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ABSTRACT

Long scan duration remains a challenge for high-resolution
MRI. Several accelerated imaging strategies have been pro-
posed based on deep learning (DL) that require databases of
fully-sampled images for training. However, scan-specific
training is desired where individual variability is important,
e.g. in free-breathing cardiac MRI, or where such datasets
are not available due to scan time constraints for acquiring
fully-sampled data. Building on our earlier method called
Self-consistent Robust Artificial-neural-networks for k-space
Interpolation (sRAKI), we propose a scan-specific DL re-
construction method based on recurrent neural networks that
combines training and reconstruction phases of sSRAKI. We
use self-consistency among coils in k-space and regulariza-
tion in arbitrary domains, as well as consistency with acquired
data, in each iteration of the recurrent network. Results on
knee MRI show that this method improves upon parallel
imaging and compressed sensing methods.

Index Terms— Parallel imaging, compressed sensing,
machine learning, deep learning, neural networks, image
reconstruction.

1. INTRODUCTION

Numerous research studies have recently employed deep
learning as a means for accelerated MRI reconstruction to
address the issue of lengthy acquisition times [1-9]. In con-
trast to conventional techniques based on parallel imaging
[10] or compressed sensing [11], most of these techniques
require large databases of fully-sampled data to supervise
learning in the training phase for an end-to-end mapping
from undersampled k-space/distorted image to interpolated k-
space/distortion-free image. Furthermore, training databases
may not include all pathologies of interest, which may lead
to risks in generalizability for future diagnosis [12]. Addi-
tionally, in some cases, fully-sampled data cannot be reliably
acquired due to prohibitively long scan duration, such as
whole-heart coronary MRI [13].

Among the aforementioned DL. methods, robust artificial-
neural-networks for k-space interpolation (RAKI) takes a

scan-specific approach to training [6]. It trains convolutional
neural networks (CNN) on scan-specific autocalibrating sig-
nal (ACS) data for structured undersampling patterns. RAKI
has shown robustness against noise amplification particu-
larly at higher acceleration rates and lower signal to noise
ratio (SNR) regimes. We have recently extended this ap-
proach to arbitrary undersampling patterns using a technique
called self-consistent RAKI (sRAKI), which enforces self-
consistency among coils [14, 15]. In sSRAKI, training of the
neural networks and reconstruction were performed sepa-
rately, which can impact both effectiveness and efficiency of
reconstruction. We have addressed this issue in [16] by simul-
taneously performing the training and iterative reconstruction
phases of SRAKI using a recurrent neural network (RNN) ar-
chitecture [3, 7, 17, 18]. In this SRAKI-RNN approach, only
coil self-consistency [19] and data-consistency were used
during training and reconstruction. However, a regularization
term in image domain may be desirable to further improve
image quality.

In this study, we sought to develop an RNN-based ap-
proach for sSRAKI that incorporates an image domain regular-
izer in addition to coil self-consistency and data-consistency.
The unrolled RNN is trained end-to-end on scan-specific data.
The proposed method is tested in a knee MRI dataset, and
compared to conventional scan-specific self-consistency ap-
proaches based on SPIRIT and ¢/;-SPIRIT [19].

2. MATERIALS AND METHODS

2.1. Problem Formulation

Let y denote the undersampled noisy data from a multi-coil
MRI system with n. coils and x be the corresponding full k-
space data across all coils. The forward model for this system
is given as:

y =Dx+n, (D

where D is the undersampling operator and n is acquisition
noise. We use the following objective function to estimate x
using measurements y:

argmin[ly — Dx|3 + A|x — Gx)[3 + R(E"x), ()



where G(-) is the self-consistency interpolation function and
R(-) is the regularizer term to be trained, while E* generates
a SENSE-1 combined image from k-space [10]. The interpo-
lation function G(+) is implemented via scan-specific CNNZs,
which has shown to improve noise performance compared to
its linear counterpart [14].

This objective function can be solved using an iterative
optimization procedure. We unroll this iterative algorithm us-
ing a variable-splitting strategy [20] with quadratic penalty.
First the objective function in (2) is recast as:

arg min |y — D3 + Aju— G(w)[ + R(E"2)
+ Bullx — ullf + Ballx —

where 31 and (35 are parameters of the quadratic terms. This
can be optimized by alternating minimization over each vari-
able. For the 7™ iteration, this is performed as follows:

u® = argmin AJu — G(u)|3 + BilxUD — w3 (4a)
z() = arg mzin R(E"z) + 52HX(FI) — 2|3, (4b)
x(®) = arg min [y — Dx|3 + B x — u |3

+ Bollx — 2|3, (4c)

where z(9) is the initial k-space data zero-filled for non-
acquired elements. This procedure can now be unrolled for
a fixed number of T iterations into an RNN as shown in Fig.
1. In this architecture, sub-problems (4a) and (4b) are solved
via two distinct trainable CNNs, eliminating the need for pa-
rameter optimization. Furthermore, the linear sub-problem in
(4¢) has a closed form solution:

x) = (DTD+(B1+6)D)  (DTy+p1u +8,21), (5)

where I is the identity matrix. Since all the variables are in
k-space, and D is a diagonal matrix, the solution can be sim-
plified in a coordinate-wise manner, avoiding a large matrix
inversion. For the j‘h element of x(¥), we have:
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where (2 defines the indices of acquired elements.

The proposed RNN architecture for solving (2) will then
be trained end-to-end using scan-specific k-space data. All
the relevant parameters for the CNNs implementing the self-
consistency rule G(-), and the regularizer R(:), as well as
the (31, B2 for data-consistency will be learnt during training,
and applied during reconstruction. Since neural networks are
to learn the self-consistency and regularization terms in this
setting, a recurrent neural network (RNN) architecture with a
fixed number of iterations needs to be designed to implement
the iterative updating scheme of optimization.
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Fig. 1: (a) The recurrent network architecture of regularized
SRAKI-RNN unrolled for T iterations to simultaneously apply self-
consistency (SC), regularization (R) and data consistency (DC) and
perform the iterative reconstruction. (b) A single SC and R unit with
3 dense blocks (DB), a single convolutional layer (CL) at the out-
put, along with two skip connections to facilitate information flow
through network. (c) A closer view of the DB, with each CL being
followed by a ReL.U activation function.

2.2. Implementation Details

The RNN in Fig. 1 was unrolled for 5 iterations. As detailed
in the sub-problems (4a)-(4c), each iteration consists of paral-
lel application of the self-consistency (SC) and regularization
(R) units, followed by a data-consistency unit (DC) that com-
bines the initial elements with estimated values to yield the
end estimation of the corresponding iteration. SC and DC
units are implemented in k-space domain, while the regular-
ization unit first projects the data to the image domain us-
ing a non-trainable SENSE-1 operator and then project back
the output of the regularizer to k-space using the coil sensi-
tivites. The coil sensitivities are estimated prior to training
from the ACS data. Both self-consistency and regularization
units share a densely connected convolutional neural network
design similar to SRAKI-RNN in [16] with a growth factor of
8 channels and a kernel size of 3 x 3.

In contrast to our previous works on sRAKI [14, 16],
where the networks were trained on ACS data only via ret-
rospective random undesampling, the proposed regularized
sRAKI-RNN needs to be trained on the full k-space to avoid
regularizers from introducing blurring artifacts associated
with low-resolution data. To this end, we utilized a recent
self-supervised training method, called SSDU [21, 22]. For a
given undersampling pattern, all acquired elements were ret-
rospectively further undersampled by 50%, which were then
used to estimate the elements that were removed from the
undersampling. We note that since this is a post-processing
step during training, there are no physical constraints (e.g.
full-sampling along readout) to picking which elements can
be used to estimate the remaining ones. The network was
trained by minimizing an MSE loss function using Adam op-
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Fig. 2: A proton-density knee dataset from the NYU FastMRI database, retrospectively undersampled using a random variable density pattern
at rate 4, and reconstructed using SPIRIT, ¢/1-SPIRiT and sSRAKI-RNN. sSRAKI-RNN yields the best performance in terms of reconstruction
noise, reduction of blurring artifacts and quantitative metrics.

timizer with a learning rate of 0.01 and 1000 epochs. k-space
was normalized to the maximum absolute value of 1. Real
and imaginary components were concatenated for process-
ing, resulting in 2n, input and output channels. SPIRIiT and
£1-SPIRIT were also implemented for comparison.

2.3. Imaging Experiments

A coronal proton density (PD) knee MRI slice acquired with
a 15-channel coil from the NYU fastMRI database was used
for reconstruction in a scan-specific manner. A central slice
from one subject was selected. The oversampling along read-
out was removed for a matrix size of 320 x 368. All data
were retrospectively undersampled with a random variable
density pattern at an acceleration rate of 4 after keeping 24
ACS lines in the center. The reference image was used to
quantitatively assess the reconstructed images according to
normalized mean square error (NMSE) and structural simi-
larity index (SSIM) metrics.The experiments were repeated
for another coronal PD slice with fat saturation (PDFS).

3. RESULTS

Fig. 2 depicts a coronal PD slice from the NYU fastMRI knee
dataset reconstructed using SPIRIT, ¢;-SPIRiT and sRAKI-

Reference SPIRIT
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RNN. Reconstruction noise is visibly present in the SPIRiT
image, while both ¢1-SPIRIiT and sSRAKI-RNN reduce the
noise as expected due to regularization. SRAKI-RNN yields
the best results among these techniques in terms of both noise,
blurring artifacts and quantitative metrics.

Fig. 3 shows a coronal PDFS slice from the NYU
fastMRI knee dataset, reconstructed using the three tech-
niques. Similar to previous results, ¢1-SPIRIT and sRAKI-
RNN reduce reconstruction noise compared to SPIRIT. Fur-
thermore, SRAKI-RNN leads to improved quantitative results
over SPIRIT and #;-SPIRIT for both data.

4. DISCUSSION

We proposed a method for database-free accelerated MRI re-
construction using recurrent neural network architectures that
are trained end-to-end for arbitrary undersampling patterns.
sRAKI-RNN used both self-consistency in k-space and regu-
larization in image domain for improved reconstruction. The
results indicate that the proposed technique is robust to recon-
struction noise amplification and also successfully removes
aliasing artifacts. In contrast to compressed sensing, in which
both the regularizer and its parameters need to be explicitly
specified before reconstruction, SRAKI-RNN learns both of
these from the scan data.The way sRAKI-RNN is imple-
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Fig. 3: A proton-density fat-saturated knee dataset from the NYU FastMRI database, retrospectively undersampled using a random variable
density pattern at rate 4, and reconstructed using SPIRIT, ¢;-SPIRiT and sSRAKI-RNN. Both #;-SPIRiT and sSRAKI-RNN reduce reconstruc-
tion noise compared to SPIRiT, but SRAKI-RNN outperforms ¢; -SPIRIT quantitatively.



mented allows training and reconstruction without requiring
fully-sampled data in a scan-specific manner. This is espe-
cially important for applications, such as perfusion cardiac
MRI where one cannot acquire fully-sampled high-resolution
data due to physiological constraints or whole-heart coronary
MRI where a fully-sampled scan would be prohibitively long.

5. CONCLUSION

We have proposed an accelerated MRI reconstruction tech-
nique using recurrent neural networks that is robust to recon-
struction noise amplification. This technique is database-free
and the networks are trained individually for each scan.
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