This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Knowledge-Infused Global-Local Data Fusion for
Spatial Predictive Modeling in
Precision Medicine

Lujia Wang, Member, IEEE, Andrea Hawkins-Daarud, Kristin R. Swanson,
Leland S. Hu, and Jing Li~, Member, IEEE

Abstract—The automated capability of generating spatial
prediction for a variable of interest is desirable in various
science and engineering domains. Take precision medicine of
cancer as an example, in which the goal is to match patients
with treatments based on molecular markers identified in each
patient’s tumor. A substantial challenge, however, is that the
molecular markers can vary significantly at different spatial
locations of a tumor. If this spatial distribution could be predicted,
the precision of cancer treatment could be greatly improved
by adapting treatment to the spatial molecular heterogeneity.
This is a challenging task because no technology is available to
measure the molecular markers at each spatial location within a
tumor. Biopsy samples provide direct measurement, but they are
scarcef/local. Imaging, such as MRI, is global, but it only provides
proxy/indirect measurement. Also available are mechanistic mod-
els or domain knowledge, which are often approximate or incom-
plete. This article proposes a novel machine learning framework
to fuse the three sources of data/information to generate a
spatial prediction, namely, the knowledge-infused global-local
(KGL) data fusion model. A novel mathematical formulation
is proposed and solved with theoretical study. We present a
real-data application of predicting the spatial distribution of
tumor cell density (TCD)—an important molecular marker for
brain cancer. A total of 82 biopsy samples were acquired from
18 patients with glioblastoma, together with six MRI contrast
images from each patient and biological knowledge encoded by
a PDE simulator-based mechanistic model called proliferation-
invasion (PI). KGL achieved the highest prediction accuracy and
minimum prediction uncertainty compared with a variety of
competing methods. The result has important implications for
providing individualized, spatially optimized treatment for each
patient.

Note to Practitioners—This article proposes a machine learning
framework to fuse local data, global imaging, and domain
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knowledge to generate a spatial prediction for a variable of
interest. This methodology is relevant to multiple application
domains. In precision medicine, it will allow for mapping the
spatial distribution of important, treatment-informing molecular
markers across each tumor by integrating biopsy data, MRI,
and biological knowledge. This capability can help resolve the
spatial heterogeneity of molecular characteristics and greatly
improve the precision of cancer treatment. Other applications
include early detection of regional fire risk across a forest by
integrating ground/aerial survey data, satellite imagery, and fire
simulator output, as well as regional poverty estimation for
resource allocation.

Index Terms—Health care,
medicine, statistical modeling.

machine learning, precision

I. INTRODUCTION

N MANY science and engineering domains, the automated

capability for generating a spatial prediction map of a
variable of interest is critical for decision-making. Here we
give three examples.

1) In precision medicine of cancer, one leading cause of
treatment failure is intratumor heterogeneity [1], [2].
This means that molecular markers, which are typically
used to guide treatment decisions, do not uniformly
distribute across a tumor. Existing treatments do not
adapt well to this regional heterogeneity, leading to
suboptimal treatment outcomes. If the spatial molecular
distribution could be precisely mapped out for each
tumor, cancer treatments could be greatly improved.

2) In forest fire management, the ability for predicting
regional fire risk across the forest is important for early
detection and prevention [3].

3) In poverty management and reduction, one important
first step is to map out regional poverty status across a
developing world. This information can help optimally
allocate resources [4].

The challenge is that direct measurement for the variable
of interest at every spatial location is impossible due to
feasibility and cost constraints. Related to the above exam-
ples, the direct measurement for molecular markers must be
done through biopsy. Due to its invasive nature, only a few
biopsy samples from a patient can be obtained. Similarly,
the direct measurement for fire risk must be done through
aerial or ground survey, which can only sample a few locations
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TABLE I

EXAMPLES IN SCIENCE AND ENGINEERING DOMAINS THAT DEMAND
THE PROPOSED KGL METHODOLOGY TO SUPPORT
CRITICAL DECISION-MAKING
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Biopsy samples
+  Direct molecular measure
+ Invasive

«  Local/sparse

Variable Available sources of data/information
ofinterest Local data Global data Domain
(direct (proxy) knowledge
measure)
Precision  Regional Biopsy Clinical Mechanistic
Medicine  molecular  samples imaging models
of cancer  status
Early Regional Ground or Spectro- Forest fire
detection fire aerial radiometer simulators;
of forest potential survey satellite ecological
fire images model
Resource  Regional Household  Daytime and  Macro-level
allocation  poverty survey nightlight statistics
for level satellite (country-level
poverty images GDP)
reduction

of the forest. For the same reason, survey data that directly
reflect poverty levels may only be available for some regions
across a developing world. As a result of these constraints,
many spatial locations do not have direct measurement data
for the variable of interest, i.e., these locations are “blank.”
This creates a tremendous difficulty for decision-making.

On the other hand, indirect or proxy measurement data may
be available global-wide. One typical form of such data is
imagery. In medicine, clinical imaging such as CT and MRI
has been widely used to support diagnosis and treatment.
Imaging can be taken noninvasively and portrays the entire
host organ of the tumor. Also, imaging of different kinds is
designed to measure microscopic tissue structure, morphology,
microvasculature, and metabolism, which provide insight into
the phenotypic presentation of the molecular characteristics
of the tumor. In the other two examples, global proxy data
are provided by satellite imagery: spectroradiometer satellite
images can help detect fire risk across a forest; regional
poverty levels can be reflected in satellite nightlight images
portraying power density and daytime images portraying
infrastructure, housing, etc.

In addition to sparsely sampled local data and global
imagery, another important source of information is domain
knowledge. For example, in cancer biology, mechanistic mod-
els exist for some molecular markers based on biological
knowledge and principles [5], [6]. These models take the form
of algebraic equations, PDEs, or ODEs, and can produce a
prediction map for the spatial distribution of some molecular
markers across a tumor. However, these models are typically
based on simplified assumptions. As a result, the prediction
map may only capture some general trend of the molecular
distribution but lacks localized precision. In forest fire man-
agement, similar forms of domain knowledge exist from forest
fire simulators and bio-ecological models [7]. Furthermore,
domain knowledge may exist in a looser form. For example,
it may be known that some molecular characteristics are more
likely to be present at certain regions of a tumor. In the
poverty example, there may be historical knowledge that
certain regions are less or more wealthy than others.

Clinical imaging
*  Non-invasive
+  (Global

*  Proxy measure

Mechanistic model a
(biological knowledge) 3
+  Simulation-based
« Global

+ Approximate

——

Spatial molecular
prediction for
Precision Medicine

Fig. 1. Schematic overview of the multidata/information fusion framework
by the proposed KGL methodology. The framework is illustrated using the
application of Precision Medicine, but it is generalizable to other applications
given in Table I

In summary, with the final objective of generating a
spatial prediction map for a variable of interest, there are
three sources of pertinent data and information. Please see
Table I for what these data/information sources are in dif-
ferent science and engineering applications. Using a single
data/information source by itself does not lead to an opti-
mal solution. This article proposes a novel computational
machine learning framework to optimally fuse the multiple
sources of data/information, which is called the methodology
of knowledge-infused global-local data fusion (KGL). Please
see Fig. 1 for a schematic overview of the KGL framework.
The key idea of KGL is to build a predictive model that
uses global imagery to predict the regional distribution for the
variable of interest, where the model parameters are optimized
to simultaneously serve three purposes: 1) maximizing the
accuracy on labeled samples (i.e., regions with direct mea-
surement); 2) reducing the prediction uncertainty on unlabeled
samples (i.e., regions without direct measurement but only
imagery); and 3) being consistent with the trend or patterns
conveyed by domain knowledge.

The contributions of this article are summarized as follows.

1) New Fusion Framework: To our best knowledge, KGL

is the first methodology that optimally fuses local and
global data together with domain knowledge. There is no
existing machine learning framework that immediately
targets to achieve this goal.

2) Novel Machine Learning Development: KGL primarily

intersects with two subfields in statistical modeling and
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machine learning: semisupervised learning (SSL) and
Gaussian process (GP) model. The intersection with SSL
is that KGL uses both labeled and unlabeled samples
to train the predictive model. Leveraging unlabeled
samples to alleviate the sample size limitation is the core
idea of SSL. The intersection with GP is that KGL uses
a GP to relate regional image features with the regional
variable of interest. While in theory this relationship
may be built by some other models, GP is chosen due
to its advantages of being nonparametric, nonlinear, and
most importantly the capacity for generating a predictive
probability distribution instead of just a point estimator.
This allows for uncertainty quantification and reduction.
However, as shown in Section II, the existing models in
SSL and GP do not provide the capability of KGL.

3) Theoretical Insight: We demonstrate that the formulation
of KGL belongs to the machine learning paradigm called
posterior regularization (PostReg) [8], [9]. PostReg was
motivated by the need of integrating domain knowl-
edge with data-driven machine learning algorithms.
In probabilistic models, a typical way to incorporate
domain knowledge is via Bayesian inference, in which
the knowledge is imposed through the specification
of the prior. However, in many applications such as
the examples mentioned in Table I, it is difficult to
encode the knowledge in a Bayesian Prior. PostReg
provides a flexible mechanism to incorporate the knowl-
edge by constraining the posterior distribution. Although
PostReg has been existing as a theoretical framework,
our article is the first effort that demonstrates its practical
utility in integrating local data, global data, and domain
knowledge for spatial prediction.

4) Contribution to Precision Medicine of Cancer Treat-
ment: We apply KGL to a real-data application for pre-
dicting the spatial distribution of an important molecular
marker called tumor cell density (TCD) for each patient
with glioblastoma (GBM)-the most aggressive type of
brain cancer. KGL generates predictions with higher
accuracy and lower uncertainty than a variety of compet-
ing methods. The results have important implication for
improving the spatial treatment precision of each GBM
tumor.

II. RELATED WORKS

KGL primarily intersects with two sub-fields in machine
learning: SSL and GP.

A. Semisupervised Learning

SSL is used in situations where labeled samples are scarce
but unlabeled samples are available in a large quantity. A typ-
ical supervised learning model would only utilize the labeled
samples to build a predictive model, whereas SSL can leverage
the unlabeled samples. The problem we are targeting in this
article has the same nature: the local data with direct measure-
ment for the variable of interest such as biopsy samples and
survey samples are labeled and scarce; the imagery data with
indirect measurement are unlabeled and available global-wide.

The existing SSL algorithms fall into several main cat-
egories. Self-training is a type of wrapper algorithm that
repeatedly adds those unlabeled samples predicted with the
highest confidence to the training set [10]. Co-training is an
extension of self-training, which leverages two views of the
data. It assumes that there are two separate datasets which
contain conditionally independent feature sets. Two classifiers
are built on the two datasets but with information exchange
with each other [11], [12]. Low-density separation aims to
find the decision boundary in low-density regions in the
feature space based on labeled and unlabeled samples [13].
Graph-based models define a graph in which nodes represent
labeled and unlabeled samples, and edges reflect the similarity
between nodes. Label smoothness is assumed over the graph
to allow label diffusion to unlabeled samples [5], [14].

B. GP Model

GP belongs to Bayesian nonparametric kernel-based prob-
abilistic models [15]. Compared to other predictive models,
GP has some unique aspects: First, GP makes few assump-
tions about the shape of the estimator function beyond the
assumptions associated with the choice of the covariance
function [16]. Another major benefit is its inherently proba-
bilistic nature. GP can generate a predictive distribution for
the response variable based on features, instead of just a
point estimator of the prediction. This allows for uncertainty
quantification and more informed decision-making based on
the prediction result [16]. In this article, we are targeting a
prediction problem which in theory might use some other
predictive models as a baseline. However, GP is chosen due
to its advantages of being nonparametric, nonlinear, and most
importantly the capacity for generating a predictive probability
distribution for the variable of interest. This allows for uncer-
tainty quantification and reduction.

The standard GP is a predictive model. However, due to the
aforementioned advantages, GP has been extended to impact
multiple subfields of machine learning, such as multitask learn-
ing [17], SSL [18], and time series modeling [19]. In terms
of application domains, GP and extensions have been used
for medical decision-making [20], financial analysis [21], and
computer experiments [22].

C. Gaps of the Existing Research

Given the problem we aim to solve, as described in Intro-
duction, none of the existing methods alone would suffice.
Here, we discuss some options of applying existing methods
directly to our problem and why they are insufficient.

1) One option is to build a predictive model to link
local features extracted from imagery with local direct
measurement for the variable of interest (i.e., labeled
samples). This model can then be used to predict the
areas of the imagery where direct measurement is not
available. This is the typical procedure when applying a
supervised learning model. The limitations are multifold.

a) Even though we could use GP to build the pre-
dictive model, the model can only quantify the
predictive uncertainty but not reduce it.
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b) Domain knowledge is not integrated in model
training.

c) A large portion of the imagery is unlabeled, whose
data are not leveraged in the training process.

2) An SSL model can be used to leverage the unlabeled
imagery, which, however, still does not tackle the first
two limitations in (a) and (b) as mentioned above.

In all, we will need to develop a new model that can
simultaneously leverage labeled, local direct measurement
and unlabeled, global imagery, reduce the uncertainty of the
prediction, as well as integrate domain knowledge with data-
driven model training. This capacity does not currently exist
and we aim to provide this capacity by the new KGL model.

III. PRELIMINARIES

Let f be a random variable corresponding to an input
vector x. GP is a collection of the random variables, any
finite number of which have a joint Gaussian distribution.
Consider a set that includes L labeled samples, {Xi,y:'}{”:p
and an unlabeled sample, x* € {x,-}f:ﬂ]. The joint Gaussian
distribution of this set is

f1_nlo K(Xp,X1) K(Xp,x%)

7 UKL )T K (LX)
where K contains covariances between the corresponding
samples, computed based on the input variables using kernels.
Furthermore, introducing the noise term, the joint distribution

of response variables corresponding to the labeled and unla-
beled samples is

f
I:{f:l = I:f,,] + o Ly (L+1)-

To predict the response of the unlabeled sample x*,
we can obtain the predictive distribution of f* by combining
(1) and (2), i.e.,

f*IXL, YL, x* ~ N(#x}-, 0,*2)

ey

(@)

3)
where

T —1
p* = K (XL, x*) (K(XL,Xp) +0%Ier)” v
o = K(x*,x*) — K (X, x*)" (KX, X1) +020)
x K (X, x*).
Equation (3) contains parameters to be estimated, including
parameters in the kernel function and 2. Let @ be the set of

all parameters. 6 can be estimated by maximizing the marginal
likelihood of the labeled samples, i.e.,

méin!(ﬂ) = miny — log p(y.|X., 0). 4)

IV. KGL DATA FUsioN MODEL
A. Mathematical Formulation

Adopt the notation in the Preliminaries section and let
{x;, yi}, be L labeled samples. Let {x;}{jﬂl be U unlabeled
samples, e.g., image features extracted from U locations of

an area of interest (e.g., a tumor, a forest, a developing
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world). y € R is the measurement of a variable of interest
(e.g., a molecular marker, fire risk, poverty level). Our objec-
tive is to build a model using {x;, y;}~, and {x;}%, | together
with domain knowledge in order to predict {j?,-}f’:L -

Recall that the advantage of a GP model is that it can
produce a predictive distribution, in which the predictive
variance o * reflects the certainty/uncertainty of the prediction.
Also, note that ¢* can be computed using only the image
features of an unlabeled sample. This leads us to an SSL

extension of the GP

1
mingEl(ﬂ) (5)
1 L+U
s.t. T Z Var(f;) <t (6)
i=L+1

which minimizes the average negative marginal likelihood
under a constraint that upper-bounds the sum of predictive
variances on unlabeled samples. Compared with the supervised
learning model in (4), the SSL considers uncertainty reduction
in predicting the unlabeled samples, not just maximizing the
likelihood of labeled samples.

Furthermore, considering that domain knowledge may exist,
we add additional constraints to (6) on the predictive means
of unlabeled samples, i.e., (10)—(12)

1
ming —1(0) (7
| L
st. 7 2 Var(fi) <t (8)
i=L+1
g(E(frt1), .-, E(fLyv)) < & (&)
£=0 (10)
tM1<e an

where 1 is a vector of m ones. g(-) contains m different
functions, gi(-),..., gm(-). Each g;(-) is a function of the
predictive means of unlabeled samples, j = 1,...,m. § =
(&1, ...,&n) contains the upper bounds of these functions.
A special case is when m = 1. Then, (9) reduces to a
single function of g(E(fr+1), ..., E(fr+v)) < . Sometimes,
a single function is not enough to represent different kinds of
domain knowledge. Thus, we use a general notation in (9)
to allow for m functions of different forms. Also note that
when the domain knowledge is in the form of an equation
but not an inequality, i.e., g(E(fr1),..., E(frv)) = &,
the equation can always been represented by two inequalities
of g(E(fL+1),---» E(fr4v)) =< ¢ and —g(E(fr41),---,
E(fr+v)) < —¢, which can be added to the constraint set
in (9). Additionally, we consider that domain knowledge may
not always be completely accurate. To accommodate this
uncertainty, we use slack variables in specifying the constraints
corresponding to domain knowledge, as shown in (9)—(11).
€ controls the extent to which the domain k knowledge con-
straints can be violated. This adds the flexibility of allowing
some small violations of these constraints. To summarize,
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Minimize negative log-
likelihood on biopsy samples

il

Fig. 2. Mathematical formulation of KGL as a constrained optimization.

please see Fig. 2 for a graphical illustration of the afore-
described constrained optimization framework for KGL.

B. Optimization Algorithm for KGL Model Estimation

To solve the optimization problem in (7)—(11), we first write
the corresponding Lagrangian function, i.e.,

1 1 L+U
L:E,r(ﬂ)m.(E > Var(fg)—t)

i=L+1

m

+ D uj(gi() —EN—D vi&j+a

j=1 j=1

Dg—e] 12
j=1

with Lagrange multipliers g = (g1,...,4m), ¥V =
(1,...,0m), a1 € R and ao € R, and g;(-) used to
represent g;(E(fr+1), ..., E(fr+v)) for notation simplicity.
Then, the optimal solution of the primal problem in (7)—(11)
is equivalent to the solution of the following optimization:

infe,£SUPy>0,1>0,0120,0,0 ©- (13)

Theorem 1: Let L' = (1/L)(®) + 4((1/U) X,
Var(fi) + 27, w1 (g5() — &) — 2005 + (00, 8,
where A; and A; are tuning parameters. Then, for any 4; > 0
and A, > 0, there exist f > 0 and € > 0 such that the
optimal solution of infp ¢SUP, ¢ ,20,4,20,0,204~ 18 €qual to that
of infg,gsupﬂzg‘nzoﬂ and vice versa (proof in Appendix A).

According to Theorem 1, (13) can be further simplified as

infg gsup, g 0L (14)

Since L' is a convex function of &;, u,v (nonconvex of #),
(14) is equivalent to
infgsup,,.¢ ,-oinfeL’. (15)

Focus on the inner minimization in (15). The minimizer of &;
must satisfy

aL’

o~ _ 16
a¢; (10)

lg—pj—vjzo, j:],...,m.

Predictive variance reduction
on unbiopsied regions

1 o L+U
—Z Var(fi) =t
Udlajzpsq

Knowledge regularization
under uncertainty

£§=0
Fi<e

[E(E(fu 1D E(fran)) < §

Var(_f'[-z
E(f)
Var(f;) 3 ) '
e a—::?-(D(x)Vc)+ pc(l—%)
E(f;)

From (16), we can write v; = Ay — p ;. Inserting this into (15),
we get

infosup,.od(uj; j=1,...,m) (17)
stO0<pj<h, j=1,....m (18)
where
1 1 L+U
Jujj=1,...,m)= EI(B)JNII(E > Var(f,-))
i=L+1
+> 1gi).

j=l

It is clear that the solution of the inner maximization of (17)
with (18) is

1o, if gi(>0
uj = { any value in [0, 45], if g;j(-)=0
0, if g;() <0.

Then, the final objective function becomes

1 1 L+vu
infy L(0) = inngI(B)Jri](E > Var(ﬁ))

i=L+1

+22) 8/(01(g()>0). (19

j=l

The gradient of objective function in (19) can be written as

1 1 L+U
VL= VI(0)+ 11(5 > VVar(f,-))

i=L+1

m
+42 )" Vegi()I(g;()> 0).
j=1
In this article, this optimization is solved by a gradient
descent algorithm implemented in R.
Discussion on the Insight of the Optimizafion: Note that
the optimization in (19) simultaneously balances three aspects:
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maximizing the average marginal likelihood on labeled sam-
ples [recall that /(@) is the negative marginal likelihood as
defined in (4)]; minimizing the predictive variances/uncertainty
on unlabeled samples; optimizing the consistency with domain
knowledge. The last term in (19) is particularly interesting:
I(gj(-) > 0) is an indicator function that takes the value
of one if g;j(-) > 0 and zero otherwise. Recall that in the
KGL formulation in (7)—(11), the consistency with domain
knowledge is imposed by having the constraints of g;(-) < ¢,
i =0,j=1,...,m, where we consider m different types
of domain knowledge. The utility of the indicator functions
is to find which subset of these constraints must be satisfied.
This is the subset corresponding to g;(-) < 0 or equivalently
I(g;j(-) > 0) = 0. For the remaining constraints corresponding
to gj(-) > 0 or equivalently I(g;(-) > 0) = 1, the model
will try to satisfy these constraints as much as possible,
but this needs to be traded off with the first two terms in
the optimization, i.e., some degree of violations for these
constraints is allowed. The appealing part of the model is that
it does not require prespecifying which subset of constraints
must be satisfied and which not, and how much violation
is allowed. All these will be automatically resolved through
solving the optimization problem.

A final note is that since the optimization problem in (19) is
nonconvex, the converged solution may not be the global opti-
mal. This is a common problem for nonconvex optimization
problems. A typical strategy is to use different initial values.
More sophisticated nonconvex optimization algorithms may be
used but are left for future investigation.

V. ANOTHER VIEW: KGL AS POSTREG

To incorporate domain knowledge in probabilistic models,
a common approach is to specify a prior of the model M
that reflects the domain knowledge, i.e., # (M). This prior is
then integrated with the data likelihood p(D|M) using the
Bayes’ rule to obtain the posterior p(M|D). In this approach,
domain knowledge does not directly impact or regularize
the final model estimate, but only indirectly through prior
specification. Due to the indirect nature, the final model
estimate may not fully comply with the knowledge. In some
applications, it may be preferred that domain knowledge can
be used to directly regularize the posterior. This has led to the
development of the PostReg framework [9]. The basic idea
of PostReg is to use a variational distribution g(M | D) to
approximate the posterior p(M|D), while at the same time reg-
ularizing ¢(M | D) according to domain knowledge. That is,
PostReg aims to find the solution g*(M | D) for the following
optimization:
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The first term is the Kullback—Leibler (KL)-divergence,
defined as the expected log-difference between the posterior
and approximate distributions. Q(.) is a function of the
approximate distribution, which regularizes this distribution to
comply with domain knowledge. Because of the regularization
effect, g(M | D) cannot be exactly equal to the posterior
p(M|D), but is made close to p(M|D) while at the same time
being consistent with the domain knowledge. Ppp denotes
a proper variational family of distributions. The PostReg
optimization in (20) is a general formulation. It has been
realized for specific models such as latent variable models
under the EM framework [8], multiview learning [9], and
infinite support vector machines [23].

We demonstrate that solving the optimization in (7)—(11)
is equivalent to solving a specific form of the PostReg
optimization. In this specific form, the choice of the reg-
ularizer Q(q(M | D)) corresponds to variance minimization
and consistency with domain knowledge in expectation. This
theoretical result is summarized in Theorem 2.

Theorem 2: The optimization in (7)—(11) is equivalent to a
PostReg optimization taking the form of, i.e.,

infyep,,KL(q(M | D)|p(M|D))+Q(q(M | D)) (21)

with the following specific definitions for the notations: M =
(f,0) is the model; D = ({x;, yi}E, {x:}/17,,) is the data;
P = {91(f,01D) = p(f|0.D)%(#|D),6 < O} is
a variational family of distributions where q(f|60,D) =
p(f16,D) and q(@|D) = d(#|D) which is a Dirac
delta function centered on 6 in the parameter space ©;
Q(q(f, 0| D)), denoted by a simple form of Q(g) hereafter,
is given by (22), as shown at the bottom of the page.

By demonstrating that KGL is a specific instance within the
general PostReg framework, we can gain two insights: First,
we obtain another angle to explain how domain knowledge
is integrated with global and local data in KGL, i.e., domain
knowledge is imposed to regularize the posterior of the model
(not the prior nor by any other means). Second, KGL provides
a realization of the general PostReg framework and enriches
the problem set PostReg can potentially address. Although
PostReg has been existing as a theoretical framework, KGL is
the first effort that demonstrates the practical utility of using
the concept of PostReg to integrate local data, global data, and
domain knowledge for spatial estimation.

VI. EXPERIMENTS
A. Data Collection and Preprocessing

GBM is the most aggressive type of brain tumor with
median survival of 15 months [24]. Intratumor molecular
heterogeneity has been found to be one of the leading causes

infyep,, KL(q(M | D)||p(M|D)) + Q(q(M | D)). (20) of treatment failure. TCD is an important molecular marker to
1 L+U 2

i=L+1

Q(q) = infre{ (it + 12 &)

j=1 g(ff‘ﬂ q x f(x[,+])dﬂ(f, ﬂ)’ vy ff,g q x f(XL+U)d?}(f, ﬂ))f E;

(22)
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inform surgical intervention and radiation therapy. TCD is the
percentage of tumor cells within a spatial unit of the tumor.
It is well-known that TCD is spatially heterogeneous, meaning
that TCD varies significantly across different subregions of
each tumor [1], [2]. Mapping out the spatial distribution of
TCD across each tumor is important for a neurosurgeon to
determine where to resect. The mapping will also help radia-
tion treatment planning by informing a radiation oncologist
on how to optimize the spatial dose distribution according
to the regional TCD. Such optimal decision is critical to
avoid overtreating some areas of the brain—causing functional
impairment, and undertreating other areas—leading to tumor
recurrence. To know the TCD at each subregion of a tumor,
a biopsy is the gold-standard approach. However, due to its
invasive nature, only a few biopsy samples can be taken. MRI
portrays the entire brain noninvasively. But MRI does not
directly measure TCD while only providing proxy data. In this
experiment, we apply KGL to predict the regional TCD of each
tumor by integrating MRI, biopsy samples, and mechanistic
model/domain knowledge.

1) Patients and Biopsy Samples: This study includes the
data of 18 GBM patients provided by our collaborators at
Mayo Clinic with IRB approval. Each patient has 2—14 biopsy
samples, making a total of 82 samples. Preoperative MRI
including T 1-weighted contrast-enhanced (T'1 + C) and
T2-weighted sequences (7T2) was used to guide biopsy
selection. The neurosurgeons recorded biopsy locations via
screen capture to allow subsequent co-registration with mul-
tiparametric MRI. The TCD of each biopsy specimen was
assessed by a neuropathologist.

2) MRI Preprocessing and Feature Extraction: Each patient
went through an MRI exam prior to treatment. The MRI
exam produced multiple contrast images such as T'1 4 C,
T2, dynamic contrast enhancement (EPI + C), mean diffu-
sivity (MD), fractional anisotropy (FA), and relative cerebral
blood volume (rCBV). Detailed MRI protocols and image co-
registration can be found in our prior publications [2], [5].
To extract features, an 8 x 8 pixel> window was placed at
each pixel as the center within a presegmented tumoral region
of interest (ROI), which is the abnormality visible on T2.
The window was slid throughout the entire ROI, and at each
pixel, the average gray-level intensity was computed within the
8 x 8 pixel? window from each of the six contrast images and
used as features. Therefore, six image features were included
in model training.

3) Labeled and Unlabeled Samples: Biopsy samples are
labeled samples as they have TCD. Samples corresponding to
the sliding windows, except the windows at biopsy locations,
are unlabeled as they only have image features not TCD.

4) Mechanistic Model: We integrate a well-known mecha-
nistic model called proliferation-invasion (PI) [5], [6]. PI is a
PDE-based simulator driven by biological knowledge of how
GBM tumor cells proliferate and invade to sounding brain
tissues. The PDE for the PI model is

Rate of Change
of Cell Density Invasion of Cells iferati
into Nearby Tissue Proliferation of cells
—— ——e
o V.oV + p(1-<)
ot K

where c(x,t) is the TCD at location x of the brain and
time f, D(x) is the net rate of diffusion, p is the net rate
of proliferation, and K is the cell carrying capacity. Solutions
to this model are known to asymptotically set up a traveling
wave in spherical symmetry. This wave has two key properties:
1) the radial wave speed, known to be 2(Dp)'/? and 2) the
gradient of the wavefront, which is known to be related
to the ratio D/p. By assuming different imaging sequences
of T1 + C and T2 correlate with different thresholds of
density on the traveling wave, one can estimate the D/p and
generate estimations of the current gradient/shape of the TCD
profile [25], [26]. In line with previous articles, the T1 + C
and T2 images of a patient are used to calibrate the model
parameters assuming the abnormality on the T1 +C image
corresponds to the 80% TCD threshold and the T2 image
to the 16% TCD. By estimating D/p, we can generate the
current TCD estimate at each pixel. The PI map can capture
some general trend of the spatial TCD distribution but may
lack localized precision due to simplified assumptions and with
only D/p estimated cannot be used to predict future growth.
We run the PI simulator for each patient and generate a PI
map to be integrated with KGL for this single time point of
interest (see Section VI-B).

B. Application of KGL

1) Integration of Domain Knowledge Encoded by PI Map:
In KGL, domain knowledge is incorporated through imposing
constraints on the predictive means of unlabeled samples,
ie., g(E(fr+1), ..., E(fi+v)) =< &. Due to the aforemen-
tioned properties of the PI map, we propose to use it to
regularize the general spatial trend of the TCD predictions.

S1(E(frs1)s - - E(frev)) £ |E(fLe1) — PI] <&

(23)

BU(E(fLs1)s---» E(fL4v)) 2 1E(frev) — PlLw| <&

gur(E(fry1), -, E(frsv))
£ >

i=Ltl,. L4U: j>i

U+1

&by 20, D &G <e

i=1

wi; (E(f;) — E(f;))’ <&

(24)
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Fig. 3. Model training procedure for KGL.

Specifically, based on the pixel-wise estimates of TCD gener-
ated by PI, we compute the average estimate over 64 pixels
within each 8 x 8 pixel> window corresponding to an unla-
beled sample. Denote this average estimate for each unlabeled
sample i by PI;;i = L + 1,...,L + U. The proposed
constraints are (23)—(25), as shown at the bottom of the
previous page, where w;; = e (Pi~P1)* The constraints in
(23) encourage similarity between the predictive mean and
the PI estimate at the same location (unbiopsied sample).
Additionally, the constraint in (24) encourages the predictive
means of two samples to be similar if their PI estimates are
similar, where the PI similarity is reflected by w;;. Further-
more, considering that the PI map only provides approximates
of the TCDs, a slack variable approach is used in (25) to make
these constraints soft instead of hard constraints.

2) Model Training and Competing Methods: Model training
needs to determine the optimal parameter estimates #* of KGL
and select the tuning parameters, 4; and A;. The training
procedure is depicted in Fig. 3. The search for the optimal
turning parameters is used as the outermost iteration. At fixed
A1 and 4, the KGL optimization is solved for each patient.
The input to the patient-specific optimization includes labeled
samples from other patients, unlabeled samples from this
patient, and the PI map of this patient. To improve efficiency
and robustness, a subset of the first 100 unlabeled samples
with the smallest average distances from the labeled samples is
included. The output is optimal parameters, 6*(4;, 7). Then,
the model under the optimal parameters is used to generate a
predictive distribution of the TCD for each biopsy sample of
this patient. The predictive means of all the biopsy samples
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Fig. 4. Comparison of methods on average predictive variance of unlabeled
samples for each patient. Averages across all patients: Standard GP = 0.032;
Semi-GP = 0.032; KGL = 0.014 (56% variance reduction compared with the
other two methods).

are compared with the true TCDs to compute the mean
absolute prediction error (MAPE). This process is iterated with
every patient in the dataset treated as “this patient,” known
as leave-one-patient-out cross-validation (LOPO-CV). While
other types of CV schemes may be adopted, LOPO-CV aligns
well with the natural grouping of samples in our dataset.
Finally, the best tuning parameters A} and A} are selected as
the ones minimizing the average MAPE over all the patients.
Under the A7 and A3, the KGL optimization is solved for
each patient to generate the final optimal parameters 6* for
the patient.
For comparison, we applied a range of competing algo-
rithms to the same dataset, including.
1) The mechanistic model, i.e., PL.
2) The standard GP [15], i.e., a GP model trained using
only biopsy samples.
3) Semi-GP: A semisupervised GP model based on a data-
dependent covariance function for unlabeled data [18].
4) Co-training SVR-KNN: An SSL algorithm based on
co-training with support vector regression (SVR) and
k-nearest neighbors (KNN) [12].
5) SSRR-AGLP: Semi-supervised ridge regression with
adaptive graph-based label propagation [14].
6) SS-RT: Semi-supervised regression trees [13].
T) SAFER: SAFE semisupervised regression [27].
8) KGL With No Variance Reduction: This is a special case
of KGL without the constraint on predictive variances.
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(a) Patient A. (b) Patient B.

9) KGL With Random Unlabeled Sample Selection: This is
a special case of KG by randomly selecting 100 unla-
beled samples to include in model training.
The two GP models in 2) and 3) were chosen to form
the baseline to compare with KGL. 4)-7) are existing SSL
algorithms, each representing a major category of SSL:
co-training, graph-based, and low-density separation for 4)-6),
respectively, and an integrated framework to combine multiple
SSL algorithms for 7). These algorithms were developed
in recent years. 8) and 9) are two special cases of KGL:
8) intends to show the benefit of bias-variance tradeoff of KGL
and 9) adopts an alternative strategy by randomly selecting
100 unlabeled samples to include in training, as opposed to
selecting the top 100 unlabeled samples with the smallest
average distances from the labeled samples. The parameters of
each algorithm were optimized based on the same LOPO-CV
criterion as KGL.

3) Generation of Predicted TCD Maps and Uncertainty
Quantification: For the three GP-based methods, the trained
model of each method can be used to generate a predictive
distribution of the TCD for each sample (i.e., each sliding
window) within the ROI. The predictive means of all the
samples can be visualized by a color map overlaid on the
ROL. Also, we can use the predictive variances to quantify
prediction uncertainty.

C. Results

Table II compares all methods for MAPE. Only GP-based
methods can produce predictive variance, so they are addi-
tionally compared in terms of average predictive variance for
biopsy samples. The last three KGL methods have the smallest
MAPE. Their average predictive variances are also much
smaller than the two existing GP-based methods. Among the
three KGL methods, the last one performs the best, implying
the benefit of including the variance constraint and adopting
a more robust unlabeled sample selection strategy.

Standard GP

Semi-GP

TCD
1007
B =
z g
2 o
L) Q Uﬂo
0.1 02 0 0.1 02 0 0.1 0.2
Predictive variance Predictive variance Predictive variance
(b)

Predicted means of TCD within an ROI are shown as a color map overlaid on the patient’s 72 MRI; predicted variances are shown in distribution.

TABLE II
COMPARISON OF METHODS ON PREDICTION OF BIOPSY SAMPLES

Methods Average predictive
variance

PI 0.252 -

Standard GP 0.191 0.038

Semi-GP 0.189 0.039

Co-training SVR-KNN 0.243

SSRR-AGLP 0.201

SS-RT 0.231

SAFER 0223 -

KGL (no variance reduction) 0.174 0.023

KGL (random unlabeled 0.171 0.018

sample selection)

KGL 0.165 0.015

Fig. 4 compares standard GP, semi-GP, and KGL in terms
of the average predictive variance for all samples (i.e., sliding
windows) within the ROI for each patient. KGL has a smaller
MAPE. The predictive variances by KGL are much reduced for
all samples and across all patients, implying greater certainty
in the prediction.

Furthermore, Fig. 5 shows the predictive TCD maps from
two patients as examples. Colors represent predictive means of
the TCD from O (darkest blue) to 100% (darkest red). Below
each map, we also show the distribution of the predictive
variances for samples within the ROI. Patient A has one biopsy
sample shown on this slice of the MRI. Both standard GP and
semi-GP underestimate the TCD of this sample by a large
margin, whereas KGL has a higher accuracy. Patient B has
two biopsy samples for which KGL estimates with higher
accuracy. Also, the color maps produced by KGL show better
spatial smoothness and align better with the expected tumor
cell distributions from known biology, especially for the color
map of patient B. This is a benefit due to the incorporation of
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the PI map/domain knowledge in model training. Furthermore,
the predictive variance distribution by KGL is much more
concentrated at the low variance range, whereas standard GP
and semi-GP produce predictions with large variances (large
uncertainty). In all, KGL outperforms the other two methods in
both prediction accuracy, prediction certainty, and compliance
to biological knowledge.

D. Discussion on Utilities of the Results fo
Decision-Making in Precision Medicine

With the predicted TCD map for each patient, the neurosur-
geon can have a better reference to decide where of the brain to
take out more (or less) cancerous tissues. Areas with high TCD
should be maximally resected. Areas with little TCD should
be preserved so as to protect the integrity of brain functions.
This level of spatial precision is highly valuable for optimizing
the surgical outcomes of GBM. Furthermore, the predicted
TCD maps can also help radiation oncologists decide how
to optimize the spatial radiation dose in radiation therapy.
Areas with higher TCD should be irradiated more to kill the
cancer cells, whereas areas with lower TCD should receive less
dose to minimize radiation-induced complications. This level
of spatial precision is much desirable for radiation treatment
planning optimization. Finally, we like to point out that since
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mean for each sample, the variance can be used to quantify
the uncertainty of the prediction to guide more informed and
risk-conscious clinical decision-making.

VII. CONCLUSION

We proposed a novel machine learning framework, KGL,
to optimally fuse multiple sources of data/information to
predict the spatial distribution for a variable of interest. KGL
was demonstrated in an application of predicting the spatial
TCD distribution for GBM, and showed superior performance
over competing methods. Future research includes method-
ological extension to nonnumerical response variables, optimal
selection of unlabeled samples, and development of more
efficient optimization solvers.

APPENDIX A
PROOF OF THEOREM 1

According to the derivation process from (15) to (19),

inf sup AL can be simplified as
0.8 u=0,0=0
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Similarly, inf sup
0.8 p=0,v=0,0,20,a,20

L can be simplified as

|-

To prove Theorem 1, we need to prove (26) and (27) are
equivalent.

1) For any choice of 44 > 0 and 1, > 0, consider
the optimal solution #* from (26). It is not hard to
see that #* will also be the optimal solution to (27)
. L+U
if t = (1/U) X0, Vare(fi), and € = 37,
gj:0*(:)1(gj.e*(-) > 0); otherwise, if there is some other
6" with (1/U) 370 Var(f) < t and 37, g;()
I(g;(-) > 0) < ¢, but a better objective value than 6*

. | LU
inf su —1(0) + a1 — Var(fi) —1
e mzo‘clszzﬂ L @ I(U :';rl " )

j=1

+az (Z 8i()1(gj()>0)—e¢

(note that since f and € are preset, it becomes a hard-
constraint optimization and it is easy to know that
a; = 0, ap = 0, and (1/L)I(0") < (1/L)I(8%)),
then (1/D)I(0) + 4i((1/U) 70, Vary (/) + A
3780 V(8,5 ()> 0) < (I/L)(B*) + At + e =
(/D)0 + 41 (F 220 Vare (Fi)+42 37, 8.0 ()
1(gj.0°()> 0).

This contradicts the optimality of #* in (26). Hence 6* is
also optimal in (27).

Conversely, for any choice of > 0 and € > 0, let 6* the
optimal solution from (27), accompanied with the optimal a7
and a}. Hence #* is optimal in
L+U
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Removing the constant term aff and aje, and setting
A1 = a} and 1; = a3, we have that * is the optimal solution
for (26). |

APPENDIX B
PROOF OF THEOREM 2

Our proof aims to show that the optimization in (21)
is equivalent to (7)—(11). For notation simplicity, define
Ql(9) = [;5q x (f (x) = Eg[f (x)])*dn(f,0) and QF(g) =
I 104 % f(xi)dn(f,8). Then the constraints in (22) become
(1/U) X0, Ql(g) <t and g,(9F,,(@), -, 9F (@) <
¢j,j = 1,...,m. Using the Lagrange multiplier method,
we know that (21) is equivalent to (28) as shown at the bottom
of page 10.

Since (28) is a convex function of &,f,ay, u,v, (28) is
equivalent to (29) as shown at the bottom of page 10.

Denote the function within the { } in (29) by ¢. Focus on
solving the inner-most optimization with respect to 7, & by
equating the derivatives of ¢ to zeros, i.e.,

_:’1 — =

aaf 1 23]

[} .
_:)12_ v—U':O, :1,...,m.
3%, Hj—Uj J

From these equations we can get a; = A and v; = Ao —u;.
Putting these back to (29), we get the equation as shown at
the bottom of page 10.

That can be simplified as (30), shown at the bottom of
page 10.

Denote the function within { } in (30) by y. Comparing (30)
to that in Theorem 1, we know that the remaining task of this
proof is to show that inf;cp,, ¥ is equivalent to

1 1 L+u
min | ~1®) + | 7 Do Var(fy)

i=L+1

m
+i2 Y gi()1(g;()> 0)
j=1
Next, we show steps to prove this equivalency. (30) can be
re-formed as (31), as shown at the bottom of page 10.
Now focus on the third term within the inf{ } in (31)

Q¥(g) = / p(f 16,D)85(8 | D) f (x))dn(f, 0)
f.e
- / F&x) / p(710,D)5(8 | DYdn(f, 6)
f 0
- /f Fe0p(718, DYdn(f) = Elf )] (32)

which is not related to f or 6. Similarly
Qi(9)

=/. p(f 16, D)5 (8| D) x (f (x))— E,Lf(x)1) dn(f,0)
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- /f (F ) —EpLf &)1)*p(f 18, D)dn(f)=Var,(f;).
(33)
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Then, inserting (32) and (33) into (31), it becomes (34) as
shown at the bottom of the previous page. |
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