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ABSTRACT

Physics-guided deep learning (PG-DL) via algorithm un-
rolling has received significant interest for improved image
reconstruction, including MRI applications. These meth-
ods unroll an iterative optimization algorithm into a series
of regularizer and data consistency units. The unrolled net-
works are typically trained end-to-end using a supervised
approach. Current supervised PG-DL approaches use all of
the available sub-sampled measurements in their data con-
sistency units. Thus, the network learns to fit the rest of the
measurements. In this study, we propose to improve the per-
formance and robustness of supervised training by utilizing
randomness by retrospectively selecting only a subset of all
the available measurements for data consistency units. The
process is repeated multiple times using different random
masks during training for further enhancement. Results on
knee MRI show that the proposed multi-mask supervised
PG-DL enhances reconstruction performance compared to
conventional supervised PG-DL approaches.

Index Terms— Supervised learning, algorithm unrolling,
physics-guided deep learning, accelerated imaging, magnetic
resonance imaging, data augmentation.

1. INTRODUCTION

Lenghty acquisition times remains a challenge in MRI often
causing patient discomfort or artifacts in the reconstruction.
Hence, accelerating MRI remains an ongoing research topic.
MRI reconstruction is based on an inverse problem that incor-
porates the physics of the data acquisition via the encoding
operator. Direct recovery from acquired sub-sampled mea-
surements is often ill-posed, and thus regularizers are often
used for solving this inverse problem. Such regularized recon-
struction is conventionally solved using iterative algorithms,
such as gradient descent (GD), or proximal gradient descent
(PGD) and variable splitting methods that alternate between
data consistency (DC) and a proximal operator for the regu-
larizer [1].

Recently, deep learning has emerged as an alternative
approach for solving such inverse problems in MRI [2–13].
Among deep learning methods, physics-guided deep learning

(PG-DL) methods, also known as algorithm unrolling [14],
have gained interest, as it incorporates the forward model for
acquired measurements to the network architecture. PG-DL
unrolls iterative optimization algorithms consisting of DC and
regularizer units for a fixed number of iterations [4, 5, 15–
18]. The conventional fixed sparsifying regularizers in these
algorithms are replaced with neural networks, while gradient
descent or conjugate gradient (CG) methods are employed
in DC units [4, 5]. These network are then typically trained
end-to-end in a supervised manner using a ground-truth ref-
erence. While PG-DL approaches may differ based on the
optimization algorithm they unroll, all existing approaches
use all of the available sub-sampled measurements in their
DC units. Thus, the unrolled network learns to fit the rest
of the unacquired measurements while the DC units ensure
consistency with the acquired ones.

In this study, we propose to improve the performance and
robustness of supervised training of PG-DL methods by us-
ing a multi-masking operation on the available measurements
by retrospectively selecting a random subset of measurements
from the original sub-sampled data for use in DC units mul-
tiple times. DC units in the unrolled network only use these
subset of the measurements as opposed to conventional super-
vised training, where all of them are used. We hypothesize
that including such random masking may inherently improve
the robustness of the trained PG-DL algorithm, which will
learn to fit to larger sets of different measurements for dif-
ferent masks, reducing residual aliasing artifacts, while not
requiring any other modifications to the training process. Re-
sults on knee MRI show that the proposed multi-mask super-
vised PG-DL approach enhances the reconstruction perfor-
mance compared to conventional supervised PG-DL by fur-
ther removing residual artifacts, and improving quantitative
metrics, such as SSIM and PSNR.

2. METHODS

2.1. Algorithm Unrolling for MRI Reconstruction

Let yΩ be the acquired k-space measurements with Ω denot-
ing the undersampling pattern, and x be the image to recover.



The forward model for acquired measurements is given as

yΩ = EΩx + n, (1)

where EΩ : CM → CP is the encoding operator contain-
ing the partial Fourier sampling, coil sensitivities and the un-
dersampling pattern, and n ∈ CP is the measurement noise.
Recovery of x from yΩ is formulated as

arg min
x
‖yΩ −EΩx‖22 +R(x), (2)

where the first term enforces data consistency, and R(·) is
a regularizer. Optimization techniques [1] such as variable
splitting with quadratic penalty [5, 16, 19] can be employed
to cast Eq. (2) into an alternating minimization problem as

z(i−1) = arg min
z
µ‖x(i−1) − z‖22 +R(z) (3a)

x(i) = arg min
x
‖yΩ −EΩx‖22 + µ‖x− z(i−1)‖22 (3b)

where z(i) is an auxiliary intermediate variable and x(i) is the
desired image at iteration i. In PG-DL methods, this iterative
algorithm is unrolled for a fixed number of iterations [14].
Sub-problem Eq. (3a) is solved implicitly with a neural net-
work, while the DC unit in sub-problem (3b) is solved using
conventional linear methods [4, 5, 16].

2.2. Supervised PG-DL Training

Supervised PG-DL algorithms aims to map network input
(sub-sampled k-space/distorted image) to ground-truth refer-
ence (fully-sampled k-space/artifact free image) by training
neural networks on a database of acquired slices. Let yi

ref rep-
resents the fully-sampled data for subject i and f(yi

Ω,E
i
Ω;θ)

be the the unrolled network output for input sub-sampled
k-space data yi

Ω, in which the network is parameterized by
θ. The objective function for supervised PG-DL training in
k-space is formulated as

min
θ

1

N

N∑
i=1

L(yi
ref, E

i
fullf(yi

Ω,E
i
Ω;θ)), (4)

where N is the number of slices in the database, Ei
full is the

multi-coil encoding operator that transform network output
to k-space, yi

ref is the fully-sampled ground-truth k-space and
L(·, ·) denotes the loss function. Learnt parameters for the
unrolled network during training are subsequently used to re-
construct unseen undersampled test data.

2.3. Proposed Multi-Mask Supervised PG-DL Training

With supervised training as in Eq. (4), PG-DL approaches
learn to fit the unacquired measurements during training,
while their DC units ensure consistency with all the acquired
sub-sampled measurements. Thus, we hypothesize that the

Fig. 1: The proposed multi-mask supervised PG-DL MRI recon-
struction. The sub-sampled acquired measurements for each scan,
Ω, are retrospectively further masked into subsets Θj ⊂ Ω, j ∈
{1, . . . ,K}, multiple times for use in DC units. Loss is performed
in k-space by comparing the fully-sampled reference k-space with
the corresponding reconstructed k-space of the network output. Net-
work parameters are subsequently updated based on the training loss.

quality and robustness of reconstruction can be further im-
proved by masking the entries available to the DC units
during supervised training [19]. To this end, instead of us-
ing all available sub-sampled measurements Ω during data
consistency, we propose to use a random subset of available
measurements in the DC units by retrospectively masking
Ω multiple times as illustrated in Figure 1. Formally, the
acquired sub-sampled measurements for each slice in the
dataset is retrospectively masked K times as

Θj ⊂ Ω, j ∈ {1, . . . ,K}. (5)

Hence, the loss function in Eq. (4) is reformulated as

min
θ

1

N ·K

N∑
i=1

K∑
j=1

L
(
yi

ref, E
i
full

(
f(yi

Θj
,Ei

Θj
;θ)
))
. (6)

2.4. Network Training Details

The proposed multi-mask supervised and conventional super-
vised PG-DL approaches are implemented by unrolling itera-
tive sub-problems in (3a)-(3b) for 10 iterations. Each iteration
contains DC and regularizer units, which are respectively im-
plemented with CG [5] and the ResNet structure used in [9].
Coil sensitivity maps are generated from central 24×24 ACS
using ESPIRiT [20]. Training is performed by using Adam
optimizer with a learning rate of 5 · 10−4. Network is trained
to minimize a normalized `1 - `2 loss over 100 epochs with
a batch size of 1 [9]. All experiments for PG-DL approaches
are performed using Tensorflow in Python.



Fig. 2: Reconstruction results at R = 4 with uniform undersampling using CG-SENSE, proposed multi-mask and conventional supervised
PG-DL approaches. CG-SENSE suffers from significant noise amplification and residual artifacts shown with yellow arrows. Conventional
supervised PG-DL approach also exhibits residual artifacts for this slice. Proposed multi-mask supervised PG-DL approach outperforms the
conventional PG-DL approach by succesfully removing the residual artifacts, while K=3 masks achieve the highest metrics.

2.5. Imaging Experiments

Fully-sampled coronal proton density weighted knee MRI
dataset were obtained from the New York University (NYU)
fastMRI initiative database [21]. Imaging was performed on
a clinical 3T system (Magnetom Skyra; Siemens, Erlangen,
Germany) with a 15-channel coil-array using 2D turbo spin-
echo sequences. Relevant imaging parameters were [4]: ma-
trix size = 320× 368, in-plane resolution = 0.49× 0.44 mm2,
slice thickness = 3 mm. Training was performed on 300 slices
from 15 subjects using 20 central slices from each. Testing
was performed on all slices of 10 different subjects, leading
to total of 380 slices.

Fully-sampled raw data was retrospectively subsampled
to rate, R = 4 using a uniform undersampling pattern with
24 ACS lines. For the proposed method, Θj of each par-
tition was selected based on a uniformly random distribu-
tion. Furthermore, |Θj |/|Ω|, where | · | denotes the cardi-
nality of the index set, was chosen as 0.6 based on a previ-
ous self-supervised learning study [19]. The number of par-
titions for each slice was empirically investigated for K ∈
{3, 5, 7}. Proposed multi-mask supervised PG-DL approach
was compared with conventional supervised PG-DL and con-
jugate gradient SENSE (CG-SENSE) [22]. Testing was per-
formed both for uniform and random undersampling patterns.
PSNR and SSIM were used for quantitative evaluation on the
test dataset.

3. RESULTS

Figure 2 shows reconstruction results from a representative
test slice using conventional supervised PG-DL, i.e. K = 1,
and the proposed multi-mask supervised PG-DL for K ∈
{3, 5, 7}, as well as conventional CG-SENSE. CG-SENSE
suffers from significant residual artifacts and noise amplifica-
tion. Conventional supervised PG-DL approach also displays
residual artifacts on this slice, marked with yellow arrows.
Proposed multi-mask supervised PG-DL achieves a better re-

construction performance by further suppressing these resid-
ual artifacts for all choices of K.

Figure 3a and 3b display reconstruction results on two dif-
ferent subjects using uniform and random undersampling, re-
spectively. CG-SENSE suffers from residual artifacts in both
cases, with random undersampling showing fewer artifacts,
due to the incoherent nature of aliasing. For both of these
slices, proposed multi-mask supervised PG-DL and conven-
tional supervised PG-DL do not suffer from any visible arti-
facts, while closely performing with each other.

Table 1 summarizes the median and interquartile ranges
(25th-75th percentile) of SSIM and PSNR values of all re-
construction methods for uniform and random undersam-
pling patterns. For both uniform and random undersam-
pling scenarios, CG-SENSE performs worse than PG-DL ap-
proaches, while the proposed multi-mask supervised PG-DL
approaches achieves improved metrics compared to conven-
tional supervised PG-DL approach. Proposed multi-mask
supervised PG-DL achieves the best metrics for K = 3,
which is consistent with the observations in Figures 2 and 3.

4. DISCUSSION AND CONCLUSION

In this study, we proposed a multi-mask supervised PG-DL
approach, which retrospectively masks the undersampled
measurements in the DC units multiple times to enhance the
reconstruction quality. Results on knee MRI showed that the
proposed method successfully removes residual artifacts that
may occur in some test datasets using conventional super-
vised PG-DL. Moreover, it preserves the image quality and
further improves the quantitative metrics of conventional su-
pervised PG-DL if there are no artifacts in the reconstruction.

Supervised PG-DL provides improved reconstruction
quality compared to conventional clinical approaches [4, 5,
13, 17]. However, it may still exhibit residual artifacts on
some test slices. Hence, we hypothesized that bringing a
degree of randomness into supervised learning can further



Fig. 3: Reconstruction results for two different slices at R = 4 using CG-SENSE, proposed multi-mask and conventional supervised PG-DL
approaches for a) uniform and b) random undersampling scenarios. For both sampling patterns, CG-SENSE suffers from noise amplification
and residual artifacts shown with yellow arrows, while conventional supervised and proposed multi-mask supervised PG-DL approaches
perform closely without depicting any residual artifacts. For both random and uniform undersampling, proposed multi-mask supervised at
K=3 achieves the highest PSNR and SSIM.

improve its robustness and reconstruction performance. The
proposed multi-masking approach achieves improved robust-
ness, as the additional randomization in the DC units enforce
trained networks to learn different sets of measurements. Im-
portantly, this is achieved without requiring any major change
in the training process.

The proposed multi-mask supervised PG-DL was shown
to suppress residual artifacts that were observed in some test
slices using conventional supervised PG-DL. Additionally,
for allK values, there was also a quantitative improvement in
metrics compared to conventional supervised PG-DL. These
improvements come only at the expense of K-fold increased
training time, which does not have any impact on the test-
ing time. While proposed multi-masking (K >1) improves
performance over conventional supervised PG-DL with K=3
achieving the best results quantitatively, increasing K fur-
ther does not necessarily lead to more improvements. These

observations on selection of K are consistent with the lit-
erature on data augmentation, where the optimal size of the
post-augmented data remains an open research problem [23].
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Quantitative
Metric CG-SENSE

Conventional
Supervised PG-DL

Supervised PG-DL
Multi-mask, K=3

Supervised PG-DL
Multi-mask, K=5

Supervised PG-DL
Multi-mask, K=7

Uniform
Sampling

SSIM 0.881 [0.849, 0.919] 0.965 [0.955, 0.977] 0.968 [0.957, 0.979] 0.967 [0.956, 0.977] 0.966 [0.955, 0.977]
PSNR 35.329 [33.771, 37.413] 40.822 [39.308, 42.290] 41.199 [39.417,42.702] 41.031 [39.372, 42.727] 41.069 [39.341, 42.634]

Random
Sampling

SSIM 0.901 [0.874, 0.930] 0.968 [0.955, 0.978] 0.970 [0.958, 0.979] 0.969 [0.957, 0.978] 0.968 [0.957, 0.978]
PSNR 36.122 [34.672, 38.135] 40.987 [39.435, 43.068] 41.216 [39.620, 43.315] 41.099 [39.529, 43.338] 41.087 [39.534, 43.298]

Table 1: The median and interquartile range (25th-75th percentile) of SSIM and PSNR metrics on test dataset for uniform and random
undersampling cases. For both sampling scenarios, CG-SENSE is outperformed by PG-DL approaches in terms of both SSIM and PSNR.
The proposed multi-mask supervised PG-DL achieves improved metrics compared to conventional supervised PG-DL approach for all K > 1.
For multi-mask supervised PG-DL, K = 3 leads to the highest PSNR and SSIM values for both uniform and random undersampling scenarios.
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