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ABSTRACT

Deep learning based MRI reconstruction methods typically
require databases of fully-sampled data as reference for train-
ing. However, fully-sampled acquisitions may be either chal-
lenging or impossible in numerous scenarios. Self-supervised
learning enables training neural networks for MRI recon-
struction without fully-sampled data by splitting available
measurements into two disjoint sets. One of them is used
in data consistency units in the network, and the other is
used to define the loss. However, the performance of self-
supervised learning degrades at high acceleration rates due
to scarcity of acquired data. We propose a multi-mask self-
supervised learning approach, which retrospectively splits
available measurements into multiple 2-tuples of disjoint sets.
Results on 3D knee and brain MRI shows that the proposed
multi-mask self-supervised learning approach significantly
improves upon single mask self-supervised learning at high
acceleration rates.

Index Terms— Self-supervised learning, physics-guided
deep learning, accelerated imaging, parallel imaging

1. INTRODUCTION

Data acquisition is lengthy in many MRI exams, necessitat-
ing the use of accelerated imaging methods. Parallel imaging
[1, 2] and compressed sensing [3] are conventional acceler-
ated MRI techniques, but their acceleration rate is limited due
to either noise amplification or residual artifacts in the recon-
struction. Recently, deep learning (DL) approaches have been
proposed as an alternative to accelerate MRI [4—10]. Specif-
ically, physics-guided DL (PG-DL) techniques, which unroll
iterative optimization algorithms for solving a regularized in-
verse problem, have gained interest due to its robustness and
improved reconstruction quality [6, 7, 11].

PG-DL approaches are typically trained in a supervised
manner, requiring fully-sampled data as reference for train-
ing. However, acquisition of fully-sampled data may be
challenging or impossible in many scenarios rendering such
supervised PG-DL approaches inoperative [12]. Several

methods have been proposed to deal with this issue [12—
17]. Among these, Self-Supervision via Data Undersampling
(SSDU) is a self-supervised strategy that splits available
k-space measurements into two disjoint sets by a masking
operation [12, 13]. One of these sets is used for data consis-
tency (DC) in the unrolled network and the other is used to
define the loss in k-space. It was shown that SSDU performed
similar to supervised learning approaches at moderately high
acceleration rates. However, for higher acceleration rates,
in which acquired data becomes increasingly scarce, further
improvements that can efficiently augment the available data
is essential for enhanced reconstruction quality.

In this study, we aim to improve the performance of SSDU
with multiple masks. For each slice in the dataset, the pro-
posed multi-mask SSDU splits available undersampled mea-
surements into multiple pairs of disjoint sets, in which one of
them is used in DC units and the other is used to define loss
in k-space. Results on 3D knee and brain MRI show that the
multi-mask SSDU approach significantly enhances the recon-
struction quality of SSDU at high acceleration rates.

2. MATERIALS AND METHODS

2.1. Algorithm Unrolling for MRI Reconstruction
The inverse problem for accelerated MRI is given as
argmin |lyq — Eox|)5 + R(x), (1)

where yq, is the acquired k-space data, €2 is the sub-sampling
pattern, Eq : CM — CF is the multi-coil encoding operator,
x is the image to be recovered and R(-) is a regularizer. Eq.
(1) is decoupled into regularizer and DC units by standard
optimization methods, e.g. variable-splitting via quadratic
penalty [18], as

2" = arg min p||x0"Y — 2|2 + R(=2) (22)
x( = argmin |lyo — Box| + plx — 275 @b)

where z(?) is an intermediate variable and x(9) is the desired
image at iteration ¢. In PG-DL, the iterative algorithm is un-
rolled for fixed number of iterations. Neural networks are



used as regularizer for solving Eq. (2a) and DC sub-problem
in Eq. (2b) is solved via conjugate gradient (CG) [7].

2.2. Supervised PG-DL Training

In supervised PG-DL, training is performed by using fully-
sampled data reference. Let y’,; denotes the fully-sampled k-
space data for subject i and f(y?,, Ei,; 0) denotes the output
of the unrolled network for sub-sampled k-space data y?,, in
which the network is parameterized by 6. End-to-end training
is performed by minimizing [12]
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where N is the number of samples in the training database,
E;u” is the fully-sampled encoding operator that transform
network output to k-space and L(-, -) is a loss function.

2.3. SSDU PG-DL Training

Unlike supervised PG-DL approaches, SSDU does not re-
quire a fully-sampled data as reference for training. SSDU
splits available undersampled measurements, {2 into two dis-
joint sets, © and A as Q = O U A, where O denotes the
k-space locations used in the DC units in the network during
training and A denotes a set of k-space locations used in the
loss function. SSDU performs training without fully-sampled
data by minimizing difference between acquired k-space and
multi-coil k-space of the network output at A [12]
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2.4. Proposed Multi-Mask SSDU PG-DL Training

Data scarcity becomes more pronounced at high acceleration
rates, especially after further splitting them into two sets in
SSDU. We propose to overcome this issue by employing a
multi-mask SSDU approach, which retrospectively splits €2
into two disjoint sets ©; and A, for j € {1,..., K}, as illus-
trated in Figure 1. Hence, available measurements for each
slice in the dataset is partitioned K times such that

Q=0,;UA;, j=1,...,K 5)
with A; = Q/0O,. Hence the proposed multi-mask SSDU
training objective is to minimize
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Fig. 1: The proposed multi-mask self-supervised learning for PG-
DL MRI reconstruction. Acquired k-space locations for each scan,
Q, are retrospectively sub-sampled into two disjoint sets of ©; and
Aj for j € {1,..., K}. For each such partitioning, ©; is used for
DC units and A; = Q/0); is used to define the loss function. Loss
is performed in k-space by comparing acquired data with the multi-
coil k-space of the network output at indices A;. Subsequently, the
network parameters are updated based on the training loss.

2.5. Network Training Details

Sub-problems (2a)-(2b) are unrolled for 7' = 10 iterations.
DC units employs CG, and regularizers use the same ResNet
structure as in [12]. K = 7 was empirically selected through
hyperparameter tuning [19] and used throughout this study
for the proposed multi-mask approach. Coil sensitivity maps
were generated from central 24 x24 ACS using ESPIRIT [20].
All PG-DL networks were trained using an Adam optimizer
with a learning rate of 5-10~* over 100 epochs by minimizing
a normalized ¢; - /5 loss [12]. The network had a total of
592,129 trainable parameters.

2.6. Imaging Experiments

Fully-sampled 3D knee dataset were obtained from mri-
data.org [21], for which the imaging protocols were approved
by the local institutional review board. Data was acquired
on a 3T GE Discovery MR 750 system with an 8-channel
coil-array using a fast spin-echo sequence. Relevant imaging
parameters were: FOV = 160 x 160 x 154 mm? , resolution
=0.5 x 0.5 x 0.6 mm?, matrix size = 320 x 320 x 256.

Brain MRI was performed on a 3T Siemens Magne-
tom Prisma system with a 32-channel coil-array using a
3D-MPRAGE sequence [12]. The imaging protocols were
approved by the local institutional review board, and written
informed consent was obtained from all participants. Rel-
evant imaging parameters were: FOV = 224 x 224 x 157
mm?, resolution = 0.7 x 0.7 x 0.7 mm?, matrix size = 320
x 320, prospective acceleration R =2, ACS lines = 32.

2D slices were processed after taking inverse Fourier
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Fig. 2: A representative slice showing reconstruction results at R = 8 using CG-SENSE, supervised PG-DL, SSDU PG-DL and proposed
multi-mask SSDU PG-DL. CG-SENSE suffers from significant noise and artifacts. At this high acceleration rate, SSDU PG-DL also shows
residual artifacts (red arrows). Proposed multi-mask SSDU PG-DL suppresses these artifacts, which are still visible in supervised PG-DL.

transformed along the read-out direction for the 3D k-space
dataset. Knee and brain datasets were further retrospectively
subsampled to R = 8 by keeping 24 x 24 and 32 x 32 ACS
regions in the k, — k. plane using a sheared uniform un-
dersampling pattern, respectively [12]. For both datasets,
training was performed on 300 slices obtained from 10 sub-
jects by taking 30 central slices. Testing was performed on 8
and 9 different subjects for knee and brain MRI, respectively.

The proposed multi-mask SSDU PG-DL approach was
compared to CG-SENSE [22] and SSDU PG-DL, as well as
supervised PG-DL when applicable. The same network struc-
ture was used for all PG-DL approaches. Normalized mean
square error (NMSE) and structural similarity index (SSIM)
were used for quantitative assessments. Furthermore, a reader
study was performed for overall image quality on a 4-point or-
dinal scale (1: excellent, 2: good, 3: fair, 4: poor) [6], where
the reader was blinded to the reconstruction method.
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CG-SE

SSDU PG-DL R=8

3. RESULTS

Figure 2 shows a representative knee MRI slice reconstructed
using CG-SENSE, SSDU, proposed multi-mask SSDU and
supervised PG-DL. CG-SENSE suffers from visible residual
artifacts (red arrows). Proposed multi-mask SSDU visually
outperforms SSDU, while also reducing residual aliasing ar-
tifacts compared to supervised PG-DL, which is not reflected
in the quantitative metrics for this slice.

Figure 3 depicts reconstruction results of a slice from 3D-
MPRAGE data for CG-SENSE at acquisition acceleration R =
2, as well as CG-SENSE, SSDU PG-DL and the multi-mask
SSDU PG-DL methods at retrospective acceleration R = 8.
CG-SENSE at R = 8 suffers from significant noise amplifica-
tion, rendering it unusable. SSDU PG-DL at R = 8 shows sim-
ilar reconstruction quality as the clinical baseline CG-SENSE
at R = 2. Proposed multi-mask SSDU PG-DL further sup-

Multi-mask
SSDU PG-DL R=8

Fig. 3: Reconstruction results for a representative brain MRI test slice. CG-SENSE was applied at both the acquisition acceleration R=2
and further retrospective acceleration R=8, while SSDU PG-DL and the proposed multi-mask SSDU PG-DL approaches were applied at
R=8. While CG-SENSE suffers from significant noise amplification at R=8, SSDU PG-DL at R=8 achieves similar reconstruction quality to
CG-SENSE at R=2. The proposed multi-mask SSDU PG-DL further improves the reconstruction quality compared to SSDU PG-DL.
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Fig. 4: Median and interquartile range (25th-75th percentile) of the a) SSIM and b) NMSE values on test dataset. All PG-DL approaches
outperform CG-SENSE. Proposed multi-mask SSDU outperforms SSDU, while closely matching supervised DL-MRI in terms of both SSIM
and NMSE. c¢) Average reader scores for overall image quality on an 4-point scale (1: excellent, 2: good, 3: fair, 4: poor). For knee MRI,
CG-SENSE was rated lowest, whereas the proposed multi-mask SSDU PG-DL was rated higher than SSDU PG-DL and received similar
scores with supervised PG-DL. Similarly in brain MRI, CG-SENSE at R=2, which is the clinical baseline, received the lowest scores, while

the proposed multi-mask SSDU PG-DL at R=8 was rated highest.

presses the noise in SSDU PG-DL and achieves a superior
reconstruction quality.

Figures 4a and 4b show the average SSIM and NMSE
values for all reconstruction methods for the 3D knee data.
The proposed multi-mask SSDU PG-DL outperforms SSDU
PG-DL in terms of both SSIM and NMSE, while closely per-
forming with supervised PG-DL. Figure 4c shows the average
reader scores for overall image quality for both knee and brain
MRI. CG-SENSE was rated worst in both anatomies. The
proposed multi-mask SSDU PG-DL was rated higher higher
than SSDU PG-DL for both knee and brain MRI, while rank-
ing closely with supervised PG-DL in knee MRI. Furthermore
for brain MRI, both SSDU PG-DL approaches at R=8 were
rated higher than CG-SENSE at R=2, which corresponds to
the current clinical baseline.

4. DISCUSSION AND CONCLUSION

In this study, we proposed a multi-mask SSDU approach for
training PG-DL MRI reconstruction without fully-sampled
data, where the acquired k-space measurements for each
dataset in the training database were retrospectively split
into two disjoint sets multiple times. Results showed that
multi-mask SSDU approach improves the performance of
SSDU at high acceleration rates, while performing closely
with supervised PG-DL.

Although supervised PG-DL achieves higher quantita-
tive metrics compared proposed multi-mask SSDU PG-DL
approach in knee MRI, the qualitative results presented for
knee MRI showed that the proposed multi-mask SSDU ap-
proach has the potential to perform better than supervised
PG-DL in terms of handling residual artifacts. Moreover, the
reader study on knee MRI showed that the proposed multi-
mask SSDU improves upon SSDU PG-DL, considerably
closing the gap with supervised PG-DL. These assessments
align with recent self-supervised works that showed self-

supervised learning can indeed surpass supervised learning
approaches in several scenarios [23, 24].

The use of multiple masks in the DC units of an un-
rolled network proposed here offers an alternative approach
for data augmentation for medical imaging dataset as other
approaches such as rotations may not fit well since it ma-
nipulates acquired undersampled data. This is especially
important for cases where size of training dataset is small or
at higher acceleration rates where acquired data is inherently
scarce.
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