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The need to incorporate communities in

compartmental models

MicHAEL J. KANE* AND OwAIS GILANI

Tian et al. provide a framework for assessing population-
level interventions of disease outbreaks through the con-
struction of counterfactuals in a large-scale, natural experi-
ment assessing the efficacy of mild, but early interventions
compared to delayed interventions. The technique is applied
to the recent SARS-CoV-2 outbreak with the population
of Shenzhen, China acting as the mild-but-early treatment
group and a combination of several US counties resembling
Shenzhen but enacting a delayed intervention acting as the
control. To help further the development of this framework
and identify an avenue for further enhancement, we focus
on the use and potential limitations of compartmental mod-
els. In particular, compartmental models make assumptions
about the communicability of a disease that may not per-
form well when they are used for large areas with multiple
communities where movement is restricted. To illustrate this
phenomena, we provide a simulation of a directed percola-
tion (outbreak) process on a simple stochastic block model
with two blocks. The simulations show that when trans-
missibility between two communities is severely restricted
an outbreak in two communities resembles a primary and
secondary outbreak potentially causing policy and decision
makers to mistake effective intervention strategies with non-
compliance or inefficacy of an intervention.
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1. THE NEED FOR POPULATION-SCALE
NATURAL EXPERIMENTS

Epidemiologists have been developing improved methods
and tools for modeling disease outbreaks at the population
level in order to better understand the spread of commu-
nicable diseases, to predict their progression, and to eval-
uate interventions devised to control their spread. Disease
outbreaks like the HIV/AIDS pandemic, the 2009 swine flu
pandemic, and influenza have made this need apparent for
decades. However, the 2020 SARS-CoV-2 pandemic has cre-
ated a new sense of urgency for development by surpassing
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other recent outbreaks in terms of the combination of its
communicability and its lethality.

Given the nature and scope of pandemics, it is generally
difficult to conduct controlled experiments to test the effi-
cacy of various interventions. Therefore, scientists often rely
on natural experiments to evaluate population-scale inter-
ventions. In their analysis, Tian et al. [7] propose one such
natural experiment using the synthetic control method to
assess the effect of delays in imposing mild interventions on
the spread of SARS-CoV-2 disease (COVID-19).

The city of Shenzhen in Guangdong province, China, im-
plemented early (within four days of first confirmed case)
but mild interventions, namely requiring residents to wear
face masks, 14 days isolation for overseas travelers, cancella-
tion of public gatherings, and delayed reopening of schools.
To study how effective this intervention was, and to esti-
mate the relationship between number of days between the
implementation of such an intervention and the excess num-
ber of cases of COVID-19, Tian et al. [7] constructed a syn-
thetic control population using a weighted mixture of 68
counties in the United States such that this population was
as similar to Shenzhen as possible along known factors in-
fluencing COVID-19 spread. They estimated these weights
by combining population density and latitude of the US
counties with primary components derived from principle
components analysis of the confirmed cases of COVID-19
in these counties. For these two populations, they used the
SIHR (susceptible, infected, hospitalized, recovered) com-
partmental model to compare the trajectories of cumulative
confirmed cases over a 16 day period during which Shenzhen
had intervention policies in place but “synthetic” Shenzhen
did not. Results showed that after six days, the impact of
the intervention started becoming visible, with the number
of confirmed cases diverging between actual and synthetic
Shenzhen after this period. They also concluded that in-
creasing the number of days in delaying an intervention re-
sulted in increased COVID-19 cases (2.32 times more cases
after a 4-day delay, and 2.51 times for a 5-day delay).

Quantifying the true impact of any intervention to control
the spread of a pandemic in the absence of controlled experi-
ments is challenging. The paper provides a useful framework
for policy-makers and scientists to evaluate a mild inter-
vention to curb the spread of COVID-19. Results provide
evidence for the need to implement an intervention, even
if it is rather mild, as soon as possible soon after an out-
break is suspected. There are some challenges that were
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not specifically addressed in this particular analysis. The
COVID-19 testing regime in China and the US was very
different, particularly in the early days and months of the
pandemic. Using confirmed cases to fit the models likely
results in an underestimate of the actual impact of the in-
tervention since the actual cases in the US during that time
were likely higher. Additionally, the analysis employs the
commonly used compartmental STHR model. While these
models are very useful in studying disease spread in fairly
homogeneous populations in terms of the mixing of individ-
uals within the population, they can be found wanting when
this assumption is not true. Below, we propose an avenue of
development that fits into the framework provided by Tian
et al. [7] and potentially enhances their results by consider-
ing a more localized approach where populations are viewed
as a mixture of distinct communities based on the patterns
of communication of individuals within and between com-
munities.

2. COMPARTMENTAL MODELS AND THE
CONNECTION ASSUMPTION

Compartmental models generally make the assumption
that the number of new infections (the force of the infec-
tion) is a constant times the current number of infections.
Inherent in this assumption is the idea that individuals in a
population are homogeneous in the way that they interact
with each other, i.e., an individual is equally likely to infect
any other susceptible individual in the population. While
this assumption generally holds true when observing smaller
populations, it may be violated for populations organized
into communities where members of the same community
are more likely to communicate a disease than two individ-
uals in separate communities. In this case, the number of
contacts may be different between individuals in different
communities. This situation is more realistic for larger pop-
ulations or urban centers which tend to be more segregated
along various socio-demographic characteristics.

To show how this can affect outbreak dynamics, we pro-
vide a simulation of the directed percolation over a stochas-
tic block model [4] with two blocks where the total expected
number of edges is kept constant but the inter- and intra-
connection probabilities vary. To study this effect, we sim-
ulate the outbreak process described in Algorithm 1 on a
class of stochastic block models (SBM) to examine the ef-
fect on the number of cases over time when the total number
of expected edges is kept constant but the expected number
of edges between blocks varies.

Let Go(P,7) be a stochastic block model with two blocks.
Let P be a symmetric 2 X 2 matrix where the top-left entry
gives the probability that two vertices in block 1 are con-
nected, the bottom-right entry gives the probability that two
vertices in block 2 are connected, and the off-diagonal gives
the probability that a vertex from block 1 is connected to a
vertex from block 2. Let 7 = [ny, ng] be a vector indicating
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Let g be the graph;
Set the state of all vertices of g, V(g) to be “susceptible”;
while not all states of V(g) are “removed” do
if No states of V(g) are “infected” and there are still
“susceptible” then
Pick a v from V(g) where the state is susceptible;
Set the state of v to “infected”;
else

if Any vertices vy, with state “hospitalize” then

Move each member of v, to state “removed”
with probability p;

end

if Any vertices v; with state “infected” then
Move each member of v; to state

“hospitalized” with probability p;

end

f Any vertices vs with state “susceptible” then

Pick a vertex v; at random from the vertices
in state “infected” with neighboring vertices
with state “susceptible”;

Set all of the neighbors of v in vs to infected;

end

e

end

end
Algorithm 1: A directed percolation on a graph g

the size of block 1 and block 2 respectively. For simplicity
in this experiment n = n; = ng and

ca/n
c1/n

c1/n
ca/n

where ¢; and ¢y are constant values. From this construction,
we can see that Go(P,7) can be thought of as a mixture of
Erdés-Rényi (ER) graphs [2].

It is well known from Janson et al. [5] and others that
when ¢y > 1 then there is a high probability that there will
be a single, large community with all other components hav-
ing size O(logn). The presented algorithm is a variation on
that of Achlioptas and Molloy [1], which was shown to have
asymptotic convergence to a differential equation, which can
be solved in closed form for an ER graph with n nodes and
connection probability ¢/n. The bottom-center visualization
in Figure 1 shows the behavior of this process and we con-
jecture that, under the correct parameterization for an ER
graph or SBM with a single block, the specified directed
percolation converges to some set of compartmental models.
Like the compartmental model, the directed percolation on
an ER graph assumes that the rate of vertices transitioning
from susceptible to infected is a function of the number in-
fected, the number susceptible, and the number of contacts
per person at any time.

Let G1 ~ G1(¢/(2n),2n) be a sample from an ER graph.
Then the expected number of edges is

PE(G,) = (22") %
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Figure 1. Outbreak simulation results (mean and inter-quartile range) on a stochastic block model with populations of size
1000 over 100 runs. The number above each plot represents the value of a with a = 1 corresponding to unconnected blocks
and o = 0 corresponding to equality in the the intra- and inter-block connection probabilities.

(2n—1)c
2

(1)

For G2 ~ Go(P, i) the expected number of edges is the ex-
pected number of edges within the block and the expected
number of edges across blocks:

~cn

PE(G2) = (n — 1)1 + nes
(2) ~n(cl + ¢2)
Equations (1) and (2) show that setting the sum ¢; and c¢o
in the stochastic block model to ¢ in the ER graph, with
0 < c1,c0 < 1 will yield two graphs with approximately
the same number of edges, in expectation. We can therefore
examine the effect of varying the block connection proba-
bility compared to the ER graph for the specified directed
percolation by setting

= (1-a)

co = ac

and allowing « to vary between 0 and 1. In this
setup, « controls the level of mixing between the two
blocks/communities: when « is zero, the inter-block con-
nection probability is zero and the two blocks will not be

connected; when « is one, the inter-block connection prob-
ability is the same as the intra-block connection probability
resulting in the ER graph. The variables ¢, c;, and ¢y can
be interpreted as the expected number of individuals any-
one will infect in the ER graph, the number of individuals
anyone will infect in the same block, and the number of in-
dividuals anyone will infect in the other block at time zero,
respectively. Thus, ¢ can be related directly to the basic re-
production number Ry.

The simulation was performed for various values of « with
c fixed at a value of 3.28, which is the mean estimate of
Ry from Liu et al. [6], in order to show the potential mis-
specification of compartmental models assuming constant
connection probability in a 2-block graph and 1000 vertices.
One hundred graphs were generated for each value of o and
the directed percolation was run over each graph, keeping
track of the number of “susceptible”, “infected”, “hospital-
ized”, and “removed” vertices, taking the states from Tian
et al. [7].

Figure 1 shows the infected and hospitalized counts for
the simulation with values of a varying from zero to one. The
graph provides two immediate insights. First, the process is
robust for a large range of inter-connection probabilities.
This implies that the compartmental models likely provide
accurate estimates where the population is separated into
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communities and the communities are well-connected. Sec-
ond, when this probability is very small (« close to zero),
a secondary outbreak appears to occur. This happens when
the process must visit a large portion of a block before a ver-
tex connected to both blocks is labeled “infected.” Together
these results imply that community-connectedness can be a
driver for the appearance of a secondary outbreak, but only
when connections between communities are sparse.

3. THE OPPORTUNITY OF INTEGRATING
MOBILITY COMMUNITIES

The simulations show that when transmissibility between
two communities is severely restricted, an outbreak in the
two communities resembles a primary and secondary out-
break, potentially causing policy and decision makers to mis-
take effective “lock-down” strategies with non-compliance or
inefficacy of an intervention. This issue presumably becomes
magnified as the number of communities becomes larger and
the rate at which an outbreak occurs within a community
is much faster than the rate at which the outbreak spreads
through the set of communities in a specified area. To ad-
dress this potential mis-specification, we hypothesize that
mobility data could be used to identify distinct spatial ar-
eas in which people tend to live and work (also known as
“activity spaces” [3]). Human movement both within and
between these spatial areas could be used in the proposed
algorithm, or one resembling it, to create an agent-based
model that more accurately estimates population-level out-
breaks by taking into account community-level movement
patterns.
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