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ABSTRACT

Late gadolinium enhancement (LGE) cardiac MRI (CMR)
is the clinical standard for diagnosis of myocardial scar. 3D
isotropic LGE CMR provides improved coverage and resolu-
tion compared to 2D imaging. However, image acceleration
is required due to long scan times and contrast washout.
Physics-guided deep learning (PG-DL) approaches have re-
cently emerged as an improved accelerated MRI strategy.
Training of PG-DL methods is typically performed in su-
pervised manner requiring fully-sampled data as reference,
which is challenging in 3D LGE CMR. Recently, a self-
supervised learning approach was proposed to enable train-
ing PG-DL techniques without fully-sampled data. In this
work, we extend this self-supervised learning approach to 3D
imaging, while tackling challenges related to small training
database sizes of 3D volumes. Results and a reader study
on prospectively accelerated 3D LGE show that the proposed
approach at 6-fold acceleration outperforms the clinically
utilized compressed sensing approach at 3-fold acceleration.

Index Terms— Self-supervised learning, physics-guided
deep learning, accelerated imaging, parallel imaging, cardiac
MRI, late gadolinium enhancement

1. INTRODUCTION

Late gadolinium enhancement (LGE) cardiac MRI (CMR) is
the clinical gold standard for identification of myocardial scar
and fibrosis [1]. While 2D LGE CMR remains popular, 3D
imaging offers improved SNR and spatial resolution [2, 3].
Isotropic high-resolution 3D LGE further enables better de-
lineation of small structures, potentially improving the assess-
ment of left ventricular scar heterogeneity, right ventricular
scar and left atrial scar [4]. However, such high resolution 3D
scans are prohibitively long, which is especially problematic
in the presence of respiratory motion and contrast washout
[3]. Thus, image acceleration by means of parallel imaging
[5, 6] and compressed sensing (CS) [7–11], are necessary.

Recently, deep learning (DL) has been used for accel-
erated MRI due to its improved reconstruction quality over
conventional approaches [12–18]. Among such methods,
physics-guided DL (PG-DL) techniques unroll conventional
iterative algorithms consisting of data consistency (DC) and
regularizer units for a fixed number of iteration [12, 13]. The
DC units utilize conventional linear methods, while the reg-
ularizer units are implicitly implemented using convolutional
neural networks (CNNs) [12, 13, 19]. PG-DL approaches are
typically trained in a supervised manner using fully-sampled
data as ground-truth reference. However, acquisition of high-
quality fully-sampled data is not possible in high-resolution
3D LGE CMR due to contrast washout [3]. Thus, methods
for training PG-DL reconstruction without fully-sampled data
for improved LGE CMR is desirable.

Recently, several methods have been proposed for this
goal [16, 20–22]. Among these, a recent approach named
self-supervised learning via data undersampling (SSDU)
[20, 23] trains neural networks without fully-sampled data
by splitting available measurements into two disjoint sets.
One of these is used for the DC units in the unrolled network
and the other is used to define the loss function. SSDU was
applied to 2D knee and 3D brain MRI [20], showing match-
ing quality to supervised training and improved quality over
conventional methods. But in the latter setting, an inverse
Fourier transform was applied along the fully-sampled fre-
quency encoding direction, and the slices in this direction
were processed individually through a 2D unrolled network.
However, a truly 3D processing may further improve recon-
struction quality since: 1) Using 3D CNNs in regularizer
units may capture higher-dimensional correlations than the
2D case, 2) For self-supervised learning, 3D acquisitions pro-
vide a higher degree of freedom along three dimensions for
selecting the two subsets for loss and DC units.

In this work, we sought to enable PG-DL reconstruction
of 3D LGE CMR by extending the SSDU approach to 3D
imaging. Results on prospectively 3-fold undersampled 3D
isotropic high-resolution LGE CMR show that the proposed



3D self-supervised approach improves the reconstruction
quality compared to the clinical CS approach [4], both at the
acquisition acceleration rate, R = 3, and further retrospective
acceleration R = 6.

2. MATERIALS AND METHODS

2.1. Unrolling Iterative Algorithms

Let yΩ be the acquired k-space data with sub-sampling pat-
tern Ω, and x be the image to be recovered. The regularized
least squares problem for MRI reconstruction is given as

arg min
x
‖yΩ −EΩx‖22 +R(x), (1)

where ‖yΩ−EΩx‖22 is a data consistency term, EΩ : CM →
CP is the multi-coil encoding operator containing coil sen-
sitivities and partial Fourier matrix sampling, and R(·) is a
regularizer. There exist several approaches to solve Eq. (1),
such as proximal gradient descent (PGD) or variable splitting
with quadratic penalty (VSQP) [24].

In VSQP, DC and regularizer units are decoupled using
an auxilliary variable z that is constrained to be equal to x.
Then, Eq. (1) is reformulated as an unconstrained problem by
imposing a quadratic penalty

arg min
x
‖yΩ −EΩx‖22 + µ‖x− z‖22 +R(x), (2)

where µ is the penalty parameter. Eq. (2) is solved via alter-
nating minimization as

z(i) = arg min
z
µ‖x(i−1) − z‖22 +R(z) (3a)

x(i) = arg min
x
‖yΩ −EΩx‖22 + µ‖x− z(i)‖22 (3b)

where z(i) is an intermediate variable and x(i) is the desired
image at iteration i. In PG-DL, these conventional iterative
algorithms are unrolled for a fixed number of iterations, in
which each iteration contains a DC and a regularizer unit. In
PG-DL, regularizer sub-problem in Eq. (3a) is solved with
neural networks and DC sub-problem in Eq. (3b) is solved
via conjugate gradient (CG) [13].

2.2. Supervised PG-DL Training

Unrolled networks are trained end-to-end by minimizing a
cost function between the network output and a reference. In
supervised PG-DL, fully-sampled data is used as reference.
Supervised PG-DL performs end-to-end training by minimiz-
ing an objective cost function given as

min
θ

1

N

N∑
i=1

L(yi
ref, E

i
fullf(yi

Ω,E
i
Ω;θ)), (4)

where N is the number of samples in the training database,
L(·, ·) is a loss function, yi

ref is the fully-sampled k-space for

Fig. 1: The self-supervised PG-DL training without fully-sampled
data splits acquired sub-sampled k-space indices Ω, into two dis-
joint sets, Θ and Λ. The first set of indices, Θ, is used in the DC
units of the unrolled network, while the latter set, Λ is used to de-
fine the loss function for training. During training, the output of the
network is transformed to k-space, and the available subset of mea-
surements at Λ are compared with the corresponding reconstructed
k-space values. Based on this training loss, the network parameters
are subsequently updated.

subject i, f(yi
Ω,E

i
Ω;θ) is the output of the unrolled network

for sub-sampled k-space data yi
Ω with the network being pa-

rameterized by θ, and Ei
full is the fully-sampled encoding op-

erator that transforms network output to k-space.

2.3. Proposed 3D Self-Supervised PG-DL Training

When the acquisition of fully-sampled data is either challeng-
ing or impossible, hindering supervised training of PG-DL
approaches, SSDU enables training without fully-sampled
data by splitting available undersampled measurements, Ω
into two disjoint sets, Θ and Λ to perform DC and defining
loss. More formally, the cost function for training is modified
to perform loss only on Λ indices as

min
θ

1
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i
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))
. (5)

While the original SSDU was implemented with 2D net-
works [20], 3D processing is desirable as discussed in Section
1. However, in addition to the difficulty of acquiring fully-
sampled data for 3D scans, it is challenging to generate large
databases of 3D acquisitions to train neural networks with a
high number of parameters. We proposed to tackle these is-
sues by extending SSDU to 3D processing, as shown in Fig-
ure 1. In addition to the selection of Θ and Λ via Gaussian-
weighted masking in three dimensions, we also tackle the is-



sue of training data scarcity in databases by extracting multi-
ple smaller 3D slabs from a whole heart acquisition of each
subject. This is done by taking an inverse Fourier transform
along the fully-sampled read-out direction direction, dividing
the volume in this direction to smaller 3D sub-volumes, and
processing the 3D k-space of these volumes.

End-to-end training was performed by unrolling iterative
sub-problems in (3a)-(3b) for T = 5 iterations. DC units em-
ployed CG and regularizers used the same ResNet structure
as in [20], except 2D kernels of size 3× 3 were replaced with
3D kernels of 3×3×3. Coil sensitivity maps were generated
using ESPIRiT [25]. Proposed 3D self-supervised PG-DL al-
gorithm was trained using an Adam optimizer with a learning
rate of 5 · 10−4 over 100 epochs by minimizing a normalized
`1 - `2 loss [20]. All experiments for PG-DL approaches were
performed using Tensorflow in Python.

2.4. Imaging Experiments and Evaluation

3D LGE CMR were acquired axially at 1.5T with a 32-
channel coil array on 18 patients. The imaging protocols
were approved by the local institutional review board, and
written informed consent was obtained from all participants.
Imaging parameters were: TR/TE = 5.2/2.6 ms, FOV = 320
× 320 × 100 mm3, resolution = 1.2 × 1.2 × 1.2 mm3,
ACS = 40 × 24, prospective acceleration R = 3 with random
ky − kz sub-sampling [4].

The prospectively subsampled 3D LGE data was further
retrospectively subsampled to R = 6 by keeping a 24 × 24
ACS region in the ky − kz plane using a random uniform un-
dersampling pattern. Due to the small training database size,
smaller 20 × 270 × 102 3D slabs for training were gener-
ated as described in Section 2.3. Training was performed on
200 sub-volumes from 10 different subjects, and testing was

performed on the whole volume of 8 different subjects.
The proposed 3D self-supervised PG-DL approach was

performed at R ∈ {3, 6}. For R = 6 training, only data
available at this rate were used. Results were compared with
a clinically-used CS approach [4], LOST (Low-dimensional
structure self-learning and thresholding) applied at R = 3.
We note that results could not be compared with supervised
learning due to a lack of fully-sampled data. Quantitative met-
rics such as PSNR or SSIM were also not available due to the
lack of ground-truth data. Qualitative assessment of the re-
construction image quality was evaluated by an experienced
cardiologist using evaluation criteria of perceived SNR, blur-
ring and overall image quality. The reader was blinded to the
reconstruction methods and R. Evaluations were based on
a 4-point ordinal scale for blurring (1: no blurring, 2: mild
blurring, 3: moderate blurring, 4: severe blurring), perceived
SNR (1:excellent, 2: good, 3: fair, 4: poor) , and overall im-
age quality (1: excellent, 2: good, 3: fair, 4: poor). Wilcoxon
signed-rank test was used to evaluate the scores with a signif-
icance level of P < 0.05.

3. RESULTS

Figure 2 shows reconstruction results on a representative test
slice with negative LGE. The proposed 3D self-supervised ap-
proach was applied at both prospective acceleration R = 3
and further retrospective accelerationR = 6, while LOST-CS
was applied only at prospective acceleration R = 3. LOST-
CS reconstruction shows a mixture of noise-like amplifica-
tion and incoherent aliasing artifacts due to random under-
sampling, especially in the blood pool. The proposed 3D
self-supervised approach at both R = 3 and 6 suppress these
artifacts further and achieves improved reconstruction quality.

Figure 3 shows reconstruction results of LOST-CS and the

Fig. 2: Reconstruction results from a representative test slice without enhancement. LOST-CS was applied at the acquisition rate of 3, while
the proposed 3D self-supervised PG-DL approach was used at R = 3 and 6. LOST-CS suffers from visible noise-like and incoherent residual
artifacts. The proposed approach provides improved reconstruction at both R = 3 and 6. We further note that the proposed approach at
R = 6 only uses the data available at this rate for training, and does not have access to R = 3 data.



Fig. 3: Reconstruction results from a representative test slice with positive LGE. The proposed self-supervised PG-DL approach at both R = 3
and 6 outperform LOST-CS reconstruction at R = 3 by suppressing noise and residual artifacts. All reconstruction methods successfully
identify LGE shown with red arrows.

proposed 3D self-supervised approach on a subject with posi-
tive LGE (marked by red arrows). Similar observations apply
in this case, with the proposed method at R = 3 and 6 sup-
pressing the residual artifacts in LOST-CS at R = 3, while
also allowing a sharper depiction of the myocardium-blood
border. All approaches show the enhancement region clearly.

Figure 4 summarizes the reader study for 3D LGE CMR
dataset. Bar-plots show the average and standard deviation of
reader scores across the test dataset. For blurring, all methods
were statistically in good agreement, while the proposed 3D
self-supervised at R = 3 and R = 6 was rated higher than
LOST-CS at R = 3. For both perceived SNR and overall
image quality, proposed 3D self-supervised at R = 3 and 6
were rated statistically better than LOST-CS at R = 3 which
is the current clinical approach.

Fig. 4: The image reading results from the clinical reader study for
3D LGE CMR. Evaluations were based on a 4-point ordinal scale
(1:best, 4: worst). Bar-plots depict average and standard deviation
across test subjects, with * showing statistically significant differ-
ences. For blurring, proposed self-supervised 3D PG-DL at R = 3
and 6 were rated higher than LOST-CS at R=3, though the differ-
ences were not significant. For perceived SNR and overall image
quality, proposed self-supervised 3D PG-DL at R = 3 and R = 6
were both rated statistically better than LOST-CS at R = 3.

4. DISCUSSION AND CONCLUSION

The proposed 3D self-supervised PG-DL reconstruction en-
ables training neural networks without fully-sampled data for
3D volumes, by splitting available measurements into two
disjoint sets, and using one of these in DC units and the other
in defining loss. Moreover, we proposed to tackle the issue of
having a small number of training subjects in the database for
3D applications by splitting the whole volume for each sub-
ject into sub-volumes and training over these sub-volumes.
Results on 3D LGE CMR shows that the proposed approach
significantly improves upon the state-of-the-art CS methods.

Training of 3D PG-DL methods has gained interest re-
cently due to their ability to capture higher-dimensional in-
teractions. Several supervised PG-DL approaches have been
proposed for 3D training [26, 27], either by using fully-
sampled data or a surrogate reconstruction, such as CS or
parallel imaging, as reference. However, the former is diffi-
cult in many CMR acquisitions due to scan length, contrast
washout or motion; while the latter inherently limits the po-
tential of PG-DL to existing reconstruction strategies. While
self-supervised learning can tackle these issues by efficient
utilization of acquired measurements, small training dataset
size and GPU-memory issue of fitting large volumes [26] are
common challenges for both supervised and self-supervised
PG-DL approaches. The proposed approach of splitting large
volumes into sub-volumes provides an alternative solution to
both of these issues.
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