Figure 9 Scatter plot of the detection rate of voxels with second (top row) and third (bottom 
row) fibers against the fiber orientation dispersion, reflecting the uncertainty in the fiber 
orientation estimate for the fibers in the brain regions PCR and SLF after bedpost processing. 
The VOI is determined from the subject independent JHU-ICBM atlas, and resampled to the 
data-space for each subject. The vertical axis (detection rate) is expressed as % of voxels in the 
VOI that contain two or three fiber crossings (second and third fibers, respectively).  
For multi-resolution single repetition the standard Single, NORDIC Single and MPPCA 
Single processing are shown, and for single-resolution multiple repetition the standard Rep 
and NORDIC Rep processing are shown. The Standard Avg and NORDIC Avg are extracted 
from dMRI data after averaging of multiple repetitions obtained at a single resolution, where 
each acquisition is independently corrected with EDDY, then jointly motion corrected and 
averaged before processing with bedpostX.  
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algorithm) passing through each brain voxel, and connecting the PCR to the rest of the 

brain, is used to represent the connectivity (Behrens et al., 2007). Figure 10a shows 

sagittal, coronal, and axial views of the connectivity distribution for the 0.9mm data from 

the probabilistic tractography for standard processing of a single acquisition (left), the 

average of the repeated acquisitions (right), and the NORDIC processed single 

acquisition (middle).  

The regions covering the main white matter tracts near the seeds, in both left and right 

PCRs, show high connection strength in the standard data, and with the NORDIC-

processed data. These connectivity distributions are expanded along the tracts with 

increased symmetry, for example along the corticopontine and corticospinal tracts. The 

improved probabilistic tractography of the fiber bundles passing through the PCR 

connecting it better to the rest of the brain, which is a result of the improved detection of 

second and third crossing fibers along with reduced orientation uncertainty, is evident in 

the single acquisition NORDIC data, compared to the standard data. In addition, the figure 

also shows improved connectivity in single acquisition NORDIC data compared to the 

standard average data, especially around the brainstem. Figure 10b shows sample 

sagittal views of the connectivity distribution from the probabilistic tractography results for 

1.17mm (upper panel) and 1.5mm (lower panel) data, for single acquisition (left), single 

acquisition NORDIC (middle), and average of multiple acquisitions (right). For the 1.7mm 

and 1.5mm acquisitions, the improved connectivity profile from the cortex through the 

PCR to the pons can be seen, and the NORDIC-processed 1.17mm data exhibits similar 

sensitivity for the connectivity as in the standard 1.5mm data. These observations can be 

partly explained by the improved sensitivity to crossing fibers, and performance of the 

NORDIC-processed data, as demonstrated in the quantitative comparisons in Figure 9. 

In these experiments, we showed that the orientation dispersion (the proxy for SNR) of 

the second and third fiber, after the use of NORDIC, is less than 0.1 across all resolutions, 

the detection rate of voxels with a second fiber is in excess of 80% of the atlas based 

voxels, and the detection rate of voxels with a third fiber after NORDIC for the higher 

resolutions is higher than the standard processing for the lowest resolution. . 

Corresponding results for MPPCA are shown in Supplemental Figure S5, from which 

improved connection strength with NORDIC compared to MPPCA processing, is evident 
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in the corpus callosum area for high resolution acquisitions. At 1.5mm, the difference 

between MPPCA and NORDIC processed data is less compared to that at higher 

resolutions, mainly because the number of second fibers estimated at 1.5mm is 

somewhat similar between these methods, but the improvement in connection strength 

(the width of the connections shown in yellow) is visible which is due to the lower 

orientation dispersion and higher number of third fibers resolved in the NORDIC 

processing.  

 

 

…………………..  Figure 10 around here  ………………………………… 

 

 
 
The effect of NORDIC is demonstrated on tractography streamlines with two high 

resolution data in Figure 11. Figure 11A, B show the streamlines constructed before and 

after NORDIC denoising, from the same 0.9mm data which was used for all the previous 

analysis presented in Figures 1 through 10. The relatively poor SNR of this acquisition 

results in tractography streamlines that are clearly problematic on visual inspection, most 

obviously evidenced by the discontinuities in the normally prominent corticospinal tracts 

Figure 10, Comparison of connectivity distributions from the probabilistic tractography 
results for 0.9mm data (A), and 1.17mm ((B) upper panel) and 1.5mm ((B) lower panel) data 
representing connectivity of the entire subject specific PCR. 
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and the almost randomly oriented appearance of the streamlines near the cortical surface. 

The use of NORDIC fixes these problems.  This improvement in the tractography 

streamlines are fully consistent with the probabilistic tractography results given in Figure 

10. A more dramatic improvement is shown in Fig.11C and D, using a 0.7mm isotropic 

whole brain dMRI data. In this 0.7mm data, without denoising the tractography completely 

fails except in the corpus callosum. After denoising the commonly seen tracks are now 

clearly detectable. 

 

 
…………………..  Figure 11 around here  ………………………………… 
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Discussion 
In this study on the impact of locally low rank constrained processing for dMRI, we have 

proposed a pre-processing pipeline and a parameter-free thresholding technique based 

on the known properties of Gaussian thermal noise by selecting the largest singular value 

of i.i.d. noise. We jointly refer to this thresholding technique and pre-processing pipeline 

as the NOise Reduction with DIstribution Corrected (NORDIC) PCA. While the use of the 

spectrum of random noise is reminiscent of the MPPCA method, there are several key 

differences. MPPCA is typically implemented to work on DICOM images, which do not 

generally fit the assumptions in the Marchenko–Pastur law and its theoretical bounds. In 

our approach, this issue of not having i.i.d. zero-mean noise components was resolved 

by using complex-valued processing and spatial noise correction to match with the 

Marchenko–Pastur law. The g-factor for the k-space reconstruction method is determined 

from the reconstruction parameters and captures precisely regions with rapid changes in 

thermal noise. The g-factor based spatial noise correction enables a consistent use of 

thresholding across regions with otherwise rapidly changing spatially non-uniform thermal 

noise levels. In dealing with complex data, we further proposed a phase-stabilization 

approach to promote the low rank nature of patches by explicitly reducing the fluctuations 

in the phase of the MR signal subsequent to diffusion encoding during q-space sampling; 

this phase is not used for dMRI analysis, and removal of its variations does not impact 

the information inferred from the diffusion encoding.  Additionally, in MPPCA, the 

threshold for denoising is determined from the data itself by estimating the number of 

components from a singular value decomposition that can be summed while still being 

within the limits of the asymptotic spectral bounds of random matrices. This favors looking 

Figure 11, Comparison of tractography streamlines without and with NORDIC processing. 
The top row shows a comparison for the 0.9mm isotropic resolution data analyzed in Figure 5 
to Figure 10 using a single repetition with standard processing (A), and with NORDIC 
processing (B).  The bottom row, likewise shows a comparison for the 0.7mm isotropic 
resolution data with standard processing (C) and with NORDIC processing (D). This 
improvement in the tractography streamlines are fully consistent with the probabilistic 
tractography results given in Figure 10.  The 0.7 mm data set has different acquisition 
parameters and as such cannot be directly compared to the 0.9 mm data per se; it is included 
here only to show a more dramatic improvement possible with lower SNR data. 
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for sharp transitions in the spectra, reflecting an underlying low-rank signal; even though 

visually evident, this is not a guaranteed criteria and when missed removes too many 

signal components as well as noise.  In contrast, in our approach, the largest singular 

value of the known thermal noise is selected, which is equivalent to removing all 

components that cannot be distinguished from random Gaussian noise.  

MPPCA as a default implementation in (Veraart et al., 2016) and in dwidenoise in 

MRTricks for the application of the Marchenko-Pastur based technique for DICOM 

(magnitude) images, uses a 53 patch for the Casorati matrix, with a fast mode where the 

patches are not overlapping and a full mode where they overlap. The implementations 

can also be applied to complex images, but without additional modifications that ensure 

a spatially uniform noise distribution; consequently, the performance is inferior to the 

magnitude implementation. The determination of significant signal components for 

MPPCA is elegant in that, for local patches, it calculates a threshold based on the tail of 

the spectrum from the analytic decay properties of random noise, but it is conceptually 

challenging to know what threshold was determined and if the data has properties that 

could be better exploited.  

For NORDIC we demonstrate that a patch size of 113 is better for a series with 99 volumes 

in maintaining the correct contrast across q-space acquisitions, corresponding to a ratio 

of approximately 11:1 of the M×N patch sizes used for NORDIC processing. While larger 

patch sizes are also beneficial for reaching the asymptotic conditions for the Marchenko-

Pastur, larger patch sizes are not good for LLR techniques since the large patches 

become highly heterogeneous with respect to tissues of different kinds and, as such will 

deviate from being low-rank and will make the determination of the threshold more 

difficult. The spread in the square of the spectra of the noise increases only as √𝑀𝑀, and 

for MPPCA the trade-off in patch size was found to be 53 such that the spectrum has a 

large slope, which more quickly provides a contrast when the joint singular value 

spectrum has both a signal and noise contribution. For larger patches, small benefits 

relative to the computational challenge was also found (Ma et al., 2020). Although it 

should be noted that for large kernels such as 113 using patch overlap of just ½ the FOV 

creates virtually identical reconstructions to the maximal overlapping reconstruction, while 
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also reducing the computation 50 fold and making it comparable with 53 kernels in terms 

of computation time. With this, a simple matlab implementation of 113 patches is faster 

than the 53 for both NORDIC and MPPCA. 

For NORDIC, the absolute noise-level in image space is assumed to be known which is 

not normally tracked since most MRI images are not reconstructed in absolute SNR units 

as proposed in (Kellman and McVeigh, 2005), but are typically coarsely scaled to 

maximize the precisions in the data-type used. The system calibrations performed prior 

to each acquisition has the information about the k-space noise-level. In our 

implementation, a synthetic signal based on the i.i.d. noise estimate initially was used to 

artificially create an extra volume in the series. The noise-level in image space after 

removal of the g-factor noise can also be estimated from a region without signal, or 

alternatively an acquisition without RF excitation can be added. All of these approaches 

provide the same information needed for selecting the NORDIC threshold. Likewise one 

can hypothesize that an absolute shift-invariant noise-level can be obtained with the 

MPPCA as a mean estimate of each locally estimated noise-level with (eq.2), or as 

proposed for MRI by Foi et al (Foi, 2011) using the variance stabilizing transform.  

The denoising with either MPPCA on magnitude images or NORDIC on complex images 

recovers the underlying image when the SNR is high enough (Figure 5 and Supplemental 

Figure S3); however, as the SNR decreases the impact of the non-zero iid thermal noise 

becomes more apparent for the MPCPA processed data as revealed in a loss of q-space 

contrast and residual high-spatial frequency modulations. This is reflected less in an 

average measure such as the FA map, but quantitatively shown for the fiber orientation 

dispersion (Figure 9 and Supplemental Figure S5). The recently proposed VST algorithm 

(Ma et al., 2020) confronts the difficulty of working with magnitude data using a two-step 

approach to resolve the Rician and the spatially varying noise and then uses MPPCA for 

denoising. Although this approach provides improvements over simply working with 

magnitude data with Rician noise distribution, it also introduces spatial smoothing which 

the NORDIC approach does not. One such example is shown in Supplemental Figure S6 

for both 1.17mm and 0.9mm isotropic resolution with b=3000s/mm2. Using AFNI 

tools(Cox, 1996) for Gaussian blurring through estimation of auto-correlation function 

among voxels, for VST an increased blurring of 50-100% for the 1.17mm and 0.9mm 
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isotropic resolutions was measured. Such blurring is in general undesirable especially 

when high resolutions are intentionally targeted for improved tractography Nevertheless, 

for data that exists only in DICOM format, as they do for example in many large databases 

generated to date and still being collected in many laboratories, VST is a better option 

then applying MPPCA directly as exhaustively demonstrated by Ma et al (Ma et al., 2020). 

However, if complex valued data can be saved, as we are sure will be going forward, 

NORDIC is the preferred image reconstruction method.  

 

The application of LLR assumes a low-rank signal, and sporadic or random motion 

increases the underlying rank of the image series, since the low-rank model needs to 

encode both the bio-physical signal properties and the motion model. As such, motion 

corrected data can be better corrected for thermal noise fluctuations. For dMRI, eddy-

currents specific to the diffusion encoding direction and magnitude introduces volume 

specific distortions, which increases the volume-to-volume variability. While correcting for 

these fluctuations with post processing algorithms like EDDY before noise-removal 

increases the volume-to-volume anatomical consistency, it also changes the noise-

properties. Furthermore, since EDDY is known to correct for higher order effects, such as 

slice-dependent signal dropout from motion and volume specific susceptibility distortion 

correction it warrants further investigation what effects are obtainable if the LLR and 

EDDY corrections are switched or integrated jointly.  

The known image reconstruction parameters of sensitivity profiles, determined with 

ESPIRIT, for the SENSE-1 reconstruction, and the slice-GRAPPA convolutional kernels, 

determined jointly for MB×R acceleration, are used through the pipeline to provide the 

desired noise-properties of i.i.d. Gaussian without introducing additional estimations. This 

furthermore provides as a fast and mathematically exact calculation of the known 

parameters as auxiliary information that should be beneficial for general quantification of 

parameter mapping since it facilitate exact quantification of spatial SNR for MB×R 

acquisitions. The use of NORDIC preserves subtle consistent features in the images, 

which may include Nyquist ghosting and residual slice-aliasing. 
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Under controlled conditions, and using metrics from the HCP for dMRI information content 

evaluation, acquisitions with 1.5mm, 1.17mm and 0.9mm were used. The 1.5mm protocol 

was aligned with the lifespan protocol and the sequence parameters for the 1.17 and 

0.9mm protocols where selected such that they weighted towards shorter TR, versus 

higher image SNR. This required aggressive use of combined slice and phase-encoding 

undersampling. The 1.17mm had about 5-fold less SNR than the 1.5mm (2-fold reduced 

volume, √2 for phase-encoding undersampling, g-factor with acceleration of MB×R=5×2 

versus MB×R=4×1, and 20% higher signal from shortened TE from phase-encoding 

undersampling); this SNR difference also corresponded  to mean fiber orientation 

dispersion in the PCR region of the brain of 0.2 versus 0.04 for the 1.17 mm vs the 1.5mm 

data, respectively, reflecting the greater uncertainty in determining the fiber orientations 

in the  lower SNR, 1.17mm data; the 0.9mm had about half the SNR of the 1.17mm (35% 

higher from the longer TE, and less efficient from the longer TR). 

For the 1.5mm resolution data with NORDIC processing, approximate gains in fiber 

orientation dispersion of factor 2 were achievable; for the lower SNR 1.17mm and 0.9mm 

resolution data, NORDIC yielded larger gains, approximately 5-fold, in fiber dispersion.  

The single-resolution multiple repetition data also demonstrated that gains in fiber 

orientation dispersion achieved with NORDIC processing correlated with gains in image 

SNR achieved with averaging multiple acquisitions. Ultimately, the gains realizable in fiber 

dispersion are probably more limited by the dMRI model fitting, which plateaus at high 

SNR, as seen with averaging of repetitive scans. This implies that the higher resolution 

the low SNR is well-suited for locally low rank processing to improve the apparent SNR 

attained with model-fitting.  

The effect of NORDIC is demonstrated on tractography streamlines with two high 

resolution data in Figure 11. Such streamlines of course do not provide a quantitative 

demonstration of the effects of NORDIC denoising, but they do provide a qualitative and 

impactful visual demonstration of the improvements achieved with NORDIC denoising. It 

would not be possible to fully appreciate the extent and the nature of what denoising has 

done to the dMRI data just by looking at the tractography results, although clearly 

anatomically well-known tracts are incomplete or absent in the original data and are 
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clearly seen in the denoised data. However, with the detailed and quantitative evaluation 

presented in Figures 1 through 9, the improvements documented with probabilistic 

tractography in Figure 10, and tractography streamlines in Figure 11 can a priori be 

expected. 

While the presented denoising technique can be applied broadly to other types of image 

series, the interaction of NORDIC with the model used for assessing the underlying 

information should be scrutinized. Here, whole brain tractography was used to 

qualitatively asses the effect of LLR processing, while region-specific analysis was used 

for quantitative comparison. The conceptual basis of removal of image content which 

cannot be distinguished from Gaussian noise in the LLR model, has broad applications 

and implications to signal modelling in applications such as ASL, and fMRI and general 

parameter mapping. In addition to dMRI, ASL and fMRI can also be SNR-starved either 

due to higher resolution applications and/or the amount of scan time that is available to 

acquire data – suggesting that such applications could benefit enormously, without cost, 

from NORDIC, and warrants further application specific investigations. 

Conclusion. 
We propose and validate a noise reduction technique for dMRI using a data processing 

pipeline that leads to a zero-mean i.i.d. noise component for locally low-rank processing, 

which enables the use of a parameter-free threshold selection based on random matrix 

theory. With the removal of image content which cannot be distinguished from Gaussian 

noise, this method was shown to improve model-fitting and structural connectivity 

mapping. Using NORDIC, the improvements in extractable information content has an 

increased impact especially for low SNR data, but it would also benefit routine protocols 

such as the HCP Lifespan. 
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Supplemental Information  
 
 
For NORDIC processing of dMRI data a two-step (x+t) phase-stabilization is used. The 

motivation and impact each step is illustrated in supplementary figure S1. 

 

 
 
 

 
A real-valued simulation was performed to evaluate the proposed NORDIC method using 

a high SNR reference volume with spatial matrix size 140x140x92, and with 99 volumes 

(q-space samples). Supplemental figure S2 shows the reconstructions and the residuals 

from the reconstruction.  

Figure S1:  The change in phase with the (x+t) phase-correction. Panel A: a coronal 
cut through the 3D volume is shown, the raw data (step 0, Panel A) exhibit a slice-
dependent absolute phase from the estimated sensitivity profiles. This is significantly 
reduced in Step1 (Panel A), and further suppressed in Step 2 (Panel A). Panel B: top 
row, the absolute phase in step 1, for 4 different q-vectors is show for an axial slice, 
and the bottom row show the remaining phase after the correction with step 2. Panel 
C: the estimated average phase in step 1 is shown for two adjacent slices, reflecting 
the change necessary. 
 



 

 
 

 
 
 
 
  

Figure S2. Real valued simulation of the quality of the “optimal“ signal recovery with NORDIC. 
Panel A shows for a single slice the quality of the images reconstructed with denoising using 
NORDIC and MPPCA subsequent to SNR degradation with the addition of noise, and Panel 
B shows the difference between the noisy image and the recovered image. The reference 
images are shown in Fig. S2A.i, before addition of noise and in Fig.S2A.ii, after addition of 
noise. The NORDIC methods are compared for patch-sizes of 53, 73, and 113 (middle row), 
and the MPPCA method (bottom row) are compared using the Gaussian noise and Rician 
noise.  



Figure S3 illustrates an axial slice of the FA map obtained after dMRI processing (right 

three columns), and the image of the corresponding slice from the volume with b=3000 

s/mm2 weighting (left three columns), for the three different resolutions and a single 

subject. The FA maps and the corresponding slice image with b=3000 s/mm2 are 

presented for the standard-, MPPPCA and the NORDIC-processed data, for the different 

resolutions. The signal scaling for the bottom row is adjusted for each resolution, since 

SNR varies with resolution.  

 

 
 

 
 
  

Figure S3 The effect of NORDIC and MPPCA are shown on a single slice from a 
diffusion weighted volume (b=3000 s/mm2) across different resolutions (left three 
columns) and on FA maps (right three columns) for the same slice extracted for the 
different reconstructions. The FA maps are obtained after EDDY processing, and the 
reconstructed images are before EDDY processing.  
 



For the 3 subjects with repeated acquisitions, the effect of NORDIC and MPPCA after 

EDDY correction is shown in Figure S4 for an axial slice in each subject.  In this case, 

each single “repetition” refers to the pair of separate acquisitions with reversed phase 

encoding which is used for EPI corrections. TOPUP/EDDY, combines data with opposite 

phase-encoding directions, improving the SNR by approximately √2 compared to a true 

single acquisition. 

 

 
 

  

Figure S4.  Comparison of NORDIC and MPPCA processing with averaging of 
repetitive acquisitions to increase SNR. The left three columns are for a single 
acquisition across 3 different resolutions and the right three columns are after 
averaging 6, 5 and 3 of the repetitive acquisitions respectively. In each case, EDDY 
processing was applied.  
 



From Figure S5, Panel A, NORDIC processing shows improved connection strength 

compared to MPPCA processing, which is evident in the corpus callosum area.   

At 1.5mm, the difference between MPPCA and NORDIC processed data is less 

compared to that at higher resolutions, mainly because the number of second fibers 

estimated at 1.5mm is somewhat similar between these methods, but the improvement 

in connection strength (the width of the connections shown in yellow) is visible which is 

due to the lower orientation dispersion and higher number of third fibers resolved in the 

NORDIC processing. 

 

 
 
 

 
 
In Supplemental Figure S6 a comparison of denoising with the VST, NORDIC and 

MPPCA approaches is shown. As the SNR decreases the impact of the non-zero iid 

thermal noise becomes more apparent for the MPCPA processed data as revealed in a 

loss of q-space contrast and residual high-spatial frequency modulations in Panel B. The 

VST algorithm (Ma et al., 2020) confronts the difficulty of working with magnitude data 

using a two-step approach to resolve the Rician and the spatially varying noise and then 

Figure S5.  Comparison of connectivity distributions from the probabilistic tractography results 
for 0.9mm (A), 1.17mm (B), and 1.5mm (C) data, representing connectivity of the entire 
subject-specific posterior corona radiata [PCR]. For each, the figures illustrate the standard 
reconstruction on a single dMRI data set of the given resolution (labeled as “standard”), 
standard reconstruction performed on dMRI data obtained with averaging of multiple runs to 
increase SNR (labeled as Avg-standard), and NORDIC and MPPCA reconstructions of the 
data without any averaging. 
 



uses MPPCA for denoising. Although this approach provides improvements over simply 

working with magnitude data with Rician noise distribution, it also introduces spatial 

smoothing which the NORDIC approach does not. 

 

 

 
 

Figure S6.  Comparison of the denoised images using VST, NORDIC and MPPCA 
reconstruction. In Panel A, for b=3000 s/mm2, the images are shown for 1.17mm and 0.9mm 
isotropic resolution. For both VST and MPPCA in Panel A, different residual imaging artifacts 
are observed, while these are not present in NORDIC. In Panel B, the image difference 
between two q-space samples with the same b-value are correspondingly shown for VST, 
NORDIC and MPPCA. For the image difference in Panel B, VST exhibit spatially smoother 
patches whereas with MPPCA the image difference has more noise relative to both VST and 
NORDIC. Both VST and MPPCA has lost contrast and features that are preserved with 
NORDIC. VST in general outperforms MPPCA but not NORDIC. 
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