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ABSTRACT

Flapping insect wings experience appreciable deformation due
to aerodynamic and inertial forces. This deformation is be-
lieved to benefit the insect’s aerodynamic force production as
well as energetic efficiency. However, the fluid-structure in-
teraction (FSI) models used to estimate wing deformations are
often computationally demanding and are therefore challenged
by parametric studies. Here, we develop a simple FSI model
of a flapping wing idealized as a two-dimensional pitching-
plunging airfoil. Using the Lagrangian formulation, we derive
the reduced-order structural framework governing wing’s elas-
tic deformation. We consider two fluid models: quasi-steady De-
formable Blade Element Theory (DBET) and Unsteady Vortex
Lattice Method (UVLM). DBET is computationally economical
but does not provide insight into the flow structure surrounding
the wing, whereas UVLM approximates flows but requires more
time to solve. For simple flapping kinematics, DBET and UVLM
produce similar estimates of the aerodynamic force normal to
the surface of a rigid wing. More importantly, when the wing is
permitted to deform, DBET and UVLM agree well in predicting
wingtip deflection and aerodynamic normal force. The most no-
table difference between the model predictions is a roughly 20◦

phase difference in normal force. DBET estimates wing defor-
mation and force production approximately 15 times faster than
UVLM for the parameters considered, and both models solve in
under a minute when considering 15 flapping periods. Moving
forward, we will benchmark both low-order models with respect
to high fidelity computational fluid dynamics coupled to finite el-
ement analysis, and assess the agreement between DBET and
UVLM over a broader range of flapping kinematics.

INTRODUCTION

Over the past decade, flying insects have become a popular
model organism for bio-inspired flapping wing micro air vehi-
cles (FWMAVs) [1]. Unlike rotor based aircraft, which suffer
inefficiencies that preclude their flight at reduced length scales
and low Reynolds numbers, FWMAVs can scale down almost in-
definitely due to the unsteady aerodynamic mechanisms enabled
by their flapping wings [2]. This makes FWMAVs a desirable
platform for tasks that require the vehicle to operate in congested
environments, for example infrastructure monitoring of piping
networks. Nonetheless, while researchers have developed suc-
cessful insect-scale FWMAVs, there remain several design chal-
lenges that must be overcome before such vehicles are suitable
for widespread applications. Some of these challenges include
reducing energetic expenditures, implementing reliable on-board
control systems and improving aircraft durability. A better un-
derstanding of insect flight, in particular the flapping wing, can
guide engineering design to surmount many of these challenges.

As an insect wing flaps, it deforms from both aerodynamic
and inertial forces [3]. Wing deformation has been shown to pro-
vide numerous advantages to flight, including improving aero-
dynamic force production [4] and reducing energetic costs [5].
In some insects, wing deformation provides a sensing modal-
ity as well. Hawkmoth Manduca sexta wings are imbued with
mechanoreceptors called campaniform sensilla, and recent stud-
ies show the feedback encoded by these receptors facilitate the
insect’s attitude control system [6]. The insect wing may there-
fore behave both as a sensor and an actuator in some contexts.
Despite the significance of wing flexibility to flapping wing
flight, however, the mathematical models used to predict flap-
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ping wing fluid-structure interaction (FSI) remain limited.
The most common flapping FSI models utilize finite element

analysis (FEA) coupled to computational fluid dynamics (CFD)
to estimate wing deformation and to resolve the flow field sur-
rounding the flexible structure [7–9]. While such models are in-
strumental to improving the knowledge of flexible wing dynam-
ics, they are often computationally inefficient, sometimes taking
hours or days to solve. With respect to FEA, the periodic rota-
tions of the wing give rise to centrifugal softening, which cause
the structural stiffness matrix to become time-varying [10, 11].
As a result, the stiffness matrix must be updated at each inter-
val of analysis, which in turn increases the time required to solve
for wing deformation. With respect to CFD, upwards of tens
of thousands of equations must be solved to resolve the entire
flow field surrounding a flapping wing [12]. Moreover, the CFD
mesh must generally be restructured as the wing passes through
it. Clearly, both fluid and structural solvers require considerable
computational resources, and these computational requirements
become nearly intractable when fluid and structure are coupled.

To reduce these computational requirements, the flapping
wing is often simplified to a two-dimensional problem. A flap-
ping wing in two dimensions emulates a pitching, plunging air-
foil, where the length of the airfoil is the mean chord width of the
insect wing. While some of the physics associated with flapping
in three-dimensions are lost, the two-dimensional pitch-plunge
model has been used to garner many insights into flapping wing
flight. Yin and Luo utilized a 2D FSI model to study the effect
of wing inertial forces on deformation and the resulting aero-
dynamic forces during hover [13]. Tian et al. extended this
work to address the influence of wing flexibility during forward
flight [14]. Sridhar and Kang used a 2D FSI model to inves-
tigate energy expenditures in flapping fruit flies [15]. Despite
the two-dimensional idealization, however, these FSI models are
still computationally expensive because of their reliance on CFD
and FEA. Studies investigating broad ranges of wing kinemat-
ics, flexibility or other parameters may be challenged by these
high-order methods depending on the desired number of vari-
ables considered.

To enable parametric studies of flapping wings, many re-
searchers have turned to more efficient structural and fluid mod-
eling. While modal reduction is almost exclusively used to re-
duce the demands of the structural solver [10, 11, 16], the fluid
models employed to supplement CFD are more varied. The two
most common tend to be based upon blade element theory (BET)
and unsteady vortex lattice method (UVLM). BET functions by
discretizing a wing into chord-wise airfoils, or “blade elements”.
Differential forces are estimated via airfoil theory for each blade
element and are summed over the entire to wing to estimate to-
tal aerodynamic forces. While BET is among the most widely
used models for flapping wing flight, it is typically restricted to
rigid wings with only a handful of exceptions. Wang et al. devel-
oped an economical flapping wing FSI model using a blade ele-

ment aerodynamic approach, however their model permits only
wing twisting and not bending [17]. Schwab et al. developed
and experimentally validated a BET-based FSI model, however
it was applicable only to single-degree-of-freedom flapping that
did not generate lift [18, 19]. This model was later extended to
3D kinematics, but considered only unilateral coupling between
fluid and structure [20]. Thus, it remains to be seen if BET can
concurrently model bilateral fluid-structure coupling as well as
lift-generating 2D flapping.

The other common reduced-order fluid model is UVLM.
UVLM is a numerical method that discretizes the wing into pan-
els, each to which a vortex is bound. By estimating the strength
of each bound and shed vortex, one can estimate the pressure dis-
tribution over a wing. Fitzgerald et al. derived a UVLM-based
2D flapping FSI model, and found that UVLM made flow pre-
dictions similar to those made by direct numerical simulation for
the deforming wing [21]. They utilized a structural model com-
posed of two rigid links connected by a torsional spring. Mount-
castle and Daniel utilized a similar 2D UVLM FSI model with
additional links to determine the effect of structural flexibility on
flapping wing lift generation [22]. They found that the additional
force generation attributed to wing flexibility was sensitive to the
relative phase of pitch and plunge. Despite the success of UVLM
in flapping wing FSI models, it still requires more computational
time relative to BET. It is presently unknown if BET and UVLM
produce similar results when modeling flexible wings.

Based upon this literature review, there remains a need for
a 2D pitch-plunge flapping wing FSI model that (1) is reduced
order to facilitate broad parametric studies and (2) able to ac-
commodate arbitrary planar geometries with spatially varying
properties. The objective of the present work is to develop this
model. We put forward two candidate approaches – the first
based on BET, which we refer to as deformable blade element
theory (DBET) owing to its capacity to account for deformation,
and the second based on UVLM, which is typically considered
a higher-fidelity fluid solver relative to BET. This manuscript
presents the first effort towards a tiered “family of models” for
flexible pitching-plunging airfoils. Moving forward, we intend to
benchmark both of these reduced-order FSI models with respect
to high-fidelity, high computational demand CFD. This “family
of models” approach will illustrate the trade-offs between solu-
tion accuracy and economy within the context of 2D flapping
wing FSI.

The remainder of the paper is organized as follows. First,
we derive the equation of motion governing the wing dynamics
via the Lagrangian formulation. We then outline the DBET and
UVLM fluid models used to estimate aerodynamic forces acting
on the flexible wing. Next, compare the two models and how they
predict wing deformation and aerodynamic force production. We
conclude by discussing the implications and future directions of
our modeling efforts.
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FIGURE 1. Diagram of flexible wing undergoing prescribed rigid
body pitching (θ ) and plunging (Z).

THEORY
Here, we derive a mathematical model to predict the elastic de-
formation of a pitching, plunging flexible wing. We first define
the rigid body kinematics of the wing, and determine the equa-
tion of motion governing the deflection of the wing via the La-
grangian formulation. We then describe the DBET and UVLM
fluid models used to estimate fluid loading on the wing surface
and to calculate aerodynamic forces.

Structural Model
First, we establish a rotating, translating coordinate frame that
moves with the rigid body motion of the wing (Fig. 1). Consider
a fixed point P and a translating point O about which the wing
is free to rotate. We define O as the origin of the wing-bound
reference frame. The displacement of O is described by the pre-
scribed plunging motion of the wing Z(t). Then, the reference
frame bound to O is subjected to a positive counter-clockwise
rotation by a pitching angle θ(t). The resulting x− y− z refer-
ence frame has an angular velocity ΩΩΩ defined by

ΩΩΩ = θ̇ex (1)

Within the x− y− z frame, we draw a position vector R from
fixed point P to a differential mass element dm located on the
flexible wing. R is the sum of three intermediate position vectors
such that R = r1 + r2 + r3, where

r1 = Z(t)eZ = Z(t)[sinθ ey + cosθ ez] (2)
r2 = yey ; 0≤ y≤ c (3)
r3 = W (y, t)ez (4)

Above, r1 denotes to the prescribed vertical plunging of the ro-
tational pivot point O, r2 denotes the y position of dm along the
flexible wing between zero and max chord-width c, and r3 de-
notes an infinitesimal out-of-plane elastic deflection dependent
on both space and time. The velocity of the differential mass
with respect to the rotating coordinate frame is

Ṙ = ΩΩΩ×R+ ṙ1 + ṙ3 (5)
Ṙ = [Ż sinθ −W θ̇ ]ey +[Ż cosθ + yθ̇ +Ẇ ]ez (6)

We also determine the acceleration of the differential mass as

R̈ = (Z̈ sinθ −2Ẇ θ̇ −W θ̈ − yθ̇
2)ey

· · ·+(Z̈ cosθ + yθ̈ −W θ̇
2 +Ẅ )ez

(7)

Note that R̈ is not required to formulate the equation of motion
governing wing deformation, however it needed later to approx-
imate the added mass fluid loading. Next, we discretize out-of-
plane deflection W via an eigenfunction expansion of vibration
mode shapes φk(y) multiplied by modal responses qk(t), or

W (y, t) =
∞

∑
k=1

φk(y)qk(t) (8)

where vibration mode shapes are normalized with respect to the
wing’s mass to satisfy orthonormal conditions. We then formu-
late wing’s potential and kinetic energies, which are required to
employ the Lagrangian approach. Note that only a high-level
derivation is provided here; for further detail on the equation of
motion derivation, please refer to Appendix A. The kinetic en-
ergy T of the flexible wing is

T =
1
2

∫
m

Ṙ · Ṙdm (9)

where Eqs. 6 and 8 are substituted into the above expression to
give the explicit form of T . The potential energy U of the wing
is

U =
1
2

∫
V

S(W,W )dV (10)

where V is the volumetric domain of integration, and S is a sym-
metric, quadratic strain energy density function. Using the La-
grangian approach, we determine the Equation of Motion (EoM)
governing the unknown modal response qk as

q̈k +(ω2
k − θ̇

2)qk =−λkZ̈ cosθ −ψkθ̈ +Qk (11)
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where Qk is the non-conservative aerodynamic force projected
onto the wing’s kth mode, ωk is the wing’s kth natural frequency
and λk, ψk are constants defined by

λk =
∫

m
φk dm (12)

ψk =
∫

m
yφk dm (13)

The non-conservative aerodynamic modal force is determined
through the principle of virtual work, where the virtual work δW

is

δW = Qkδqk (14)

Qkδqk =
∫

S
FN ·δWez dS =

∫
S

FN ·
∞

∑
k=1

φkδqk ez dS (15)

Qk =
∫

S
φkFN · ez dS (16)

where FN is the physical aerodynamic force, S is the surface over
which the aerodynamic force acts, and all quantities preceded by
a δ are virtual quantities. Note that FN is general and may be ob-
tained through a number of suitable fluid models, including CFD.
For the purposes of this work, we consider DBET and UVLM
fluid models because the computational resources required to re-
solve FN are minimal compared to CFD.

Deformable Blade Element Fluid Model
To formulate the DBET fluid model (Fig. 2), we assume a generic
aerodynamic force per unit area dFaero,[·] can be represented as

dFaero,[·] =
1
2

C[·]ρ f Ṙ · ṘdS (17)

c

O
r2 = yey

Ṙ

V∞

dFD

dFL

dFN

dFA

A

ey

ez

FIGURE 2. Free body diagram of differential aerodynamic forces act-
ing at the location of dm for DBET fluid model. Wing shown in unde-
formed configuration.

where ρ f is fluid density, C[·] is an empirical aerodynamic co-
efficient, [·] is a placeholder to indicate lift of drag, and dS is
the differential surface over which the force acts. For the 2D
case, dS = hdy, where h is the wing span (out the page, along
the x direction) and dy is a differential length in the chord-wise
y direction. The aerodynamic angle-of-attack A is defined as the
angle between the induced flow velocity V∞ (equal in magnitude
and opposite in direction to Ṙ assuming no free-stream flow) and
the positive y axis, and can be written as

A= tan−1
(
−Ṙ · ez

−Ṙ · ey

)
= tan−1

(
Ż cosθ + yθ̇ +Ẇ

Ż sinθ −W θ̇

)
(18)

As indicated by the above, A varies along the chord and depends
on both the wing’s rigid body motion and elastic deformation.
The form of aerodynamic lift/drag coefficients in Eq. 17 is taken
from [23] as

CL(A) = CLmax sin(2A) (19)

CD(A) =
CDmax +CD0

2
−

CDmax −CD0

2
cos(2A) (20)

where CLmax , CDmax and CD0 are empirically fit from experimental
or computational methods. Then, expanding Eq. 17 and integrat-
ing over the wing surface gives

FR,[·] =
1
2

ρ fC[·]

∫
S
(Ż2 +2Żθ̇ycosθ + y2

θ̇
2)dS (21)

FE,[·] = ρ fC[·]

∫
S
(−Żθ̇ sinθW +[Ż cosθ + θ̇y]Ẇ )dS (22)

where FR and FE are the rigid and elastic components of Faero,[·]
respectively. Note the terms of O(W 2) are neglected from FE
given that W is infinitesimal. We then rotate lift and drag forces
by A to determine the aerodynamic axial force FA and normal
force FN as

FA = (FD cosA−FL cosA)〈ey〉 (23)
FN = (FD sinA+FL cosA)〈−ez〉 (24)

In addition to lift and drag forces, we must also consider the nor-
mal force imparted to the wing by added mass. The air mass
accelerated as the wing flaps may be considerable compared to
the mass of the wing itself. This imparts an additional force nor-
mal to the wing that is proportional to the wing’s acceleration.
Added mass normal to the wing, denoted FN,AM and modified
from [24], can be represented for the flapping wing as
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FN,AM =−πρ f

( c
4

)∫
S

R̈ · ez dS 〈ez〉 (25)

As with lift and drag, it is possible to represent FN,AM as rigid
and elastic components:

FN,AM,rigid = −πρ f

( c
4

)∫
S
(Z̈ cosθ + yθ̈)dS〈ez〉 (26)

FN,AM,elastic = −πρ f

( c
4

)∫
S
(−W θ̇

2 +Ẅ )dS〈ez〉 (27)

Finally, we combine the aerodynamic normal force FN with the
fluid force due to added mass FN,AM and substitute them into
Eq. 16 to estimate the non-conservative forces acting on the
wing.

Unsteady Vortex Lattice Fluid Model
To employ UVLM (Fig. 3), we assume the flow to be incom-
pressible throughout, and irrotational except on the surface of
the wing and in the wake shed from the trailing edge. Using this
approach, unsteady effects such as added mass may be accounted
for. The wing is discretized into Np panels of differential length
ds = c/Np, with the leading edge of the first panel at O. On each
panel, a bound vortex is placed 0.25ds aft of the leading edge,
and the control point (Cp) is located at 0.75ds aft the leading
edge [25].

The no-penetration condition states that across the wing sur-
face, the flow velocity component that is normal to the surface
must be zero [26], which implies

(−Ṙ+VBV +VW ) ·n = 0 (28)

where VBV is the velocity induced by the bound vortices on the
wing, VW is the velocity induced by the free wake vortices and n

ds

dbv dcp

Bound Vortex Control Point Wake Vortex

Γpanel Γwake

Panel
Leading Edge

ey

ez

FIGURE 3. Schematic of panel for UVLM fluid model. dbv and dcp

are the distance of the bound vortex and control point from the panel
leading edge, respectively. ds is panel width.

is the surface normal vector. In this lumped vortex method, this
boundary condition is satisfied at the control point of each panel.
Enforcing this boundary condition at each control point gives the
strength of the bound vortices. Then, the Kelvin-Helmholtz the-
orem states that the circulation Γ around a closed curve must
remain constant, which leads to

DΓ

Dt
= 0 (29)

Since the initial vorticity is zero, the total bound vorticity and
wake vorticity will sum to zero every time step. This condition
sets the strength of the newly created wake vortex, and means
that the strength of the free vortices remain unchanged [21].

The velocity at point i induced by a vortex at point j, Vindi, j ,
is given by the Biot-Savart law:

Vindi, j =
Γ j

2πL2 〈(Z j−Zi)eY +(Yi−Yj)eZ〉 (30)

where L is the scalar distance between i and j, and Y , Z are the
coordinate locations of i and j in the Y − Z plane. The bound
vortex strength Γi of each panel and the new wake vortex Γ(N p+1)
are found by simultaneously enforcing the boundary condition at
each control point [27], or


a1,1 a1,2 . . . a1,N p a1,N p+1
a2,1 a2,2 . . . a2,N p a2,N p+1

...
...

. . .
...

...
aN p,1 aN p,2 . . . aN p,N p aN p,N p+1

1 1 1 1 1




Γ1
Γ2
...

ΓN p
ΓN p+1

=


rhs1
rhs2

...
rhsN p
rhs∗

 (31)

where ai, j is the component of velocity at the ith control point
induced by the unit-strength jth bound vortex that is normal to
panel i. This influence coefficient is found using the Biot-Savart
law above substituting 1 for Γ j. The right-had side, rhsi is the
normal component of velocity at the control point due to flap-
ping kinematics and the wake vortices. rhs∗ is the sum of the
bound vortices on the wing from the previous time step. ΓN p+1
is the strength of the newly shed vortex wake, equal to the nega-
tive of the change in total bound vorticity from the previous time
step.

If we assume the wake convects with the local flow, the ve-
locity of the ith wake VW,i is the sum of the velocities induced by
the wing-bound vortices and the wake vortices, written as

VW,i =
Np

∑
j=1

Vindi, j +
Np

∑
m=1

Vindim ; m 6= i (32)
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The newly formed wake is placed 0.05c with respect to the
wing’s trailing edge. Next, to determine the pressure differen-
tial across the ith panel, ∆Pi, we employ the unsteady Bernoulli
equation

∆Pi =−ρ f

[
(−Ṙ+VW )i · τi

Γi

ds
+

∂

∂ t

i

∑
j=1

Γ j

]
(33)

where τi is the unit vector tangent to the ith panel, and a positive
∆P indicates lower pressure on the upper surface of the wing.
Finally, the fluid normal force acting on the ith panel, FNi is

FNi = ∆Pi cds(ni · ez)ez (34)

Equation 34 is then substituted into Eq. 16 to determine the gen-
eralized aerodynamic modal force.

SIMULATION
In this section, we compare the results of the two flapping wing
FSI models. We first establish the wing’s properties and pre-
scribed kinematics based off known values for the Hawkmoth
Manduca sexta, a common model organism in the study of insect
flight. We then analyze the wing tip deflection and aerodynamic
forces predicted by both models.

Simulation Parameters
The physical properties of the wing are given in Tab. 1. The
chord width, span, thickness were estimated for the Hawkmoth
from [28]. We adjust the Young’s modulus within the biologi-
cal values presented in [28] until we achieve a natural frequency
of 80 Hz, which is corresponds to the torsional mode of the
Hawkmoth wing [29]. The damping ratio is also taken from this
source. We treat the wing as a homogenous beam with fixed-free
boundary conditions, and thus determine its natural frequency
and mass-normalized mode shape analytically using well-known
expressions from [30]. However, we stress that this formula-
tion permits material and geometry properties to vary along the
wing’s y direction. For sake of simplicity, we retain only one
vibration mode.

Next, we prescribe the rigid body kinematics of the flapping
wing. We note that flapping wings undergo three-dimensional
rotation in practice, and that the kinematics presented here are
an idealization. We assume that the both pitching and plunging
motions are harmonic and out-of-phase by π

2 radians. The plung-
ing motion represents the large, sweeping flapping rotation of
the wing – we are essentially projecting the wing’s stroke plane
onto a two-dimensional space when employing the pitch-plunge
model. The pitching has a similar interpretation in both 2D and

TABLE 1. Physical properties of the wing used for simulation.

Symbol Description Value Units

E Young’s Modulus 24.5 GPa

c Chord Width 2 cm

h Span 5 cm

t Thickness 40 µm

Mw Mass 40 µg

ω1 First Natural Frequency 80 Hz

ζ1 First Modal Damping Ratio 0.05 -

3D models. All flapping kinematics are summarized in Tab. 2.
Rotation/translation amplitudes are similar to those presented
in [13], whereas the flapping frequency is taken from [31]. We
use a lower pitch amplitude than is typically observed in Hawk-
moth flight [31]. This is because pitch measurements from flying
insects, particularly those that experience large wing twisting, in-
variably contain some rotation arising from rigid body rotation
and elastic deformation. How the rigid body rotation and elas-
tic deformation sum to net wing pitch is challenging to delineate
from experimental measurements in free-flying insects.

TABLE 2. Flapping Kinematics Parameters.

Symbol Description Value Units

Z0 Plunge Amplitude 2 cm

θ0 Pitch Amplitude 15 ◦

φz Plunge Phase Advance 90 ◦

ω Flapping Frequency 25 Hz

We now establish the simulation parameters used for both fluid
models. In both cases, we use a time step that corresponds to 200
intervals per wingbeat period (0.2 ms) and allow the simulation
to run for 15 periods, which we determined was an adequate du-
ration to achieve steady-state in all cases considered. Reducing
the time step further did not impact the solution.

We then verify that the numerical methods have converged.
First, consider the DBET model. The solution accuracy, as well
as the time required to solve, are dependent on the number of
blade elements the structure is discretized into. To ensure that
the solution has converged, we vary the number of blade el-
ements and record the maximum wing tip deflection. Then,
we plot the wingtip displacement normalized by the converged
wingtip displacement with respect to the number of elements
(Fig. 4). The solution converges quickly, with less than a 1%
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FIGURE 4. Convergence study for the DBET fluid model showing
the dependence of the solution on number of blade elements. The y-axis
shows the maximum wingtip deflection for the current parameters as a
fraction of the maximum wingtip deflection at convergence.

change when increasing the total element count beyond 5. While
this rapid convergence can greatly expedite the time required to
solve the DBET model, it is worth noting that wings with non-
homogeneous material or geometric properties will require more
elements to resolve.

Next, consider the UVLM model. We determined that the
solution was most sensitive to the number of panels and wakes
considered. We maintain the number of wakes at 200 and vary
the panel count from 5 to 70, and then maintain the number of
panels at 50 and vary the wake count from 5 to 300. We again
plot the normalized wingtip displacement as a function of these
parameters (Fig. 5). In both cases, the solution converges rela-
tively quickly, with the solution being modestly more sensitive
to the number of wakes considered.

With these simple convergence studies completed, we define
the remaining parameters needed to carry out numerical simula-
tions for both models. DBET parameters are shown in Tab. 3,
where the aerodynamic coefficients are similar to those in [23].
UVLM parameters are shown in Tab. 3.

TABLE 3. DBET Simulation Parameters.

Symbol Description Value

CD0 Drag offset coefficient 0.4

CDmax Maximum drag coefficient 4.0

CLmax Maximum lift coefficient 1.8

N Number of blade elements 50
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FIGURE 5. Convergence study for the UVLM fluid model showing
the dependence of the solution on (top) number of panels and (bottom)
number of wakes. The y-axis shows the maximum wingtip deflection for
the current parameters as a fraction of the maximum wingtip deflection
at convergence.

TABLE 4. UVLM Simulation Parameters.

Symbol Description Value

Nw Number of wakes 200

Np Number of panels 50

dcp Control point distance from
leading edge as % of panel
length

75

dbv Bound vortex distance from
leading edge as % of panel
length

25

Model Comparison
We first compare BET and UVLM fluid models for a rigid wing
to provide a baseline and to assess how well the two agree before
flexibility is incorporated. The aerodynamic normal force FN
predicted by both fluid models is shown as a function of a single
wingbeat in Fig. 6. In general, the two models agree well both in
terms of magnitude and phase. UVLM predicts a larger normal
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force magnitude and leads the BET prediction in phase. These
discrepancies are relatively minor, which suggests the simulation
parameters provide a good basis for the fluid models, at least
when the wing is rigid.
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FIGURE 6. Aerodynamic normal force FN for a rigid wing predicted
by BET and UVLM solvers.

Then, we permit the wing to deform under inertial and aero-
dynamic loads. Recall that both FSI models utilize the same
structural framework, and therefore any differences in the wing’s
response between the two models stem from differences in the
fluid models. We plot both the wingtip (at y = c) deflection as
well as aerodynamic normal forces for the flexible wing over
a wingbeat period in Fig. 7. DBET and UVLM models pre-
dict wingtip deflections similarly, with maximum deflections of
approximately 7.5 mm occurring just after the stroke reversal
around t/T = 0.33, 0.83. DBET predicts a larger 3ω component
of wingtip response as well as a phase lag relative to UVLM.
This phase discrepancy is more appreciable in the aerodynamic
normal force, where the DBET normal force lags the UVLM nor-
mal force by approximately 18◦. While the phase discrepancy
appears small, we point out that even minor phase changes can
significantly affect aerodynamic force production in the inertial
frame, which is essential to flight. Moving forward, we will make
efforts to reconcile any phase differences between the two mod-
els, particularly once a high-fidelity CFD simulation is available.

From a computational point of view, the DBET model took
2.95 seconds to solve while the UVLM model took 46.81 sec-
onds to solve, each over 15 wingbeats. It is worth noting that
the solution time per wingbeat is relatively stable throughout the
DBET simulation, whereas the solution time per wingbeat in-
creases at the beginning of the UVLM simulation and later stabi-
lizes once the maximum number of retained wakes is reached.
Nonetheless, on an average time-per-period basis, the DBET
model solves roughly 15 times faster than UVLM, representing
a large computational savings. Compared to coupled CFD-FEA,
both UVLM and DBET are several orders of magnitude faster.

Lastly, we study the influence that flexibility has on mean
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FIGURE 7. (Top) Wingtip deflection and (Bottom) aerodynamic nor-
mal force FN for a flexible wing predicted by BET and UVLM solvers.

vertical aerodynamic force production (aligned with the -Y di-
rection; Fig. 1), a relevant quantity to keeping the insect aloft.
We consider the flapping kinematics in Tab. 2, and solve for the
mean aerodynamic vertical force using both DBET and UVLM
for both rigid and flexible wings. The results are summarized
in Tab. 5. In both cases, the flexible wing produces more mean
vertical force, with increases of 7% and 116% from the rigid
wing as predicted by the DBET and UVLM models, respec-
tively. We believe in this case, the UVLM model is severely over-
predicting the aerodynamic benefits of wing deformation. The
DBET model indicates that viscous drag increases significantly
as the wing deforms. The UVLM model considers only pressure
drag and cannot account for viscous drag without an empirical
or other corrective model. This issue affects vector aerodynamic
force production, even when the normal forces component pre-
dicted by UVLM and DBET are similar (Fig. 7).

TABLE 5. Influence of wing flexibility on mean vertical force for both
fluid solvers.

Fluid Solver Wing Type Mean Vertical Force (mN)

DBET Rigid 2.76

DBET Flexible 2.97

UVLM Rigid 3.08

UVLM Flexible 6.67
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CONCLUSION
In this work, we derived a reduced-order flapping wing FSI
model, where the wing was idealized as a two-dimensional flexi-
ble pitching, plunging airfoil. We considered DBET and UVLM
fluid models, where the former is more computational efficient
but does not provide information regarding the flow surrounding
the wing, and the latter partially resolves the flow structure but
requires increased solution time. We found that, for a limited set
of kinematics, DBET and UVLM produced similar estimates for
wingtip deflection as well as aerodynamic normal forces. DBET
solved approximately 15 times faster than UVLM though both
fluid models are much quicker relative to direct numerical simu-
lation. However, UVLM appears to overestimate the vector sum
of aerodynamic forces produced by the wing, perhaps because
it cannot account for viscous drag without modification. We be-
lieve the 7% increase in mean aerodynamic vertical force pre-
dicted by the DBET model is a more accurate reflection of the
benefits of wing flexibility on force production. While this aero-
dynamic benefit may seem small, it is plausible that flexibility
is also reducing the energy required to flap. Thus, both energy
and force production should be studied simultaneously moving
forward.

The primary contribution of this work is the DBET frame-
work, which extends the most common aerodynamic model used
to study flapping wing insect flight to incorporate flexibility.
Nonetheless, there remain many factors to consider before the
DBET model is generally applicable, even for the 2D case. Most
importantly, we must explore a large range of kinematic pa-
rameters and wing stiffnesses. While DBET and UVLM agree
fairly well for most responses considered here, it is possible this
agreement deteriorates for kinematics that include larger rota-
tions and/or plunging angle. Further, UVLM itself must be veri-
fied for accuracy against higher-order CFD, particularly because
it does not model viscous forces in this current form. Despite
these limitations, the research presented here provides a solid
foundation for further studies in reduced-order modeling of flap-
ping wing FSI.
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APPENDIX A - KINETIC ENERGY
This appendix provides additional detail on the derivation of
Eq. 11. In general, the Lagrange formulation requires explicit
representations of kinetic energy T and potential energy U . Ex-
panding Eqs. 9-10 in terms of Eqs. 6,8 yields

T1 =
1
2

θ̇
2
∫

m
W 2 dm =

1
2

θ̇
2

∞

∑
k=1

q2
k

T2 = −θ̇ Ż sinθ

∫
m

W dm =−θ̇ Ż sinθ

∞
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qk

∫
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φk dm
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Ż2
∫

m
dm =

1
2
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2
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Ixxθ̇
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1
2
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T6 = Ż cosθ
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ydm
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∫
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2
k q2

k

where T = ∑
8
m=1 Tm. Then, to determine the equation of motion

governing qk, we apply the Lagrangian formulation. Treating qk
as our generalized coordinate, we have

d
dt

(
∂T
∂ q̇k

)
− ∂T

∂qk
+

∂V
∂qk

= Qk

Carrying out the above operations results in Eq. 11.
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